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ABSTRACT Accurate model selection is essential in predictive modelling across various domains, signifi-
cantly impacting decision-making and resource allocation. Despite extensive research, the model selection
process remains challenging. This work aims to integrate the Minimum Description Length principle with
the Multi-Criteria Decision Analysis to enhance the selection of forecasting machine learning models.
The proposed MDL-MCDA framework combines the MDL principle, which balances model complexity
and data fit, with the MCDA, which incorporates multiple evaluation criteria to address conflicting error
measurements. Four datasets from diverse domains, including software engineering (effort estimation),
healthcare (glucose level prediction), finance (GDP prediction), and stock market prediction, were used
to validate the framework. Various regression models and feed-forward neural networks were evaluated
using criteria such as MAE, MAPE, RMSE, and Adjusted R2. We employed the Analytic Hierarchy Process
(AHP) to determine the relative importance of these criteria. We conclude that the integration of MDL and
MCDA significantly improved model selection across all datasets. The cubic polynomial regression model
and the multi-layer perceptron models outperformed other models in terms of AHP score andMDL criterion.
Specifically, the MDL-MCDA approach provided a more nuanced evaluation, ensuring the selected models
effectively balanced complexity and predictive accuracy.

INDEX TERMS Multicriteria Decision Analysis; Minimum Model Length; Machine Learning; Model
Selection Prediction; MDL-MCDA

I. INTRODUCTION

Accurate model selection is essential in predictive modelling
across various domains. The efficacy of predictive models in-
fluences decision-making processes and resource allocation.
Despite extensive studies comparingmultiple predictivemod-
els, the model selection approach still needs to be explored.
Model selection is intrinsically tied to the objectives of pre-
diction and understanding, with its essence captured through
the formalisation of loss and risk, as declared by Petropou-
los et al. [1] and by Friedman [2]. The issues of model
selection lie in navigating through the complex relationship
between independent variables and the dependent variable
underpinned by both observable and unobservable factors.
The literature identifies two broad categories of variables in-
fluencing dependent variables: explanatory variables, which
are observable, and unobservable variables, which include
factors such as measurement errors or omitted independent
variables. This issue has been discussed in various problem
domains.

A. HOW MODELS CAN BE SELECTED: MAIN ISSUES
Model selection is a crucial challenge within all prediction
tasks, bridging the gap between theoretical constructs and
practical applications. This section describes the core aspects
of model selection, covering the fundamental issues, model
evaluation and construction methodologies, and the selection
process. The multicriteria approach, assumptions underlying
model selection strategies, and the interplay between explana-
tory variables and unobservable factors influencing the out-
come variable are essential to our discussion. The evaluated
datasets are often more complex because they contain more
features, allowing more independent variables to be used.
Issues in model selection are mainly related to selecting a
model that will fit data well, keep a complexity level low, and
provide a reasonable, accurate prediction. For each prediction
task, the following is to be evaluated [3]:

• Complexity level – The existing methods of assessing
model quality are often based on assumptions of ran-
domness of variables and may, therefore, be sensitive
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to extreme values. On the contrary, some methods make
few assumptions about randomness, but their inherent
generality may alter their results. This means that while
assumption-based methods can be very accurate un-
der ideal conditions, they may fail with non-ideal data,
whereas assumption-light methods are more flexible but
can sometimes offer less precise insights.

• Class of models for a specific system – It is also impor-
tant to use a good set of predictive models and select the
most relevant method for model construction.

• Evaluation criteria – Selecting the most relevant evalu-
ation criteria for prediction models is crucial. A model
evaluation criterion, based on its distance to the theoret-
ical quantity, assesses the performance in predicting a
model. Also, criteria can often be in conflict.

The prediction task is challenging due to unknown relation-
ships between the variables involved. A common approach
is to create multiple models that represent these relationships
differently. The task then becomes evaluating and comparing
these models to select the best one, where the "best" is task-
specific. Four benchmark problem domains were chosen to
validate the proposed evaluation methods: effort estimation,
predicting glucose levels, gross domestic product (GDP) pre-
diction, and stock price prediction. These domains require
accurate predictions in both technical and financial fields
and the versatility and robustness of the proposed MCDA-
MDL evaluation framework is demonstrated in our work. The
first prediction task is in software engineering, focusing on
predicting software development efforts. This task is crucial
for project management because accurate estimates help to
plan, budget, and allocate resources. Simple and accurate
predictive models are valuable as they are easier for project
managers and stakeholders to understand and use, ensuring
better project control and success. The second prediction task
is from the medical and health science, explicitly predict-
ing glucose levels. Accurate glucose level predictions are
essential for managing diabetes, as they help to monitor and
maintain optimal glucose levels and prevent complications.
This task represents a broader challenge in medical research,
where accurate predictions are necessary for effective patient
care and treatment planning.

The third prediction experiment is related to the gross do-
mestic product prediction. Those predictions are essential for
company financial planning and life cost prediction. Knowing
the gross domestic product prediction is mandatory for many
businesses and public administration.

The fourth domain is related to stock market prediction.
This was included as being a typical representation of the
time series. Also, this is an important task in economic and
financial analysis.

By choosing these four significant problem domains, the
study aims to show the versatility and robustness of the pro-
posed MCDA-MDL evaluation framework over data science
applications. The software engineering, medical and financial
analysis/economic tasks highlight the need for practical and
easy-to-use models in each field.

B. OBJECTIVES OF THE WORK
Model selection simplifies the process by reducing the num-
ber of possible models to a limited set. However, it remains
a challenging problem because it requires defining what
makes a good model and how to measure its quality. These
definitions should align with the primary goal of the study.
Although this seems straightforward, in practice, the methods
used to create and evaluate models often need to align better
with the study’s objectives.
To address the challenges of model selection in the pres-

ence of conflicting error measurements, we propose the inte-
gration of Minimum Description Length (MDL) and Multi-
Criteria Decision Analysis (MCDA).
The MDL principle [4], [5] helps balance the model’s

complexity with its ability to fit the data. By minimizing the
minimal description length, MDL provides a robust way to
prevent overfitting and select models that generalize well to
new data. Integrating the MCDA approach is essential when
error measurements conflict. MCDA helps to incorporate
an error score, which fuses more than one error criterion.
MCDA score can be understood as a goodness-of-fit part
of MDL. By combining MDL and MCDA, we can enhance
the model selection process, ensuring that the selected model
fits the data well and effectively meets the task’s objectives.
This integrated approach provides a structured framework to
navigate the complexities of model evaluation and selection.

C. RESEARCH QUESTIONS
For this work, the following research questions have been set:

• RQ1: How does the Minimum Description Length
(MDL) and Multi-Criteria Decision Analysis (MCDA)
integration affect predictive model selection?

• RQ2: What advantages does the MDL-MCDA have
compared to the MDL-RSS1 in predictive model selec-
tion?

D. MAIN CONTRIBUTIONS OF THE WORK
In this paper, we address critical challenges in predictivemod-
eling andmodel selection by introducing a novel methodolog-
ical framework that integrates the strengths of the Minimum
Description Length (MDL) principle with Multi-Criteria De-
cision Analysis (MCDA). While traditional MDL relies on
Residual Sum of Squares (RSS) as a measure of goodness-
of-fit, this approach often falls short in scenarios where mul-
tiple, conflicting error criteria must be balanced, particularly
in complex, real-world datasets. By integrating MDL with
MCDA, we extend the scope of model evaluation beyond a
single error metric, allowing for a more robust and nuanced
assessment that accounts for multiple evaluation criteria. This
innovation not only enhances the reliability of model se-
lection but also addresses critical gaps in traditional MDL
approaches. Below, we detail the specific contributions that

1MDL-RSS is the commonMDL having the residual sum of squares at the
goodness-of-fit criterion.

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3532815

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

underscore the novelty and practical value of our proposed
framework:

• MDL and MCDA Integration: Introduces a novel in-
tegration of Minimum Description Length (MDL) with
Multi-Criteria Decision Analysis (MCDA) to improve
predictive model selection by resolving conflicting error
measurements.

• Comparative Analysis: Evaluates MDL-AHP vs.
MDL-RSS integrations for better handling of complex
datasets, showing practical benefits.

• Domain Applications: Assesses the methodology
across multiple domains.

• Benchmark Datasets: Validates the framework using
datasets from software engineering, medical, and fi-
nance domains.

• Enhanced Selection Framework: Demonstrates that
MDL-MCDA improves model selection by balancing
complexity and accuracy.

• Impact of MDL-MCDA: MDL-MCDA outperforms
traditional MDL or MCDA in model selection across
datasets.

• MDL-MCDA vs. MDL-RSS: Shows MDL-MCDA se-
lects models with better generalization compared to
MDL-RSS.

These contributions advance the understanding and imple-
mentation of model selection methodologies, offering to ap-
ply MDL with MCDA to various domains requiring precise
and reliable predictive modelling.

E. PAPER ORGANISATION
The rest of the paper is organised as follows. Section 2
provides a comprehensive overview of existing research and
methodologies related to model selection, MDL, MCDA,
AHP, and RSS. Section 3 details the methods used in our
work, including data preparation, model implementation,
evaluation measures, and the integration ofMDL andMCDA.
Section 4 presents the results of the experiments using various
datasets and predictive models. It includes a comparison of
the performance of different models based on AHP, MDL
with AHP, and MDL with RSS. Section 5 discusses the
implications of the results, the effectiveness of the integrated
approach, and its applicability to different problem domains.
Finally, Section 6 summarizes the study’s main findings,
highlights the contributions, and suggests directions for future
research.

II. RELATED WORK
Awide range of viable prediction models are available across
different industries, making it difficult to determine the opti-
mal one, especially when faced with conflicting error mea-
sures. The Minimal Description Length (MDL) was intro-
duced to address this issue in [4]. MDL is an alternative to
the Akaike Information Criterion (AIC), which was intro-
duced as a recognised method for automatic model selec-
tion [6]. While the Akaike Information Criterion (AIC) is
highly efficient in selecting models within the same class and

comparing non-nested models, such as linear and non-linear
models, it cannot automatically choose models from differ-
ent prediction model classes, such as exponential smooth-
ing and autoregressive models. To address this limitation,
the Bayesian information criterion (BIC) from Schwarz was
introduced, which, in the same vein as AIC, evaluates the
fit of the data with a complexity penalty. However, the BIC
imposes a more substantial penalty for complexity than the
AIC. Nevertheless, this method still requires further devel-
opment to assess models within the same class. Villegas et
al. [7] suggest employing support vector machines (SVM) to
identify the most suitable prediction model from a range of
alternatives, given that model variables (such as the degree of
accuracy and the fitted parameters) may change over time.
The researchers discovered that utilising SVM leads to a
greater overall predictive accuracy. Ghobbar and Friend [8]
devised a predictive error forecasting technique for assessing
demand prediction models in the airline manufacturing sector
based on their factor levels. They employed mean absolute
percentage error (MAPE) as the criterion for evaluation but
did not account for hybrid prediction models that incorporate
personal information. Oh and Morzuch [9] assessed eight
demand prediction models using six performance measures
that evaluate bias and forecast error, including MAPE, MAE,
RMSE, AIC, and BIC. Their study revealed that the choice of
prediction model varied based on the performance measures
employed. Taylor and McSharry [10] evaluated six distinct
prediction models to estimate electricity demand across ten
European countries. They used MAPE and MAE as evalu-
ation measures and discovered that the rankings generated
conflicting outcomes, except for the top-performing model,
which consistently ranked first. Petropoulos et al. [1] and Han
et al. [11] investigated the use of subjective expert judgment in
prediction model selection, revealing that the chosen models
outperformed those selected throughAIC based on evaluation
measures such as MAE, MAPE and MASE. Furthermore,
it has been shown that collective judgment is superior to a
single decision and statistical selection methods. Davydenko
and Fildes [6], for instance, explored the effectiveness of
MAPE and median average percentage error (MdAPE) in
assessing judgmental adjustments to statistical prediction.
They concluded that relying solely on MAPE to determine a
model’s performance is insufficient due to inconsistent results
betweenMAPE and other error measures. The study suggests
that future research should develop an approach for selecting
the optimal model when evaluating multiple error measures,
particularly in the face of conflicting results. Multiple-criteria
decision analysis (MCDA) is a widely-used approach for
addressing complex problems involving multiple, often con-
flicting, objectives [12]. Selecting predictive models using
MCDA can be particularly useful when different error mea-
sures, such as mean squared error and mean absolute error,
provide conflicting guidance on the optimal model. Com-
paring AHP and TOPSIS, two prominent MCDA methods,
we consider how they can be applied in this model selection
context. The Analytic Hierarchy Process (AHP) [13] is a
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structured technique for organizing and analyzing complex
decisions. AHP involves decomposing a problem into a hi-
erarchy of goals, objectives, and alternatives and then using
pairwise comparisons to derive priorities for the alternatives.
In themodel selection domain,AHP could be used to establish
a hierarchy with the overall goal of minimizing prediction
error, with sub-objectives of minimizing MSE, MAE, and
potentially other relevant measures. Each candidate model
would then be evaluated against these criteria, with AHP
providing a composite score to guide the final model selection
[14] [15] [16] [17]. The perceptron, a fundamental building
block of neural networks, has also been explored for effort
estimation. A study by [18] demonstrated the potential of
perceptron-based models to capture non-linear relationships,
characteristic for effort estimation problems and the potential
to improve traditional estimation techniques. While neural
network and deep learning models have shown promising
results, their performance is heavily dependent on the quality
and characteristics of the input data. Proper feature engineer-
ing, data preprocessing, and hyperparameter tuning are cru-
cial for achieving reliable and accurate effort estimation using
these advanced techniques. Hyperparameter optimization can
significantly impact the model’s predictive capabilities and
generalisation, such as the number of hidden layers, neurons,
and the learning rate.

Neural networks and deep learning models promise to
improve software effort estimation. Their ability to model
complex, non-linear relationships in data makes them well-
suited for this task. Continued advancements in neural net-
work architectures, training algorithms, and hybrid modelling
approaches will likely enhance their accuracy and applicabil-
ity in software engineering.

Various methods for evaluating prediction models in differ-
ent domains, primarily using error measures and information
criteria like AIC and BIC. However, employing AIC and
BIC to assess models restricts the comparison to models
within the same class. Moreover, further research is needed
to determine an appropriate approach to evaluating multiclass
demand prediction models based on several interdependent
error measures and to select the best model based on the
simultaneous use of multiple error measures [19].

III. METHODOLOGY
A. RESEARCH DESIGN
This work evaluates the integration of minimum descrip-
tion length (MDL) and multi-criteria decision analysis (e.g.
AHP) in selecting predictive models. To achieve this, a se-
ries of steps were taken during experimental work. This in-
volves data preparation, model implementation, evaluation,
and comparison.

We employ four datasets covering software engineering,
medical and financial problem domains. These cover several
domains and sizes and are also a combination of natural and
synthetic samples. The consideredmodel classes includemul-
tiple linear regression (MLR), Ridge regression, Lasso regres-
sion, Elastic net regression, quadratic and cubic regression

(i.e. polynomial regression with degrees 2 and 3), and a feed-
forward neural network (FF-NN)with various configurations,
which will be specified.
The performance of these models will be evaluated using
criteria: Mean Absolute Error (MAE), Mean Absolute Per-
centage Error (MAPE), Root Mean Squared Error (RMSE),
Adjusted R-squared (adjR2), Prediction at 25% (Pred(0.25)),
and Weighted Quantile Loss (WQL). Additionally, we will
apply the Analytic Hierarchy Process (AHP) and Minimum
Description Length (MDL) principles to aid in model se-
lection. The procedure will involve several steps (Figure 1).

FIGURE 1: Model Design Flowchart.

First, a dataset is prepared and processed by handling missing
values, normalising data, and splitting them into training and
test sets. Then, the predictive models are trained using the
training data. After training, they evaluate each model using
the specified criteria on testing data. The MDL principle
will help quantify the complexity and goodness-of-fit for
each model, focusing on the total description length, which
includes the model structure, parameters, and data encoding.
MCDA, specifically AHP, will evaluate models based on
multiple criteria. This involves making pairwise comparisons
to determine the relative importance of each criterion in the
final score for model selection.
Finally, the models selected using traditional methods will

be compared with those chosen through the integrated MDL
and MCDA approach. This comparison will determine if the
combined approach improves predictive accuracy and model
simplicity.
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The expected outcomes of this work include identifying
the impact of integrating MCDA methods (e.g. AHP) for
MDL and comparing to selection using AHP only, or MCDA
with RSS. Moreover, we obtain insights into how MDL and
MCDA can improve model selection and understand the im-
pact of different variables on model performance.

B. EVALUATING MEASURES
The evaluation and comparison of models involve a detailed
analysis of various models’ performance, focusing on their
ability to predict or explain the dependent variable accurately.
Let us consider a sample D = {(xi, yi), i = 1, . . . , n}, of
variable values yi and ŷi, where yi represents the actual value
and ŷi is the predicted value.

Mean Absolute Percentage Error (MAPE) is a measure of
prediction accuracy of a forecasting method, expressing the
accuracy as a percentage. It is defined as:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100. (1)

Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) are common evaluationmeasures assessing the
average magnitude of prediction errors. MAE is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

and RMSE is defined as:

RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)2. (3)

The Median Absolute Percentage Error (MdMAPE) pro-
vides a robust measure by focusing on the median of the
percentage errors, defined as:

MdMAPE = median
(∣∣∣∣yi − ŷi

yi

∣∣∣∣× 100

)
(4)

The Adjusted Coefficient of Determination (Adjusted R²)
is an enhancement of the regular R² metric that adjusts for
the number of predictors in the model. It provides a more
accurate measure of goodness of fit than R2 by considering
model complexity. Adjusted R² is defined as:

Adjusted R2 = 1− (1− R2)(n− 1)

n− k − 1
(5)

where n is the number of observations, k is the number of
predictors, and R2 is the coefficient of determination on set
D.

Pred(0.25) evaluates the proportion of predictions that fall
below a specified error threshold, such as 25%. It is useful
for assessing the overall model’s predictive accuracy within
an acceptable error range. Pred(0.25) is calculated as

Pred(0.25) =
1

n

n∑
i=1

I
(∣∣∣∣yi − ŷi

yi

∣∣∣∣ < 0.25

)
(6)

where I is an indicator function that equals 1 if the condi-
tion is true and 0 otherwise.
The Weighted Quantile Loss (WQL) [20] measures how

well a predictive model performs across different quantiles
of the target variable’s distribution. It is particularly useful
in scenarios where it is important to understand the model’s
performance across various data distribution segments. The
WQL is given by:

wQL(τ) =

∑N
i=1 Lτ (yi, ŷi(τ))∑N

i=1 |yi|
(7)

where τ is the quantile level (e.g., quartils), yi is the ob-
served value at the i-th data point, and ŷi(τ) is the predicted
quantile value at the i-th data point for the quantile level
τ . The quantile loss function, Lτ (yi, ŷi(τ)), is defined as
Lτ (yi, ŷi(τ)) = (τ − 1{yi < ŷi(τ)})(yi − ŷi(τ)), where
1{yi < ŷi(τ)} is an indicator function that equals 1 if
yi < ŷi(τ) and 0 otherwise.

1) Discussion on Evaluation Measures
Model performance is assessed using various criteria: Mean
Absolute Percentage Error (MAPE), Mean Absolute Error
(MAE), RootMean Squared Error (RMSE),MedianAbsolute
Percentage Error (MdMAPE), Adjusted R2, and Predictions
Level (Pred(0.25)). Each criterion offers a distinct perspective
on model evaluation, capturing different facets of accuracy,
robustness, or complexity. However, these measures may oc-
casionally produce conflicting results, necessitating careful
interpretation.
The selection of these criteria reflects their ability to bal-

ance accuracy, robustness to outliers, and the trade-off be-
tween model fit and complexity.
Accuracy-focused measures:
• MAPE measures percentage errors, providing an intu-

itive view of relative accuracy for stakeholders.
• MAE averages error magnitudes, offering a straightfor-

ward overall accuracy measure without outlier bias.
• RMSE highlights large errors, useful for significant de-

viations but sensitive to outliers, potentially conflicting
with MAPE.

Robustness against outliers:
• MdMAPE captures median percentage errors, ensuring

robustness to outliers and complementing RMSE and
MAE.

Model fit and complexity:
• Adjusted R2 measures variance explained, accounting

for predictors to balance fit and complexity.
• Pred(0.25) measures predictions within 25% error, pri-

oritizing consistent accuracy over complexity metrics.
Balancing these criteria is crucial for developing robust

models. Measures like MAPE, MAE, RMSE, MdMAPE, and
Pred(0.25) focus on predictive accuracy, while complexity-
oriented measures like Adjusted R2 provide insights into gen-
eralizability. By evaluating multiple metrics, a comprehen-
sive understanding of the model’s strengths and weaknesses
emerges.
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Evaluation measures can be grouped based on whether
they should be minimized, maximized, or zeroed for optimal
performance:

Minimization Criteria:
• Mean Absolute Percentage Error (MAPE): emphasizes

relative prediction errors.
• Mean Absolute Error (MAE): captures average error

magnitudes.
• Root Mean Squared Error (RMSE): penalizes larger

errors, highlighting extreme deviations.
• Median Absolute Percentage Error (MdMAPE): offers

robustness to outliers.
Maximization Criteria:
• Adjusted Coefficient of Determination (R2): balances

variance explanation and model complexity.
• Proportion of Predictions Below 25%Error (Pred(0.25)):

emphasizes practical predictive accuracy.
• Weighted Quantile Loss: ensures balanced performance

across quantiles.
This diverse set of evaluation criteria ensures the model

is both accurate and generalizable, meeting practical needs
while avoiding overfitting or overemphasis on specific error
types.

C. MINIMUM DESCRIPTION LENGTH
The Minimum Description Length (MDL) principle is a for-
mal method of inductive inference that balances the model
complexity and goodness of fit. This principle is rooted in
information theory and aims to avoid overfitting by penalising
model complexity. MDL was introduced by Rissanen [4] and
further developed by Rissanen, Barron, Yu in e.g. [21]–[23],
and by Grünwald and Roos in [5], [24].

MDL is based on the idea that the best model for a given
set of data is the one that allows for the shortest overall de-
scription of the data and the model itself. The total description
length is the sum of the data and model encoding lengths.
Mathematically, the total description length L(D,M) can be
expressed as:

L(D,M) = L(M) + L(D|M) (8)

where L(M) is the length of the description of the model M
and L(D|M) is the length of the description of the data D
given the model M .
MDL prefers models that balance simplicity (short model

description) and accuracy (short data description given the
model) in the sense that the best model D is minimizing
Eq. (8). This approach penalizes more complexmodels unless
they significantly improve the data fit. MDL can bring advan-
tages where overfitting is a concern andmodel interpretability
and simplicity are valued. MDL helps select models that
generalise well to new data by penalizing model complexity.

MDL focuses on the total length of encoding both the
model and the data, ensuring that the model chosen is the
one that best compresses the data. This means MDL in-
herently balances model fit and complexity by minimizing

the information required to describe the model and the data
it explains. Unlike AIC and BIC, which are derived from
statistical considerations, MDL directly addresses the issue
of overfitting by penalizing unnecessarily complex models,
thus often leading to models that generalize better to new
data. This makes MDL a robust criterion for selecting models
that are not only accurate but also parsimonious, enhancing
predictive performance and interpretability.

1) Two-Part MDL Codes
The minimal description length as defined by Eq. (8) is in the
literature called a two-part MDL. We point in the beginning,
since MDL is a principle, there can be various encodings
of the models from a class of models and thus there can be
various MDL functions corresponding to the general scheme
from Eq. (8).
We will now come to a more formal explanation of the

MDL principle and its encodings. First we briefly explain
the orginal theory from Rissanen [4], [22] and his followers
[5], [24] as it was developed for the case that a conditional
probability distribution p(y|x) is known. Secondly we explain
MDL when we only know about the model, from which the
data are generated, that it is a member of a class of functional
models [25].

2) Encoding of Models with Known Probability of the Data
Deneration Process
We define a model for the prediction problem as a conditional
probability distribution p(y|x) over and input space X , i. e.
in other words,

∑
y∈Y p(y|x) = 1 (where the output space

Y can be theoretically also an infinite). A model class is
a set of models depending on a parameter vector θ, i.e.
M = {pθ,θ ∈ Θ}. Usually, Θ is a subset of a multivari-
ate Euclidean space. Shannon in [26] proved the following
fundamental statement in information theory, known under
the name Shannon-Huffman code. If a sender and receiver
agreed in advance on a model p and both know the input
xi, i = 1, . . . , n then there exists code to transmit the values
yi, i = 1, . . . , n losslessly with codelength (up to at most one
bit on the whole sequence)

Lp(y|x) = −
n∑

i=1

log2 p(yi|xi) (9)

where y, x is a shortened notation for set y1, . . . , yn,
x1, . . . , xn, respectively (which are from Y , X respectively).
The one additional bit in the Shannon-Huffman code is
present only once for the whole data set [27] and with large
data sets is negligible. Thus it will be omitted from the
encodings.
We do no need to know the practical implementation of

compression algorithms but we consider only the theoretical
bit length of their associated encodings. We want to measure
the amount of information contained in the data, and how it
is represented by the model. So we will directly work with
codelength functions. Probability distribution function p can
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be understood as the data generating process and in general it
is not known but can be approximated from the data.

To quantify the complexity of the computationalmodels for
prediction (and in general for a supervised learning problem)
can be done e.g. by parameter counting. An information-
theoretic way to use the Occam razor principle in terms of the
simplest model with a good generalization is the minimum
description length (MDL), introduced by Rissanen [4] and
further developed by Rissanen, Barron, Yu in e.g. [21]–[23],
and by Grünwald and Roos in [5], [24]. Encodings in which
the parameters of a model are at first transmitted to the
receiver and then the data using these parameters are encoded,
have been called two-part codes and introduced by Grünwald
[5].

Let Lparam(θ) be any encoding scheme for parameters θ ∈
Θ and let θ∗ be any parameter. The corresponding two-part
codelength is

Lθ∗(y|x) = Lparam(θ∗) + Lpθ∗ (y|x)

= Lparam(θ∗)−
n∑

i=1

log2 pθ∗(yi|xi).
(10)

∑n
i=1 log2 pθ∗(yi|xi) is called the goodness-of-fit. The ob-

jective is to find θ∗ at the minimum of (10) over all parame-
terizations.

3) Encoding of Models with Known Functional Class of the
Data Generating Process
When p is known, it is clear that the minimum of (10) is
equivalent to the maximum likelihood estimate (MLE). How-
ever, what makes the MDL principle so generic is that it
can be generalized to the functional cases, i.e. instead of p
probability, f as a general function can be considered about
which is only known to be a member of a class of candidate
models, see e.g. [25]. It means that about the model, from
which the data are generated, is only known to be a member
fl(.|θl) of a class of models

M = {fl(.|θl),θl ∈ Θl , θlj ∼ πlj(θlj),

l = 1, . . . ,m, j = 1, . . . , kl}
(11)

where m is the number o models inM , θl = (θl1, . . . , θlkl )
is a kl-dimensional parameter vector associated with fl and
Θl is a parameter space for θl . πlj(θlj) is introduced merely
to simplify the encoding process as an artificial device to
minimize the description length. It is assumed that every fl is
known except for θl , and that different fl may have different
number of parameters kl . Given a set of observed data, the
goal is to find the “true” fl from M as well as to estimate the
parameter θi associated with it. In this sense is (10) replaced
by

L(y) = L(θ̂l) + L(y|θ̂l) (12)

where L(θ̂l), L(y|θ̂l) are code lengths for encoding fl(.|θ̂l)
and “y conditioned on fl(.|θ̂l)” respectively. L(y|θ̂l) is called
the goodness-of-fit.

Rissanen in [21] proved that if θ̂lj is an MLE computed
from nj data points and if n is large, then the precision of
θlj can be effectively encoded with 1

2 log2 nj bits. Rissanen
derived a well-known form when all the parameters θlj are
to be estimated by using all data points of size n. For subset
selection in regression analysis, based on [22] it is

MDL(kl) = − log2 fl(y|θ̂l)−
kl∑
j=1

log2 πlj(θ̂lj) +
kl
2
log2 n.

(13)
where kl is the number of the regressors. Moreover, for n
large, the choice of πlj(θ̂lj) is relatively unimportant, as the
resting summands in (13) are dominating [22]. So in practice
for high n, term πlj(θ̂lj) can be omitted for MDL.

4) MDL with Multi-Objective Goodness-of-Fit
We propose to replace the goodness-of-fit measure, which are
commonly used in the MDL literature, namelyMAE ,MAPE
RMSE etc. by the multiobjective goodness-of-fit measure.
We will utilize this idea of both probabilistic and functional
representation of models described above.
If the probability function p is known: The second part in
Eq. (10) is a goodness-of-fit of the model ppθ∗ on data
set D. In this paper, we replace in the value Lpθ∗ (y|x) :=∑n

i=1 − log2 pθ∗(yi|xi) by

LΦθ∗ (y|x) = − log2 Φθ∗(y|x) (14)

where Φθ∗(y|x) is a multi-objective criterion, and similarly,
as above, the first part Lparam(θ∗) is the encoding of the
selected model. The objective is to find θ∗ at the minimum
of (14) over all parameterizations.
If only function fl is known, the goodness-of-fit in (13)

L(y|x) := − log2 fl(y|θ̂l) =
n∑

i=1

− log2 fl(yi|θ̂l) (15)

will be replaced analogically by (14).

5) Considered Machine Learning Methods
Our work incorporated three types of machine learning meth-
ods which we call model classes: multiple linear regression
(LR), multiple linear regression with a penalization term
(penLR), polynomial regression (polREG) up to degree 3, and
feed-forward neural networks (FF-NN). In this work, multi-
layer perceptrons with two and three hidden layers are used.
In the following subsections, we construct the MDL

descriptions of the above models for the multi-objective
goodness-of-fit.

6) MDL for Linear Regression with Multi-Objective
Goodness-of-Fit
Giurcăneanu et al. in [28] constructed several information-
theoretic criteria for the variable selection by multiple linear
regression assuming that the noise follows a Gaussian distri-
bution. We will use their MDL derived from the stochastic
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complexity [29]. However, we replace their goodness-of-fit
with the multi-objective goodness-of-fit. We denote k = |γ|
the number of non-zero values in the binary vector γ, i. e.
the number of regressors, and we can assume that k > 0.
Let βγ ∈ Rk×1 be the vector of the unknown regression
coefficients within the γ-subset. The matrix Xγ is given by
the columns of X that correspond to the γ-subset and the
regression equation is

y = Xγβγ + εγ , (16)

where y = (y1, . . . , yn) is the dependent variable and εγ are
Gaussian distributed with zero-mean and unknown variance
τγ . Under the assumption that matrix Xγ has full-rank, the
maximum likelihood (ML) estimates are

β̂γ = (X⊤
γ Xγ)

−1X⊤
γ y (17)

and

τ̂γ = ∥y− Xγ β̂γ∥22/n (18)

where τ̂γ is a goodness-of-fit in Eq. (12) on regressor from γ.
Paper [28] evaluated MDL of these regressions with indepen-
dent variables indexed by γ as functions depending on vector
y and γ as

MDLLR(y,γ) =
n− k
2

log2 τ̂γ +
k
2
log2

∥Xγ β̂γ∥22
n

− log2 Γ(
n− k
2

)− log2 Γ(
k
2
) +

n
2
log2(nπ) (19)

where Γ denotes the Euler integral of the second kind. In our
MDL, we propose to replace τ̂γ in (19) by a multi-objective
criterion Φβ̂γ

(yi|xi), i.e.

MDLLRΦ (y,γ) =
n− k
2

log2(
Φ̂β̂γ

(y|x)
n

)+

k
2
log2

∥Xγ β̂γ∥22
n

− log2 Γ(
n− k
2

)− log2 Γ(
k
2
) +

n
2
log2(nπ). (20)

The objective is to find β∗ at the minimum of (20) over all
parameterizations β̂γ and combinations of γ.

7) MDL for penalized linear regression with multi-objective
goodness-of-fit
We express the encoding of the penalization part in regression
as 1

2 log2 λ for fixed values of MLE of β̂. We use the same
encoding of the regularization parameter for Lasso, Ridge and
Elastic penalization. However, we stress that MDLminimiza-
tion can be used onlywithin the regression class with the same
penalization type and not within all penalty types. Then

MDLpenLR(y, γ) =
n− k
2

log2 τ̂γ +
1

2
log2 λ+ (21)

k
2
log2

∥Xγβ̂γ∥22
n

− log2 Γ(
n− k
2

)− log2 Γ(
k
2
)+

+
n
2
log2(nπ).

and

MDLpenLRΦ (y, γ) =
n− k
2

log2(
Φ̂β̂γ(y|x)

n
)+

1

2
log2 λ+

k
2
log2

∥Xγβ̂γ∥22
n

− (22)

log2 Γ(
n− k
2

)− log2 Γ(
k
2
) +

n
2
log2(nπ).

It is well-known that Lasso, Ridge, and Elastic net regression
can have various values for their regularization parameters.

8) MDL for Polynomial Regression with Multi-Objective
Goodness-of-Fit
Consider now set M as a set of polynomial regression mod-
els of degree r ≤ r ′. Denote θ̂ = (â0, . . . , âr) the set
of coefficients in the polynomial of degree r . Since each
âs, s = 0, . . . , r is a real number estimated from n data points,
each âs requires 1

2 log2 n bits to encode, the same the code for
degree r . Thus

L(θ̂) = L(â0, . . . , âr) =
r + 1

2
log2 n+

1

2
log2 n =

r + 2

2
log2 n.

(23)
The description of goodness-of-fit is

L(y|θ̂) = n
2
log2(

RSSr
n

) (24)

where RSSr =
∑n

i=1(yi− (â0+ â1xi+ · · ·+(ârxri ))
2. So the

MDL for a polynomial of degree r ≤ r ′ is

MDLpolREG(y, r) =
r + 2

2
log2 n+

n
2
log2(

RSSr
n

) (25)

In our MDL, we propose to replace RSSr
n in (25) by a multi-

objective criterion Φθ̂(y|x), i.e.

MDLpolREGΦ (y, r) =
r + 2

2
log2 n+

n
2
log2(

Φ̂θ̂(y|x)
n

). (26)

9) MDL for a Feed-Forward Neural Network with
Multi-Objective Goodness-of-Fit
We generally consider a feed-forward network (FF-NN)
with k ≥ 1 hidden layers, each having hs hidden units,
s = 1, . . . , k and m input and p output units. We propose
a simple encoding for such models where the model descrip-
tion considers the encodings based on the encoding of the
structure of the FF-NN and on the encoding of the learning
part.
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The encoding of the structure.The structure will be encoded
as number of weights. In all hidden layers and in the output
layer we considered ReLU activation function, and this is
fixed for all FF-NN models.

The encoding of the learning part. We encode the learning
part of the FF-NN models so that we encode the learning
rate lrt of the Adam optimizer, the batch size bs and the
number of Adam hyperparameters Ahyp. Denote the vector
of all parameters defining a FF-NN by θ. We do not encode
the values of θ explicitely, but they are implicitely given by
using Adam for their computation. Then

MDLFF−NN (y,θ) =
1

2
log2(m× h1)+

1

2
log2(h1 × h2) + · · ·+ 1

2
log2(hk × p)

+
1

2
log2(lrt) +

1

2
log2(bs) +

1

2
log2(Ahyp)+

n
2
log2(

RSSFF−NN

n
) (27)

where RSSFF−NN is the residual sum of squares on the output
of FF − NN and the values y and

MDLFF−NN
Φ (y,θ) =

1

2
log2(m× h1) +

1

2
log2(h1 × h2)

+ · · ·+ 1

2
log2(hk × p)+

1

2
log2(lrt) +

1

2
log2(bs) +

1

2
log2(Ahyp)+

n
2
log2(

Φ̂θ̂(y|x)
n

).

(28)

where Φθ̂(y|x) is the multi-objective criterion applied on the
output of FF − NN and the values of y.

D. ANALYTIC HIERARCHY PROCESS (AHP)
The Analytic Hierarchy Process (AHP) is a structured tech-
nique (Multiple Criteria Decision Analysis) for organizing
and analyzing complex decisions [30]. It involves breaking
down a problem into a hierarchy of subproblems that can be
more easily comprehended and evaluated. The main steps in
AHP are [31]:

• To decompose the decision problem into a hierarchy.
• To compare the elements at each hierarchy level to es-

tablish priorities.
• To synthesize these comparisons to determine weights

for each element.

The consistency ratio (CR) [17] is calculated to ensure
consistency in the comparisons:

CR =
CI
RI

(29)

where CI is the consistency index, and RI is the random index.

The consistency index (CI) measures the consistency of the
pairwise comparisons. It is calculated as follows:

CI =
λmax − n
n− 1

(30)

where λmax is the largest eigenvalue of the comparisonmatrix,
and n is the number of items being compared.
The random index (RI) is the average consistency index of

a randomly generated pairwise comparison matrix. The value
of the RI depends on the number of items being compared
and is used as a benchmark to assess the acceptability of the
calculated CI.
To implement AHP for model selection, we start by defin-

ing the criteria for model evaluation. For example, criteria
such as Mean Absolute Percentage Error (MAPE), Mean
Absolute Error (MAE), Root Mean Square Error (RMSE),
Median Absolute Percentage Error (MdMAPE), Adjusted
R-Squared (AdjR2), Prediction at 0.25 (Pred(0.25)), and
Weighted Quantile Loss (wQL) can be used. Each model is
evaluated based on these criteria through pairwise compar-
isons to determine their relative importance. TheAHP process
helps to synthesise these comparisons to assign a weight to
each criterion, ultimately selecting the most suitable predic-
tion model based on a comprehensive, structured evaluation.
Each criterion has its own weight, which is set empirically or
experimentally.

IV. EXPERIMENTS
This chapter outlines the experiments conducted using var-
ious regression model classes and two neural networks,
namely multi-layered perceptron model classes to predict
outcomes in the mentioned datasets. The experiments were
divided into two main groups: Regression models and feed-
forward neural networks. Each group utilized specific mod-
els’ families, evaluated based on their performance with the
corresponding datasets. All experiments were implemented
using Python and libraries pandas, numpy, sklearn, tensorflow
and intertools.

A. DATASETS
The datasets employed in this research are widely acknowl-
edged and are publicly accessible. The historical data utilized
in the study of software effort estimation is well established.
In this work, we employ a Use Case Points (UCP, DS1) [32]
and Glucose Level Prediction Dataset (GLP, DS2). The UCP-
based dataset was first used in [32] and can be found in several
following [33]–[35]. GLP dataset has been adopted from [36].
The Gross Domestic Dataset (GDP, DS3) has been used from
[36], and finally, the Stock Market Prediction (STOCK, DS4)
has been adopted from [37]. UCP and GLP datasets have
been selected as they are are a mixture of real and synthetic
samples. Expansion by synthetic samples is needed due to
their small size. [36]. GDP a dataset is small in size and
contains only real samples. Also in for STOCK dataset only
real samples has been used, but there is 10,900 samples.
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1) DS1 - Use Case Points Dataset
Use Case Points Dataset is based on ucp_71, which was first
used in [32] and can be found in several following papers
[33]–[35]. After removing outlier based on the interquartile
range approach (IQR) [38], the UCP dataset contains 4,912
samples, with characteristics described in Table 1. Unadjusted
ActorWeight (UAW)measures the complexity of actors inter-
acting with a system. Unadjusted Use Case Weight (UUCW)
assesses the complexity of use cases. Technical Complex-
ity Factor (TCF) evaluates the technical aspects that affect
a project’s complexity. Environmental Complexity Factor
(ECF) considers environmental factors impacting the project.
Effort refers to the total amount of work required to com-
plete a project, typically measured in person-hours or person-
months. These variables are used to estimate and manage
the scope and resources needed for software development
projects.

TABLE 1: UCP Dataset Characteristics

Variable Type Mean Median Min Max

UAW indep. 10.51 6.00 8.00 19.00
UUCW indep. 388.97 355.00 250.00 610.00
TCF indep. 0.92 0.94 1.11 0.71
ECF indep. 0.87 0.89 0.51 1.08
Effort dep. 6,560.00 6,406.00 5,775.00 7,970.00

2) DS2 - Glucose Level Prediction Dataset
Selected GLP dataset [36] initially consists of 16,979 sam-
ples; after applying IQR cleaning [38], 15,942 samples have
been prepared for further use. The dataset represents ten
variables that describe various physiological and metabolic
parameters. GLP dataset characteristics are in Table 2. The
dependent variable is Blood Glucose Level (BGL), measured
in milligrams per deciliter (mg/dL). The independent variable
(predictor) is age (AGE), which records the age of individuals
in years. Blood pressure readings are split into Diastolic
Blood Pressure (DBP) and Systolic Blood Pressure (SDP),
measured in millimetres of mercury (mmHg). Heart Rate
(HR), expressed in beats per minute (bpm), reflects cardio-
vascular health. Body Temperature (TE), recorded in degrees
Fahrenheit, can indicate fever or hypothermia. Next is a
blood oxygen saturation (SPO2) as a percentage, highlighting
respiratory efficiency. The dataset also includes categorical
variables for sweating (SWE) and shivering (SHI), capturing
the presence of these symptoms. Both evaluate yes/no value.
Finally, the diabetic/non-diabetic (D/N) variable categorises
individuals based on their diabetic status.

3) DS3 - Federal Reserve Bank
In this dataset, gross domestic product and inflation data
from [39] with their basic descriptive statistics for the key
economic indicators are presented in Table 3. In total, there
are 97 samples (94 past quarters). The gross domestic prod-
uct (GDP), in dollars has an average value of 16,846.501
with a median of 15,955.532, ranging from a minimum of

TABLE 2: GLP Dataset Characteristics

Variable Type Mean Median Min Max

AGE indep. 30.98 14.00 9.00 77.00
DBP indep. 77.17 76.00 60.00 95.00
SBP indep. 118.18 119.00 95.11 145.00
TE indep. 97.35 97.32 96.00 98.08
SPO2 indep. 97.38 98.00 93.00 99.00
SWE indep. categorical
SHI indep. categorical
D/N indep. categorical
BGL dep. 86.72 82.00 50.00 129.00

10,002.179 to a maximum of 27,956.998. Inflation, rep-
resented as an index, averages 225.936 with a median of
227.296, fluctuating between 169.300 and 307.531. The In-
terest Rate shows a mean of 1.786%, a median of 1.080%,
and spans from 0.050% to 6.540%.

The Unemployment Rate has a mean of 5.805% and a me-
dian of 5.250%, with values ranging from 3.40% to 14.80%.
Consumer Sentiment averages at 83.580, with a median of
86.450, and varies from a low of 51.500 to a high of 112.000.
Industrial Production has an average of 96.974 and a median
of 98.580, with a minimum of 84.681 and a maximum of
103.929.

Money Supply, another key economic indicator, has an
average of 10,893.520 and a median of 9,647.700, with val-
ues ranging from 4,666.200 to 21,722.300. Finally, Personal
Income averages 14,248.143 with a median of 13,519.000
and spans from a minimum of 8,348.000 to a maximum of
23,189.400.

4) DS4 - Stock Price

The fourth dataset is adapted from [37], and the dataset
characteristics of stock prices are summarized Table 4. The
table presents basic descriptive statistics of five key variables:
Date, Open, High, Low, andClose prices. Each variable’s type
is identified as Independent or Dependent, with Close being
the dependent variable. There are 10,900 samples in total.

The Date variable, marked as Independent, is represented
in an ordinal format, signifying the timestamp of each record.
The market prices Open, High, and ’Low’ are classified as
independent variables. The Open price has a mean value
of 82.350993, a median of 46.948750, a minimum value of
6.870357, and a maximum value of 453.070007. The ’High’
price shows a mean of 83.178018, a median of 47.371250,
a minimum of 7.000000, and a maximum of 456.170013.
Similarly, the ’Low’ price has a mean of 81.526316, a median
of 46.549999, a minimum of 6.794643, and a maximum of
451.769989.

The Close price, being the dependent variable, has a
mean of 82.388479, a median of 47.000000, a minimum of
6.858929, and a maximum of 452.850006.
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TABLE 3: GDP Dataset Characteristics

Variable Type Mean Median Min Max

GDP dep. 16846.501 15955.532 10002.179 27956.998
Inflation dep. 225.935 227.296 169.300 307.531
Interest_Rate indep. 1.786 1.080 0.050 6.540
Unemployment_Rate indep. 5.805 5.250 3.400 14.800
Consumer_Sentiment indep. 83.580 86.450 51.500 112.000
Industrial_Production indep. 96.974 98.580 84.681 103.929
Money_Supply indep. 10893.520 9647.700 4666.200 21722.300
Personal_Income indep. 14248.143 13519.000 8348.000 23189.400

TABLE 4: Stock Price Dataset Characteristics

Variable Type Mean Median Min Max

Date indep. ordinal representation of timestamp
Open indep. 82.350993 46.948750 6.870357 453.070007
High indep. 83.178018 47.371250 7.000000 456.170013
Low indep. 81.526316 46.549999 6.794643 451.769989
Close dep. 82.388479 47.000000 6.858929 452.850006

B. REGRESSION MODEL CLASSES
Multiple Linear Regression Model Class
The linear regression models tested in this work utilized
various configurations. The multiple linear regression (LR)
model is tested for all combinations of available predictors.

The Ridge LR, Lasso and Elastic net model classes were
evaluated with different values for the regularization parame-
ter alpha (0.1, 1.0, 10.0, 100.0) and combination of predictors.

Polynomial regression models were constructed to capture
non-linear relationships within the datasets. These models
were tested with two different polynomial degrees and their
respective hyperparameter parameters, i.e. vectors of polyno-
mial coefficients.

For quadratic regression models (i.e polynomial regression
up to degree, the hyperparameters included setting the max-
imum polynomial degree up to 2. Similarly, cubic polREG
used the same configuration up to degree 3

These configurations and the selected best parameters al-
lowed for a comprehensive evaluation of the data’s linear
and non-linear relationships, ensuring that the models could
capture the underlying patterns effectively.

C. FEED-FORWARD NEURAL NETWORK MODEL CLASS
Feed-forward neural network models (FF-NN) was selected
to address the prediction task in this experiment. The model
was designed sequentially, starting with an input layer match-
ing our feature set’s dimensionality. Multiple configurations
of hidden layers were tested, comprising varying numbers of
neurons and dropout rates to prevent overfitting.

The architecture of FF-NN I consists of one input layer,
two hidden layers, and one output layer. The hidden layers
have 64 and 32 neurons, respectively. This setup is often used
in practice as it is simple yet powerful enough to capture
complex patterns in data without overfitting. A dropout rate
of 0.3 is used, effectively preventing overfitting by randomly
deactivating 30% of the neurons during training. Dropout is a

widely accepted regularisation technique that helps improve
the generalisation of neural networks [40].
A learning rate of 0.0001 is chosen for the training de-

tails, allowing the model to converge smoothly to a mini-
mum. A lower learning rate helps fine-tune the weights more
accurately [41]. The Adam Optimiser was selected for its
efficiency and capability to adapt the learning rate during
training. Adam combines the advantages of both the AdaGrad
and RMSProp algorithms [42]. The model is trained for 200
epochs with a batch size 16, ensuring that the model sees
enough data instances for robust training while maintaining
computational efficiency. To prevent overfitting and ensure
optimal performance, early stopping is implemented. The
training stops if the validation loss does not improve for 10
consecutive epochs, with the best model weights restored
[43].
The architecture of FF-NN II includes one input layer,

three hidden layers, and one output layer with neurons ar-
ranged as [128, 64, 32]. The configuration is summarized
in Table 5. Each hidden layer utilised the ReLU activation
function, which is known for its efficiency in training deep
networks by mitigating the vanishing gradient problem. The
dropout layers were strategically inserted after each dense
layer to regularise the model and improve generalisation by
randomly setting a fraction of input units to zero during the
training phase. The output layer consisted of a single neuron
with a ReLU activation function, which was suitable for our
regression objective.

TABLE 5: Multi-layered perceptron configuration

Model Configuration Training Details

FF-NN I

1 Input, 2 Hidden,
1 Output Layer
Layers: [64, 32]
Dropout: 0.3
Learning Rate: 0.0001
Optimizer: Adam

Epochs: 200
Batch Size: 16
Early Stopping:
monitor=’val_loss’, patience=10,
restore_best_weights=True

FF-NN II

1 Input, 3 Hidden,
1 Output Layer
Layers: [128, 64, 32]
Dropout: 0.2
Learning Rate: 0.001
Optimizer: Adam

Epochs: 200
Batch Size: 16
Early Stopping:
monitor=’val_loss’, patience=10,
restore_best_weights=True
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D. LIMITATIONS AND INTERPRETATION OF THE RESULTS
This subsection discusses the limitations of our work and
cautions us in interpreting the results and conclusions.

1) Limitations
• Datasets vary in size and complexity; smaller datasets

like GDP may limit generalization. We added synthetic
samples and used holdout validation to enhance robust-
ness.

• Integrating MDL and MCDA with FF-NN models re-
quires significant resources and can hinder interpretabil-
ity. We used early stopping (10 epochs without valida-
tion loss improvement) and documented model details
to address this.

• MCDA’s weighting of criteria introduces subjectivity.
We minimized this with established methods and ex-
pert input, suggesting future studies explore objective
weighting.

• Neural network performance relies on hyperparameter
tuning. We used grid and random search with holdout
validation to ensure robustness.

2) Caution in Interpretation
• FF-NN models risk overfitting; we used holdout valida-

tion and early stopping to address this.
• Results may not generalize beyond the datasets used.We

included diverse datasets and suggested future studies to
test the MDL-MCDA framework on broader datasets.

• Model selection may introduce bias. We tested various
models and recommend including emerging techniques
in future work.

• Data inaccuracies can affect performance. We ensured
data quality through trusted sources, outlier detection,
and handling missing values.

In summary, while our work demonstrates the potential
benefits of integrating MDL and MCDA for model selection,
the above issues highlight areas for caution.

V. RESULTS AND DISCUSSION
The results of all regression and FF-NNmodels are compared
and evaluated for all four tested datasets - problem domains.
Each model is assessed based on the AHP, MDLAHP and
MDLRSS . AHP score is constructed using measures described
in Section III-B. For regression models and FF-NN models,
results tables in Sections V-A and V-B contain the best
variants where, where models where MDLAHP reach its min-
imal value for the highest value of AHP. Detailed results and
discussion are available in Appendix

A. REGRESSION MODELS
The performance of regression models using the UCP dataset
is evaluated based on AHP, MDLAHP, and MDLRSS is pre-
sented in In Table 6. The best regression model for the UCP
dataset is the Polynomial_3 model with UAW, UUCW, and
ECF predictors, achieving an AHP Score of 1.00,MDLAHP of
-12196.06, and MDLRSS of 52135.34.

For the GLP dataset the polynomial regression of degree
3 using AGE, DBP, SBP, TE, SPO2, SWE, HR, SHI, and
DN predictors achieves the highest AHP Score of 1.00, with
MDLAHP of -42044.46 and MDLRSS of 113114.61. In the
GDP dataset, the best regression model is the Polynomial
Regression of Degree 3 using Interest Rate, Industrial Pro-
duction,Money Supply, and Personal Income predictors, with
an AHP Score of 1.00, MDLAHP of 986.16, and MDLRSS of
1858.92. For the STOCK dataset, the Polynomial Regression
of Degree 3 with Open, High, and Low predictors achieves
an AHP Score of 1.00, MDLAHP of -32230.31, and MDLRSS
of 22619.67.

B. FEED-FORWARD NEURAL NETWORK MODELS
Table 7 presents the performance of FF-NN models on the
UCP dataset. The best model is FF-NN II with UAW, UUCW,
TCF, and ECF predictors, achieving an AHP Score of 1.00,
MDLAHP of -30093.69, and MDLRSS of 35846.81.
For the GLP dataset FF-NN II with AGE, DBP, SBP, TE,

SPO2, HR, SHI, and DN predictors achieves the highest AHP
Score of 0.99, with MDLAHP of -111365.58 and MDLRSS of
42619.76. In the GDP dataset, the best FF-NN model is FF-
NN II with industrial production + personal income predic-
tors, achieving an AHP Score of 1.00, MDLAHP of -294.06,
andMDLRSS of 849.81. For the STOCKdataset FF-NN IIwith
Low as the predictor achieves the highest AHP Score of 1.00,
MDLAHP of -73376.47, and MDLRSS of -11413.85. Including
market price predictors consistently improved model perfor-
mance across the various regression techniques, as evidenced
by higher AHP Scores and more favourable MDLAHP and
MDLRSS values compared to using the Date predictor alone.

C. DISCUSSION
The final comparison is displayed in the two plots for FF-
NN models (Figure 2) and regression models (Figure 3). The
performance of three criteria: AHP, and MDLRSS across four
datasets: GLP, STOCK, UCP, and GDP for FF-NN models
and regression models are shown. The AHP criterion is de-
picted in blue; the MDLAHP criterion is represented in red;
and theMDLRSS criterion is shown in green. The comparison
between regression models and feed-forward neural networks
FF-NN models reveals that FF-NN models generally out-
perform regression models across all datasets in terms of
MDLAHP.
For instance, in the GDP dataset, the FF-NN II model

with Industrial Production and Personal Income predictors
achieved an MDLAHP of -294.06 compared to the Polyno-
mial Regression’sMDLAHP of 986.16. Similarly, for the GLP
dataset, FF-NN II achieved MDLAHP of -111365.58, outper-
forming the Polynomial Regression’sMDLAHP of -42044.46.
The UCP and STOCK datasets show similar trends, with FF-
NN models consistently having better MDLAHP values than
regression models.
Across all datasets, MDLAHP consistently provides bet-

ter performance measure than MDLRSS . For example, in
the STOCK dataset, FF-NN II with Low as the predictor
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TABLE 6: Performance of Regression Models across Datasets

Dataset Model Predictors AHP Score MDLAHP MDLRSS

UCP Polynomial_3 UAW+UUCW+ECF 1.00 -12196.06 52135.34
GLP Polynomial_3 AGE+DBP+SBP+TE+SPO2+SWE+HR+SHI+DN 1.00 -42044.46 113114.61
GDP Polynomial_3 Interest Rate+Industrial Production+Money Supply+Personal Income 1.00 986.16 1858.92
STOCK Polynomial_3 Open+High+Low 1.00 -32230.31 22619.67

TABLE 7: Performance of FF-NN Models across Datasets

Dataset Model Predictors AHP Score MDLAHP MDLRSS

UCP FF-NN II UAW,UUCW,TCF,ECF 1.00 -30093.69 35846.81
GLP FF-NN II AGE,DBP,SBP,TE,SPO2,HR,SHI,DN 0.99 -111365.58 42619.76
GDP FF-NN II Industr. Production, Personal Income 1.00 -294.06 849.81
STOCK FF-NN II Low 1.00 -73376.47 -11413.85

FIGURE 2: Comparison of Selected FF-NN Models.

achieved an MDLAHP of -73376.47 compared to its MDLRSS
of -11413.85, indicating a significant contrast. This trend is
observed across all datasets, suggesting that MDLAHP better
captures the trade-offs and multi-criteria evaluations inherent
in complex model selection compared to MDLRSS .

However, while FF-NNs provide significant advantages
due to their non-linearity and depth, they also come with
higher computational costs and complexity, which can be
a disadvantage regarding interpretability and ease of imple-
mentation. However, it must consider thatMDLAHP may also
involve more subjective judgment in determining weights for
different criteria, which can introduce bias.

VI. CONCLUSION
This work aimed to investigate the integration of the Min-
imum Description Length (MDL) principle with Multi-
Criteria Decision Analysis (MCDA) to enhance model selec-
tion for predictive tasks.

In conclusion, this study introduces a novel aproach that
integrates the MDL principle with the AHP, a form of multi-

FIGURE 3: Comparison of Selected Regression Models.

criteria decision analysis, to address critical challenges in
predictive modeling and model selection. The primary mo-
tivation for combining MDL and AHP arises from the limi-
tations of traditional MDL approaches, which typically rely
on the Residual Sum of Squares (RSS) as a sole measure of
goodness-of-fit. By integrating MDL with AHP, we extend
the model evaluation process beyond a single error metric,
allowing for a more robust and nuanced assessment that ac-
counts for multiple evaluation criteria. Through a comprehen-
sive analysis, we addressed and contributed to these research
questions:

• RQ1: How do the Minimum Description Length
(MDL) andMulti-CriteriaDecisionAnalysis (MCDA)
integration affect predictive model selection?
The integration of MDL and MCDA has significantly
impacted model selection. The results across various
datasets demonstrated that the combined MDL-MCDA
approach consistently outperformed traditional model
selection methods based solely on MDL or MCDA.
Incorporating MCDA allowed for a balanced considera-
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tion ofmultiple evaluationmeasures, addressing the con-
flicting criteria inherent in predictive modelling. This
integration ensured a robust selection process, improv-
ing the overall accuracy and reliability of the predictive
models.

• RQ2: What advantages does the MDL-MCDA have
compared to theMDL-RSS in predictivemodel selec-
tion?
When comparing the MDL-MCDA method to the tradi-
tionalMDL-RSS approach, the findings indicated a clear
advantage of MDL-MCDA. The MDL-MCDA method
provided a more nuanced evaluation by incorporating
multiple criteria and demonstrated superior performance
in selecting models that generalised well to new data.
The MDL-RSS approach, while effective in some sce-
narios, often needed to improve in balancing the com-
plexity and fit of the models, leading to suboptimal
selections in datasets.

This work opens several directions for future research.
Firstly, further integration of multi-criteria methods can be
investigated. Exploring other multi-criteria decision-making
methods could provide additional insights and improvemodel
selection processes.

Secondly, an application to different domains should be
explored. Applying the MDL-MCDA framework to other do-
mains and datasets will help to further validate its versatility
and robustness across various predictive modelling tasks.

Thirdly, developing automated methods for determining
the weights of evaluation criteria in MCDA could reduce sub-
jective bias and enhance the objectivity of the model selection
process.

In conclusion, the integration of MDL andMCDA presents
a promising approach to model selection for predictive tasks,
offering a balanced and comprehensive framework that ad-
dresses the inherent complexities and conflicting criteria of
predictive modelling.
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APPENDIX. DETAILED RESULTS TO REGRESSION
MODELS AND NEURAL NETWORK MODELS
All regression and FF-NN models’ results are compared and
evaluated for all four tested datasets - problem domains. Each
model is assessed based on the AHP, MDLAHP and MDLRSS .
AHP score is constructed using measures described in the
Section III-B. For regression models in the tables included,
the best variants according to one of the criteria - a model
where AHP is maximal then a model where MDLAHP or
MDLRSS is minimal.

A. REGRESSION MODELS
In Table 8 the Analytical Hierarchy Process (AHP) score, the
Minimum Description Length based on AHP (MDLAHP), and
the Minimum Description Length based on Residual Sum of
Squares (MDLRSS) is presented.
The predictors for each model are also specified, providing

insight into the input variables considered for the regression
analysis.

The ElasticNet model with the UAW predictor achieved an
AHP Score of 0.66, anMDLAHP of -14096.66, and anMDLRSS
of 56886.55. This indicates a moderate AHP score but rela-
tively high MDL values, suggesting potential overfitting.

Models incorporating the UAW, UUCW, and ECF predic-
tors generally exhibited higher performance measures. The
Lasso, LinearRegression, Polynomial_2, Polynomial_3, and
Ridge models with these predictors achieved an AHP Score
of 0.70 or higher. Notably, the Polynomial_3 model achieved
the highest AHP Score of 1.00, with anMDLAHP of -12196.06
and anMDLRSS of 52135.34, indicating superior performance
in capturing the underlying patterns in the dataset.

The models using TCF as the sole predictor (ElasticNet,
Lasso, LinearRegression, Polynomial_2, Polynomial_3, and
Ridge) uniformly resulted in an AHP Score of 0.59. How-
ever, these models exhibited varying MDLAHP and MDLRSS
values, with Polynomial_3 again showing a relatively better
performance with an MDLAHP of -14069.16 and an MDLRSS
of 58082.99.

When examining the combination of UAW and ECF pre-
dictors, the ElasticNet model achieved an AHP Score of 0.66,
an MDLAHP of -14097.32, and an MDLRSS of 56885.56. This
result is comparable to the model’s performance with UAW
alone, suggesting that ECF may not significantly enhance the
model’s predictive capability in this context.

In summary, for UCP, the Polynomial_3 model with UAW,
UUCW, and ECF predictors consistently outperforms other
models, achieving the highest AHP Score and the lowest
MDL values. The results underscore the importance of select-
ing appropriate predictors and model complexity to enhance
the regression model’s performance.

Table 9 presents AHP, MDLAHP and MDLRSS for GLP
Dataset. The model with the highest AHP Score is the Poly-
nomial Regression of Degree 3, with a score of 1.00, using the
predictors AGE, DBP, SBP, TE, SPO2, SWE, HR, SHI, and
DN. This indicates that this model performs best regarding
AHP among the models.

When considering MDLAHP, the Polynomial Regression
of Degree 3 again shows the best performance with a value
of -42044.46. However, the Linear Regression and Ridge
Regression models, both using the predictors AGE, DBP,
SBP, TE, SPO2, SWE, HR, SHI, and DN, also show strong
performance with MDLAHP values of -51369.50.
For MDLRSS , the Linear Regression model with the pre-

dictors AGE, DBP, SBP, TE, SPO2, SWE, HR, SHI, and
DN performs best with the lowest value of 106125.93. The
Ridge Regression model using the same predictors shows an
identical performance inMDLRSS with a value of 106125.92.
Overall, the Polynomial Regression of Degree 3 with the

predictors AGE, DBP, SBP, TE, SPO2, SWE, HR, SHI,
and DN is the best model when considering both AHP and
MDLAHP. The Linear Regression and Ridge Regression mod-
els are the best when MDLRSS is considered. Therefore, if
all three criteria are considered, the Polynomial Regression
of Degree 3 emerges as the most optimal model due to its
superior performance in two out of three measures.
Table 10 presents AHP, MDLAHP and MDLRSS for GDP

Dataset. The model with the highest AHP Score is the Poly-
nomial Regression of Degree 3 using the predictors of Interest
Rate, Industrial Production, Money Supply, and Personal In-
come, achieving anAHP Score of 1.00. This indicates that this
model performs the best in AHP among all evaluated models.
In terms ofMDLAHP, the Polynomial Regression of Degree

2 using the predictors’ Unemployment Rate, Consumer Sen-
timent, Industrial Production, Money Supply, and Personal
Income shows the highest value of 1419.81, suggesting it is
the best model based on this criterion. However, the Poly-
nomial Regression of Degree 3 with predictors Interest Rate
and Personal Income also shows strong performance with a
MDLAHP value of 986.16.
Regarding MDLRSS , the Linear Regression model with the

predictors of Industrial Production and Personal Income per-
forms best with the lowest value of 1066.64, indicating it has
the least residual sum of squares. The Lasso and ElasticNet
models using similar predictors also demonstrate competitive
performance in this measure.
The Polynomial Regression of Degree 3 with the predictors

of Interest Rate, Industrial Production, Money Supply, and
Personal Income is the best model when considering the AHP
Score. The Polynomial Regression of the Degree 2 model
stands out in terms of MDLAHP, and the Linear Regression
model excels in MDLRSS . Thus, if all three criteria are taken
into account, the Polynomial Regression of Degree 3 is the
most optimal model due to its superior performance in AHP
Score and competitive performance inMDLAHP andMDLRSS
Table 11 presents AHP,MDLAHP andMDLRSS for STOCK

Dataset. The models tested include ElasticNet, Lasso, Linear
Regression, Polynomial Regression (of degree 2 and 3), and
Ridge Regression. Each model was evaluated with different
predictors, specifically Open+High+Low and Date.
The ElasticNet model, when using Open+High+Low as

predictors, achieved an AHP Score of 0.52, an MDLAHP of
-37733.67, and anMDLRSS of 67881.56. When using Date as
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TABLE 8: AHP, MDLAHP and MDLRSS for Regression Models with UCP dataset

Model Predictors AHP Score MDLAHP MDLRSS

ElasticNet UAW 0.66 -14096.66 56886.55
Lasso UAW+UUCW+ECF 0.70 -13880.71 56475.11
LinearRegression UAW+UUCW+ECF 0.70 -13879.19 56474.57
Polynomial_2 UAW+UUCW+ECF 0.90 -12830.80 53385.08
Polynomial_3 UAW+UUCW+ECF 1.00 -12196.06 52135.34
Ridge UAW+UUCW+ECF 0.70 -13879.35 56474.56
ElasticNet TCF+ECF 0.59 -14485.98 57663.44
Lasso TCF 0.59 -14482.79 57668.99
LinearRegression TCF 0.59 -14482.51 57668.63
Polynomial_2 TCF 0.59 -14324.29 57826.49
Polynomial_3 TCF 0.59 -14069.16 58082.99
Ridge TCF 0.59 -14482.52 57668.63
ElasticNet UAW+ECF 0.66 -14097.32 56885.56

TABLE 9: AHP, MDLAHP and MDLRSS for Regression Models with GLP dataset

Model Predictors AHP Score MDLAHP MDLRSS

ElasticNet DBP+SBP+TE+HR+SHI+DN 0.89 -51688.56 106567.37
ElasticNet AGE+DN 0.53 -57605.95 111464.48
ElasticNet AGE+DBP+SBP+TE+SPO2+HR+SHI+DN 0.89 -51712.63 106555.24
Lasso DBP+SBP+TE+SPO2+HR+SHI+DN 0.91 -51505.11 106308.21
Lasso AGE+DN 0.53 -57593.60 111478.94
Lasso DBP+SBP+TE+SPO2+SWE+HR+SHI+DN 0.91 -51506.30 106308.21
LinearRegression AGE+DBP+SBP+TE+SPO2+SWE+HR+SHI+DN 0.92 -51369.50 106125.93
LinearRegression AGE 0.53 -57652.15 111455.88
Polynomial_2 AGE+DBP+SBP+TE+SPO2+SWE+HR+SHI+DN 0.97 -48430.90 107477.24
Polynomial_2 DN 0.54 -55271.50 113769.02
Polynomial_3 AGE+DBP+SBP+TE+SPO2+SWE+HR+SHI+DN 1.00 -42044.46 113114.61
Polynomial_3 DN 0.54 -49213.66 119826.67
Ridge AGE+DBP+SBP+TE+SPO2+SWE+HR+SHI+DN 0.92 -51369.50 106125.92
Ridge AGE 0.53 -57652.15 111455.88

TABLE 10: Regression Results for AHP and MDL on GDP

Model Predictors AHP Score MDLAHP MDLRSS

ElasticNet Interest_Rate+Industrial_Production+Money_Supply+Personal_Income 0.70 0.19 1207.44
ElasticNet Consumer_Sentiment 0.21 -84.13 1407.13
Lasso Industrial_Production+Personal_Income 0.80 10.66 1066.71
Lasso Interest_Rate+Consumer_Sentiment 0.19 -88.20 1409.81
Lasso Interest_Rate+Industrial_Production+Personal_Income 0.80 10.55 1066.69
LinearRegression Industrial_Production+Personal_Income 0.80 10.66 1066.65
LinearRegression Interest_Rate+Consumer_Sentiment 0.19 -88.21 1409.82
LinearRegression Interest_Rate+Industrial_Production+Personal_Income 0.80 10.55 1066.64
Polynomial_2 Unemployment_Rate+Consumer_Sentiment+Industrial_Production+Money_Supply+Personal_Income 0.91 1419.81 2360.46
Polynomial_2 Consumer_Sentiment 0.20 1313.57 2811.79
Polynomial_2 Interest_Rate+Personal_Income 0.91 1419.37 2348.95
Polynomial_3 Interest_Rate+Industrial_Production+Money_Supply+Personal_Income 1.00 986.16 1858.92
Polynomial_3 Consumer_Sentiment 0.21 877.40 2368.80
Ridge Interest_Rate+Industrial_Production+Personal_Income 0.79 9.87 1074.49
Ridge Interest_Rate+Consumer_Sentiment 0.17 -97.24 1409.57

the predictor, the AHP Score dropped to 0.04, whileMDLAHP
andMDLRSS were -57585.61 and 98004.58, respectively. The
Lasso model with Low as the predictor had an AHP Score
of 0.80, MDLAHP of -34271.85, and MDLRSS of 32672.06,
whereas with Date as the predictor, the AHP Score was 0.04,
MDLAHP was -57584.76, and MDLRSS was 98005.44.
Linear Regression using Open+High+Low predictors

achieved perfect AHP Scores of 1.00 with MDLAHP of -
32535.83 and MDLRSS of 22562.16, while with Date as the

predictor, the AHP Score was 0.04, MDLAHP was -57584.69,
and MDLRSS was 98005.51. Polynomial Regression mod-
els (degrees 2 and 3) with Open+High+Low predictors also
achieved perfect AHP Scores of 1.00, with MDLAHP and
MDLRSS values of -32444.69 and 22851.12 for degree 2, and
-32230.31 and 22619.67 for degree 3. Including the Date pre-
dictor alongside Open+High+Low in Polynomial Regression
(degree 3) yielded similar results.
The Ridge Regression model with Open+High+Low pre-
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TABLE 11: AHP, MDLAHP and MDLRSS for Regression Models with STOCK dataset

Model Predictors AHP Score MDLAHP MDLRSS

ElasticNet Open+High+Low 0.52 -37733.67 67881.56
ElasticNet Date 0.04 -57585.61 98004.58
Lasso Low 0.80 -34271.85 32672.06
Lasso Date 0.04 -57584.76 98005.44
LinearRegression Open+High+Low 1.00 -32535.83 22562.16
LinearRegression Date 0.04 -57584.69 98005.51
Polynomial_2 Open+High+Low 1.00 -32444.69 22851.12
Polynomial_2 Date 0.04 -57474.61 98115.58
Polynomial_3 Open+High+Low 1.00 -32230.31 22619.67
Polynomial_3 Date 0.04 -57285.34 98304.85
Polynomial_3 Date+Open+High+Low 1.00 -32230.31 22619.67
Ridge Open+High+Low 0.93 -33062.29 25693.66
Ridge Date 0.04 -57584.69 98005.51

dictors had an AHP Score of 0.93, MDLAHP of -33062.29,
and MDLRSS of 25693.66. Using Date as the sole predictor
resulted in an AHP Score of 0.04,MDLAHP of -57584.69, and
MDLRSS of 98005.51.

B. FEED-FORWARD NEURAL NETWORKS - MULTI-LAYER
PERCEPTRON
Table 12 summarizes the performance of FF-NN models on
the UCP dataset, evaluated through the AHP, MDLAHP, and
MDLRSS . Two models, FF-NN I and FF-NN II, are compared
using different combinations of predictors.

The performance of FF-NNmodels on theUCP dataset was
compared across various configurations of predictors. The
results are summarised in Table 12. FF-NN I and FF-NN II
models were evaluated with different predictors.

For FF-NN I, when using the predictors UAW, UUCW,
and ECF, the model achieved an AHP score of 0.71, with an
MDLAHP of -31298.04 and anMDLRSS of 39384.06. However,
when using TCF and ECF as predictors, the AHP score for
FF-NN I dropped to 0.60, with MDLAHP and MDLRSS values
of -31921.90 and 40464.73, respectively.

In contrast, FF-NN II with the predictors UAW, UUCW,
TCF, and ECF achieved the highest AHP score of 1.00, indi-
cating a perfect performance with an MDLAHP of -30093.69
and anMDLRSS of 35846.81.When using only TCF as the pre-
dictor, FF-NN II had an AHP score of 0.62, and theMDLAHP
and MDLRSS were -31764.88 and 40195.76, respectively.

Comparing the models, FF-NN II consistently outper-
formed FF-NN I across all measures and predictor sets. This
suggests that the additional complexity and parameters in FF-
NN II provide a better fit for the UCP dataset. The combina-
tion of UAW, UUCW, TCF, and ECF yielded the best results
for FF-NN II, achieving the highest AHP score and the lowest

MDLRSS . This combination captures the relevant informa-
tion more effectively than the other tested sets of predictors.
The significant difference in performance measures between
the two models and their predictor combinations Table 13
presents the performance of FF-NN models using different
predictors combinations on the GLP dataset, evaluated using
the AHP score,MDLAHP, andMDLRSS . The models compared
are FF-NN I and FF-NN II.For FF-NN I, when using the
predictors AGE, DBP, SBP, TE, SPO2, HR, SHI, and DN,
the model achieved an AHP score of 0.89, with an MDLAHP
of -112604.29 and an MDLRSS of 44842.89. However, when
using only DN as the predictor, the AHP score for FF-NN
I dropped to 0.56, with MDLAHP and MDLRSS values of -
117876.50 and 50788.08, respectively.

In contrast, FF-NN II with the predictors AGE, DBP, SBP,
TE, SPO2, HR, and SHI achieved an AHP score of 0.99,
indicating near-perfect performance with an MDLAHP of -
111319.67 and an MDLRSS of 42684.87. FF-NN II had an
AHP score of 0.50 when using only DN as the predictor, and
the MDLAHP and MDLRSS were -119184.98 and 50616.86,
respectively. Additionally, when using all predictors (AGE,
DBP, SBP, TE, SPO2, HR, SHI, and DN), FF-NN II achieved
an AHP score of 0.99, with anMDLAHP of -111365.58 and an
MDLRSS of 42619.76.

Comparing the models, FF-NN II consistently outper-
formed FF-NN I across all measures and predictor sets. This
suggests that the additional complexity and parameters in FF-
NN II provide a better fit for the GLP dataset. The combi-
nation of AGE, DBP, SBP, TE, SPO2, HR, and SHI yielded
the best results for FF-NN II, achieving the highest AHP
score and the lowest MDLRSS . This combination captures
the relevant health-related information more effectively than
the other tested sets of predictors. The significant difference
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TABLE 12: AHP, MDLAHP, MDLRSS for FF-NN models with UCP dataset

Model Predictors AHP Score MDLAHP MDLRSS

FF-NN I UAW,UUCW,ECF 0.71 -31298.04 39384.06
FF-NN I TCF,ECF 0.60 -31921.90 40464.73
FF-NN II UAW,UUCW,TCF,ECF 1.00 -30093.69 35846.81
FF-NN II TCF 0.62 -31764.88 40195.76

in performance measures between the two models and their
predictor combinations highlights the importance of selecting
appropriate predictors. The predictors AGE, DBP, SBP, TE,
SPO2, HR, and SHI combined provide a robustmodel capable
of accurately predicting the desired health outcomes in the
GLP dataset.

These results demonstrate the efficacy of using a more
complex FF-NN model with a comprehensive set of predic-
tors for superior performance in the GLP dataset.

The next dataset GDP resulst are summarised in Table 14.
The measures evaluated include the AHP Score, MDLAHP,
and MDLRSS. The models were assessed based on different
sets of predictors.

For FF-NN I, when using the predictors Interest Rate,
Unemployment Rate, Industrial Production, Money Supply,
and Personal Income, the model achieved an AHP score of -
2.86, with anMDLAHP of 12.86 and anMDLRSS of 1255.61.
However, when using only Interest Rate as the predictor, the
AHP score for FF-NN I remained at -2.86, with MDLAHP
and MDLRSS values of 12.86 and 1255.71, respectively.
In contrast, FF-NN II, with the predictors of Industrial Pro-

duction and Personal Income, achieved the highestAHP score
of 1.00, indicating perfect performance with an MDLAHP of
-294.06 and an MDLRSS of 849.81. When using Consumer
Sentiment as the predictor, FF-NN II had an AHP score of
0.17, and the MDLAHP and MDLRSS were -415.77 and
1100.61, respectively.

Comparing the models, FF-NN II consistently outper-
formed FF-NN I across all measures and predictor sets. This
suggests that the additional complexity and parameters in FF-
NN II provide a better fit for the GDP dataset. The combi-
nation of Industrial Production and Personal Income yielded
the best results for FF-NN II, achieving the highest AHP
score and the lowest MDLRSS . This combination captures
the relevant economic information more effectively than the
other tested sets of predictors. The significant difference in
performance measures between the two models and their
predictor combinations highlights the importance of selecting
appropriate predictors. The Industrial Production and Per-
sonal Income predictors provide a robust model capable of
accurately predicting the desired economic outcomes in the
GDP dataset.

These results demonstrate the efficacy of using a more
complex FF-NN model with a comprehensive set of predic-
tors for superior performance in the GDP dataset.

For the last dataset (STOCK) the resulst are in Table 15.
Resulst again constisting of scores for the AHP,MDLAHP, and
MDLRSS

For FF-NN I, when using the predictors High and Low, the
model achieved an AHP score of 0.83, with an MDLAHP of -
74826.91 and anMDLRSS of -2659.22. However, when using
Open, High, and Low as predictors, the AHP score for FF-NN
I dropped to 0.73, with MDLAHP and MDLRSS values of -
75867.69 and 7134.96, respectively.
In contrast, FF-NN II with the predictor Low achieved

the highest AHP score of 1.00, indicating perfect perfor-
mance with an MDLAHP of -73376.47 and an MDLRSS of
-11413.85. When using Date and Open as predictors, FF-NN
II had an AHP score of 0.83, and theMDLAHP andMDLRSS
were -74826.41 and -2457.73, respectively.
Comparing the models, FF-NN II consistently outper-

formed FF-NN I across all measures and predictor sets. This
suggests that the additional complexity and parameters in FF-
NN II provide a better fit for the STOCK dataset. The predic-
tor Low yielded the best results for FF-NN II, achieving the
highest AHP score and the lowestMDLRSS . This combination
captures the relevant stock price information more effectively
than the other tested sets of predictors. The significant dif-
ference in performance measures between the two models
and their predictor combinations highlights the importance of
selecting appropriate predictors. The predictor Low provides
a robust model that accurately predicts the desired stock price
outcomes in the STOCK dataset.
These results demonstrate the efficacy of using a more

complex FF-NN model with a comprehensive set of predic-
tors for superior performance in the STOCK dataset.

C. DETAILED DISCUSSION
The comparison between regression models and Multi-
Layer Perceptron (FF-NN) models reveals several sig-
nificant insights across different datasets, as highlighted
in Tables 16 and 17. For the GDP dataset, the FF-
NN II model achieved an MDLAHP of -415.77, substan-
tially outperforming the Ridge regression model with In-
terest_Rate+Consumer_Sentiment predictors, which had
an MDLAHP of -97.24. Similarly, the FF-NN II model
with "Industrial_Production, Personal_Income" showed su-
perior performance with an MDLAHP of -294.06, com-
pared to the Linear Regression model using Inter-
est_Rate+Industrial_Production+Personal_Income, which
had an MDLAHP of 10.55.
In the GLP dataset, the FF-NN II model with DN as

the sole predictor demonstrated an MDLAHP of -119184.98,
significantly better than the Ridge regression model with
AGE, which had an MDLAHP of -57652.15. When multiple
health indicators were used as predictors, FF-NN II again out-
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TABLE 13: AHP, MDLAHP, MDLRSS for FF-NN models with GLP dataset

Model Predictors AHP Score MDLAHP MDLRSS

FF-NN I AGE, DBP, SBP, TE, SPO2, HR, SHI, DN 0.89 -112604.29 44842.89
FF-NN I DN 0.56 -117876.50 50788.08
FF-NN II AGE, DBP, SBP, TE, SPO2, HR, SHI 0.99 -111319.67 42684.87
FF-NN II DN 0.50 -119184.98 50616.86
FF-NN II AGE, DBP, SBP, TE, SPO2, HR, SHI, DN 0.99 -111365.58 42619.76

TABLE 14: AHP, MDLAHP, MDLRSS for FF-NN models with GDP dataset

Model Predictors AHP Score MDLAHP MDLRSS

FF-NN I Interest_Rate,Unemployment_Rate,Industrial_Production,Money_Supply,Personal_Income -2.86 12.86 1255.61
FF-NN I Interest_Rate -2.86 12.86 1255.71
FF-NN II Industrial_Production, Personal_Income 1.00 -294.06 849.81
FF-NN II Consumer_Sentiment 0.17 -415.77 1100.61

TABLE 15: AHP, MDLAHP, MDLRSS for FF-NN models with STOCK dataset

Model Predictors AHP Score MDLAHP MDLRSS

FF-NN I High, Low 0.83 -74826.91 -2659.22
FF-NN I Open, High, Low 0.73 -75867.69 7134.96
FF-NN II Low 1.00 -73376.47 -11413.85
FF-NN II Date, Open 0.83 -74826.41 -2457.73

performed the Ridge regression model, achieving MDLAHP
values of -111365.58 compared to -51369.50, respectively.
For the STOCK dataset, FF-NN I, using Open, High, Low
predictors, achieved an MDLAHP of -75867.69, much better
than the Linear Regression’s -32535.83. The FF-NN II model
using Low alone also performed exceptionally well with an
MDLAHP of -73376.47, surpassing the ElasticNet regression
model using "Date," which had an MDLAHP of -57585.61.

In the UCP dataset, FF-NN models consistently outper-
formed regression models. FF-NN I with TCF, ECF achieved
an MDLAHP of -31921.90, better than ElasticNet with the
same predictors, which had an MDLAHP of -14485.98. The
FF-NN II model with UAW, UUCW, TCF, ECF showed an
MDLAHP of -30093.69, outperforming ElasticNet and any
other regression models tested.

This analysis shows that FF-NN models generally out-
perform regression models across all datasets in terms of
MDLAHP. This suggests that FF-NNs are more capable of
capturing complex relationships within the data, which sim-
ple regression models might miss. However, while FF-NNs
provide significant advantages due to their non-linearity and
depth, they also come with higher computational costs and
complexity, which can be a disadvantage regarding inter-
pretability and ease of implementation.

Across all datasets and models, MDLAHP consistently pro-
vides better performancemeasure thanMDLRSS . For instance,
in the GDP dataset, the MDLAHP for FF-NN II with -415.77,
while MDLRSS is 1100.61, showing a contrast. This trend is
observed across all datasets, underscoring that MDL with
AHP is a better method for model selection. It better cap-
tures the trade-offs and multi-criteria evaluations inherent in
complex model selection, which MDLRSS may oversimplify.
However, one must consider that MDLAHP may also involve

more subjective judgment in determining weights for differ-
ent criteria, which can introduce bias.
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TABLE 16: Selected FF-NN Models per Dataset and Performance Comparison

Dataset Model Predictors AHP Score MDLAHP MDLRSS

GDP FF-NN II Consumer_Sentiment 0.17 -415.77 1100.61
GDP FF-NN II Industrial_Production, Personal_Income 1.00 -294.06 849.81
GLP FF-NN II DN 0.50 -119184.98 50616.86
GLP FF-NN II AGE, DBP, SBP, TE, SPO2, HR, SHI, DN 0.99 -111365.58 42619.76
STOCK FF-NN I Open, High, Low 0.73 -75867.69 7134.96
STOCK FF-NN II Low 1.00 -73376.47 -11413.85
UCP FF-NN I TCF,ECF 0.60 -31921.90 40464.73
UCP FF-NN II UAW, UUCW, TCF, ECF 1.00 -30093.69 35846.81

TABLE 17: Selected Regression Models per Dataset and Performance Comparison

Dataset Model Predictors AHP Score MDLAHP MDLRSS

GDP LinearRegression Interest_Rate+Industrial_Production+Personal_Income 0.80 10.55 1066.64
GDP Ridge Interest_Rate+Consumer_Sentiment 0.17 -97.24 1409.57
GLP Ridge AGE 0.53 -57652.15 111455.88
GLP Ridge AGE+DBP+SBP+TE+SPO2+SWE+HR+SHI+DN 0.92 -51369.50 106125.92
STOCK ElasticNet Date 0.04 -57585.61 98004.58
STOCK LinearRegression Open+High+Low 1.00 -32535.83 22562.16
UCP ElasticNet TCF+ECF 0.59 -14485.98 57663.44

VOLUME 11, 2023 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3532815

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	How Models Can Be Selected: Main Issues
	Objectives of the Work
	Research Questions
	Main Contributions of the Work
	Paper Organisation

	Related Work
	Methodology
	Research Design
	Evaluating Measures
	Discussion on Evaluation Measures

	Minimum Description Length
	Two-Part MDL Codes
	Encoding of Models with Known Probability of the Data Deneration Process
	Encoding of Models with Known Functional Class of the Data Generating Process
	MDL with Multi-Objective Goodness-of-Fit
	Considered machine learning methods
	MDL for linear regression with multi-objective goodness-of-fit
	MDL for penalized linear regression with multi-objective goodness-of-fit
	MDL for Polynomial Regression with Multi-Objective Goodness-of-Fit
	MDL for a Feed-Forward Neural Network with Multi-Objective Goodness-of-Fit

	Analytic Hierarchy Process (AHP)

	Experiments
	Datasets
	DS1 - Use Case Points Dataset
	DS2 - Glucose Level Prediction Dataset
	DS3 - Federal Reserve Bank
	DS4 - Stock Price 

	Regression Model Classes
	Feed-Forward Neural Network Model Class
	Limitations and Interpretation of the Results
	Limitations
	Caution in Interpretation


	Results and Discussion
	Regression Models
	Feed-Forward Neural Network Models
	Discussion

	Conclusion
	REFERENCES
	PETR SILHAVY
	Kateřina Hlaváčková-Schindler 
	RADEK SILHAVY

	Detailed Results to Regression Models and Neural Network Models
	Regression Models
	Feed-forward neural networks - Multi-layer Perceptron
	Detailed Discussion


