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ABSTRACT The performance of photovoltaic (PV) modules is determined by the interplay between
their inherent characteristics and the prevailing weather conditions. Although the impacts of different
characteristics (e.g., low-light behavior, spectral mismatch, temperature coefficient, etc) are known, they
have not been quantified over large geographic regions. This study uses the Climate Specific Energy
Rating (CSER) and specific yield metrics as criteria to determine how different PV modules perform across
climates in the contiguous United States (CONUS) and identifies the underlying drivers behind the observed
variations. The annual CSER and specific yield of various PV technologies vary by more than 10% and
30%, respectively, across the CONUS. As expected, temperature has the most significant impact on CSER,
affecting CSER by up to 13.1%, while spectral effects account for up to 4.9% variation in the case of cadmium
telluride modules. Additionally, minor differences in parameter estimation procedures are shown to result in
CSER differences of up to 1.5% in some climates. Furthermore, the IEC 61853-4 reference climatic datasets
are found to overestimate CSER by 2-4% relative to climatic data for locations of actual PV systems in the
United States. A new set of reference locations that accurately represents CSER across CONUS is proposed

as an alternative to the IEC 61853-4 reference datasets.

INDEX TERMS performance, IEC 61853, modeling, spectrum, irradiance, temperature, incidence angle

I. INTRODUCTION

HOTOVOLTAIC system energy yield depends on the
P interaction between system characteristics and local cli-
mate; any given system design is better suited to some cli-
mates than others. The primary source of this climatic depen-
dence is that conversion efficiency varies with operating con-
dition differently across module technologies. For example,
it is well known that the conversion efficiency of thin-film
cadmium telluride (CdTe) modules changes less with operat-
ing temperature than that of typical crystalline silicon (c-Si)
modules. In addition to temperature, other influences on PV
conversion efficiency include variation in angular response,
spectral response, and absolute light intensity [1]. PV perfor-
mance in any given climate will thus vary according to how
the climate differs from standard test conditions (STC) in each
of these dimensions (and with other factors like array design).
This climatic variation motivates ‘‘climate-specific energy
rating” (CSER) procedures to rate PV modules according to
their energy output in various representative climates rather
than merely their power at STC. One example is the CSER
procedure specified in the IEC 61853-3 standard [2], [3].
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The CSER is a means of combining the effects of individual
aspects of PV performance (e.g. temperature and angular
response) into a single metric reflecting a module’s overall
performance (relative to STC performance) under a particu-
lar set of realistic weather conditions. This combination of
effects depends on both module and climate since not all
climates differ from STC equally, nor do all modules re-
spond to non-STC conditions similarly. This is demonstrated
in Fig. 1, showing how the range of the effect of each of
four performance aspects varies according to location and
module. Performance effects that are important for a module
in one location may be insignificant for a different location or
module.

This climatic variation has been quantified for specific
characteristics (e.g., temperature [4] and spectrum [5]-[10]),
for specific locations [10]-[13], omitting some performance
effects [14]-[16], or using generic PV module data [1], [17],
but a comprehensive multi-characteristic climatic study using
real module data has not been performed to date. Further-
more, although many studies have examined performance
ratio (PR) [1], [4], [18]-[20] or performance loss rate (PLR)
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FIGURE 1. Climate-specific energy ratings (CSERs) for two modules and
three locations, showing how various aspects of module performance
contribute to the overall CSER, and how these contributions vary across
locations and modules. IAM and SMM refer to the incidence angle
modifier and spectral mismatch, respectively. Stacked bars above (below)
zero indicate performance gain (loss) relative to STC. Black dots indicate
the overall CSER. See Table 1 for interpretation of the module names.

[21], [22] variations across large geographic regions, there
has been no such focus on CSER. While PR and PLR are
widely used to assess PV system performance, they do not
account for the specific interactions between PV technologies
and local climatic conditions. In contrast, CSER provides a
detailed view of how different module technologies perform
under varying climate factors. Additionally, the sensitivity of
CSER to uncertainty in performance modeling assumptions
remains unclear. One study found that different estimation
methods for thermal parameters resulted in up to 1% differ-
ence in CSER [23]. However, how this result generalizes to
other technologies and estimation scenarios remains unex-
plored. Finally, it is unclear to what extent the IEC 61853-4
[24] reference climatic datasets represent climates in the con-
tiguous United States (CONUS). These datasets are intended
to standardize the evaluation of PV module performance, but
the extent to which they reflect diverse climatic conditions has
not been investigated besides a study in Freiburg, Germany
where deviations up to 2.9% were found when compared
against the CSER using the temperate continental dataset
[25]. As such, quantification of CSER across diverse geo-
graphic regions remains largely unexplored. In this work, we
investigate:

1) How do CSER and specific yield vary across the
CONUS and a range of PV module technologies?

2) Which aspects of PV module performance are the pri-
mary sources of the CSER variation?

3) How does uncertainty in performance modeling param-
eter values affect estimated CSER?

4) How does CSER vary seasonally?

5) Are the IEC 61853-4 climatic datasets representative of
the CONUS, and can we propose a better alternative?

This work is a part of PV Atlas, a project from the PV Per-
formance Modeling Collaborative. The results of this study
will be used for interactive maps on the PV Atlas website to
facilitate solar energy education and support PV developers
and other industry stakeholders. For more details, see the Data
Availability section.

2

Il. METHODS

A. CLIMATE DATASETS

CSER is evaluated using solar resource and meteorological
data from the National Solar Radiation Database (NSRDB).
We use 30-minute NSRDB data for approximately 21,000
locations on a 0.2° x 0.2° degree grid across the CONUS.
The dataset corresponds to the calendar year 2022 and was
generated from the NSRDB’s Physical Solar Model, version
4.0.0 [26]. Each CONUS grid location is labeled with a
Koppen-Geiger (KG) climate zone using the kgcPy package
[27].

In addition to the base NSRDB dataset, we use a grid-
ded dataset of spectral irradiance data corresponding to the
same spatial and temporal grid as the NSRDB dataset. This
dataset, representing global tilted spectral irradiance for 2002
wavelengths spanning 280—4000 nm, was simulated with the
FARMS-NIT model [28], [29] assuming single-axis tracking
with a ground coverage ratio of 0.3 and backtracking enabled.
FARMS-NIT is noteworthy in that it is an all-sky model,
meaning the spectra are computed accounting for cloud cover.

CSER computed for these gridded datasets are compared
with CSER for the six reference climatic datasets in IEC
61853-4 [24]. These datasets are labeled “‘temperature conti-
nental”, “temperature coastal”, “‘subtropical coastal”, “‘sub-
tropical arid”, ““tropical humid”, and “high elevation” and
are provided for use with the IEC 61853-3 energy rating
standard [2]. The standard states that these datasets are in-
tended to be “representative of global regions relevant for the
application of photovoltaics™.

B. PV MODULE ENERGY RATING

We consider modules corresponding to five PV technologies:
aluminum back surface field (Al-BSF), passivated emitter and
rear cell (PERC), n-type passivated emitter and rear totally
diffused (N-PERT), silicon heterojunction (SHJ), and CdTe.
These modules represent a diverse range of cell technologies
in use today and their performance characterization datasets
according to IEC 61853-1 and -2 are publicly available [30]-
[33].

Table 1 presents characterization data for each module,
including STC efficiency (nsrc), temperature coefficient of
power (Ymp), Faiman thermal coefficients (ug and u;), and
Martin/Ruiz IAM coefficient (a,). Each module’s efficiency,
external quantum efficiency, and IAM profile are shown in
Figs. 2 and 3.

Energy ratings for each module are calculated following
the IEC 61853-3 standard [2] , which defines CSER as

E‘vim / Hp
P ste / Gref ’

where Ej;, is the simulated annual energy output of the
module, H, is the annual in-plane irradiation, Py is the
maximum power under standard test conditions, and G, is
the irradiance at standard test conditions. CSERs calculated
according to this standard can be understood as the ratio of a

CSER = ey
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TABLE 1. Descriptions and characterization data for the PV modules considered in this work.

2 2

Name Module Celltype  nstc [%]  Ymp [%/°C] o [W{g ] " [%] ar -]

CSmono275 Canadian Solar CS6K-275M  Al-BSF 16.9 -0.415 28.825 4.452 0.1524

Qmono300 Q Cells Q.PEAK-G4.1 300 PERC 17.4 -0.403 30.536 5.019 0.1553

LG320 LG 320 N1K-AS5 N-PERT 18.7 -0.400 24.229 7.182 0.1590

Panasonic325  Panasonic VBHN325SA 16 SHJ 19.3 -0.297 24.614 7.878 0.1521

FSLRs4 First Solar FS-4112-3 CdTe 16.4 -0.297 24.4 6.904 0.1160
1.05 : : : : : location-specific efficiency to the nominal efficiency at STC.
100 A S | | The lo.cation-specific efficiency (Esin/H,) is determined by a
. - modeling workflow that accounts for the effects of spectral
% 0.95 ] variation, operating temperature, absolute irradiance level,
2 090 . and reflection loss. Each of these modeling steps is performed
© 085 using the corresponding model implementations provided
;E 0.80 'R Rl S R N | in the open-source PV modeling toolbox pvlib-python [34],
= o = [35], version 0.11.0 [36]. However, the energy rating pro-
: ) l cedure in this work differs slightly from the IEC 61853-3

0.70 z- 1 1 1 1 1 . . .
0 200 100 600 200 1000 method .m the foll.owmg ways: . . .
Effective irradiance [W /m?] 1) leferent.chmate datasets; i.e., all climates observed in
CSmono275 —-—LG320 FSLRsd CONUS 1nst§ad Qf the IEC 61853-4 datasets
Qmono300 Panasonic325 2) 30-minute climatic data instead of hourly

FIGURE 2. Relative efficiency profiles for the five modules fitted to test
lab measurements at various irradiance and temperature conditions. Each
profile is normalized to the module’s efficiency at STC. The upper and
lower groups of lines correspond to operating temperatures of 25°C and
75°C, respectively.
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FIGURE 3. Each module’s normalized external quantum efficiency (top)
and incidence angle modifier profiles (bottom) from test lab
characterization measurements. The shaded area indicates the AM 1.5G
reference spectrum.
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3) Higher-resolution spectra (FARMS-NIT provides 2002
spectral bands while IEC 61853-4 provides only 29)

4) Modeled global tilted irradiance (GTI) as it is not pro-

vided by the NSRDB

5) Single-axis tracking instead of fixed tilt

6) Performance modeling using the ADR model [37], [38]

instead of bilinear interpolation, as interpolation is not
fully specified [39].

The choice of single-axis tracking instead of fixed-tilt ori-
entation was to better match large-scale PV systems deployed
in the United States today, the large majority of which use
single-axis trackers [40].

To investigate the underlying sources of variation in CSER,
we also compute CSER values where individual performance
effects are held at their STC values instead of varying ac-
cording to the climatic dataset. For example, IAM is kept
at STC by setting it to 1.0 for all angles of incidence. Four
aspects of performance are evaluated in this way: IAM, spec-
tral mismatch (SMM), low-light response, and temperature
response. By computing CSER values with each of these
effects “disabled” (i.e., held at the corresponding STC condi-
tion) and comparing with the baseline CSER where all effects
are active, we can quantify each effect’s share of the overall
variation in CSER.

We also calculate a second metric, the specific yield. This
metric represents the module’s annual energy production,
normalized to its nameplate power rating:

Egin H
Specific Yield = — = CSER - —2- )
stc ref

In other contexts, specific yield is typically calculated con-
sidering a complete PV system and all its sources of energy
losses, including inverter and transformer efficiency, wiring

3
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resistance, clipping, soiling, and shading. Here we calculate
specific yield using the same simulated energy production
as for CSER, meaning none of these losses are considered
and the resulting yield is thus an idealized representation
of module performance. Because the specific yield values
reported in this work are taken at the module level, they will
be skewed high relative to the system-level values reported
elsewhere.

lll. RESULTS

A. HOW DOES PERFORMANCE VARY ACROSS CLIMATES
AND PV MODULES?

First, we use the gridded NSRDB broadband irradiance, spec-
tral irradiance, and meteorological data to quantify and char-
acterize the climatic variation of module performance across
the CONUS. Fig. 4 depicts maps of CSER and specific yield
for each of the five PV modules. Fig. 5 depicts the distribution
of CSER grouped by Koppen-Geiger climate zones.

For CSER, broad geographic/climatic trends are qualita-
tively similar across different modules, though the scale of
variation differs by more than 10% across the CONUS. The
highest CSER values, reaching up to 103%, are observed
in the Upper Midwest, while the southern and southwestern
regions show values as low as 86.2%. As shown in Fig. 5,
this climatic/geographic variability is only partially described
by KG climate zone. Variation in CSER is minimal within
uniform climate zones like zone BWh (hot desert), while
the range in zone Csb (warm summer Mediterranean) spans
nearly the full range for all of CONUS. However, across all
climates and modules, it is rare to achieve STC efficiency,
with almost all locations having CSER below 100%. Com-
paring the CSER results across modules, we see that some
modules show stronger climatic variation than others, but
FSLRs4 consistently achieves the highest CSER across all
climate zones, reaching a maximum median value of 99.3%
in zones Dfa and Dfb. The four silicon-type modules show
comparable results across CONUS as a whole, with median
CSER varying by 1.5%, although differences are larger (up
to 3%) for individual climate zones. Which of the four silicon
modules is the best performer also depends on climate zone.

For yield, the geographic/climatic trends are also quali-
tatively similar across modules. However, the results reveal
that yield is only loosely correlated with CSER. For exam-
ple, all five modules have CSER roughly equal in regions
of the southwest and southeast CONUS, while yield can
vary by nearly 50% between the two regions. More broadly,
we see that CSER variation (85-105%, or approximately
+10%) is significantly smaller than yield variation (1500-
3000 kWh/kW,, or approximately £30%). Referring to Eq. 2
we see that the only difference between these two metrics is
the solar resource, leading to the conclusion that variation
in resource is roughly three times as important as variation
in CSER when considering yield. We also note that loca-
tions with the highest yield (desert southwest) tend to also
have lowest CSER, and that the FSLRs4 module’s CSER

4
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Annual CSER [%]

FIGURE 4. Geographic variation in annual CSER (left column) and specific
yield (right column) for each module based on ~20 km gridded irradiance
and meteorological data from the NSRDB. With few exceptions, all
modules perform worse (relative to STC) across CONUS. Geographic
variation in CSER is only loosely correlated with variation in specific yield.
Note that yield is calculated assuming single-axis tracking with no system
losses.
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FIGURE 5. Distribution of annual CSER across the principal Koppen-Geiger
climate zones in CONUS: BSk (cold semi-arid), BWh (hot desert), BWk
(cold desert), Cfa (humid subtropical) Csb (warm-summer Mediterranean),
Dfa (hot-summer continental), Dfb (warm-summer continental).
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FIGURE 6. Geographic variation of each aspect of module performance (incidence angle modifier (IAM), spectral mismatch (SMM), temperature, and low
light. Color bands indicate unit ranges aligned to half-integers (e.g. white indicates the range from -0.5 to +0.5).
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FIGURE 7. The contribution of each performance effect to CSER across
CONUS. The effects of temperature and spectrum are highly variable
across climates, while IAM and low light are more consistent.

advantage translates to a yield improvement of 2—6% over the
silicon-type modules.

B. WHICH ASPECTS OF PV MODULE PERFORMANCE ARE
THE PRIMARY SOURCES OF THE CSER VARIATION?

To determine and quantify the effects driving the CSER differ-
ences across modules and climates, specific module and cell
characteristics were investigated: IAM, SMM, temperature,
and low-light behavior. Fig. 6 shows how the contribution of
each of these four PV performance aspects varies geographi-
cally. The same results are summarized in Fig. 7. Temperature
has the most significant impact on the CSER ranging from
—13.1% up to 1.9%. This means that, as expected, the tem-
perature effect will typically negatively impact CSER, though
not everywhere in the CONUS. Panasonic325 and FSLRs4

VOLUME 11, 2023

experience noticeably less temperature effect than the other
modules do, consistent with the differences in temperature
coefficient shown in Table 1. However, note that Qmono300
shows reduced temperature effect relative to LG320, despite
the two modules having nearly identical temperature coeffi-
cients. This is due to differences in the thermal coefficients
uo and u1, meaning these often-overlooked coefficients can
have meaningful impact on energy rating. Note that our sim-
ulations assume open racking; for roof-mount or building-
integrated arrays, the temperature effect may be larger.

IAM remains nearly constant across different climates with
a median impact of 1.7% for the silicon modules, making
it the second-most influential factor in most locations. The
advantageous IAM profile of FSLRs4 results in a reduced
IAM loss of only 0.9%. For other racking configurations (e.g.
fixed tilt and vertical), the effect of [AM may be larger.

The effect of spectral mismatch is variable, with gains of
0.5-1.5% being typical but some locations reaching 2.5%
and 4.9% for silicon and CdTe, respectively. The four silicon
modules show similar trends, with Panasonic325 showing a
slightly reduced gain relative to the other three. The source of
the geographic pattern was not investigated in this work.

Low-light conditions generally have a negligible impact;
however, in certain climates and for specific modules, they
can cause a marginal effect exceeding —1.5%. The calculated
annual losses align well with expectations based on the low-
light efficiency curves shown in Fig. 2; modules with more
pronounced efficiency reduction at low light (CSmono275
and Panasonic325) experience larger low-light impact to
CSER.
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FIGURE 8. Monthly CSER evaluated across CONUS. Each sequence of
box-and-whiskers represents the months January through December.
Geographic variation is comparable in scale to temporal variation.
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C. HOW DOES CSER VARY SEASONALLY?

CSER as defined in IEC 61853-3 is an annual metric, but
we now calculate it on a monthly basis in order to evaluate
seasonal variation in module efficiency. The calculation is
identical except for consideration of only monthly subsets
rather than the complete annual dataset. With each monthly
subset, we also compute CSERs with each of the four aspects
of performance held at STC as described previously.

Fig. 8 shows how CSER varies seasonally, with the indi-
vidual contribution of each of the four performance effects
shown in Fig. 9. Similar to the annual behavior, temperature
is also the primary driver of CSER seasonality. Low-light
losses are concentrated in the winter months, except for the
FSLRs4 module, which performs up to 1% better under these
conditions. The IAM also worsens in winter due to the sim-
ulated configuration (i.e., single-axis tracking). Qualitatively,
among the analyzed modules, Panasonic325 exhibits the least
geographic variation, while FSLRs4 shows the least seasonal
variation. Notably, the seasonal effects tend to partially cancel
each other out with IAM and low-light losses being balanced
by temperature effects whereas for CdTe modules, the SMM
offsets the temperature influences. The individual effects
combined result in 7-13% seasonal variation, depending on
the module, with all modules having winter CSER above
100% for some locations.

D. HOW DOES PARAMETER VALUE UNCERTAINTY AFFECT
CSER?

To assess the effect of uncertainty in performance model pa-
rameters, CSER was recomputed using alternative parameter
values for each module. In principle, this analysis could be
applied to the parameters for all four performance effects
considered in this work. Here we apply it to only the IAM and
thermal parameters, as the test laboratory reports indicate the
uncertainty, or provide alternative parameter values, for these
parameters.

For IAM, the test reports for these modules provide a value
and uncertainty for the Martin/Ruiz parameter a, (e.g. a, =
0.1590 + 0.0018). The stated uncertainties for these values
are sufficiently small to produce no more than 0.1% variation
in simulated performance. With such a small effect size, the

6

15 F CSmono275 Qmono300 LG320 Panasonic325 FSLRs4 3
10 l
5 [[ty
s _hllllnuu- )l el ,,Hmn}!!—
10 B E
—15 B 3
15 F CSmono275 Qmono300 LG320 Panasonic325 FSLRs4 3
_ 10E 3
“e  OF E
°Z 0f prersnsennyyd
SR g
o —-10 E E
CL% 7115; - CSmono275 Qmono300 LG320 Panasonic325 FSLRs4 3
O E g E
o £ 10 | 3
°SZ 5 [ I I
£z il MAH | u l it 'llll‘ﬂ
i | i i
& 10 L[yt |||
—15 £
15 F CSmono275 Qmono300 LG320 Panasonic325 FSLRs4
. 10E E
3 5 ]
p=} 0 g11emy 4 I"u-"' s 2220°0Q9® * 4 "l"”,‘...- P
| L L
—15 B 3

FIGURE 9. Seasonal variation in the contribution of each performance
effect to overall CSER. Each sequence of box-and-whiskers represents the
months January through December.

TABLE 2. Alternative sets of Faiman thermal coefficients for each
module, taken from the module characterization reports.

Set 1 Set 2
Name uo U ug u1
CSmono275 28.825 4.452 29432 4468
LG320 24229 7.182 24903 7.011
Panasonic325 24.614 7.878 28.657 5.983
Qmono300 30.536  5.019 30.280 5.071
FSLRs4 24400 6904 28.100 5.856

results are omitted here for brevity.

The test reports also indicate uncertainties for the Faiman
thermal coefficients uy and u;. However, they also offer a
second set of values for uy and u; obtained by following a
slightly modified data filtering procedure when fitting the em-
pirical temperature measurements. The two sets of parameter
values for each module are listed in Table 2. Because the two
sets of parameter values were fitted to similar datasets using
similar techniques, they give a rough indication of real-world
parameter estimation variability, and it is thus informative to
compare the CSERSs resulting from each set.

Fig. 10 shows the difference in annual specific yield be-
tween the two sets of ug and u; values. The difference varies
significantly across the five modules, with CSmono275 and
Qmono300 showing less than 0.25% difference and Pana-
sonic325 and FSLRs4 showing larger differences of up to
1.5%. Additionally, a geographic pattern is evident, where
large differences in annual yield occur in regions with low
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FIGURE 10. Difference in simulated annual yield resulting from using
alternative values for the Faiman thermal coefficients uy and u,. The
effect size varies significantly with both module and location/climate.

annual wind speed (according to the weather dataset used in
the simulation).

E. ARE THE IEC 61853-4 CLIMATIC DATASETS
REPRESENTATIVE OF THE CONUS?

To assess whether the six IEC 61853-4 [24] reference cli-
mates are representative of the climatic conditions across the
CONUS, we compare the CSER results from these different
datasets to each other (see Fig. 11). In addition, to avoid
representing systems that are unrealistic (e.g., on the peak of
a tall mountain), Fig. 11 also compares against CSER values
from locations of 1258 real utility-scale PV power plants
taken from the 2023 utility scale solar report from Lawrence
Berkeley Lab (LBL) [40].

Overall, we can see that the IEC 61853-4 climatic datasets
tend to over-estimate CSER in the CONUS. To quantify these
differences, average CSERs for each of these three sets of
locations are provided in Table 3. Relative to the CSER for
CONUS, the CSER corresponding to the locations of real
PV systems is 0.9—1.6% lower on average. We also see that
the IEC 61853-4 reference datasets skew high relative to the
distributions of both CONUS and LBL 2023 (1.0-2.2% and
1.9-3.7% on average, respectively), resulting in the lower
tails of these distributions extending significantly below the
minimum CSER of the reference datasets. The fraction of
locations with CSER below the minimum reference CSER,
for various regions, is shown in Fig. 12. We see that approxi-
mately 25% of locations of real PV systems, and roughly 10%
of the entire CONUS, correspond to CSERs outside the range
of CSER from the IEC 61853-4 reference datasets. Notably,
for four out of the five modules, the majority of locations in
the BWh (hot desert) climate zone have CSER outside the
range of the IEC 61853-4 reference datasets. CSER for these
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FIGURE 11. Comparison of CSER distributions for four sets of locations:
the full contiguous United States (CONUS), the current locations of
deployed utility-scale PV systems (LBL 2023), the six IEC 61853-4
reference datasets, and the seven locations proposed in this work. The
CSER distribution for the reference datasets is shifted high relative to the
distributions for CONUS and LBL 2023, while the proposed locations
accurately reflect the CONUS distribution.

TABLE 3. Mean CSER values for different regions of the United States.
CSER values are given in percent.

CONUS LBL 2023 IEC 61853-4
CSmono275 92.9 91.4 94.9
Qmono300 94.3 92.7 96.5
LG320 93.5 92.0 95.7
Panasonic325 94.4 93.4 953
FSLRs4 97.2 96.2 99.4

unrepresented locations fall as much as 5% below the lowest
CSER for the reference datasets.

Motivated by these observations, we present a set of al-
ternative reference datasets (or rather, their locations and
NSRDB statistics) that more accurately represent the distri-
bution of CSER across CONUS. These locations were chosen
by identifying locations in the full set of CSER simulations
that, across the five modules, most closely matched a range
of seven target CSER percentiles from 0 (lowest CSER in
CONUS) to 100 (highest CSER in CONUS). Details for
the seven locations are listed in Table 4, and shown graphi-
cally in Figs. 11 and 13. Unlike the IEC 61853-4 reference
datasets, the proposed set of locations accurately represents
the CONUS CSER distribution, including the lower tail. Fi-
nally, we note that as CSER percentile increases, annual GHI
decreases, annual average temperature decreases, and wind
speed increases.

IV. DISCUSSION AND CONCLUSION

The CSmono275, Qmono300, and LG320 modules exhibit
similar behavior across climates, whereas the Panasonic325
and FSLRs4 modules demonstrate distinct performance char-
acteristics. These characteristics are due to the low temper-
ature coefficients combined with the unique low-light SHJ
behavior and the spectral impact on CdTe modules. The
FSLRs4 module demonstrated the highest CSER, and thus

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

IEEE Access

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3534678

Anderson et al.: Variation in Photovoltaic Energy Rating and Underlying Drivers Across Modules and Climates

TABLE 4. Proposed reference locations for PV module energy rating. Columns indicates the nominal CSER percentile (“Target”), the location coordinates
(“Latitude” and “Longitude”), climatic parameters (annual global horizontal irradiation, “GHI”; annual direct normal irradiation, “DNI”; annual average
ambient temperature, T,,,;; annual average wind speed, W), and the actual CSER percentiles for each of the five modules.

Target Latitude  Longitude GHI DNI Tomp  Wsgpa  CSmono275  FSLRs4  LG320  Panasonic325  Qmono300
D!
% ° °  MWh/m? MWh/m? °C mfs % % % % %
0 36.49 -118.90 1.99 244 2094 055 0.00 0.00 0.00 0.00 0.00
10 33.69 -83.90 1.75 2.00 17.05 0.60 9.76 12.29 7.49 7.90 10.65
25 36.49 -93.50 1.71 207 14.53 1.23 24.54 27.79 20.18 21.42 25.75
50 46.69 -120.50 1.59 2.05 1031 1.56 48.18 48.69 49.56 51.75 49.87
75 46.09 -109.10 1.48 1.80 7.66 3.25 74.50 75.00 76.48 74.85 74.46
90 42.69 -90.10 1.46 1.74 8.10 3.37 89.42 90.47 90.04 90.66 89.40
100 47.89 -87.30 1.19 1.16 3.00 557 100.00 99.99  100.00 100.00 99.99
100 p— T T - T T T T T amplified in some times of year due to seasonality, although
< - B CSmono275 seasonality in IAM and low-light response tends to partially
v %r - Quono300 4 cancel out seasonality in thermal effects.
g N 1G320 . ..
g 60 [ Panasonic32s - Secondary. performance differences orlglpate from the
3 FSLRs4 thermal coefficients uy and u;, whose uncertainty was found
E 40 F < y to affect simulated CSER by up to 1.5%. Notably, the uncer-
;% =5 : tainty in these coefficient values is comparable in scale to the
£ 20 -5 = s a ] variation between modules. Based on this finding, we identify
0 A | 50e B EE l -oooc oo a need for improved parameter estimation methods for the ug
CONUS LBL BSk BWh BWk Cfa Csb Dfa Dib and u, parameters.

2023

FIGURE 12. Fraction of locations where CSER falls below the minimum
CSER calculated for the IEC 61853-4 reference datasets.

Mean CSER percentile [%)]

FIGURE 13. Map of the proposed reference locations. Color indicates
CSER percentile averaged across the five modules.

yield, due to its advantageous performance across all four key
effects including a favorable spectral mismatch and low-light
response, reduced IAM loss, and lower temperature-related
losses.

Thermal effects were found to have the largest impact (up
to 12.5%) on CSER in most climates. Either IAM or spectral
mismatch was the next largest effect (up to 2.5% and 5% for
IAM and spectral effects, respectively), depending on loca-
tion. However, the effect of low-light response is generally
marginal. The module with the most pronounced low-light
effect, the Panasonic325 module, exhibits a relative efficiency
reduction to 90% at 100 Wm2, translating to an annual
loss of only approximately 1%. However, all four effects are

8

Additionally, the IEC 61853-4 reference datasets do not
represent the full range of climates where PV systems are
currently deployed. For example, in the high solar resource
and high temperature region of southwestern Arizona, the
irradiance-weighted ambient temperature is 31°C while the
hottest IEC 61853-4 dataset has only 26.4°C. This highlights
that the IEC 61853-4 reference datasets do not represent the
full range of conditions in the CONUS, and in particular the
regions of CONUS with highest solar resource. However, a
proposed new set of reference locations, identified based on
CSER directly rather than climate type, much more accurately
represents the full distribution of CSER across the CONUS.

A primary limitation of this work is that the results are
based on a single year of data (2022), which introduces the
potential for the results to be affected by interannual variation.
On the other hand, similar to TMYs, the IEC 61853-4 climate
datasets are intended to provide a representative weather file,
which might not capture all anomalies or variations occurring
in a single year. This work is also limited in that, due to lack
of required data, it considers only monofacial modules, while
PV deployment continues to shift towards bifacial technolo-
gies. Additionally, module degradation, metastability effects,
and other real-world operational issues are not considered.
Furthermore, the CSER values reflect efficiency at maximum
power point (MPP), and do not take into account additional
losses such as clipping and soiling. These effects (which are
also not considered in IEC 61853-3) would have a significant
impact on system-level energy yield.

Future work should evaluate the effects of recent and future
advances in PV module technology, including bifaciality,
half-cut and shingled cells, and new cell types like TOPCon
and perovskites. Publicly available characterization datasets

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3534678

IEEE Access

Anderson et al.: Variation in Photovoltaic Energy Rating and Underlying Drivers Across Modules and Climates

for these module technologies would be of great value to
such work. Additionally, alternative installation types such as
floating PV and building-integrated PV are known to have
differing thermal characteristics and could also be evaluated
in this context. Finally, projected datasets from climate mod-
els could be used to estimate how PV performance will shift
over time due to climate change.

DATA AVAILABILITY
The data supporting the findings of this study will be made
available upon publication through the PV Atlas website, a
project led by the PV Performance Modeling Collaborative
(PVPMO): https://sandialabs.github.io/pv-atlas/

The PV module characterization datasets used in this work
are available on the PVPMC website: https://pvpmc.sandia.
gov/datasets/
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