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ABSTRACT Deepfake content-including audio, video, images, and text-synthesized or modified using
artificial intelligence is designed to convincingly mimic real content. As deepfake generation technology
advances, detecting deepfake content presents significant challenges. While recent progress has been made
in detection techniques, identifying deepfake audio remains particularly challenging. Previous approaches
have attempted to capture deepfake features by combining video and audio content; however, these methods
are ineffective when video and audio are mismatched due to occlusion. To address this, we proposes a
novel dual-channel deepfake audio detection model that leverages the direct and reverberant components
extracted from raw audio signals, focusing exclusively on audio-based detection without reliance on video
content. Across various datasets, including ASVspoof2019, FakeAVCeleb, and sport press conference
datasets collected by our group, the proposed dual-channel model demonstrates significant improvements
in quantitative metrics such as equal error rate and area under the curve. The implementation is available at
https://github.com/gunwoo5034/Dual-Channel-Audio-Deepfake-Detection.

INDEX TERMS Deepfake audio detection, dual-channel data, direct waveform, reverberant waveform.

I. INTRODUCTION
In modern society, the advancement of voice technology has
become a significant topic, with audio-based applications
rapidly expanding due to the progress of deep learning (DL)
technology. As speech recognition and synthesis technologies
are increasingly integrated into daily life, the emergence of
Deepfake Voice—synthetic voices generated by mimicking
real human speech using artificial intelligence (AI)—is accel-
erating. While these technologies offer numerous beneficial
applications, they are also vulnerable to misuse for malicious
purposes, such as fraud, threats, and the dissemination of false
information. For instance, with the growing prevalence of
interconnected Internet of Things (IoT) devices, unauthorized
access through synthesized voices poses a tangible risk. To
address these challenges, researchers have actively developed
deepfake audio detection technologies aimed at mitigating the
associated risks.

Recent advancements in deep learning (DL) technology

have revolutionized multimedia manipulation through the use
of generative adversarial networks (GANs), significantly im-
pacting computer vision and deepfake creation. Various face-
swapping models, such as FaceSwap [1], FaceShifter [2],
Face2Face [3], DeepFaceLab [4], and Neural Textures [5],
have been developed to transform faces in original videos
into target images. The widespread availability and misuse
of these deepfake methods underscore the urgent need for ad-
vanced detection techniques to mitigate the challenges posed
by their malicious applications.

Recently, numerous convolutional neural network (CNN)
architectures have been proposed [6]–[13] to capture spatial
image features and/or temporal audio features, such as mel-
frequency cepstral coefficients (MFCC) and linear-frequency
cepstral coefficients (LFCC), for deepfake detection. Re-
current neural network (RNN) models [14], [15] have also
been employed to differentiate between real and fake audio
using 1D temporal features. Furthermore, transformer-based
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FIGURE 1: Audio physics model containing direct waveform
ydirect(t) and ith reverberant waveform ỹireverb(t) in a given
environment defined by impulse response henv(t). Sum of all
reverberant waveforms is defined as yreverb(t) =

∑
ỹireverb(t).

architectures [16], [17] incorporating multi-head attention
mechanisms have been introduced to enhance detection per-
formance. Other approaches combining CNNs with attention
mechanisms have also been developed [11], [18]–[20]. Al-
ternatively, deepfake detection methods that consider both
audio and video typically focus on lip-sync analysis [6]–[8].
However, these methods may face challenges in accurately
detecting discrepancies between lip movements and sounds
when occlusion occurs in the video content.

Deepfake audio is typically generated using text-to-speech
(TTS) [21]–[23] and/or voice conversion (VC) [24], [25]
techniques. However, these approaches do not account for
audio physics models (see Figure 1), such as head movement,
recording environment, and audio source, relying solely on
the capabilities of the AI model. Consequently, generated
deepfake audio struggles to replicate the complexities of au-
dio physics models, particularly the interplay of direct and
reverberant sounds that depend on environmental factors.

Similar to deepfake audio generation models [21]–[25],
previously proposed deepfake audio detection models [6]–
[20] have also been developed without incorporating audio
physics models that account for environmental information.

Based on the characteristics of direct and reverberant
sounds influenced by environmental factors, we propose a
novel dual-channel deepfake audio detection method. As il-
lustrated in Figure 1, direct sound refers to audio arriving
directly from the sound source, while reverberant sound is
the audio that arrives after being reflected and repeatedly
scattered within a space. In real audio, a distinct difference
exists between direct and reverberant sounds. However, in
deepfake audio, these differences are typically negligible or
entirely absent. These differences can be quantified using the
direct-to-reverberant ratio (DRR), which will be elaborated
on in Section III. Consequently, the proposed method lever-
ages dual-channel audio, focusing on the direct and rever-
berant sound characteristics, to distinguish between real and
deepfake audio based on the principles of the audio physics
model. Furthermore, our group has collected a new Sports
Press Conference (SPC) dataset, offering longer and higher-
quality recordings compared to existing datasets. This dataset

facilitates a more comprehensive analysis from various per-
spectives. Themajor contributions of this work are as follows:

• Propose a novel deepfake audio detection method lever-
aging dual channels of direct and reverberant sounds to
differentiate between real and deepfake audio.

• Develop a new Sports Press Conference dataset for deep-
fake audio detection, offering longer and higher-quality
recordings than existing datasets.

• Identify the optimal audio length for effective deepfake
detection.

The paper will proceed as described below. Section II
explains the related work. The mathematical preliminaries
and our model design are described in Section III and IV.
Experimental results and discussions are presented in Section
V and VI. Finally, Section VII presents the conclusion.

II. RELATED WORK
A. DEEPFAKE AUDIO DETECTION W/ 1D WAVEFORM
Tak et al. [26] proposed the first application of RawNet2
[27] to prevent spoofing in Automatic Speaker Verification
(ASV) systems. RawNet2 directly processes the raw audio
input and uses temporal convolutional layers and an atten-
tion mechanism to capture both short-term and long-term
features of the audio signal. Lavrentyeva et al. [28] demon-
strated that integrating neural network-based models with
handcrafted features can be effective. Additionally, ensemble
models [29], [30] that combine 1D raw waveform approaches
with 2D spectrograms have proven effective by leveraging
the temporal information captured by raw waveforms and the
frequency-domain characteristics from spectrograms, thereby
improving robustness and detection accuracy. This model
framework can be represented as shown in Figure 2(a-i).

B. DEEPFAKE AUDIO DETECTION W/ 2D SPECTROGRAM
Figure 2(a-ii) shows the deepfake audio detection framework
that utilizes a 2D spectrogram as the single-channel input.
Hamza et al. [9] stated that MFCC is useful for training both
machine learning (ML) and DL models. Similarly, Qais et al.
[10] found that MFCC contains richer information than other
features, such as spectral centroid and spectrograms, when
analyzing sound waves under computational constraints. Wu
et al. [11] introduced a self-attention-based fake span strat-
egy for deepfake audio detection, partially using MFCC and
LFCC features. Other researchers have proposed various
types of network architectures, such as Spec-ResNet [12]
and CNN-LSTM [13], to detect deepfake audio using MFCC
features. Arif et al. [31] proposed an extended local ternary
pattern (ELTP) combined with LFCC to train a deep bidi-
rectional long short-term memory (DBiLSTM) network for
robust deepfake audio classification.
Previous research on deepfake audio detection has primar-

ily focused on analyzing and manipulating single-channel
data from 1D raw waveforms or 2D spectrograms to ex-
tract deepfake audio features. However, these studies have
relied solely on features derived from generative models
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FIGURE 2: (a) Existing deepfake audio detection model framework using single-channel data and (b) proposed detection model
framework using dual-channel data. (i) and (ii) show the models utilizing 1D waveform and 2D spectrogram, respectively. T (·)
is a function that transfers a 1D waveform to the 2D spectrogram. C(·) is a function of combining direct and reverberant signals.

and overlooked real-world factors such as head movement,
recording environments, and audio sources. To address this
limitation, we propose a novel dual-channel deepfake audio
detection model that incorporates real-world information by
leveraging the relationship between direct and reverberant
sounds. Unlike prior methods [9]–[13], [26], [28], [30], [31],
which use single-channel data (1D raw waveforms or 2D
spectrograms), as illustrated in Figure 2(a), the proposed
framework utilizes dual-channel data (direct and reverberant
1Dwaveforms or 2D spectrograms) decomposed from single-
channel data, as shown in Figure 2(b). The dual-channel data
inherently captures real-world information that is challenging
to infer from single-channel data. Our study demonstrates
that the performance of deepfake audio detection models
significantly improves by transitioning from single-channel
to dual-channel training datasets.

III. MATHEMATICAL PRELIMINARIES
A. DIRECT AND REVERBERANT WAVEFORMS
Here, we first describe the concept of direct waveform
ydirect(t) and reverberant waveform yreverb(t). There wave-
forms are defined as the propagation of sound in an environ-
ment henv(t) where the sound from source xsource(t) reaches
the receiver like microphone either directly or through mul-
tiple reflections, as shown in Figure 1. The direct wave-
form ydirect(t) represents the sound traveling directly from
the source xsource(t) to receiver without any reflections, is
described as

ydirect(t) = xsource(t − τ0), (1)

where τ0 is the time delay corresponding to the direct path
from source to receiver. The reverberant waveform yreverb(t)
describes the reflected sound from various surfaces in the
environment, is formulated as

yreverb(t) = (xsource ∗ henv)(t)

=

∫ ∞

−∞
xsource(τ)henv(t − τ)dτ, (2)

where ∗ denotes convolution operation and henv(t) is the en-
vironment’s impulse response function including reflections

along various surfaces. The impulse response function henv(t)
is usually defined by simple time delay modeling:

henv(t) =
N∑
i=1

ωiδ(t − τi), (3)

where N and ωi denote the number of reflections and the
attenuation factor for ith reflection, respectively. δ(t − τi) is
the Dirac delta function with the time delay τi. Using Eq. 3,
the reverberant waveform yreverb(t) can be rewritten as

yreverb(t) =
∫ ∞

−∞
xsource(τ)

N∑
i=1

ωiδ(t − τi − τ)dτ

=

N∑
i=1

ωi

∫ ∞

−∞
xsource(τ)δ(t − τi − τ)dτ

=

N∑
i=1

ωixsource(t − τi) =

N∑
i=1

ỹireverb(t), (4)

where ỹireverb(t) = ωixsource(t − τi) denotes ith reverberant
sound reflected by the source sound xsource(t) scaled by ωi
with the time delay τi.
Therefore, the raw waveform yraw(t) is described as the

sum of direct waveform ydirect(t) and reverberant waveform
yreverb(t), as follows

yraw(t) = ydirect(t) + yreverb(t)

= ydirect(t) +
N∑
i=1

ỹireverb(t)

= xsource(t − τ0) +

N∑
i=1

ωixsource(t − τi). (5)

As formulated in Eq. 5, the raw waveform yraw(t) can be
defined as a combination of the source waveform xsource(t −
τ0) and the weighted sum of the delayed source waveform
ωixsource(t − τi).

B. RELATIONSHIP BETWEEN REAL AND FAKE SAMPLES
AND THE DIRECT-TO-REVERB RATIO
In the previous Section III-A, the direct ydirect(t), the reverber-
ant yreverb(t), and the raw waveforms yraw(t) were described.
The raw waveform yraw(t) consists of the direct waveform
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FIGURE 3: Overview of pipeline consisting of (i) input sound process and (ii) detection process. (a) and (b) show proposed
dual-channel detection models using 1D waveform and 2D spectrogram, respectively. (c) Function modules used in (a) and (b).

FIGURE 4: Split function S(x) using DPTNet [32].

ydirect(t) and the reverberant waveform yreverb(t), but the exist-
ing deepfake audio detection models introduced in Section II
only use the 1D raw waveform yraw(t) or the 2D spectrogram
STFT(yraw(t)), obtained by applying the short-time Fourier
transform (STFT) to the 1D raw waveform yraw(t). However,
the important aspect is that information about the real envi-
ronment is contained in the reverberant sound yreverb(t), to
which the environment’s impulse response henv(t) is applied
as Eqs. 2 and 4.

The effect of the impulse response henv(t) is evident in the
direct-to-reverberant ratio (DRR), defined as the ratio of the
energy of the direct speech Edirect to the reverberant speech
Ereverb, as follows

DRR = 10 log10

(
Edirect
Ereverb

)
, (6)

where

Edirect =
T∑
t=1

|ydirect(t)|2, Ereverb =
T∑
t=1

|yreverb(t)|2.

T denotes the number of speech frames. For several datasets
used in this study (more details are provided in Table 2), DRR
scores were calculated in Table 1. Interestingly, the mean µ of
DRR computed from fake samples is larger (while the stan-
dard deviation σ is smaller) than that from real samples. This
clue suggests that fake samples generated by deepfake audio
models do not account for various environmental factors, such
as spatial location, volume, and the medium present in the
reverberant sound yreverb(t). In other words, deepfake audio
models fail to capture the characteristics of the reverberant
waveform yreverb(t), which involves diverse environmental

TABLE 1: DRR scores depending on real and fake samples.
DRR Public Datasets Self-Collected

( µ± σ ) [dB] (a) ASVspoof2019 [33] (b) FakeAVCeleb [34] (c) SPC (V-A2)

Real 11.18± 22.55 13.94± 15.56 14.90± 16.08
Fake 15.24± 21.53 22.97± 11.53 19.11± 12.51

entities, when generating fake audio samples from the trained
audio distribution.
In this study, based on the limited characteristics of ex-

isting deepfake audio models, we propose a novel deepfake
audio detection model that uses dual-channel data, including
the direct waveform ydirect(t) and the reverberant waveform
yreverb(t) rather than a single-channel data such as the raw
waveform yraw(t). For simplicity, we denote yraw := yraw(t),
ydirect := ydirect(t), and yreverb := yreverb(t).

IV. MODEL DESIGN
When a deepfake audio detection model detects audio mod-
ulation, this study proposes a pipeline, as shown in Figure 3,
to efficiently leverage dual-channel waveforms, including the
direct waveform ydirect and the reverberant waveform yreverb.
There are two types of proposed pipelines: a 1D waveform-
based pipeline in Figure 3(a) and a 2D spectrogram-based
pipeline in Figure 3(b). Additionally, each pipeline consists
of an input sound process and a detection process, as shown
in Figure 3(i)(ii). The following sections introduce details,
including waveform splitting (see Section IV-A), feature
transformation & combination (see Section IV-B), and model
architectures (see Section IV-C).

A. WAVEFORM SPLITTING
In this study, the key idea is to leverage dual-channel signals,
including a direct waveform ydirect and a reverberant wave-
form yreverb, rather than the raw waveform yraw. Therefore,
the Dual Path Transformer Network (DPTNet) [32] is used
to separate the direct waveform ydirect and the reverberant
waveform yreverb from the raw waveform yraw. Figure 4 illus-
trates the working process of the split function S(x) using
DPTNet [32]. Specifically, DPTNet [32] receives the 1D raw
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FIGURE 5: (a) Ct and (b) Cch show along time-axis and
channel-axis combination functions, respectively.

waveform yraw as input and outputs only the direct wave-
form ydirect = DPTNet(yraw). Subsequently, by subtracting
the direct waveform ydirect from the raw waveform yraw, the
reverberant waveform yreverb = yraw − ydirect is obtained.

B. FEATURE TRANSFORMATION & COMBINATION
To achieve the best performance in deepfake audio detection,
it is necessary to verify the optimal combination of features
generated from the waveform. In this study, three feature
transformation methods were used: 1D wave, 2DMFCC, and
2D LFCC. Additionally, the time-axis combinationCt and the
channel-axis combination Cch were utilized as feature com-
bination methods. The three feature transformation methods
were applied to all types of waveforms, including the 1D raw
waveform yraw, direct waveform ydirect , and reverberant wave-
form yreverb. The two types of combinations were applied only
to dual-channel data, not single-channel data. Details of the
combination functions are illustrated in Figure 5. Specifically,
the time-axis combination function Ct , shown in Figure 5(a),
connects two waveforms along the time axis, doubling the
length of the waveform. Figure 5(b) illustrates the channel-
axis combination function Cch, which stacks two waveforms
along the channel axis while maintaining the audio length.

C. MODEL ARCHITECTURES
To intensively verify the impact of the proposed dual-channel
approach, well-known and intuitive deepfake audio detection
models, including 1D models such as WaveRNN [35], TSSD
[36], and RawNet [26], as well as 2D models such as Shal-
lowCNN [37] and LCNN [38], are used in the experiments.

Depending on the feature transformations, the data struc-
ture can be a 1D shape like a waveform or a 2D shape
such as MFCC and LFCC. WaveRNN [35], TSSD [36], and
RawNet [26] are used as detection models for 1D data. To
handle 2D features such as MFCC and LFCC, MLP, Shal-
lowCNN [37], and LCNN [38] are employed. However, there
are limitations in utilizing the proposed dual-channel data
applied to the channel-axis combination Cch. In WaveRNN

TABLE 2: Dataset details on the size of the training / valida-
tion / test set, the number of real and fake samples, waveform
length, and the types of synthesis algorithms.

Dataset
Public Datasets Self-Collected

(a) ASVspoof2019 [33] (b) FakeAVCeleb [34] (c) SPC (V-A2)

# of Train
(Real / Fake)

20,304 800 1,282
(2,064 / 18,240) (400 / 400) (220 / 1,062)

# of Valid
(Real / Fake)

5,076 100 119
(516 / 4,560) (50 / 50) (20 / 99)

# of Test
(Real / Fake)

71,237 266 400
(7,355 / 63,882) (50 / 216) (25 / 375)

# of subject
(Male / Female)
Male details
Female details

78 500 204
(33 / 45) (250 / 250) (181 / 23)

Train:8 / Dev:4 / Test:21 Train:191 / Val:29 / Test:30 Train:144 / Val:19 / Test:18
Train:12 / Dev:6 / Test:27 Train:209 / Val:21 / Test:20 Train:19 / Val:2 / Test:2

Speech length
(µ± σ) [sec]

3.54± 1.42 6.53± 2.51 27.75± 8.06

Speech frames (T)
(µ± σ) [frames]

56, 640± 22, 720 104, 480± 40, 160 444, 000± 128, 960

Synthesis algo. 17 types of TTS and VS [33] [1], [39], [40], [41] [39], [40], [42]

[35], it is challenging to handle dual-channel data because
the RNN architecture cannot process data with a channel axis.
Similarly, RawNet [26], designed for 1D channel waveforms,
cannot process data in the proposed dual-channel format. Fur-
thermore, LCNN [38] is unsuitable for dual-channel data due
to the Max-Feature-Map layer. To overcome this limitation,
a convolutional layer is inserted after the dual-channel input
data to convert the dual-channel data into single-channel data.

V. EXPERIMENTS
A. DATASET
For this study, three datasets were used: two public datasets,
ASVspoof2019 [33] and FakeAVCeleb [34], and one self-
collected dataset, the sports press conference (SPC) dataset
[43]. Details about each dataset are described in Table 2.

1) Public Datasets
ASVspoof2019 [33] includes two tasks: Physical Access (PA)
and Logical Access (LA). This study focuses on the LA
dataset, which deals with spoofing using digitally generated
speech from TTS and VC technologies. Real audio was
recorded from a total of 78 human speakers, 33 male and
45 female. The recorded audio is divided into three parts:
training (8 male, 12 female), development (4 male, 6 female),
and test (21 male, 27 female). In these experiments, only
the training and test sets were used. To generate fake audio
datasets, 17 speech synthesis and voice conversion toolkits
were used. Six of the audio generation methods are labeled as
known attacks and applied to the audio in the training set to
construct the training dataset (20,304 samples) and validation
dataset (5,076 samples). The other 11 methods are considered
unknown and, together with two of the known attacks, are
used to generate the test dataset (71,237 samples).
FakeAVCeleb [34] is a dataset consisting of 500 real

clips selected from approximately 7-second clips of YouTube
videos from VoxCeleb2 [44]. The dataset includes celebrities
of various ethnicities, such as Caucasian, Black, and South
Asian. Each of the 500 real clips corresponds to a different
individual among the 500 celebrities, containing 250 males
and 250 females. To create fake clips including fake audio &
real video (AFVR), real audio & fake video (ARVF ), and fake
audio & fake video (AFVF ), various facial and audio synthesis
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FIGURE 6: Pipeline to generate three types of deepfake data, (a) Fake Audio AF & Real Video VR (AFVR), (b) Real Audio AR
& Fake Video VF (ARVF ), and (c) Fake Audio AF & Fake Video VF (AFVF ). Audio synthesis is performed by TriAAN-VC [42],
and FSGAN [39] and Wav2lip [40] are used for video synthesis.

technologies were employed. In particular, Faceswap [1],
FSGAN [39], and Wav2Lip [40] were used for face syn-
thesis. Audio synthesis was performed using SV2TTS [41].
Although the FakeAVCeleb [34] dataset includes both video
and audio tracks, this study utilized only the audio tracks.
Specifically, a total of 1,000 audio files were used in AFVR,
including 500 real and 500 fake audio files. The composition
of the datasets is as follows: training (800 samples, with 191
male and 209 female), validation (100 samples, with 29 male
and 21 female), and test (100 samples, with 30 male and
20 female). Moreover, 166 samples of AFVF generated from
combinations of test speakers were added to this test set.

2) Self-Collected Dataset
The SPC dataset [43] focuses on creating a longer dataset
compared to the previous two datasets [33], [34]. The real
clips are collected from press conference videos of sports
stars posted on YouTube, with an average length of 30 sec-
onds. A list of the clips used can be found at [43].
Real Dataset Collection. This dataset was collected from a
total of 204 individuals, 181 male and 23 female. The clips
are divided into three parts: training (144 male, 19 female),
validation (19 male, 2 female), and test (18 male, 2 female).
Each video was selected based on specific criteria:

1) Single speaker of English.
2) High-quality video to ensure clear face recognition.
3) Approximately 30-second in length.

A total of 265 clips of interviews with 204 individuals (pri-
marily sports stars) were collected from YouTube videos as
the real dataset, satisfying the above criteria.
Deepfake Dataset Generation. To generate deepfake clips
from real clips, several deepfake-related methods were used.
In particular, FSGAN [39] and Wav2Lip [40] were employed
for video synthesis, such as face swap and lip generation, and
TriAAN-VC [42] was used for deepfake audio.

Deepfake videoVF and/or deepfake audioAF are generated
by mixing source clips S containing real video VS

R and real
audio AS

R with target clips T including real video V T
R and real

audio AT
R . Figure 6 shows the pipeline for generating three

types of deepfake samples: (a) Fake audio AF & real video

TABLE 3: Combination of Deepfake Dataset Generation.
(a) AFVR Fake audio AF Real video VR
Figure 6(a) TriAAN-VC(AS

R ,A
T
R ) Source vidio VS

R

(b) ARVF Real audio AR Fake video VF
Figure 6(b-1) Source audio AS

R FSGAN(VS
R , V

T
R )

Figure 6(b-2) Target audio AT
R Wav2lip(FSGAN(VS

R , V
T
R ), AT

R )
Figure 6(b-3) Target audio AT

R Wav2lip(VS
R , A

T
R )

(c) AFVF Fake audio AF Fake video VF
Figure 6(c-1) TriAAN-VC(AS

R , A
T
R ) Wav2lip(FSGAN(VS

R , V
T
R ), AS

R )
Figure 6(c-2) TriAAN-VC(AT

R , A
S
R ) Wav2lip(VS

R , A
T
R )

VR (AFVR), (b) real audio AR & fake video VF (ARVF ), and (c)
fake audio AF & fake video VF (AFVF ). Details are below.
Fake audio & real video (AFVR) is created by manipu-

lating source audio AS
R with target audio AT

R while keeping
source video VS

R as real video VR, as shown in Figure 6(a).
Specifically, the fake audio AF can be created by changing
the source audio style SS = S(AS

R ) to the target audio style
ST = S(AT

R ) while maintaining the source audio content
CS = C(AS

R ). The fake audio AF (CS , ST ) is generated by
TriAAN-VC [42]. Further details are given in Table 3(a).
Real audio & fake video (ARVF ) is generated similarly to

the generation process of AFVR. That is, in AFVR, only the
audio track is manipulated, while in ARVF , only the video
track is changed. Figure 6(b) shows three types of pipelines,
and a description of each pipeline is given in Table 3(b).
Here, FSGAN(V 1, V 2) performs a face swap from V 1 to V 2,
and Wav2lip(V , A) manipulates lip movements in video V to
match audio A.
Fake audio & fake video (AFVF ) involves manipulating

both the source audio AS
R and the source video VS

R of a
source clip S using a target clip T . There are two pipelines to
create AFVF as shown in Figure 6(c) and Table 3(c). TriAAN-
VC(A1, A2) generates a converted audio track A(C1, S2) by
mixing the audio content C1 of audio A1 with the audio style
S2 of another audio A2.
For 265 real clips, all pipelines in Figure 6 were repeated

five times, resulting in a total of 7,950 deepfake clips. Similar
to FakeAVCeleb [34], only the audio track was used in this
study. Among three types of deepfake data: AFVR, ARVF , and
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TABLE 4: Model details with respect to Feature, Channel,
Data Type (D-Type), the number of parameters (# of Param.),
used memory (Mem.), and runtime. At runtime, (i) and (ii)
denote the RTF of the input sound process in Figure 2(i) and
the detection process in Figure 2(ii), respectively.

Model Feature Channel D-Type # of Param.
Mem. Runtime (RTF)
(MB) (i) (ii)

WaveRNN
[35]

WAVE
Single yraw 7,971,208 33.13

0.20

0.05

Dual
Ct 15,190,408 62.92 0.09
Cch 7,971,208 35.43 0.07

TSSD
[36]

WAVE
Single yraw 348,497 207.22 0.07

Dual
Ct 348,497 413.04 0.09
Cch 348,609 207.99 0.06

RawNet
[26]

WAVE
Single yraw 17,620,392 169.89 0.02

Dual
Ct 17,620,392 270.37 0.02
Cch 17,620,392 172.20 0.02

MLP
MFCC/
LFCC

Single yraw 2,319,081 9.43

0.20

0.01

Dual
Ct 4,627,881 18.82 0.01
Cch 4,627,881 18.82 0.01

ShallowCNN
[37]

MFCC/
LFCC

Single yraw 1,104,401 18.59 0.02

Dual
Ct 2,087,441 36.76 0.02
Cch 1,104,913 18.74 0.02

LCNN
[38]

MFCC/
LFCC

Single yraw 14,474,081 177.51 0.09

Dual
Ct 20,372,321 319.90 0.14
Cch 14,476,481 177.67 0.09

AFVF , AFVR and AFVF were used. Therefore, the dataset for
deepfake audio detection consisted of 265 real audios and
1,536 fake audios, and split into training (1,282 samples),
validation (119 samples), and test (400 samples). Details are
described in Table 2.

B. SETUP
1) Hyper Parameters
As the objective function for all deepfake audio detection
models, binary cross-entropy loss (BCE loss) is used:

L = − 1
N

∑N
i=1 [ωpos · yi log(ŷi) + (1− yi) log(1− ŷi)],

where N represents the total number of samples, and yi and
ŷi are the true label and the predicted probability for the ith

sample, respectively. Additionally, to address the data imbal-
ance problem between real and fake samples, the positive
weight ωpos = number of positive samples

number of negative samples is applied to the BCE
loss. The hyperparameters used to train the detection models
are detailed as follows: The batch size was set to 64, the
number of epochs was 50, and the Adam optimizer was used.
The initial learning rate and weight decay were set to 10−4.
The optimal model was selected as the model that achieved
the minimum validation loss.

2) Pre-Processing
The audio length in theASVspoof2019 [33] and FakeAVCeleb
[34] datasets is approximately 6 seconds. However, some
audio clips may be shorter or longer than 6 seconds. There-
fore, when feeding a waveform to the detection model, a
pre-processing routine is applied to extract a waveform with
a fixed length of 6 seconds. The pre-processing steps are
as follows: If the audio length is longer than 6 seconds, a
starting point is randomly selected, and the waveform for the
6 seconds after that point is extracted. On the other hand, if the
audio length is shorter than 6 seconds, it is repeated until the
audio exceeds 6 seconds, and then a random starting point

TABLE 5: Quantitative comparison with respect to Feature,
Channel, and Data Type (D-Type). (a) and (b) show results
for ASVspoof2019 [33] and FakeAVCeleb [34], respectively.
The highest score for (Model, Feature) is in bold. The pro-
posed channel-axis combination Cch outperforms other data
types for both 1D wave and 2D MFCC and LFCC features.

(a) ASVspoof2019 [33]

Model Feature Channel D-Type AUC(↑) EER(↓)

WaveRNN
[35]

WAVE
Single yraw 0.5000 50.00 %

Dual
Ct 0.5000 50.00 %
Cch 0.5000 50.00 %

TSSD
[36]

WAVE
Single yraw 0.8227 20.81 %

Dual
Ct 0.8959 10.77 %
Cch 0.9303 7.90 %

RawNet
[26]

WAVE
Single yraw 0.9560 5.42 %

Dual
Ct 0.9420 7.19 %
Cch 0.9593 5.20 %

MLP

MFCC
Single yraw 0.8333 21.65 %

Dual
Ct 0.8176 20.52 %
Cch 0.8246 20.62 %

LFCC
Single yraw 0.7143 34.25 %

Dual
Ct 0.8115 23.14 %
Cch 0.8361 18.06 %

ShallowCNN
[37]

MFCC
Single yraw 0.8677 16.91 %

Dual
Ct 0.8878 15.31 %
Cch 0.9266 8.98 %

LFCC
Single yraw 0.8023 27.52 %

Dual
Ct 0.8075 27.17 %
Cch 0.8169 25.89 %

LCNN
[38]

MFCC
Single yraw 0.9173 11.81 %

Dual
Ct 0.8954 15.81 %
Cch 0.9187 10.86 %

LFCC
Single yraw 0.8241 25.24 %

Dual
Ct 0.8278 25.07 %
Cch 0.8317 24.43 %

(b) FakeAVCeleb [34]

Model Feature Channel D-Type AUC(↑) EER(↓)

WaveRNN
[35]

WAVE
Single yraw 0.8250 21.74 %

Dual
Ct 0.7996 22.28 %
Cch 0.8691 15.12 %

TSSD
[36]

WAVE
Single yraw 0.9654 5.71 %

Dual
Ct 0.9692 4.08 %
Cch 0.9707 3.92 %

RawNet
[26]

WAVE
Single yraw 0.9245 9.53 %

Dual
Ct 0.9399 6.02 %
Cch 0.9860 8.06 %

MLP

MFCC
Single yraw 0.9030 11.47 %

Dual
Ct 0.9831 1.99 %
Cch 0.9900 1.96 %

LFCC
Single yraw 0.8844 11.89 %

Dual
Ct 0.9800 3.85 %
Cch 0.9800 3.85 %

ShallowCNN
[37]

MFCC
Single yraw 0.9800 3.85 %

Dual
Ct 0.9884 2.26 %
Cch 0.9900 1.96 %

LFCC
Single yraw 0.9368 9.80 %

Dual
Ct 0.9907 1.82 %
Cch 0.9800 3.85 %

LCNN
[38]

MFCC
Single yraw 0.9731 3.90 %

Dual
Ct 0.9931 1.37 %
Cch 1.0000 0.00 %

LFCC
Single yraw 0.9445 5.95 %

Dual
Ct 0.9275 11.31 %
Cch 0.9954 0.92 %

is selected to extract 6-second waveform segments. Using
random waveform segments reduces the risk of overfitting
and improves the generalization ability of the detection mod-
els. Additionally, standard preprocessing routines such as data
normalization and resampling are performed.

3) Evaluation Metrics
Two quantitative metrics, equal error rate (EER) and area
under the curve (AUC), were used to evaluate deepfake audio
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FIGURE 7: (a) AUC and (b) EER profiles for various audio lengths according to various features (waveform, MFCC, and
LFCC) on the SPC dataset. The legend is defined in (c). Quantitative metrics for each feature are in (i), and (ii) shows the
average scores for single-channel and dual-channel data. * denotes the best score. Models trained with 6-second segments of
dual-channel MFCC feature achieved the best performance in both AUC and EER.

TABLE 6: Quantitative comparison with respect to Feature, Second (Sec.), Channel (Ch.), and Data Type (D-Type) on the SPC
dataset. (a), (b), and (c) show results forWAVE,MFCC, and LFCC, respectively. Sec. denotes the length (in seconds) of the wave
segment. The highest score for (Model, Feature) is in bold. Models trained with 6 or 10-second segments with the proposed
dual-channel data type Cch outperforms other data types for both 1D wave and 2D MFCC and LFCC features.

Feature (a) WAVE

Model Sec. Ch. D-Type AUC(↑) EER(↓)

W
av
eR

N
N
[3
5]

1
Single yraw 0.5339 48.23 %
Dual Cch 0.6080 43.88 %

3
Single yraw 0.5403 47.86 %
Dual Cch 0.5950 44.75 %

6
Single yraw 0.5277 48.54 %
Dual Cch 0.6362 42.08 %

10
Single yraw 0.5855 45.06 %
Dual Cch 0.6907 37.83 %

30
Single yraw 0.5547 47.08 %
Dual Cch 0.6120 43.58 %

T
SS

D
[3
6]

1
Single yraw 0.9057 15.87 %
Dual Cch 0.9659 6.39 %

3
Single yraw 0.9638 6.75 %
Dual Cch 0.9751 4.74 %

6
Single yraw 0.9860 2.73 %
Dual Cch 0.9857 2.78 %

10
Single yraw 0.9407 10.61 %
Dual Cch 0.9909 1.67 %

30
Single yraw 0.9400 10.71 %
Dual Cch 0.9800 3.85 %

R
aw

N
et
[2
6]

1
Single yraw 0.9375 10.90 %
Dual Cch 0.9870 2.00 %

3
Single yraw 0.9430 8.83 %
Dual Cch 0.9655 6.36 %

6
Single yraw 0.9299 12.30 %
Dual Cch 0.9701 5.42 %

10
Single yraw 0.9510 6.53 %
Dual Cch 0.9831 3.28 %

30
Single yraw 0.9200 13.79 %
Dual Cch 1.0000 0.00 %

Feature (b) MFCC

Model Sec. Ch. D-Type AUC(↑) EER(↓)

M
L
P

1
Single yraw 0.8781 17.56 %
Dual Cch 0.9686 4.76 %

3
Single yraw 0.9260 9.12 %
Dual Cch 0.9229 13.34 %

6
Single yraw 0.8447 23.23 %
Dual Cch 0.9902 1.87 %

10
Single yraw 0.8887 17.18 %
Dual Cch 0.9661 6.35 %

30
Single yraw 0.9333 10.84 %
Dual Cch 0.9600 7.41 %

Sh
al
lo
w
C
N
N
[3
7]

1
Single yraw 0.9331 8.14 %
Dual Cch 0.9414 10.41 %

3
Single yraw 0.9387 8.90 %
Dual Cch 0.9816 3.50 %

6
Single yraw 0.9543 5.49 %
Dual Cch 0.9997 0.06 %

10
Single yraw 0.9384 8.10 %
Dual Cch 1.0000 0.00 %

30
Single yraw 0.9600 7.41 %
Dual Cch 1.0000 0.00 %

L
C
N
N
[3
8]

1
Single yraw 0.9471 7.10 %
Dual Cch 0.9692 4.69 %

3
Single yraw 0.9732 3.14 %
Dual Cch 0.9944 0.90 %

6
Single yraw 0.9749 3.65 %
Dual Cch 1.0000 0.00 %

10
Single yraw 0.9407 10.61 %
Dual Cch 1.0000 0.00 %

30
Single yraw 0.9800 3.85 %
Dual Cch 1.0000 0.00 %

Feature (c) LFCC

Model Sec. Ch. D-Type AUC(↑) EER(↓)

M
L
P

1
Single yraw 0.9206 8.93 %
Dual Cch 0.9798 2.72 %

3
Single yraw 0.9172 13.18 %
Dual Cch 0.9769 4.33 %

6
Single yraw 0.9362 10.23 %
Dual Cch 0.9905 1.87 %

10
Single yraw 0.9195 13.33 %
Dual Cch 0.9831 3.28 %

30
Single yraw 0.9187 13.82 %
Dual Cch 0.9800 3.85 %

Sh
al
lo
w
C
N
N
[3
7]

1
Single yraw 0.9517 6.68 %
Dual Cch 0.9687 5.51 %

3
Single yraw 0.9619 6.41 %
Dual Cch 0.9914 1.34 %

6
Single yraw 0.9744 4.48 %
Dual Cch 0.9905 1.87 %

10
Single yraw 0.9649 6.36 %
Dual Cch 0.9831 3.28 %

30
Single yraw 0.9800 3.85 %
Dual Cch 0.9800 3.85 %

L
C
N
N
[3
8]

1
Single yraw 0.9093 13.75 %
Dual Cch 0.9773 2.73 %

3
Single yraw 0.9519 6.25 %
Dual Cch 0.9929 1.34 %

6
Single yraw 0.9296 12.34 %
Dual Cch 0.9857 2.78 %

10
Single yraw 0.9386 10.94 %
Dual Cch 0.9661 6.35 %

30
Single yraw 0.9773 4.34 %
Dual Cch 0.9800 3.85 %

detection performance. EER represents the error rate when
the false acceptance rate (FAR) and the false rejection rate
(FRR) are equal, is described as

EER = FAR(threshold*) = FRR(threshold*), (7)

where threshold* is the value when FAR and FRR are
the same, FAR = Number of False Acceptances

Number of Imposter Attempts , and FRR =
Number of False Rejections
Number of Genuine Attempts . AUC refers to the area under the re-
ceiver operating characteristic (ROC) curve. Here, the ROC
curve is a graph drawn by calculating the true positive rate
(TPR) and false positive rate (FPR) at various threshold. TPR
and FPR are formulated as follows

TPR =
TP

TP+ FN
, FPR =

FP
FP+ TN

,

where TP and TN represent true positive and true negative,
respectively. FP is false positive, and FN is false negative. In

addition, real-time factor (RTF) was computed to check the
real-time capabilities, is formulated as

RTF =
Processing time
Audio duration

.

C. RESULT
Table 4 shows the model details, including the number of
parameters, memory used during processing, and runtime in
terms of RTF. All models used in the experiments achieve an
0.3 RTF or less, which means that the entire process, compris-
ing (i) input sound processing and (ii) detection processing,
is performed within 0.3 seconds for 1 second of audio. In
an IoT environment, user voice commands consist of short
and concise words and last less than 3 seconds. Therefore,
a typical voice commands can be inspected by the detection
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FIGURE 8: AUC profiles for (a) ASVspoof2019 [33], (b) FakeAVCeleb [34], (c) SPC (V-A2), and (d) average AUC profile for
various single-channel data types (yraw, ydirect , yreverb) and the proposed dual-channel data type Cch. The legend is defined in (e).
Models trained with the proposed dual-channel data Cch outperforms other single-channel data (yraw, ydirect , yreverb) in AUC.

TABLE 7: Quantitative comparison with respect to (i) ASVspoof2019 [33], (ii) FakeAVCeleb [34], and (c) SPC (V-A2). Models
trained with each single dataset (a-c) and the entire dataset (d) are used to compute AUC and EER on the test set (i-iii). RawNet
[26] and ShallowCNN [37] are used for WAVE and MFCC/LFCC features, respectively. The highest score for Model is in bold.
Models trained with the entire dataset demonstrate superior generalization performance across datasets.

Training Dataset (a) ASVspoof2019 [33] (b) FakeAvCeleb [34] (c) SPC(V-A2) (d) All
Test Dataset Model Feature Channel D-Type. AUC(↑) EER(↓) AUC(↑) EER(↓) AUC(↑) EER(↓) AUC(↑) EER(↓)

(i) ASVspoof2019
[33]

RawNet
[26]

WAVE
Single yraw 0.9560 5.42 % 0.5117 49.41 % 0.5001 50.00 % 0.9068 13.58 %
Dual Cch 0.9593 5.20 % 0.5000 50.00 % 0.5250 48.24 % 0.9413 8.25 %

ShallowCNN
[37]

MFCC
Single yraw 0.8677 16.91 % 0.5000 50.00 % 0.5000 50.00 % 0.8206 25.12 %
Dual Cch 0.9266 8.89 % 0.4943 50.29 % 0.5000 50.00 % 0.8497 21.92 %

LFCC
Single yraw 0.8023 27.52 % 0.3830 57.25 % 0.4203 54.58 % 0.7574 32.17 %
Dual Cch 0.8169 25.89 % 0.5110 49.44 % 0.4757 51.25 % 0.8187 25.99 %

(ii) FakeAvCeleb
[34]

RawNet
[26]

WAVE
Single yraw 0.4838 50.82 % 0.9245 9.53 % 0.4631 51.98 % 0.9977 0.46 %
Dual Cch 0.5000 50.00 % 0.9860 8.06 % 0.4865 50.19 % 0.9800 3.85 %

ShallowCNN
[37]

MFCC
Single yraw 0.3889 56.25 % 0.9800 3.85 % 0.5000 50.00 % 0.9792 4.04 %
Dual Cch 0.5044 49.75 % 0.9900 1.96 % 0.5000 50.00 % 0.9761 2.76 %

LFCC
Single yraw 0.4938 50.32 % 0.9368 9.80 % 0.5568 46.61 % 0.9368 9.80 %
Dual Cch 0.5331 48.27 % 0.9800 3.85 % 0.5830 45.08 % 0.9469 5.92 %

(iii) SPC
(V-A2)

RawNet
[26]

WAVE
Single yraw 0.5000 50.00 % 0.5000 50.00 % 0.9299 12.30 % 0.9973 0.53 %
Dual Cch 0.5093 49.45 % 0.5000 50.00 % 0.9701 5.42 % 0.9933 1.32 %

ShallowCNN
[37]

MFCC
Single yraw 0.5600 46.81 % 0.5000 50.00 % 0.9543 5.49 % 0.9773 4.34 %
Dual Cch 0.5547 47.08 % 0.5000 50.00 % 0.9997 0.06 % 0.9720 3.91 %

LFCC
Single yraw 0.5120 49.36 % 0.3693 58.06 % 0.9744 4.48 % 0.9613 3.99 %
Dual Cch 0.5600 46.81 % 0.4827 50.92 % 0.9905 1.87 % 0.9960 0.79 %

model in under 1 second. In addition, since the model requires
less than 1GB of memory, it is suitable for real devices.

Table 5 shows the performance of all models on (a)
ASVspoof2019 [33] and (b) FakeAVCeleb [34] datasets. The
detection models leveraging the proposed dual-channel data
outperform most single-channel based models except MLP
trained with MFCC feature in Table 5(a). Specifically, in an
environment utilizing the 1D WAVE feature, RawNet [26]
using dual-channel waveform combined along the channel-
axis Cch achieves the highest AUC score compared to other
wave feature-based models on both datasets. In EER metrics,
RawNet [26] and TSSD [36] trained with the proposed dual-
channel data show the best performance on ASVspoof2019
[33] and FakeAVCeleb [34], respectively. When applying 2D
features, ShallowCNN [37] with MFCC-based dual-channel
data is superior to others in ASVspoof2019 [33], but LCNN
[38] using MFCC-based dual-channel data shows the best
performance in FakeAVCeleb [34].

From dataset perspective, RawNet [26] trained with pro-
posed 1D waveform-based dual-channel data achieves the
highest score on ASVspoof2019 [33], while LCNN [38] with
proposed dual-channel data on 2D LFCC shows the best
performance on FakeAVCeleb [34].

VI. DISCUSSION

A. PERFORMANCE ACCORDING TO COMBINE FUNCTIONS

The major contribution of this study is leveraging dual-
channel data consisting of the direct waveform ydirect and the
reverberant waveform yreverb. To feed the dual-channel data
to the detection models, the direct waveform ydirect and the
reverberant waveform yreverb must be combined. In Section
IV-B, two types of combining mechanisms are introduced:
time-axis combination Ct and channel-axis combination Cch,
as shown in Figure 5. To validate the effect of these combining
mechanisms, all detection models were trained using dual-
channel data with both the time-axis combination Ct and the
channel-axis combination Cch, respectively. In Table 5, the
dual-channel part shows the quantitative metrics according
to the time-axis combination Ct and the channel-axis com-
bination Cch. For all 1D wave feature-based models, lever-
aging dual-channel data with the channel-axis combination
Cch outperforms using the time-axis combination Ct . This
trend, observed in models based on 1D wave features, is
also seen in models using 2D MFCC and LFCC features,
excluding ShallowCNN [37]. Through this experiment, it was
confirmed that the channel-axis combination Cch is more
suitable than the time-axis combination Ct for leveraging
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dual-channel data containing the direct waveform ydirect and
the reverberant waveform yreverb.

B. IMPACT OF WAVEFORM FEATURES & LENGTH
To verify changes in performance depending on waveform
length, our group used the SPC self-collected dataset (av-
erage length 30-second), which has a longer waveform
length than public datasets (average length 6-second) such as
ASVspoof2019 [33] and FakeAVCeleb [34]. Wave samples
from the SPC dataset were divided into various lengths, such
as 1, 3, 6, 10, and 30 seconds, and were used to train the
deepfake audio detection models. Table 6 shows the quan-
titative metrics for various waveform features and lengths,
comparing single-channel models with the proposed dual-
channel models. Generally, the detection models trained with
the proposed dual-channel scheme (see solid bars in Figure 7)
show better performance than the single-channel models (see
dashed bars in Figure 7).

Figure 7(i) shows the performance for each feature type.
In particular, 2D features including MFCC (see green bars in
Figure 7) and LFCC (see red bars in Figure 7) are superior
to the 1D wave feature (see blue bars in Figure 7). Among
MFCC and LFCC features, using the MFCC feature at 6-
second segment shows the best performance, as indicated by
* in Figure 7(i). From the perspective of waveform lengths,
using 10-second dual-channel segments achieves the best
AUC score compared to other lengths, as shown in Figure
7(a-ii), while using 6-second dual-channel segments shows
the best results in average EER in Figure 7(b-ii).

Through this experiment, our finding is that 2D features
such as MFCC and LFCC are superior to 1D feature like
waveform. Waveform segments that are too short or long are
not suitable for extracting deepfake features and determining
whether the audio is a deepfake. Using 6- or 10-second audio
segments is more efficient for developing deepfake audio
detectionmodels. Public datasets such asASVspoof2019 [33]
and FakeAVCeleb [34] already satisfy this audio length.

C. IMPACT OF DATA TYPES
In Section III, we confirmed there are differences in the
perception of direct ydirect and reverberant waveforms yreverb
between real and fake audio, as shown in the DRR scores in
Table 1. Based on the insight, models using dual-channel data
Cch(ydirect , yreverb) is proposed and shows better performance
than models using raw data yraw = ydirect + yreverb. Here,
we conducted a comparative study on models using various
data types, including single-channel data (yraw, ydirect , yreverb)
and dual-channel data (Cch), to elucidate the impact of each
data type. Figure 8 shows the AUC profiles for various single-
channel data types and the dual-channel data type. It is clear
that using the dual-channel data type outperforms the models
trained with single-channel date types in the entire experi-
mental environment. Among the single-channel data types,
themodels trainedwith data containing reverberant waveform
yreverb, such as raw waveform yraw or reverberant waveform
yreverb, outperformed the models trained exclusively with di-

rect waveform ydirect , as shown in Figure 8(d). From the
experiment, it can be concluded that leveraging reverberant
waveform yreverb is important for detecting deepfake audio.

D. GENERALIZABILITY ACROSS DATASETS
Since each dataset used in the experiment has distinct char-
acteristics, it is difficult to infer a model trained on a given
dataset to other datasets. Table 7 shows the results of cross-
validation for pairs of datasets and trained models. When the
training and test data belong to the same dataset, the model
generally achieves the best scores, as shown in Table 7(a-
i), (b-ii), and (c-iii). However, when inference is performed
on different datasets, performance deteriorates significantly.
That is, it is difficult for a model trained with a single dataset
to satisfy well-generalizability to other datasets. However,
as shown in Table 7, the model trained using the entire
datasets achieves similar performance to the model trained
with individual datasets that matches the test set. These results
demonstrate that training the model on the entire collected
dataset improves generalizes across datasets.

VII. CONCLUSION
The study proposed a deepfake audio detection model lever-
aging dual-channel data. In a conversation situation or record-
ing studio, waveforms captured by receivers likemicrophones
include various environmental factors, such as the subject’s
behavior and the recording environment. Although these en-
vironmental factors cause differences between direct and re-
verberant waveforms, deepfake audio generation models do
not account for these changes. Therefore, we proposed novel
dual-channel detection models utilizing direct and reverber-
ant waveforms rather than single-channel raw waveforms.
By leveraging the proposed dual-channel data, most deep-
fake audio detection models using wave, MFCC, and LFCC
features demonstrated improved performance, such as higher
AUC and lower ERR, compared to models using single-
channel data. Additionally, to verify the impact of various
wave lengths, our group collected the SPC dataset with a
longer wave length of around 30 seconds, compared to the
public datasets of around 6 seconds. In experiments with dif-
ferent wave lengths, using wave segments of approximately
6 or 10 seconds showed the best performance among wave
segments with lengths of 1, 3, 6, 10, and 30 seconds.
Overall, our findings indicate that using dual-channel au-

dio data significantly improves the performance of deepfake
audio detection and highlights the importance of capturing
both direct and reverberant sound characteristics for robust
and reliable detection. As future work, we will develop a
deepfake detection model leveraging multi-modality, includ-
ing the proposed dual-channel data and video information
such as lip synchronization [45] and lip reading [46]. To
enhance generalization performance, continuous collection of
diverse datasets and the AI-based data augmentation such as
environmental noise generation [47], [48] and audio source
alteration [49] will be used as effective strategies.
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