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ABSTRACT DETR-like detectors have gained increasing popularity in current practical applications.
However, we observe that their pipeline still suffer from several challenges, including unbalanced distribution
of positive and negative samples, low-quality initial prediction boxes, and unreasonable gradient structure
in the decoding stage. These challenges hinder both the convergence speed and detection performance
of the model. To address these issues, we propose an enhanced DETR-like model called EM-DETR. It
combines three innovative methods, including Dynamic Groups Assignment, Mixed Query Re-Selection,
and Look Forward Stage. Dynamic Groups Assignment employs adaptive parameters to balance the number
of positive and negative samples, providing more effective supervision signals for ground-truth boxes. Mixed
Query Re-Selection utilizes high-quality bounding boxes regressed by subnet to initialize decoder queries,
offering superior prior information for the decoder. Look Forward Stage introduces a more rational gradient
structure which eliminates inter-layer information bias between decoders.We conduct extensive experiments
to evaluate the effectiveness of our proposed method. On VisDrone2021-DET, EM-DETR with ResNet50
achieved 23.9% AP after 12 epochs of training. Compared to the baseline, this represents an improvement
of 4.7% AP. Moreover, the excellent performance of EM-DETR on AI-TOD and Crowdhuman proves the
generalization capability of the proposed method.

INDEX TERMS drone aerial imagery, object detection, end-to-end object detector, Detection Transformer

I. INTRODUCTION

THE advancement of technology has made the applica-
tion of drones in daily life increasingly common. This

has led to drone aerial images object detection becoming
a research focus in the field of computer vision [1]. The
mainstream detectors in the current drone aerial images object
detection are conventional detectors [2]–[6] and its variants
[7]–[9]. However, the hand-designed components (such as
NMS and anchor boxes) that contribute to the exceptional
performance of these detectors introduce a high level of com-
plexity to the model pipeline.

In recent years, researchers have increasingly focused on
DETR-like (Detection Transformer-like) models to simplify
the detection process, making significant progress in various
fields such as steel surface defect detection [10], early fire
warning [11], remote sensing object detection [12], smart
city intelligent transportation [13] and vehicle detection [14].
Unlike classical detectors, DETR-like models do not rely
on Non-Maximum Suppression (NMS) for post-processing,

which allows them to avoid the instability in speed and ac-
curacy that NMS introduces. This makes DETR-like models
more advantageous in practical applications. As a result,
DETR-like models have undoubtedly become a key direction
for the development of fast and accurate object detectors.
The recent introduction of RT-DETR [15] further highlights
this point. It not only surpasses YOLOv7 [16] and YOLOv8
[17] in detection speed, but also outperforms YOLOv9 [18]
and YOLOv10 [19] in accuracy when processing large-scale
images [20]. This further confirms the immense potential of
DETR-like models in efficient and precise object detection.
Based on these advantages, we advocate for the adoption of
DETR-like object detectors for drone aerial imagery object
detection.

DETR [21] undertakes a fresh perspective on the object
detection from the viewpoint of point sets. It establishes asso-
ciations between bounding boxes and ground truth by bipar-
tite matching without NMS. This innovative model enables
object detectors to alleviate the limitations imposed by hand-
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designed components. As the first truly end-to-end model,
DETR has demonstrated great potential in object detection.
Subsequently, researchers have proposed various methods to
improve DETR, such as introducing attention mechanisms
with lower computational complexity [22], [23], introducing
auxiliary branches for one-to-many label assignment [24],
[25], and enhancing the prior information used for initializing
the decoder [26], [27]. Among these methods, the fusion of
low-complexity attention and auxiliary branches for one-to-
many label assignment has emerged as the popular approach
[28]–[30]. This approach has demonstrated significant effi-
cacy across numerous datasets.

However, we observe that DETR models with auxiliary
branch still face several challenges in their pipelines. First,
their label assignment strategy fails to achieve a balance
between positive and negative samples. Although introducing
auxiliary branch increases the number of positive samples,
it also brings in an equivalent number of negative samples.
As a result, the ratio of positive to negative samples remains
unchanged and the gap between their quantities even widens.
This imbalance can potentially affect the stability of model
training. Second, the quality of initial prediction boxes is low.
Existingmodels predominantly use the TopKmethod to select
bounding boxes. However, with the substantial increase in
the number of decoder queries, many low-score bounding
boxes are also included in the initialization queue. These
low-quality bounding boxes not only fail to accelerate the
convergence of the decoder but also make it difficult for the
model to learn the relationship between prediction boxes and
ground truth. Finally, there is information bias among the
decoder layers. In the decoding stage, different layers of the
decoder serve distinct purposes. However, current methods
apply the same gradient across all decoder layers during
optimization, which introduces inter-layer information bias.
This bias forces the model to require additional iterations
to correct it, thereby slowing down the training convergence
speed.

To address these issues, we propose an enhanced DETR-
like model, named EM-DETR. This model incorporates three
innovative methods to improve the convergence speed and
detection performance. First, we introduce an adaptive la-
bel assignment strategy called Dynamic Groups Assignment.
This strategy allocates appropriate supervision signals to each
ground truth based on the positive-to-negative sample ra-
tio. It effectively increases the number of positive samples
during the decoding stage while dynamically adjusting the
positive-to-negative sample ratio, enhancing the model’s ro-
bustness and training stability. Second, we propose Mixed
Query Re-Selection, a decoding query initialization method.
This approach selects high-quality bounding boxes regressed
by a subnetwork to initialize decoder queries. This enables
the main branch to learn decoding features more effectively
based on precise positional information, while the auxiliary
branch provides more accurate gradient optimization direc-
tions. Third, we introduce a novel iterative box refinement
method called Look Forward Stage. This method divides the

decoding stage into a coarse-grained localization phase and
a fine-grained detection phase. By separating the gradient
structures of these two phases, it effectively eliminates inter-
layer information bias in the decoder, thereby accelerating the
model’s convergence. Additionally, we incorporate Distinct
Query Selection [31], a method designed for filtering decod-
ing queries between layers. The purpose is to remove redun-
dant prediction boxes between decoder layers and clarify the
optimization objectives for bipartite matching.
We summarize the contributions of this paper as follows:
• Wepropose an adaptive label assignment strategy named

Dynamic Groups Assignment. It automatically calcu-
lates the supervision quantity for each ground truth box
based on the ratio of positive to negative samples, en-
abling more effective supervision of them.

• We propose a decoding query initialization method
named Mixed Query Re-Selection. It selectively ini-
tializes decoding queries using high-quality bound-
ing boxes regressed from subnet, thereby providing a
more comprehensive prior information for the decoding
phase.

• We propose a new gradient structure called Look For-
ward Stage. This structure adjusts the gradient propaga-
tion style within the decoder. It ensures close connectiv-
ity between layers while eliminating information bias.

• We integrated the above three methods to propose
an enhanced DETR-like model named EM-DETR.
Through extensive ablation studies, we validated the
effectiveness of these different approaches. As a re-
sult, EM-DETR achieved state-of-the-art performance
on VisDrone2021-DET [32], surpassing all DETR-like
detectors, as well as some conventional object detectors
like Cascade RCNN [33] and RetinaNet [3]. Notably,
EM-DETR demonstrated varying degrees of improve-
ment over the baseline on AI-TOD and CrowdHuman
datasets, indicating the strong generalization capacity of
our proposed methods.

II. RELATED WORK
A. OBJECT DETECTION FOR DRONE AERIAL IMAGERY
Presently, drone aerial imagery object detection primarily
relies on conventional object detectors and their variants.
Based on the processing pipeline of object detection, classical
object detectors can be divided into two types: one-stage
and two-stage detectors. One-stage object detectors such as
YOLO (You Only Look Once) [5], [16], [34]–[37] and SSD
(Single Shot MultiBox Detector) [38] directly predict object
positions and categories in a single network. They typically
use methods such as sliding a fixed-size window over the
image or utilizing dense anchor points for predictions. These
methods are fast but might perform less effectively in cases
of object overlap or significant size variations. On the other
hand, two-stage object detectors like Faster R-CNN [2] and
Mask R-CNN [39] divide the object detection task into two
stages. In the first stage, they use RPN(region proposal net-
work) to generate candidate object regions that are likely to
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contain targets. In the second stage, these candidate regions
are further processed for object classification and localiza-
tion. While two-stage methods tend to be more accurate, they
are slower to process than one-stage methods.

Furthermore, researchers are inclined towards refining the
YOLO series models to enhance detection accuracy or in-
ference speed. TPH-YOLOv5 [40] addresses unique chal-
lenges in drone aerial object detection, such as motion blur
induced by high-altitude flights and dense objects within im-
ages, by incorporating self-attention modules into the detec-
tion head of YOLOv5. Building upon TPH-YOLOv5, TPH-
YOLOv5++ [41] introduces an additional detection head
and sparse local attention modules to detect tiny objects,
significantly reducing model computational costs. Recently,
with the release of YOLOv7 [16], several improvements
based on YOLOv7 have gradually gained attention. Efficient
YOLOv7-Drone [8] significantly enhances the efficiency and
accuracy of drone aerial imagery object detection by im-
proving the hierarchical detection head levels and employing
target-guided mask strategy. MS-YOLOv7 [7] introduces a
novel detection head network with CBAM convolutional at-
tention modules to extract features at different scales, thereby
enhancing detection accuracy across various scales.

B. DETR AND ITS VARIANTS
DETR [21] is an end-to-end object detection model based
on the Transformer structure, proposed by Facebook AI Re-
search. The detector comprises three principal components:
a backbone network for feature extraction, multiple layers
of Transformer encoders, and multiple layers of Transformer
decoders. Initially, the detector extracts feature maps from the
input image using the backbone. Subsequently, these feature
maps are transformed into fixed-length embeddings and fed
into the multi-layer encoders. Lastly, the multi-layer decoders
utilize the encoding features and decoding queries to localize
objects in the image.

While DETR has demonstrated commendable perfor-
mance, it still faces challenges such as longer convergence
periods and poor predictive performance of small objects.
Numerous researchers have endeavored to address these
issues by refining model components, including attention
mechanisms and encoding queries. As a significant inno-
vation with the DETR-like framework, Deformable-DETR
[22] introduces deformable attention. Computational com-
plexity is greatly reduced by computing the attention of
surrounding keypoints. Compared with the classical global
self-attention, this method significantly improves the per-
formance. Conditional-DETR [42] decouples the decoding
query into positional and content queries, enabling a higher-
quality optimization during the decoding stage. This method
accelerates the convergence of the DETR model. Based on
deformable attention, Sparse-DETR [43] introduces a scoring
network to selectively learn to encoding queries and remove
redundancy for more efficient self-attention computation.

In addition, there are some algorithms for improving the
structure of DETR. TSP-RCNN [44] proposes that the pri-

mary factor contributing to the slow convergence speed of
DETR lies in the computational complexity of the Hungarian
matching and the cross-attention. To address this concern,
they only retained the encoder as a post-processing compo-
nent of the model, leading to a substantial acceleration in
the convergence speed. With this strategy adjustment, they
achieve satisfactory results after only 36 training epochs. On
the other hand, D2-DETR [45] takes the perspective that
replacing the decoder in the model is challenging. Conse-
quently, they put forth the idea of using a lightweight Trans-
former backbone instead of the encoder, with the aim of
reducing computational complexity. These methods provide
valuable insights for addressing challenges related to the
convergence speed and computational efficiency of DETR-
like models.
Although existing research has made significant progress

in improving convergence speed and small object detection
performance, some challenges remain. For instance, the low
quality of initial prediction boxes makes small objects dif-
ficult to learn, and a portion of training iterations is spent
addressing the information bias introduced during the de-
coding stage, which results in slower convergence speeds.
These issues seem solvable through optimization of themodel
design. To address these challenges, we propose three novel
methods: Dynamic Groups Assignment, Mixed Query Re-
Selection, and the Look Forward Stage. Thesemethods aim to
balance the number of positive and negative samples, improve
the quality of initial prediction boxes, and eliminate inter-
layer information bias in the decoder, respectively. Detailed
descriptions of these methods can be found in Section III.

C. TRAINING STRATEGY FOR DETR-LIKE DETECTORS
Numerous training strategies for DETR-like models have
been proposed. The key of these strategies is stronger su-
pervision on the ground truth boxes [28]. DN-DETR [46]
introduces a denoising strategy. It generates a set of distinctive
decoding queries by applying random noise to the ground
truth . These queries stabilizes the initial training phase by
explicitly defining optimization objectives for training period.
Building upon this, DINO [29] proposes an enhanced denois-
ing strategy known as Contrastive DeNoising Training. It not
only introduces random noise to the ground truth serving as
positive samples but also adds it to the background, which
serves as negative samples. This strategy further reduces the
instability of the binary matching process by simultaneously
learning image foreground and background. This work marks
the first instance where DETR-like models achieved optimal
performance on the COCO dataset. In addition, DDQ [31] in-
troduces a query filtering strategy to eliminate similar queries.
This strategy provides a stable foundation for subsequent
bipartite graph matching.
In addition to the noise strategy, adding auxiliary

branches is also the current mainstream training strategy. H-
Deformable DETR [28] introduces a hybrid query matching
scheme, which implements one-to-many label assignment
through auxiliary queries. This strategy can strengthen the
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supervision of the ground truth and improve the convergence
speed of training. Similarly, Group-DETR [24] also uses aux-
iliary queries to enhance the supervision of the ground truth,
thereby accelerating the training of the model. Co-DETR
[30] uses the output of the detection head of the conven-
tional object detector to initialize the auxiliary branch. This
strategy strengthens the supervision of the encoding phase
and improves the prior information of the decoding phase.
DETR-SQR [47] solves the problem that some intermediate
prediction results are better than the final prediction results
by modifying the model structure from linear structure to tree
structure. This strategy ensures the high utilization of correct
prediction results by optimizing the cascade structure.

III. METHODS
A. MODEL OVERVIEW
We proposed the EM-DETRmodel comprising three primary
components: a backbone network for feature extraction, a
multi-layer encoder for enhancing feature representations,
and a multi-layer decoder incorporating various attention
mechanisms, similar to [21], [22], [28], [46], [48]. The frame-
work of EM-DETR is illustrated in Figure 1.

In EM-DETR, we use a backbone network to extract im-
age features and utilize a multi-layer encoder to enrich the
extracted feature maps. Subsequently, we introduce an in-
novative method, Mixed Query Re-Selection, for initializing
decoding queries. Mixed Query Re-Selection initializes de-
coding queries using anchor boxes regressed from the encod-
ing features. It is essential to note that this method does not
initialize the content queries of the main branch but sets them
as learnable parameters. Further details on Mixed Query Re-
Selection are provided in Section III-C. During the decoding
phase, we use Distinct Query Selection and Look Forward
Stage in each decoder layer. Distinct Query Selection helps
eliminate redundant queries within each decoder layer. Look
Forward Stage adjusts the gradient structure between adjacent
decoder layers, enabling the model to rapidly identify suitable
gradient optimization directions during the decoding phase.
Distinct Query Selection and Look Forward Stage will be
presented in Section III-E and Section III-D. Simultaneously,
to balance the number of positive and negative samples during
model training, we propose a novel training strategy called
Dynamic Groups Assignment. This method stabilizes the
training process and enhances model’s generalization. Dy-
namic Groups Assignment will be presents in Section III-B.

B. DYNAMIC GROUPS ASSIGNMENT
The one-to-many label assignment strategy in conventional
object detectors has been proven to be an effective training
strategy [33] [3]. The hybrid matching scheme [28] is mainly
designed to simulate this label assignment strategy. The core
idea is to increase the number of positive samples, which
enhances the model’s supervision of each ground truth box.
This scheme divides the decoding queries into a main branch
and an auxiliary branch, as shown in Figure 2(b). During the
loss computation phase, the main branch uses the Hungar-

ian algorithm for binary matching between predictions and
ground truth, while the auxiliary branch performs one-to-
many label assignment, similar to traditional object detectors.
However, while the auxiliary branch increases the number

of positive samples, it also introduces an equivalent num-
ber of negative samples. Therefore, although the number of
positive samples increases, the ratio between positive and
negative samples remains unchanged, and the gap between
them may even widen. This imbalance can hurt the model’s
performance and generalization ability [49]. Additionally,
using a hyperparameter to fix the number of supervision
signals for each ground truth does not match the one-to-many
assignment strategy used in conventional object detectors. To
address this issue, we propose an adaptive sample assignment
strategy, called Dynamic Groups Assignment, which is closer
to the one-to-many label assignment used in conventional
object detectors. This strategy dynamically allocates positive
and negative samples for each iteration based on the dataset
distribution and the decoding query state. An illustration of
this is shown in Figure 2(c). The specific implementation is
outlined as follows:
We establish two sets representing the main and auxiliary

branches within decoding queries: Q = {Q1,Q2, . . . ,Qt}
and Q′ = {Q′

1,Q
′
2, ...,Q

′
t}. Similar to H-Deformable-DETR

[28], we employ L layers of decoders during the decoding
phase to process the main branch queries from the 0th layer,
generating L sets of queries. The queries from each layer
serve as the predicted results for that layer. By performing
bipartite matching, we associate predicted results with ground
truth values and calculate the loss. We use Lmain to represent
the loss of the main branch of the decoding queries. The
computation process is expressed as Equation 1:

Lmain =
L∑
i=0

LHun(Pi,G) (1)

where Pi represents the i-th layer predict results and G repre-
sents the ground truth boxes. We choose the same loss func-
tions as DETR [21], denoted as LHun(.), including focal loss
[3] for classification, L1 loss and GIoU loss for regression.
Then, the auxiliary branch go through the same L decoders

and similarly obtain L auxiliary branch prediction results.
Based on the number of ground truth boxes, we calculate an
adaptive coefficient λ using the formula as shown in Equation
2.

λ = ⌊ Qn

(r + 1)Gn
− 1⌋ (2)

where Gn represents the number of ground truth boxes. Qn

represents the number of decoding queries. And r represents
the positive-negative sample ratio. Inferring from the number
of targets in each image, it can be deduced that the suitable
range for the value of r lies between 1 and 9.
Finally, the predictions from the auxiliary branch are used

along with λ times the ground truth boxes to compute the aux-
iliary loss. We use Laux to represent the loss of the auxiliary
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FIGURE 2. The illustration of different label assignment methods.

branch of the decoding queries. The method for computing
the loss function in the auxiliary branch is the same as that in
the main branch, as shown in Equation 3.

Laux =
L∑
i=0

LHun(P′
i , λG) (3)

where P′
i represents the predicted results of the auxiliary

branch at the i-th layer.

In summary, all the loss functions of the Dynamic Groups
Assignment are presented in Equation 4.

Ltotal = Lmain + Laux + Lencoder

=

L∑
i=0

[LHun(Pi,G) + LHun(P′
i , λG)] + LHun(Pe,G)

(4)

where Pe represents the prediction results regressed from
encoding queries.
To accelerate the training speed, we adopted self-attention

mask similar to that utilized in H-Deformable-DETR [28]
to concurrently process two branches, as shown in Figure
3. This approach not only prevents interaction between the
two branches but also avoids substantial additional training
costs. Detailed comparative results between our approach and
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hybrid branch scheme are presented in the experimental sec-
tion. As a summary, Dynamic Groups Assignment enhances
the model’s ability to learn of data distribution by stabilizing
the ratio of positive and negative samples. Compared to the
hybrid matching scheme, our approach aligns more closely
with the one-to-many label assignment process inherent in
conventional object detectors.

C. MIXED QUERY RE-SELECTION
In Static Queries [21], decoding queries are constructed as
static embeddings, as illustrated in Figure 4(a). These queries
directly learn object information from encoding features
without relying on any prior knowledge. In contrast, Pure
Query Selection [22] employs the TopK method to filter
anchor boxes from encoding features as prior knowledge to
initialize decoding queries, as shown in Figure 4(b). Building

FFN

encoding feature

cls subnet

reg subnet

query

boxes

fuse

reg

FIGURE 5. The illustration of subnet structure of Mixed Query
Re-Selection.

upon Pure Query Selection, Mixed Query Selection [29] uti-
lizes prior knowledge only to initialize positional queries, as
depicted in Figure 4(c). This approach aids decoding queries
in extracting more comprehensive content information from
refined features.
However, we’ve found two limitations in the Mixed Query

Selection after introducing the auxiliary branch. First, the
quality of the initialized anchor boxes within the auxiliary
branch is low. As the number of decoding queries increases
significantly, this results in many bounding boxes with low
scores being selected into the initialization queue. These low-
quality boxes not only fail to help the decoder converge faster
but also introduce additional noise, forcing themodel to spend
significant training cost on recognizing such noisy data.
Secondly, the content queries in the auxiliary branch are

static queries and are not initialized using prior knowledge.
The approach of initializing only the content queries is mainly
intended to avoid interference from complex prior informa-
tion during the one-to-one label assignment process. How-
ever, in the decoding process, the auxiliary branch simulates
the one-to-many label assignment found in conventional ob-
ject detectors. Multiple supervision signals optimize the same
target during decoding. Therefore, this issue does not occur
in DETR-like models with an auxiliary branch. On the other
hand, setting the content queries in the auxiliary branch as
static queries slows down the process of finding the optimal
gradient optimization direction.
To overcome these limitations, we propose a decod-

ing query initialization method termed Mixed Query Re-
Selection, depicted in Figure 4(d). Addressing the first issue
mentioned, we devised a dedicated subnet for initializing the
auxiliary branch, as illustrated in Figure 5. Similar to the
role of the RPN (Region Proposal Network) [2] in two-stage
object detectors, the subsidiary network, composed of convo-
lutional and feedforward neural networks, employs a sliding
window mechanism to directly regress higher-quality anchor
boxes from encoding features. Its main role is to enhance
the initialization quality of anchor boxes within the auxiliary
branch. This helps the decoder in rapidly localizing object
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positions within images and prevents misleading influences
from prior knowledge obtained from the encoder.

To address the second issue, Mixed Query Re-Selection
initializes both the positional queries and content queries in
the auxiliary branch using high-quality bounding boxes. As
discussed above, the variance in optimization targets across
adjacent iterations is one of the main causes of training insta-
bility. However, since the auxiliary branch in EM-DETR uses
a one-to-many label assignment strategy, it does not encounter
the issue of inconsistent optimization targets. Instead, ini-
tializing the content queries in the auxiliary branch becomes
essential for quickly determining the direction of gradient
descent. Compared to Mixed Query Selection, Mixed Query
Re-Selection demonstrates faster convergence. In Section IV,
we conduct comprehensive ablation experiments on Mixed
Query Re-Selection. The results show that, compared to other
methods, Mixed Query Re-Selection achieves superior detec-
tion performance, as detailed in Section IV-D.

In summary, the decoding query is initialized as shown in
Equation 5.

Qd ← [Posdmain · Posdaux ,Condmain · Condaux ]
Posdmain ← TopK (Gbox(Qe))

Posdaux ← FFN (3× Conv3×3(Qe))

Condmain ← Se
Condaux ← Gmem(FFN (3× Conv3×3(Qe)))

(5)

where Qd and Qe represent the decoding query and encoding
query. Posdmain, Pos

d
aux , Con

d
main, and Condaux correspond to

the main branch positional queries, auxiliary branch posi-
tional queries, main branch content queries, and auxiliary
branch content queries of the decoding query, respectively.
Se denotes the static queries. The functions TopK (·), FFN (·),
and Conv3×3(·) represent the TopK method, the feedforward
neural network layer, and the 3×3 Conv-GN-ReLU network
layer, respectively. Additionally, Gbox and Gmem refer to the
generation of bounding boxes based on encoding features
and the generation of corresponding features based on the
bounding boxes.

D. LOOK FORWARD STAGE
We introduce a novel decoder gradient structure in this sec-
tion. Deformable-DETR [22] draws inspiration from iterative
refinement in optical flow estimation and proposes a method
called Look Forward Once to ensure the stability of training.
This method maintains the relative independence between
layers during the training process by obstructing the gradi-
ent backpropagation from the i-th layer to the (i-1)-th layer.
This means that the optimization of the i-th layer will only
affect the parameters of the i-th layer, and will not affect the
parameter updates of other layers. Further, DINO [29] pro-
posed another iterative box refinement method called Look
Forward Twice. This strategy opens up the gradients across
the entire decoding phase, enabling predictive results from
later stages to participate in the optimization of parameters in

the preceding stages of the model. The key of this method
is to provide the direction of gradient optimization for the
early stage through the prediction results in the later stage.
The structure of these two methods are depicted in Figure 6.
After exhaustive experiments, we observe that Look For-

ward Once performs well in coarse-grained object detection,
while Look Forward Twice excels in fine-grained cases. In
Look Forward Once, each layer of the decoder is treated
independently, but in fact there is inherent interconnection
between layers. This limitation arises from the reliance on
each layer’s limited information for computation, which may
lead to accurate intermediate results but incorrect final out-
comes. In contrast, Look Forward Twice features excessively
tight interconnections between layers, which can cause infor-
mation deviation across distant layers. This high degree of
interconnection may influence the optimization direction, es-
pecially in the earlier stages, potentially leading to suboptimal
results. For example, the sixth layer’s results could impact the
optimization of the first layer’s parameters, which primarily
focus on coarse localization.
To mitigate these limitations, we propose a novel iterative

box refinement method, Look Forward Stage, which com-
bines the strengths of both approaches. Specifically, we divide
the decoding phase into two stages: the coarse-grained detec-
tion stage and the fine-grained detection stage. In the coarse-
grained stage, the model relies on decoding features and
prior information to roughly localize objects, with gradient
detach used to prevent unnecessary information propagation
between layers. In the fine-grained stage, we allow gradient
flow to enable subsequent layers to guide earlier ones for
more precise object localization.
More specifically, we assume the model possesses L layers

of decoders. We partition them into early stage and late stage
based on the functionalities of each decoder layer. The early
stage comprises n decoder layers, while the corresponding
late stage comprises (L − n) decoder layers. For Decoder i in
the early stage (0 < i ≤ n), we utilize Equation 6 to calculate
the prediction boxes bpi . And for Decoder j in the late stage
(n < j ≤ L), we employ Equation 7 to compute the prediction
boxes bpj .

bpi = Detach(b′i−1) + FFN (Decoderi(qi−1)) (6)

bpj = b′j−1 + FFN (Decoderj(qj−1)) (7)

where qm−1 represents the input queries of Decoder m. b′m−1

represents the bounding box obtained by Decoder (m − 1).
Detach(.) denotes gradient detach for two tensors. FFN (.)
represents a feedforward neural network. Decoderm repre-
sents the operation of Decoder m. Through this approach,
we not only prevent information loss between layers but also
alleviate information deviation, thereby enhancing the overall
performance of the model.
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FIGURE 6. Comparison of different decoder gradient structure.
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E. DISTINCT QUERY SELECTION

Between the decoder layers of our model, we use an in-
novative decoding query selection method called Distinct
Query Selection [31] to further enhance performance. Dis-
tinct Query Selection primarily utilizes the NMS algorithm
to filter queries between decoder layers, as illustrated in
Figure 7. The purpose of this filtering method is to eliminate
redundant bounding boxes, making it clearer to determine
the optimization targets during binary matching. By introduc-
ing NMS into the query processing within the decoder, we
effectively reduce the number of duplicate bounding boxes,
thereby improving the accuracy and interpretability of the
detection results. It’s worth noting that we apply this filtering
method between layers during both training and inference,
rather than as a post-processing step on the prediction results.
As a result, the model can still be considered an end-to-end

object detector.

IV. EXPERIMENTS
A. DATASET
VisDrone dataset. We conducted an evaluation on the
VisDrone2021-DET dataset [32] for object detection. The
dataset is composed of a training set consisting of 6471
images, a validation set containing 548 images, and a test
set comprising 1610 images. The range of image resolutions
spans from 960 × 540 to 2000 × 1500. The dataset includes
10 distinct object classes, namely pedestrian, people, bicycle,
car, van, truck, tricycle, awning-tricycle, bus and motor. The
label number of each object category is shown in Figure 8(a).
Notably, each image in this dataset has a relatively elevated
average count of objects. Moreover, the dataset presents chal-
lenges such as a large number of small objects, significant
object occlusions and the presence of visually similar objects.
The number of object labels of different sizes is shown in
Figure 8(b). Hence, this dataset falls into the category of
relatively challenging detection datasets.
Other datasets. In addition to the VisDrone2021-DET

dataset, we conducted evaluations using two other datasets,
AI-TOD [50] and CrowdHuman [51], to validate the gen-
eralizability of our proposed method. AI-TOD is a dataset
primarily focused on detecting tiny objects. It comprises
28,036 aerial images, encompassing 8 distinct categories
and a total of 700,621 object instances. The average size
of objects within AI-TOD stands at 12.8 pixels, with over
80% of instances in the dataset having sizes smaller than
16 pixels. On the other hand, the CrowdHuman dataset is
a substantial-scale dataset specifically designed for dense
pedestrian detection. It consists of 15,000 images for training,
4,370 for validation, and 5,000 for testing. In total, the dataset
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(b)(a)

FIGURE 8. (a) The label number of each object category in the VisDrone2021-DET dataset. (b) The number of object labels of different sizes in the
VisDrone2021-DET dataset.

encompasses 470,000 human instances. These datasets serve
as crucial benchmarks for evaluating the stability of our
proposed method across various scenarios, including scenes
predominantly featuring tiny objects (such as AI-TOD) and
densely object environments (such as CrowdHuman).

Evaluation measures. In this paper, we use various aver-
age precisions(AP) based on different IoU thresholds as the
main evaluation metrics to judge the accuracy of the model.
These include AP with an IoU threshold of 0.5 (represented
by AP50), AP with an IoU threshold of 0.75 (represented
by AP75), and AP with an IoU threshold of 0.5 to 0.95
separated by 0.05 (represented by AP50:95). We also intro-
duce AP of different object scales as an auxiliary evaluation
metrics(represented by APS , APM and APL). APS , APM , and
APL denote the AP values across various object size cate-
gories: [2, 32], [32, 96], and [96, +∞], with +∞ representing
positive infinity. In addition, the indicator of giga floating-
point operations per second(GFLOPs) is used to evaluate the
computational amount of the model. The parameter indicator
is used to evaluate the number of parameters of the model.

Implementation details. The operating system used for
all experiments in this paper is Ubuntu 20.04. The experi-
mental environments were Python 3.7, Pytorch 1.13.0, and
CUDA 12.0. All models were trained on a single NVIDIA
GeForce RTX3090 GPU. The experiment was implemented
using mmdetection object detection framework. In terms of
optimizer, AdamW optimizer [52] was used in this paper.
In terms of learning rate, EM-DETR was first warmed up
through 2000 iterations and then used the same learning rate
setting as DETR [21]. The training batch was set to 2 for all
models. In order to make a fair comparison, all the models
in the experiment were trained from scratch without any
additional data.

B. MAIN RESULTS
Comparison with different models. Through improvements
in gradient structure and training strategies, we significantly
accelerate the convergence speed and enhance predictive

performance. Table 1 presents a comparison between our
proposed model and several strong baselines, including two-
stage object detectors (Cascade RCNN [33]), single-stage
object detectors (RetinaNet [3]), and several SOTA (state-of-
the-art) DETR-like detectors. We evaluate the performance
of different models using ResNet50 [53] as the backbone
across two training scenarios: 12 epochs and 36 or 50 epochs.
As shown in Table 1, EM-DETR achieves a notable 23.8%
Average Precision (AP) on the VisDrone2021-DET dataset
after 12 epochs, without the inclusion of additional training
data. Under similar conditions, this result outperforms con-
ventional object detectors by 5.3% AP (17.5% vs 23.8%)
and surpasses the best existing DETR-like object detector by
1.1% AP (22.7% vs 23.8%). Furthermore, when all models
are fully trained (36 or 50 epochs), EM-DETR achieves SOTA
performance, further demonstrating its ability to accelerate
convergence and improve accuracy.

Comparison with baseline. We also conduct a com-
prehensive evaluation of the proposed EM-DETR and H-
Deformable-DETR [28] (baseline). This evaluation con-
siders various backbone networks (ResNet50 [53], Swin-
Transformer [55]) and different numbers of training epochs
(12, 24, 36). The results are presented in Table 2. It is
clear from the table that EM-DETR significantly improves
model performance across three different backbone networks:
ResNet50 [53], Swin-Tiny [55], and Swin-Large [55]. For
instance, with 12 training epochs, EM-DETR demonstrates
performance improvements of 4.6%, 4.0%, and 3.7%, re-
spectively, compared to the baseline model. Table 2 presents
results for 12, 24, and 36 training epochs, while more de-
tailed comparative data can be found in Figure 9. Notably,
when ResNet50 [53] is utilized as the backbone network,
EM-DETR’s performance even surpasses that of the base-
line model using Swin-Large [55] as the backbone net-
work. In terms of complexity, our method introduces only a
marginal increase in computational load and parameter count
(10GFLOPs and 2M). These results substantiate that our pro-
posed method consistently yields substantial improvements
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TABLE 1. The detection results of EM-DETR and other detectors using ResNet50 [53] as backbone on the Visdrone 2021-DET dataset. In particular,**
denotes a two-stage model. The bolded numerical values represent the best detection results. The values marked with a horizontal line at the bottom
indicate the second best detection results.

Methods Epochs AP AP50 AP75 APS APM APL

Cascade-RCNN [33] 12 17.5 29.2 18.9 9.0 27.5 36.1
RetinaNet [3] 12 14.5 24.8 15.3 6.1 24.3 32.2

Deformable-DETR** [22] 12 18.1 33.8 17.4 10.4 26.7 32.9
Deformable-DETR-Glimpse [54] 12 17.5 33.3 16.6 9.5 26.2 33.9
DAB-Deformable-DETR [48] 12 16.2 29.1 16.3 8.2 24.3 33.1
DN-Deformable-DETR [46] 12 15.9 29.0 15.6 7.6 24.4 33.7

DINO [29] 12 22.7 40.7 22.4 13.2 33.5 46.5
Co-DETR [30] 12 21.9 38.4 22.3 12.1 33.3 39.4
EM-DETR(ours) 12 23.8 43.1 23.4 14.3 34.6 45.5

Cascade-RCNN [33] 36 19.9 32.5 21.3 10.5 31.1 38.5
RetinaNet [3] 36 16.8 28.6 17.6 7.3 27.1 36.9

Deformable-DETR** [22] 50 20.2 37.0 19.8 11.6 30.3 41.4
Deformable-DETR-Glimpse [54] 50 21.6 39.0 21.4 12.1 32.4 45.3
DAB-Deformable-DETR [48] 50 22.6 38.0 22.8 15.7 31.2 38.3
DN-Deformable-DETR [46] 50 22.7 38.1 22.8 15.0 32.1 41.1

DINO [29] 36 25.1 45.0 25.0 15.3 36.6 46.2
Co-DETR [30] 36 23.0 40.0 23.4 13.4 33.9 42.2
EM-DETR(ours) 36 25.0 44.4 25.0 15.4 36.1 47.0

TABLE 2. Comparison of EM-DETR and H-Deformable-DETR under various backbone networks and epochs. The bolded numerical values represent the
detection results of EM-DETR, while the regular numerical values represent the detection results of H-Deformable-DETR-Deformable-DETR.

Methods Backbone Epochs AP AP50 AP75 GFLOPs Params

H-Deformable-DETR [28]
EM-DETR

ResNet50 [53]

12 19.2 35.2 18.7

281
291

47M
48M

23.9(+4.7) 43.3 23.5

24 21.3 38.3 21.2
24.5(+3.2) 44.2 24.2

36 22.1 39.2 21.9
25.0(+2.9) 44.4 25.0

Swin-Tiny [55]

12 20.7 37.8 20.3

287
297

48M
49M

24.7(+4.0) 45.5 24.1

24 22.2 40.2 21.9
26.1(+3.9 ) 47.0 25.7

36 23.1 41.3 22.9
26.8(+3.7) 48.0 26.4

Swin-Large [55]

12 23.1 41.3 22.6

925
935

217M
219M

26.8(+3.7) 48.6 26.2

24 24.2 42.9 23.9
27.7(+3.5) 49.0 27.5

36 24.5 43.0 24.4
27.4(+3.1) 48.6 27.1

in object detection performance across various experimental
settings.

Other datasets results. In addition to validating the pro-
posed method on the VisDrone2021-DET dataset, we con-
ducted further validation on the sparsely distributed AI-TOD
dataset and the densely distributed CrowdHuman dataset.
The experimental results are recorded in Table 3. The results
indicate that our methods achieve performance gains of 1.9%
AP on AI-TOD and 3.7% AP on CrowdHuman after 12
training epochs. With an extended training of 36 epochs, the
performance improvements become more substantial, reach-
ing 2.5% AP on AI-TOD and 2.9% AP on CrowdHuman.
These results further validate that our method demonstrates

exceptional adaptability across various scenarios, showcasing
remarkable generalizability.

C. ABLATION STUDY
We present the results of ablation experiments conducted
on the VisDrone2021-DET dataset, as shown in Table 4.
We employed H-Deformable-DETR (denoted as H) [28]
as the baseline. To demonstrate the effectiveness of our
proposed methods, we developed an optimized version of
H-Deformable-DETR (denoted as H*). The optimized H-
Deformable-DETR incorporates several existing techniques,
such as setting dropout to 0 and increasing the hidden
layer dimension to 2048. It exhibits a relative improve-
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FIGURE 9. Training convergence curves of EM-DETR and two previous SOTA models using multi-scale features evaluated on the VisDrone2021-DET.

TABLE 3. The results of EM-DETR and H-Deformable-DETR using ResNet50 as backbone on AI-TOD and CrowdHuman. H in table stands for
H-Deformable-DETR.

Dataset Method Epochs AP AP50 AP75 APS APM APL

AI-TOD

H 12 16.5 43.3 8.9 16.0 33.2 -
EM-DETR 12 18.4+1.9 52.0 11.1 20.0 34.2 -

H 36 20.0 50.9 11.0 19.5 35.2 -
EM-DETR 36 22.5+2.5 60.0 15.3 24.1 40.2 -

CrowdHuman

H 12 45.0 79.1 44.8 26.5 42.6 50.2
EM-DETR 12 48.7+3.7 84.9 51.8 33.9 49.2 53.4

H 36 47.2 81.3 47.7 30.9 45.9 54.3
EM-DETR 36 50.1+2.9 86.0 53.5 37.2 51.7 54.7

ment of 2.1%AP compared to the baseline. Subsequently,
we performed ablation experiments on the four methods pro-
posed in this paper. The experimental results indicate that
our proposed methods lead to respective enhancements of
1.0/0.8/0.4/0.4%AP. These findings highlight a significant
enhancement in the model’s detective performance, further
validating the effectiveness of the methods proposed in this
study.

D. OTHER RESULTS

Different Ratio of Positive and Negative Samples. Through
experiments applying Dynamic Groups Assignment with dif-
ferent ratios of positive to negative samples, we observed
an instability in prediction performance and a noticeable in-
crease in training duration, as depicted in Figure 10. Based on

this analysis, we attribute this phenomenon to an insufficient
or excessive number of query groups used for matching with
the ground truth in certain images. An insufficient number of
query groups can lead to inadequate supervision for ground
truth. This may limit the model’s learning capacity, as it
is unable to fully leverage the information present in the
training data. Conversely, an excessively large number of
query groups introduces more low-quality queries matched
with ground truth, adversely affecting detection performance.
Additionally, since we perform Hungarian matching calcula-
tions using the CPU, an overly large number of query groups
significantly amplifies the training duration.

To address these issues, we introduce a set of hyperpa-
rameters to stabilize the loss calculation process. These hy-
perparameters define a numerical range. We fill the number
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TABLE 4. Ablation experiments of the proposed algorithm components. Among them, we use H to represent H-Deformable-DETR. "*" indicates
optimization baseline. The terms "DGA", "MQR", "DQS" and "LFS" stand for "Dynamic Groups Assignment", "Mixed Query Re-Selection", "Distinct Query
Selection" and "Look Forward Stage".

Methods AP AP50 AP75 APS APM APL

H 19.2 35.2 18.7 11.2 28.7 33.8
H* 21.3 (+2.1) 39.8 20.4 12.3 31.2 37.3
H*+DGA 22.3 (+1.0) 40.9 21.8 13.2 32.9 39.9
H*+DGA+MQR 23.1 (+0.8) 42.1 22.7 13.8 33.6 43.3
H*+DGA+MQR+DQS 23.5 (+0.4) 42.4 23.3 14.0 34.4 44.3
H*+DGA+MQR+DQS+LFS 23.9 (+0.4) 43.3 23.5 14.1 35.2 47.5

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9
the ratio of positive sample and negative sample

21.0

21.5

22.0

22.5

23.0

23.5

24.0

m
AP

Dynamic Groups Assignment(with hyperparameter)
Dynamic Groups Assignment
Static Groups Assignment

FIGURE 10. Model performance with different ratios of positive and negative samples.

of groups below this range and clip the number of groups
above this range. Consequently, all the groups used for loss
computation are distributed within this specified range which
prevented the adverse impact of insufficient or excessive
number groups on the training process. The prediction perfor-
mance of Dynamic Groups Assignment with proposed hyper-
parameters, is illustrated by the blue solid line in Figure 10. Its
performance is notably superior to the previous version. On
the VisDrone2021-DET dataset, the optimal performance is
achieved when the positive-to-negative sample ratio is set to
1:6. Hence, we adopt this configuration as the default setting
for subsequent experiments.

Different anchor generation strategies and query ini-
tialization methods. Table 5 provides a detailed comparison
of different anchor box generation strategies and query ini-
tialization methods. Under the condition of employing the
same query initialization method, the combined TopK and

Subnet strategy exhibits a noticeable improvement over the
sole use of the TopK strategy, with respective enhancements
of 0.8/0.6/0.7%AP. This observation indicates that the quality
of newly regressed anchor boxes from Subnet is superior to
those with lower scores in the TopK strategy. Additionally, the
visual results of the two anchor generation strategies in Figure
13(a) and 13(b) corroborate the same conclusion. Under the
premise of employing identical anchor box generation strate-
gies, the query initialization method within Mixed Query Re-
Selection demonstrates a slight superiority over Pure Query
Selection and Mixed Query Selection. The results in Table 5
imply that Mixed Query Re-Selection significantly enhances
the detection accuracy of the model.

Different gradient structure. Table 6 presents the de-
tection performance of different gradient structures. The ex-
periments compare the detection performance of Look For-
ward Once, Look Forward Twice, and various Look Forward
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TABLE 5. Comparing the performance of different anchor box generation strategies and query initialization methods. Among them, "TopK" represents the
TopK anchor box generation strategy. "Subnet" means using the TopK method in the main branch and using our proposed subnet to generate the anchor
boxes in the auxiliary branch. "Pure" means that all decoding queries are initialized. "Mixed" means that all decoding positional queries is initialized.
"Re-Mixed" means that the positional queries of the main branch and all queries of the auxiliary branch are initialized.

TopK Subnet Pure Mixed Re-Mixed AP AP50 AP75

✓ ✓ 21.3 39.8 20.4
✓ ✓ 22.1 40.8 21.4
✓ ✓ 22.3 41.2 21.6

✓ ✓ 22.5 40.5 22.4
✓ ✓ 22.7 40.8 22.7
✓ ✓ 23.0 41.3 22.8

TABLE 6. Compare the detection performance of Look Forward Once, Look Forward Twice and different Look Forward Stage. The “Sample" column
records the gradient structure of different methods. "1|2" represents the gradient detach between the first layer decoder and the second layer decoder of
the model. "12" represents the intermediate gradient between the first layer decoder and the second layer decoder of the model not detached.

Methods Sample AP AP50 AP75 APS APM APL

Look Forward Once 1|2|3|4|5|6 19.2 35.2 18.7 11.2 28.7 33.8

Look Forward Twice 123456 19.5 34.9 19.3 10.7 29.0 37.7

Look Forward Stage

1|2|3|4|56 19.5 35.5 19.2 11.0 28.6 33.4
1|2|3|456 20.3 35.8 19.5 11.2 29.8 35.5
1|2|3456 19.9 35.8 19.5 11.2 29.8 36.0
1|23456 20.6 36.3 20.5 11.7 30.6 37.3

12|3|4|5|6 19.0 34.9 18.6 10.6 28.3 33.3
123|4|5|6 19.0 34.6 18.8 10.8 28.5 33.1
1234|5|6 19.2 34.1 19.2 10.7 28.8 35.5
12345|6 19.2 34.9 18.8 11.0 28.7 34.9

TABLE 7. Influence of different query selection methods and thresholds
on VisDrone2021-DET under 12 training epochs.

NMS Soft-NMS AP AP50 AP75 APS APM APL

0.5 - 23.2 42.7 22.4 13.5 34.2 41.8
0.6 - 23.4 42.6 22.9 13.9 34.4 45.2
0.7 - 23.3 42.2 22.9 13.7 34.1 43.7
0.8 - 23.2 41.8 23.1 13.7 34.1 43.6
0.9 - 23.2 41.4 22.9 13.6 33.9 43.8

- 0.5 23.2 41.6 23.0 13.7 34.0 41.2
- 0.6 23.1 41.4 22.8 13.8 33.8 45.9
- 0.7 23.3 41.8 23.1 13.8 34.3 43.7
- 0.8 23.3 41.6 23.0 13.8 34.0 42.3
- 0.9 23.4 41.9 23.3 14.0 34.4 42.8

Stages. The results indicate that Look Forward Stage, with
gradient detachment in the early decoding stage and gradi-
ent connection in the late decoding stage, achieves the best
performance. This approach aligns with the characteristics
of DETR-like models, where early decoding typically learns
coarse positions, while late decoding focuses on refining po-
sitions more accurately. Furthermore, the poor performance
observed in the table for the Look Forward Stage with gra-
dient connection in the early decoding stage and gradient
detachment in the late decoding stage further supports this
conclusion. Based on the experimental results, we select the
Look Forward Stage with gradient detachment in the first
layer and gradient connection in the subsequent layers as the
model’s gradient structure.

Different selective methods and thresholds. We also
conduct a detailed analysis of the impact of different query
selection strategies and thresholds on detection performance.
The experimental results indicate that the choice of query se-
lection strategies and thresholds does not significantly affect
predictive performance, as shown in Table 7. Across all strate-
gies and threshold settings, the maximum observed difference
is only 0.5% AP (ranging from 22.9% to 23.4%). We believe
that NMS with any threshold is sufficient to enhance pre-
dictive performance. This configuration effectively filters re-
dundant query results. Therefore, even if seemingly stronger
methods like Soft-NMS are employed and the threshold is
increased, predictive performance will not be significantly
improved. Based on these findings, we select NMS as the
query selection method with a threshold set at 0.5 under the
default settings.

E. VISUALIZATION

To clearly demonstrate the superiority of our method, we
visualized some feature maps and detection boxes. The vi-
sualizations in Figure 11 depict heatmaps of attention dis-
tributions from the P3 layer for Deformable-DETR, H-
Deformable-DETR, and EM-DETR. It is evident from the
images that the attention distribution of EM-DETR is more
refined and closely aligns with the original object contours.
This observation reports that EM-DETR can better guide
the model’s focus on the foreground of the image. Figure
12 showcases the prediction results ofH-Deformable-DETR
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FIGURE 11. Heatmaps of Attention Distribution of Layer P3.

(a) (b)

FIGURE 12. Detection results of H-Deformable-DETR(a) and EM-DETR(b). The green bounding boxes represents the results detected by both
H-Deformable-DETR and EM-DETR. The red bounding boxes represents the results detected by EM-DETR but missed by H-Deformable-DETR.

(a) (b)

FIGURE 13. Anchor boxes generated by Mixed Query Selection(a) and Mixed Query Re-Selection(b).
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and EM-DETR. In this representation, the red bounding boxes
denote ground truths correctly detected by EM-DETR but
missed byH-Deformable-DETR. It is apparent from the fig-
ure that the prediction performance of EM-DETR surpasses
that of H-Deformable-DETR. Figure 13 presents the anchor
boxes selected by Mixed Query Selection through TopK and
those regressed by Mixed Query Re-Selection through the
subnet. Similarly, the visual results easily support the con-
clusion that anchor boxes regressed by the subnet outperform
those selected by the TopK method.

V. CONCLUSIONS
In this paper, we propose an enhanced object detector for
drone aerial imagery, named EM-DETR. It incorporates three
innovative approaches, namely Dynamic Groups Assign-
ment, Mixed Query Re-Selection and Look Forward Stage.
Dynamic Groups Assignment stabilizes the training process
by rationally assigning positive and negative samples. Mixed
Query Re-Selection introduces a subnet to improve the qual-
ity of anchor boxes for initializing decoding queries and re-
defines the initialization method, thereby providing stronger
prior knowledge for the decoder. Look Forward Stage intro-
duces a more effective gradient structure tailored for multi-
layer decoders, enabling faster identification of optimal gradi-
ent directions. Furthermore, we incorporated Distinct Query
Selection from DDQ [31] to enhance the queries between the
decoder layers.

We conducted comprehensive ablation experiments on the
proposed method using the VisDrone2021-DET dataset. The
results demonstrate that EM-DETR consistently achieves
SOTA performance, whether trained for 12 epochs or more.
Meanwhile, we observed that the newly introduced methods
only incur a modest increase of 10 GFLOPs and 1M pa-
rameters. Hence, our approach achieves superior detection
performance with minimal impact on inference speed and
model size. Furthermore, these methods exhibit significant
performance improvements over baseline models on AI-TOD
and Crowdhuman, affirming their strong generalization capa-
bilities. These findings highlight the potential and promising
prospects of DETR-like models in object detection.

Despite the substantial improvements made to the model
pipeline, EM-DETR still faces some limitations. For exam-
ple, in real-world scenarios involving drone imagery, factors
such as dynamic lighting conditions, varying weather, and
moving objects at high speeds can degrade image quality
and negatively impact detection performance. Additionally,
similar to H-Deformable-DETR [28], the inference speed of
EM-DETR currently does not meet the requirements for real-
time processing tasks. In the future, we plan to explore more
robust preprocessing techniques and lighter model designs
to address these challenges, thereby enhancing the model’s
applicability in real-world scenarios.

Furthermore, EM-DETR is built upon H-Deformable-
DETR [28], inheriting its strong adaptability to a wide
range of vision tasks. The hybrid matching scheme of H-
Deformable-DETR has been successfully applied to tasks

such as multi-person pose estimation, multi-object tracking,
and multi-view 3D detection [28]. Inspired by this versatility,
our future work will focus on extending the improvements
made in EM-DETR to other visual tasks, further exploring its
potential for broader applications.
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