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ABSTRACT Sleep spindles (SSs) appear in electroencephalogram (EEG) recordings during sleep stage
N2, and they are usually detected through visual inspection by an expert. Labeling SSs in large datasets is
time-consuming and depends on the expert criteria. In this work, we propose an unsupervised SS detector
based on dictionary learning called the Unsupervised Sleep Spindle Detector (USSD). The proposed
detector learns prototype SSs of different lengths (called atoms). An unsupervised adaptive threshold
method based on the distribution of the automatically detected SS lengths is developed, which allows the
adaptation of the USSD algorithm to different datasets in an unsupervised way. For each detection, the
USSD estimates the probability of being an SS. The USSD performances on the labeled MASS-SS2 and
INTA-UCH datasets yield F1-scores of 0.72±0.02 and 0.72±0.04, respectively. The USSD outperforms the
A7 and LUNA detectors, which are traditional unsupervised models. Next, we fine-tune the resulting USSD
model with 20% of the labeled MASS-SS2 and INTA-UCH datasets, achieving F1 scores of 0.78 ± 0.06
and 0.75±0.05, respectively. In addition, the SSs detected by USSD on the unlabeled CAP dataset are used
to pre-train a supervised deep learning method, which after fine-tuning with 20% of the MODA dataset,
reaches an F1-score of 0.81± 0.02.

INDEX TERMS EEG, Sleep spindle, Unsupervised learning, Dictionary learning.

I. INTRODUCTION

SLEEP patterns have been increasingly recognized as rel-
evant factors in brain health [1]. Human sleep is divided

into two main states: nonrapid eye movement (NREM) sleep
and rapid eye movement (REM) sleep [2]. NREM sleep
is further subdivided into three stages: N1, N2, and N3.
Each stage serves distinct functions and is characterized by
unique brain wave patterns observable in electroencephalo-
gram (EEG) recordings. The importance of one factor or
another varies depending on the age [3]. In short, N1 is
the lightest stage of sleep, serving as the transition from
wakefulness to sleep. N2 is marked by the presence of
sleep spindles and K-complexes, which play a crucial role
in sleep maintenance, information processing, and memory
reinforcement capabilities from early infancy to aging. N3 is
essential for physical restoration and recovery, strengthening
immune function [4], and providing optimal time for clearing
the brain of cellular debris and neurotoxins [5]. Diurnal sleep

is also a key player, even more relevant considering that is
mainly made up of NREM sleep [6]. Last but not least, REM
sleep, which is characterized by rapid eye movements and
dreaming, is critical for emotional regulation, memory pro-
cessing, and cognitive function [7]. The time course of REM
sleep development (and decline) in humans corresponds well
with critical periods of brain maturation [8]. Indeed, REM
sleep provides endogenous stimulation to promote brain de-
velopment at ages when wake-related stimulation is low [9].
Figure 1 shows examples of EEG signals in the REM and
NREM states (N1,N2, and N3).

In this work, we focus on detecting sleep spindles (SSs),
which are transient events that occur mainly during the N2
stage of the NREM sleep. Figure 1 shows three examples
of SSs in stage N2, with one of them shown in greater
detail. SSs are burst-like sequences of sinusoidal cycles with
a frequency of 11-16 Hz and a characteristic spindle shape
that explains their name [10]. These events evolve throughout
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Figure 1. Example of EEG signals during different sleep stages.
Raw EEG signals in REM and NREM states (N1, N2, and N3). In NREM sleep-N2, three sleep spindles can be observed, marked in red. At the bottom, a close-up
of a sleep spindle is shown. In NREM-N3, the characteristic slow waves sleep (SwS) can be observed.

life in parallel with brain maturity, and their density has been
correlated with different assessments of intelligence, memory
consolidation, and hippocampal-dependent learning [11].

Even though most studies have been performed in adults,
a growing body of evidence supports the hypothesis that in-
formation processing and memory reinforcement capabilities
during sleep occur throughout the human lifespan, i.e., from
early infancy to aging [12]. Furthermore, adverse conditions
in infancy could alter the normal developmental progression
[13]. In addition, several studies suggest that sleep spindles
(or a coupling between spindles and slow oscillations) are key
mediators for sleep-associated memory consolidation [14],
[15], [16], [17].

SSs also facilitate the synaptic plasticity necessary for
transferring information from the hippocampus to the neocor-
tex during sleep [11], [18]. SSs are involved in strengthening
neural connections, which underlie the retention and recall of
information [10], [11]. Furthermore, abnormalities in spindle
activity have been associated with adverse effects on several
health domains. In adults, this includes sleep disorders and
neuropsychiatric conditions, such as insomnia [19], [20],
schizophrenia [21], [22], and epilepsy [23], [24], highlight-
ing their significance in both normal cognitive function and
performance, and pathological states.

The state of the art of automatic SS detection is based
on supervised deep learning [25], [26], [27]. However, su-
pervised learning requires human experts to label the SSs in
EEG recordings. This approach has two main difficulties: 1)
Experts usually differ in their criteria for detecting SSs, mak-

ing it difficult to automate the detection and characterization
of SSs [28], and 2) this is a very time-consuming task. In
addition, only a few public datasets with labeled SSs, having
tens or hundreds of EEG recordings, are available, such as
MASS [29] and MODA [30].

On the other hand, there are several SS detection al-
gorithms that do not require labeled datasets, such as A7
[31], LUNA [32], and MPP [33], which are based on hand-
crafted features, Morlet wavelets, and dictionary learning,
respectively. The advantage of these algorithms is that they
can be applied to large unlabeled datasets such as NSRR
[34]. However, there is usually a large performance gap
between supervised and unsupervised approaches. An inter-
esting point is that unsupervised approaches can be used
to leverage supervised algorithms through the use of unla-
beled datasets. For example, in [25], a deep learning-based
detector called SEED was pre-trained using labels obtained
automatically by applying A7 to the unlabeled CAP dataset.
Then, this pre-trained network was fine-tuned with 10% of
the MODA dataset, achieving state-of-the-art performance on
the complete MODA dataset (an F1-score of 78.8).

In this work, we propose an unsupervised SS detector
based on dictionary learning called the Unsupervised Sleep
Spindle Detector (USSD). The main contributions of this
work are the following:

• An unsupervised method for detecting SSs of variable
lengths based on dictionary learning is proposed, which
assigns a probability of being an SS to each detection.

• A novel unsupervised method is developed for setting
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the single threshold of the USSD algorithm based on
the distribution of the lengths of the detected SSs. This
allows the USSD method to be automatically adapted
to subjects of different ages and from different EEG
datasets.

• The proposed USSD method outperforms the A7 and
LUNA algorithms on three SS-labeled datasets.

• A fine-tuned version of the USSD model is provided,
which improves the USSD algorithm performance when
trained with 10-20% of the labeled SSs from a dataset.

• The SSs detected by the USSD model on the unlabeled
CAP dataset are used to pre-train SEED, a supervised
deep learning method, which reaches state-of-the-art
performance after fine-tuning with 20% of the MODA
dataset.

The remainder of this article is organized as follows.
Section 2 reviews the related work, highlighting the main
unsupervised algorithms for SS detection. Section 3 provides
a description of the proposed USSD model, based on dic-
tionary learning. Next, the labeled and unlabeled datasets
used in this work are described, followed by the EEG sig-
nal preprocesing and the metrics employed to evaluate the
models. Section 4 provides a description of the proposed
fine-tuned USSD model. Section 5 presents the results and
compares the performance of the proposed USSD model with
the A7 and LUNA detectors, across different datasets. The
results of the fine-tuned USSD model are also presented, as
well as the results of transfer learning. Section 6 presents a
discussion of the limitations and cost of the USSD algorithm.
Finally, section 7 presents the conclusions, highlighting the
contributions of the proposed USSD model in SS detection
across three sleep EEG datasets.

II. RELATED WORK
This section describes the related work on SS detection using
unsupervised and transfer learning methods.

A. UNSUPERVISED ALGORITHMS
Unsupervised algorithms for sleep spindle detection can be
categorized as follows: signal processing-based, dictionary
learning, and deep learning. The algorithms developed by
Mölle et al. [35], Ferrarelli et al. [36], and Andrillon et al.
[37] employ signal processing tools, such as the FFT and the
Hilbert transform.

The Delay Differential Analysis (DDA) algorithm [38],
based on delay embedding and delay differential equations,
is applied to detect SSs in human intracranial sleep data.
The Deep Dynamic Neural Bayesian Network (DNDBN)
model [39] uses the Hidden Semi-Markov Model (HSM),
which is a variation of a Markov model, and has supervised
and unsupervised versions (S-HSM and NHSM). Both [38]
and [39] were evaluated on the DREAMS Sleep Spindles
database, which is a small dataset consisting of 8 excerpts,
each 30 min long [40].
The algorithm in [41] uses Matching Pursuit, a dictionary
learning-based algorithm, and Least Square Boosting, to

obtain an F1-score of 70.8% on the small DREAMS dataset.
In [42], a procedure for the atomic decomposition of mul-
tichannel EEGs is proposed based on matching pursuit and
dipolar inverse solution. The basic algorithm achieved an F1-
score of 47% in the MODA dataset [30], which improved to
63% after rejecting detections with a local signal-noise ratio
lower than a given threshold.

In what follows, we describe the three main unsupervised
algorithms related to this work:

• Marked Point Process (MPP), Loza & Príncipe [33],
[43] is an unsupervised learning algorithm based on
dictionary learning [44]. This model is based on the
idea that a single EEG recording is the result of tran-
sient, reoccurring patterns over time added to a noisy
background [43]. The objective is to find the precise
duration (starting and ending points), amplitude, and
shape of SSs. An alternating approximation of finding a
sparse approximation and learning a dictionary of atoms
(SS prototypes) is performed. This algorithm takes as
input a filtered EEG signal in the sigma band and then
decomposes it into background noise and a set of SS
candidates. It uses a single threshold for SS detection.
Figure 2 shows a diagram with the main steps of the
MPP algorithm. In this work, we propose an SS detector
that is inspired by the MPP algorithm. In order to
achieve state-of-the-art performance, significant contri-
butions are made to detect variable-length SSs and to set
the threshold parameter in an unsupervised way.

• A7, Lacourse et al. [31], is an algorithm that uses four
features to detect sleep spindles in EEG recordings.
In this algorithm, EEGbf is defined as the broadband
filtered EEG signals (0.3–30) Hz, and EEGs as the
EEG signal filtered in the sigma band. The four charac-
teristics are the following: Absolute sigma power, which
represents the power of EEGs; Relative sigma power,
which is the ratio between the power of EEGs and
EEGbf power; sigma covariance, which is the covari-
ance between (EEGs, EEGbf ); and Sigma correlation,
which is the correlation between (EEGs, EEGbf ).
This algorithm has four thresholds, each associated with
one of the four features. When all four features are
above their respective thresholds, an event is consid-
ered a sleep spindle. This algorithm is unsupervised,
although fine-tuning of its thresholds is possible.

• The LUNA algorithm, detailed in Purcell et al. [32],
is an open-source software package for detecting sleep
spindles, using Morlet wavelets [45], [46]. Each sleep
spindle event is identified as such if the candidate SS
exceeds the algorithm’s threshold (defined as 4.5 times
the mean of the artifact-free signal). The event duration
is calculated as the width of the half-height of the energy
represented in the wavelet spectral decomposition.

In this work, A7 and LUNA are used as baseline algo-
rithms for comparison purposes.

Many of these algorithms use one or more thresholds to
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Figure 2. MPP Block Diagram.
The MPP algorithm is divided into 4 blocks: A) Input, EEG signal filtered in the
sigma band (11-16 Hz). B) Initial generation of the dictionary from the input. C)
Determination of the MPP threshold, where any signal below the threshold is
considered noise. D) Generation of a set of detections from the dictionary. E)
Singular value decomposition (SVD) is applied to the detections to update the
dictionary and then step D is repeated to obtain a new set of detections. The
number of repetitions of stages D and E is a parameter of the MPP algorithm.
F) The output of the algorithm corresponds to the detections found in block D,
when the dictionary updates stop.

adjust their parameters. Examples with one threshold are
[32], [33], [38], two thresholds [36], [37], three thresholds
[35] and four thresholds [31]. This could lead to a problem
known as overfitting, where the algorithm’s parameters are
over adjusted to a given training set. However, when the algo-
rithm is applied to a new dataset, it performs less effectively.
Some algorithms [32], [33] adjust their thresholds subject-
by-subject to avoid parameter overfitting. However, adjusting
these thresholds is not sufficient to compensate for the EEG
variability between subjects of different age ranges, such as
adults and children. This variability is caused by the thalamic
origin of sleep spindles changing as the thalamo-cortical
system develops [47]. Another variability is the different
criteria used by experts to label the EEG signal [28].

B. DICTIONARY LEARNING
The proposed USSD method is based on dictionary learning,
the principles of which are explained in this subsection.
Dictionary learning (also known as sparse coding) is a rep-
resentation learning method that aims at finding a sparse
representation [44]. Sparse representation aims to express a
signal Y of dimension η as a linear combination of signals
taken from a dictionary. The dictionary elements are typically
unit norm functions called atoms [44]. In accordance with
this, a signal Y can be described by the following equation:

Y ≈ Φα =

N∑
k=1

αkϕk, (1)

where ϕk are the atoms in the dictionary, with K = 1, ..., N ,
and N is the size of the dictionary. αk are the scalars that
are associated with each ϕk in the linear combination of the
signal Y . Φ is the vector composed of ϕk and α is the vector
composed by αk. The dictionary is overcomplete (N > η)
when it spans the signal space, and its atoms are linearly
dependent. In that case, every signal can be represented as
a linear combination of atoms in the dictionary. Because the
dictionary is overcomplete, α in Eq. 1 is not unique. The
requirement of finding an exact representation is generally
relaxed to achieve efficient and sparse representations.

Figure 3. Example of dictionary learning.
Signals of the same duration (0.7s) are shown; the one on the left is the filtered
SS in the sigma band with a peak-to-peak amplitude of 40µV , and the three
signals on the right are the normalized atoms of a dictionary.

Figure 3 shows an example that considers the signal Y as
a filtered SS in the sigma band and a dictionary formed by
three atoms. The dictionary is overcomplete since it satisfies
(N > η) = (3 > 1). In the MPP method, only a single
atom is selected to approximate an SS event, which is carried
out via convolutions. In this example, ϕ2 is the closest atom
when scaled up by α2, thus the SS event is approximated as
follows:

SS ≈ ϕ2α2. (2)

C. TRANSFER LEARNING
As mentioned in the introduction, unsupervised models can
be used to pre-train a deep learning-based model. Transfer
learning is a technique that uses knowledge from a pre-
trained model to fine-tune another on a related task. In [48], a
neural network model trained on sleep spindle data of healthy
subjects is applied to the data of subjects with insomnia and
then fine-tuned to achieve a classification accuracy of 92.80%
on a private dataset. In [49], an unsupervised transfer learning
model for sleep stage classification is proposed, where the
EEG recordings in the target domain are unlabeled. In this
work, the Sleep EEG Event Detector (SEED) [25] will be
pre-trained with labels automatically obtained by applying
the USSD model on the unlabeled CAP dataset. Then the
pre-trained model will be fine-tuned with a different dataset
containing expert labels.

SEED is a supervised algorithm that takes an EEG signal
and estimates the probability of each sample being part of an
event of interest (SS or k-complex). The local feature extrac-
tion consists of a stack of convolutional layers with an initial
number of filters Nf, a kernel of size 3, zero-padding, ReLU
activation, and batch-normalization after each convolution
and before ReLU. Downsampling is performed after two
convolutions using a pooling layer of size 2, and the number
of filters is doubled after pooling. Batch-normalization is also
applied before the first convolutional layer. Two recurrent
LSTM layers are concatenated to form a Bidirectional LSTM
(BiLSTM). By-sample classification is achieved by two 1D
convolutional layers with kernels of size 1. The classification
stage maps each time step to the probability of belonging to
the background (class 0) or to an event of interest (class 1).
SEED achieved state-of-the-art performance on the MASS-
SS2 dataset with an F1-score of 0.805 and on the MODA
dataset with an F1-score of 0.818.
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Figure 4. Diagram of the USSD model.
The diagram shows the USSD algorithm, which is made up of three stages as follows: In Stage A, the filtered EEG signal in the sigma band is convolved with the
atoms of five dictionaries (Dic) of different lengths, where the convolution operator is denoted by the symbol∗. By thresholding the resulting convolutions five sets
of detections (Det) are generated with dimensions (n,L × freq,M), where n is the number of detections, L is the length of the dictionary atoms, freq is the EEG
sampling frequency, and M are the values that the single threshold can take. In Stage B, post-processing is applied to the detection sets, which involves adjusting
the length or eliminating detections that do not meet the frequency and amplitude criteria of the official manual of the AASM [2] that characterizes SSs. In stage C,
the best threshold is set by minimizing the Jensen-Shannon divergence Ljs between the Poisson distribution and the detected SS length distributions obtained for
the M possible values of the single threshold. The algorithm’s output is the set of SS detections associated with the best threshold.

III. METHODS

A. UNSUPERVISED SLEEP SPINDLE DETECTOR

Figure 4 shows the diagram of the proposed USSD model.
This is divided into three stages: A) Involves generating
a set of initial detections. The model input is the filtered
EEG signal in the sigma band (11-16 Hz), which is used to
generate five dictionaries with lengths varying between 0.7
and 1.5s. Next, the convolution (*) is calculated between the
dictionary atoms and the EEG signal filtered in the sigma
band. An event is detected when the convolution surpasses a
given threshold. B) Post-processing of the initial detections
involves merging detections made by multiple dictionaries
and adjusting the lengths of the SS detections using the
American Academy of Sleep Medicine (AASM) criteria
[2] such as amplitude and instantaneous frequency. C) An
adaptive threshold algorithm is applied to the variable-length
detections resulting from block B. This adaptive threshold
utilizes the distribution of detection durations as its main
feature, a feature that is assumed to exhibit low variability
across different datasets.
The three blocks that comprise the USSD algorithm are
described in detail below.

Stage A
This stage takes the EEG signal, filtered in the sigma band,
as input. This signal is used to generate five dictionaries with
fixed atom durations, defined as L = [0.7, 0.9, 1.1, 1.3, 1.5] s.
The number of atoms in each dictionary is 2K, where K is an
input parameter for our algorithm, typically K=10. The first
K atoms have an average frequency ≤ 13 Hz, and the last
K atoms have an average frequency > 13 Hz. This division

of atoms is carried out to distinguish between slow and fast
sleep spindles.

A set of detections is generated by convolving the atoms
of a dictionary with the EEG signal filtered in the sigma
band; see Figure 5. A detection is made when a peak in the
convolution exceeds the threshold of our algorithm, as shown
in Fig. 5 C). For each subject, the threshold can take one
out of M-values between the minimum and maximum peaks
of the convolution, with M being a user-defined parameter.
Typically M = 14. In Stage C, we describe a method to
select the best threshold among the M possible values.

Let X be the filtered EEG signal in the sigma band and
X[n] a segment of X , which is decomposed into the back-
ground activity ηm and ym, a set of SSs, where m indicates
the value of the single threshold. Each SS is defined by
parameters α, τ , and ω, where α is the amplitude of the SS,
τ is the position at the center of the SS in the EEG signal,
ω indicates the index of the atom in the dictionary D. N is
the number of atoms in each D, the subscript l denotes the
dictionary index, and Ll stands for the length of the SS. The
corresponding equations are:

Xm[n] = ηm[n] + ym[n], (3)

ym[n] =

Nl∑
j=1

Ll/2∑
p=−Ll/2

αjδ[n− τj − p]Dl,ωj
[p]. (4)

We use five dictionary atoms, each one having a different
fixed duration. After adjusting the detected SS durations
(Stage B), their lengths will vary with respect to the initial
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Figure 5. Convolution between atoms and EEG filtered signal.
In A), the EEG signal (raw data ) is shown with the sleep spindles highlighted in red. The black bar indicates the preliminary detection associated with the dictionary
and the threshold. In B), the EEG signal filtered in the sigma band, which corresponds to the input, is shown. In C), the convolution between the input B) and the
atoms of the dictionary D) can be observed. D) shows a dictionary formed by three atoms, each 0.7 s long, In C), the dashed line represents the algorithm threshold
(Thr), and the vertical black arrows indicate the candidates for sleep spindles. All three atoms shown in D) detect the first and third sleep spindles, only atom2

detects the second sleep spindle.

durations. We restrict the atom length to the interval [0.7 -
1.5] seconds. We use dictionaries whose atom lengths are
0.2 seconds apart to reduce the events detected by multiple
dictionaries. The duration of the SS detections is defined in
the range [0.4,2] s.

1) Learning atoms
The USSD algorithm learns atoms for each dictionary. To
achieve this, we consider a dictionary and its corresponding
set of initial detections as follows:

• Initial detections are assigned to the closest atom in the
dictionary.

• Singular Value Decomposition (SVD) is applied to the
set of initial detections associated with an atom, and the
principal value is identified.

• The principal component (PC) of the SVD and its
corresponding atom are compared using the Euclidean
distance metric (L2).

• A parameter ϵ = 10−4 is defined to determine whether
the atom is replaced. If L2 ≤ ϵ, the atom remains
unchanged; if L2 > ϵ, the atom is replaced by the PC
of the SVD as follows,

L2(PC, atom) =

{
L2 ≤ ϵ, No change
L2 > ϵ, atom = PC.

(5)

A new set of detections is generated if the atoms have
been changed. The number of repetitions is a parameter of
the algorithm.

2) Event scoring
For each event detected, we compute the likelihood of being
a sleep spindle. The scoring method is based on determining
how many dictionaries detect a given event, and its duration.

Each event is assigned a high, medium, or low score, as
follows:

• Events of longer duration are assigned a high prob-
ability. Specifically, SSs lasting more than λ + 0.5
seconds and that are simultaneously detected by the five
dictionaries, where λ stands for the mean of the length
distribution of SSs. They follow a Poisson distribution
with a mean close to 0.7s.

• Events of short duration of less than 0.5 seconds, de-
tected only by the 0.7s dictionary, are assigned a low
probability.

• Events with medium probability include all detections
not classified as having high or low probability.

This procedure of assigning high and low scores is biased
towards events of longer duration. This is done because the
shorter the event, the higher the probability of confusion
with non-SS events. For a high score, the detection must
have a duration longer than the mean of the distribution of
detections, which is approximately 0.7s. For a low score, the
detection must be less than 0.5 seconds. It is important to note
that the event duration is different from the fixed duration
associated with a dictionary, since the SS lengths detected in
Stage A can be modified in Stage B, as explained below.

Stage B
This stage applies post-processing to the set of detections

obtained by each dictionary in Stage A. The post-processing
checks if the SS detections comply with the standard defini-
tion of SS made by the AASM, where each SS must have a
peak-to-peak amplitude >20 mV and a range of frequencies
of 11 -16 Hz. This involves the following steps:

1) Merge repeated detections made by multiple dictionar-
ies.
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2) Eliminate detections that do not meet the standard
criteria.

3) Adjust the duration of events based on the standard
AASM criteria of frequency and amplitude.

These steps transform the set of fixed-length detections
into a set of variable-length detections for SSs. Let Xm be
the EEG filtered in the sigma band, which decomposes into
background noise ηm[n] and a set of SS detections, ŷm[n],
for different threshold values (m). Let ŷm be the set of
SS detections of variable length, with m = 1, ...,M being
the index of the mth threshold value. ŷm is composed of
detections of SSs from all dictionaries. After applying this
procedure, Eqs. (3) - (4) are changed to:

Xm[n] =ηm[n] + ŷm[n] (6)

ŷm[n] =

N∑
j=1

Ll/2∑
p=−Ll/2

α̂jδ[n− τ̂j − p]D̂l,wj [p], (7)

where α̂, τ̂ and D̂ are the amplitude, position at the center
of an SS of length Ll, and dictionary, respectively, after post-
processing each event detection, for the different threshold
values (m). D̂ is composed of atoms of variable length
obtained from the five initial dictionaries, with N being the
total number of atoms in D̂.

Stage C
In this stage, we determine the best threshold among the

M possible values. This is based on the assumption that
the distribution of SS lengths follows a Poisson distribution,
whose formula is as follows:

P (x, λ) =
λx

x!
e−λ, (8)

where λ represents the average number of events. To se-
lect the threshold, we minimize a cost function to find the
distribution of durations among the M thresholds that best
resemble a Poisson distribution. This is an unsupervised
method for setting the threshold. First, for each threshold
value, we generate a normalized distribution of the duration
of detections, as shown in Figure 6 A). Second, we determine
the best-fitting Poisson distribution to the average of the
duration distributions for the M threshold values, see Figure
6 B). The parameter λ is constrained within the range of [0.5-
1.1] s.

The Jensen-Shannon divergence Ljs is minimized, to find
the Poisson distribution that best fits the average distribution
obtained from the sets of detections, see Figure 6 B). The
Jensen-Shannon divergence is defined as follows:

Ljs(P ||Q) =
Dkl(P ||M) +Dkl(Q||M)

2
(9)

M =
P +Q

2
(10)

Dkl(P ||Q) =
∑
x

P (x)log

(
P (x)

Q(x)

)
(11)

P̂ = min
λ

(Ljs), (12)

where P̂ is the best Poisson distribution, Dkl is the Kullback-
Leibler divergence, P is the Poisson distribution for different
λ, and Q is the average length distribution of the M sets of
SS detections.

Figure 6. Adaptive threshold procedure.
In A), the distributions of SS durations obtained with M different threshold values
are shown. This corresponds to the output of Stage B of the USSD algorithm in
Figure 4. In B), the average of the M distributions (blue line), and the Poisson
distribution (red line) that best fits the average distributions are shown. In C)
the cost function Ljs against the threshold indexes (from 1 to 20) is shown,
where the minimum value of Ljs is obtained with a threshold index of 12, in
this example.

The last step consists in determining which of the M dis-
tributions of detections most closely resembles the Poisson
distribution, as follows:

min
m

(Ljs(P̂ ||Q̂)), (13)

where Q̂ is the distribution of the lengths of the SSs and m
is the index that corresponds to the mth threshold value, see
Figure 6 C.

B. DATASETS
Table 1 shows five polysomnographic (PSG) sleep datasets:
The Institute of Nutrition and Food Technology of the Uni-
versity of Chile (INTA-UCH) dataset [50]; the Montreal
Sleep Studies (MASS) dataset [29], which is divided into the
cohort 2 (SS2) and cohorts SS1,3,4,5; the MODA dataset [30],
and the Cyclic Change Allocation Patterns (CAP) dataset
[51], [52]. The INTA-UCH, MASS-SS2, and MODA datasets
have labeled sleep spindles. The MASS-SS1,3,4,5, and CAP
datasets are unlabeled, but their sleep stages are annotated.
Table 1 includes the details of the five datasets regarding age,
gender, number of subjects, number of sleep spindles, and the
EEG channel used. All datasets use the international 10-20
EEG recording system [53]. According to the AASM stan-
dard criteria, slow SSs of maximal amplitude are obtained
in the central derivations of the EEG, i.e., channels C3/C4,
and fast SSs in the frontal brain region corresponding to the
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F3/F4 derivations. As shown in Table 1, the MASS, MODA,
and CAP datasets use the C3 channel, and INTA-UCH
uses the F4 channel. The INTA-UCH dataset was recorded
with a Cadwell Easy II PSG/EEG system, and the MASS
dataset was recorded with a Grass Model 12 or 15 PSG/EEG
system, depending on the cohort. The massive online data
annotation (MODA) dataset [30] corresponds to an artifact-
free segment extraction of the PSGs from the 5 MASS
cohorts. The MASS-SS2 and INTA-UCH datasets contain
9990 and 12237 annotated sleep spindles, respectively, while
the MODA dataset includes 5272 annotated sleep spindles,
totaling 27,499 SSs.
The subjects from the INTA-UCH, MASS cohorts 2-5, and
16 subjects from the CAP datasets are free from neurological
disorders and medications that affect the central nervous
system. The MASS-SS1 cohort includes 15 subjects, who
were diagnosed with Mild Cognitive Impairment (MCI). The
CAP dataset includes subjects with the following patholo-
gies: 2 with bruxism, 9 with insomnia, 5 with narcolepsy,
40 with nocturnal frontal lobe epilepsy, 10 with periodic leg
movements, 22 with REM sleep behavior disorder, and 4 with
sleep-disordered breathing.

Table 1. Sleep EEG Datasets.
Five datasets are used in this work: the first three datasets are labeled for SSs,
covering a wide age range from 10 to 76 years old. MODA used segments of
115s from the MASS dataset to label SSs with the consensus of 31-42 experts
[30]. The datasets listed in the last two columns are unlabeled, where the
subscripts of MASS indicate the corresponding cohorts. WN stands for Whole-
night. The channel within brackets is the alternative one in case the specified
channel is not available, where the reference is linked ear reference (LER) or
computerized linked ear (CLE). Not available (NA). Sleep states were classified
according to the Rechtschaffen and Kales (RK) [54] or American Academy of
Sleep Medicine (AASM) [2] rules.

Labeled datasets Unlabeled datasets
INTA- MASS- MODA MASS- CAP
UCH SS2 SS1,3,4,5

Subjects 11 19 180 181 104
Male 6 8 92 89 66
Female 5 11 88 92 42
Age [Yr] 10 18-33 18-76 18-76 14-82
Expert 1 2 31-421 NA NA
Sampling
rate [Hz] 200 256 256 256 100-512

Stage
sleep N2 N2 N2 N2 N2

Scoring
sleep RK RK RK-

AASM
RK-
AASM RK

Duration WN WN 115s2 WN WN

Channel F4-C4
(F3-C3)

C3-CLE
(C3-LER)

C3-CLE
(C3-LER)

C3-CLE
(C3-LER) C3 (C4)

SSs 12237 9990 5272 NA NA
1 The labels were carried out by a consensus of 31-42 experts.
2 The duration corresponds to multiple segments of 115s.

C. EEG SIGNAL PRE-PROCESSING
All the datasets used in this work, MASS, MODA, CAP,
and INTA-UCH, contain the expert’s annotation of the sleep
stages. In the sleep-staging process, the muscular artifacts
have been rejected [29], [30], [50], [51], [52]. We used sleep
stage N2, where there are no rapid nor slow eye movements
[2], so there was no need for removing eye artifacts. To
confirm what was mentioned above, we applied the ICA

functions for automatic eye artifact detection and muscle
artifact detection from the MNE-Python Package [55] to the
N2 stages of the INTA-UCH and MASS-SS2 datasets. No
eye artifacts were detected in both datasets. A few muscle
artifacts were detected in MASS-SS2. The latter were re-
moved as we applied a FIR/firwin2 bandpass filter of 0.3-30
Hz to all EEG recordings (EEG0.3−30) in the PSG. The filter
with a 0.3 Hz lower cutoff frequency eliminates very slow
waves and aids in sleep spindle detection. The records were
segmented into epochs (windows) of 20 or 30 s depending
on the predetermined interval in the PSG dataset, to which
an extra 1 s was added at the beginning and end of each
epoch. These generate a superposition at the boundaries of
the analyzed epoch with the previous and subsequent epochs,
respectively, to avoid edge effects such as cutting detections
at the boundaries of the analyzed epoch. Extreme peak-to-
peak amplitudes in the EEG0.3−30 signal were limited to
the range (-200, 200) µV , which was determined using the
training set from the MASS-SS2 dataset. It is worth noting
that the input to the USSD algorithm is the EEG filtered in
the sigma band (11-16 Hz), therefore, any remaining general
artifact outside this band is automatically removed.

D. SOFTWARE IMPLEMENTATION
For the development of our USSD algorithm, we uti-
lized Python 3.8.18, with key libraries including NumPy
for array manipulation, SciPy for scientific analysis,
pyEDFlib for reading and writing EDF (EEG data for-
mat), and MNE [55] for neurophysiological data analy-
sis. The A7 code is available at https://github.com/swarby/
A7_LacourseSpindleDetector, the LUNA code is avail-
able at https://zzz.bwh.harvard.edu/luna/ref/spindles-so/, and
the MPP code is available at https://github.com/carlosloza/
MPP-EEG.

E. PERFORMANCE METRICS FOR SS DETECTION
To evaluate the proposed algorithm’s performance in detect-
ing SSs, we consider two kinds of metrics: metrics for labeled
datasets using the golden standard, i.e., events labeled by
human experts, and metrics for unlabeled datasets.

Metrics for labeled datasets
Typically, event-based metrics based on the parameters of a
confusion matrix are used: true positives (TP ), true nega-
tives (TN ), false positives (FP ), and false negatives (FN ).
However, we do not consider TN because we focus on SS
detections, which are rare events in an EEG recording. To
assess the length of the detections, we use the Intersection
over Union (IoU) metric [28], [56] as follows:

IoU =
A ∩B

A ∪B
, (14)

where A corresponds to the set of detections and B to the
set of expert annotations. Following [28] an event is con-
sidered a TP when the IoU ≥ 0.2. This metric computes
the percentage of overlap between an SS event detected by
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the algorithm and the expert’s label. Under this condition,
the Recall, Precision, and F1-score metrics are defined as
follows:

Recall =
TP

TP + FN
, (15)

Precision =
TP

TP + FP
, (16)

F1-score = 2× Recall × Precision
Recall + Precision

. (17)

The mean Intersection over Union (mIoU) metric will
also be used, which corresponds to the average of the non-
zero IoU value for a set of detections (Γ) of cardinality |Γ|,
defined as follows:

mIoU =
1

|Γ|
∑
Γ

IoU. (18)

Metrics for unlabeled datasets
To evaluate unsupervised algorithms on unlabeled databases,
the Jensen-Shannon divergence [57] (see Eq. 9) is proposed
as a metric. The Jensen-Shannon divergence is applied be-
tween the length distribution of the SS detections and the
Poisson distribution [28] that minimizes this metric for each
dataset. This is because the length distribution of SSs has a
known pattern that follows a Poisson distribution [32].

IV. FINE-TUNING THE USSD MODEL
Machine learning models trained with unlabeled datasets,
such as the proposed USSD algorithm, can be fine-tuned
with a small, labeled dataset to improve the classification
results. In this section, a fine-tuning stage is added to the
USSD algorithm. In Figure 7 blocks A, B, and C comprise
the USSD algorithm, and block D is the new fine-tuning
stage, the output of which is used to update blocks B and
C. The steps that describe the fine-tuning USSD model are
the following:

• The input of block D is the set of SS detections made by
the USSD algorithm.

• First, n% of the epochs with SS detections are selected,
where n is a percentage between 10 and 20 % (see
Figure 7 D). The selected epochs must have at least one
detected SS with a low or medium score of being an SS
(see section III.A, Event Scoring), and a duration of less
than 1 s.

• Second, the SS detections on the selected epochs are
corrected, adjusting their duration according to the ex-
pert’s labels, and those that are non-SSs according to the
expert’s labels are eliminated.

• In the update process, for each set of detections obtained
with different threshold values, the corrected detections
are updated with the expert’s labels.

• Finally, the adaptive threshold procedure is applied, and
block C in Figure 7 is updated to generate the final set
of detections with the fine-tuned model.

Figure 7. USSD with a fine-tuning stage.
The USSD algorithm consists of blocks A to C, with the Output Detections as the
final result. Block D is added in the fine-tuning stage, where n% of epochs with
SS detections made by USSD are selected, and expert labels are used to adjust
all detections in those epochs. Then, Block B updates the detections based
on the M-threshold values, and Block C recalculates the adaptive threshold to
generate a new set of detections.

V. RESULTS
In this section, we present the results of the proposed USSD
model on both the labeled and unlabeled datasets shown in
Table 1.

Using dictionary learning tools allows us to associate sets of
detections with different atoms, as shown in Figure 8 A). The
atoms shown in red are learned from the filtered EEG signal
in the sigma band and are grouped into five dictionaries with
durations [0.7-0.9-1.1-1.3-1.5] seconds. Each dictionary is
composed of 20 atoms, although in the figure, only a single
atom per dictionary is shown. In blue, detections of variable
lengths associated with each atom are shown in the EEG
filtered with a band pass filter between [0.3-30 Hz]. Figure
8 B) shows the distance of event detections to their closest
atom, using the Longest Common Subsequence Similarity
Measure (LCSS) metric [58] between time series. The width
of each curve corresponds to the approximate frequency of
data points for each distance.

A. TRAINING AND PARAMETER ADJUSTMENT
For the training and evaluation of the USSD model, we
utilized the labeled datasets MASS-SS2 and INTA-UCH.
We employed a training, validation, and test set of 5,6, and
13 subjects, respectively. The training set comprises five
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Figure 8. Example showing a single atom per dictionary and a set of SS detections.
In A, we show five columns, each associated with a dictionary. The first element of each column corresponds to a dictionary atom (red), whose duration is [0.7, 0.9,
1.1, 1.3, 1.5]s for dictionaries 1 to 5, respectively. The remaining elements of each column correspond to a segment of the EEG signal of 2s duration filtered between
0.3-30 Hz, where each segment contains a detection of SS (blue) obtained by USSD. The detections shown in each column are the variable-length SSs obtained
from the last stage of the USSD model (see Figure 4 C). B) Violin plots showing the distribution of the distances of the detections with their respective atom. The 16
atoms associated with SS detections in dictionary #5 are shown. Note that 4 atoms in this dictionary did not obtain any detection. The numbers above each violin
plot indicate the number of detections per atom.

subjects from the MASS-SS2 dataset. The validation set
includes six subjects divided into {3,3}={MASS-SS2, INTA-
UCH}, and the test set with 13 subjects is composed of
{7,6}={MASS-SS2, INTA-UCH}.

For the state-of-the-art models, 4 parameters were tuned for
A7, while only 1 parameter was adjusted for the LUNA and
MPP models. A grid system with 92 combinations of the 4
parameters was employed for A7, and 10 values were tested
for the LUNA and MPP models. For the MPP model, the
duration of the dictionary atoms was adjusted, using 4 values
between 0.7 and 1.5s. This process was applied to the training
set for the MASS-SS2 dataset and to the validation set for the
INTA-UCH dataset.

B. RESULTS ON THE SS LABELED DATASETS
Table 2 shows the performance of USSD, MPP, A7, and
LUNA under the recall, precision, and F1-score metrics.
For MASS-SS2, the proposed USSD model achieved the
best performance with an F1-score of 0.72 ± 0.02, with a
p-value of 0.003 in the permutation-test [59] compared to
A7 and a p-value less than 0.0002 compared to LUNA and
MPP. In the INTA-UCH dataset, the USSD obtained the best
performance, with an F1-score of 0.72 ± 0.04, and p-values
less than 0.005 when compared to MPP, A7, and LUNA.
The top row in Figure 9 illustrates the trade-off between re-
call and precision, where the proposed USSD model obtains
the best precision-recall relationship. The bottom row shows
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Table 2. Performance of unsupervised algorithms on the test set.
The USSD, A7, and LUNA models were evaluated on the respective test subsets of the MASS-SS2 and INTA-UCH datasets, for which an IoU value ≥ 0.2 was
considered. The p-value was computed using a permutation test to compare the performance of USSD with the rest of the models.

Dataset Method Recall Precision F1-score p-value
(F1-score)

MASS-SS2 USSD 0.72± 0.03 0.72± 0.03 0.72± 0.02
MPP 0.37± 0.11 0.88± 0.05 0.52± 0.11 < 0.0002
A7 0.66± 0.09 0.72± 0.09 0.69± 0.05 0.003

LUNA 0.57± 0.08 0.64± 0.05 0.60± 0.02 < 0.0002

INTA-UCH USSD 0.72± 0.03 0.73± 0.07 0.72± 0.04
MPP 0.47± 0.05 0.71± 0.06 0.57± 0.05 0.0005
A7 0.83± 0.04 0.60± 0.07 0.70± 0.04 0.005

LUNA 0.50± 0.04 0.73± 0.09 0.59± 0.02 0.0005

Figure 9. Precision-Recall and F1-score vs. IoU curves.
Top row) Precision vs Recall plots, illustrating their trade-off for both datasets.
Bottom row) F1-score vs IoU plots, with IoU ≥ 0.2 showcasing the perfor-
mance differences between the two datasets. All three evaluated models exhibit
better performance in the adult MASS-SS2 dataset.

the F1-score vs. IoU plot for an IoU ≥ 0.2, where USSD
achieves the best performance in the MASS-SS2 and INTA-
UCH datasets. The INTA-UCH presents a slightly worse
performance due to the extra variability posed by children’s
EEG recordings, which were not included in the training set.

Table 3 shows the performance of the fine-tuned USSD
model on the MASS-SS2 and INTA-UCH datasets using
different percentages [10, 15, 20] % of labeled detections.
The best performance is obtained when using 20% of la-
beled detections, reaching an F1-score of 0.78 and 0.75 for
the MASS-SS2 and INTA-UCH datasets, respectively. This
means an increase of 6% and 3% for the MASS-SS2 and
INTA-UCH datasets, respectively.

Table 3. Performance of the fine-tuned USSD on the test set.
Performance of the fine-tuned USSD model when using different percentages
of expert-labeled data from the MASS-SS2 and INTA-UCH datasets.

Dataset Labeled Recall Precision F1-score
Data %

MASS-SS2 10 0.66± 0.09 0.87± 0.05 0.75± 0.06
15 0.68± 0.11 0.86± 0.05 0.76± 0.07
20 0.69± 0.09 0.90± 0.02 0.78± 0.06

INTA-UCH 10 0.79± 0.03 0.69± 0.08 0.74± 0.05
15 0.80± 0.02 0.69± 0.08 0.74± 0.05
20 0.81± 0.02 0.69± 0.08 0.75± 0.05

C. EVALUATING THE ADAPTIVE THRESHOLD METHOD

In section III, stage C, we proposed an unsupervised method
to automatically and adaptively determine the single thresh-
old of the USSD algorithm, which is adjusted by utilizing
the distribution of detection durations. In this subsection, we
compare the results of our proposed unsupervised method
with those obtained using SS-labeled data. For simplicity, we
refer to the optimal threshold as that which maximizes the
F1-score when using labeled data. The latter is used as a gold
standard, for evaluation purposes only. Figure 10 shows the
performance of the adaptive threshold on the labeled datasets,
where we compare the F1-score metric obtained with the pro-
posed adaptive threshold and the optimal threshold. With this

Figure 10. Adaptive threshold performance.
A) Comparison of the F1-score performance obtained with the optimal threshold
(blue) versus the one obtained with the proposed adaptive threshold on 5
subjects from the test set of the MASS-SS2 dataset. The optimal threshold
is computed using labeled data, while the adaptive threshold is computed
using unlabeled data. B) F1-score obtained with the optimal and the adaptive
thresholds for 6 subjects from the test set of the INTA-UCH dataset.
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aim, the final set of detections obtained with the USSD model
(the output of stage C in Figure 4) and their corresponding
expert labels are used to compute a confusion matrix and the
F1-score for the M-threshold values. The threshold value that
maximizes the F1-score is chosen.
The percentage similarity between the two F1-score values is
97 % for MASS-SS2 and 99% for INTA-UCH, as shown in
Table 4. This indicates that the proposed adaptive threshold
method is near optimal, and adapts well to changes in the
dataset and variability in EEGs despite differences in age
ranges and variability between experts and datasets.

Table 4. Adaptive threshold performances.
Average F1-score performance obtained with the proposed adaptive threshold
(unsupervised method that optimizes the USSD threshold) and those obtained
with the optimal threshold (using expert labels) for the MASS-SS2 and INTA-
UCH test sets. The ratio between the performances of the adaptive and optimal
thresholds is shown.

Dataset Optimal Adaptive Ratio
threshold threshold

MASS-SS2 0.74± 0.04 0.72± 0.04 0.97
INTA-UCH 0.73± 0.09 0.72± 0.03 0.99

D. SLEEP SPINDLE DETECTION SCORING
In Section III, Stage A, we introduced a method to compute
the probability that a detected event is a sleep spindle, where
each event is assigned a high, medium, or low score. Figure
11 shows the percentage of unsupervised SS detections in
each score category [High - Medium - Low] for 5 subjects
of the MASS-SS2 dataset. Table 5 shows the average per-
centage of classifications for the MASS-SS2 dataset, which
are 24, 38, and 38 % for the high, medium, and low scores,
respectively, and for the INTA-UCH dataset are 41, 47, and
12 % for the high, medium, and low scores, respectively.
Table 6 shows the accuracy metric for each score category
[High - Medium - Low] in the MASS-SS2 and INTA-UCH
datasets. In the case of the high score, an average accuracy
of 0.96 ± 0.02 is obtained with an SS detection percentage
of 24 % on the test set of the MASS-SS2 dataset. An average
accuracy of 0.93 ± 0.01 is achieved with a 41 % detection
percentage of SSs in the test set of the INTA-UCH dataset. As
expected, the lowest performance is obtained with the set of
SS detections belonging to the low score category, reaching
an accuracy of only 56 % and 62 % for the MASS-SS2 and
INTA-UCH datasets, respectively.

Table 5. Average percentage of SS detections per score category.
Average percentage of SS detections per each score category for the test sets
of the MASS-SS2 and INTA-UCH datasets.

Dataset High Medium Low
MASS-SS2 24± 8 38± 2 38± 8
INTA-UCH 41± 5 47± 5 12± 5

E. EVALUATION OF SS LENGTH DISTRIBUTIONS
As mentioned in section III.A, Stage C, our main assump-
tion is that the SS length distribution must follow a Pois-

Figure 11. Percentage of detections per score category per subject.
Scores generated in an unsupervised manner by the proposed USSD model,
on the test set of the MASS-SS2 dataset. The SS detection set is divided into
three score categories [high-medium-low]. The number on top of each bar is
the total number of detections per subject.

Table 6. Accuracy metric per each score category.
Average accuracy for each score category in the MASS-SS2 and INTA-UCH
test sets.

Score Category
Dataset High Medium Low

MASS-SS2 0.96± 0.02 0.80± 0.13 0.56± 0.21
INTA-UCH 0.93± 0.01 0.72± 0.07 0.62± 0.11

son distribution. In section III.E, we introduced the Jensen-
Shannon divergence (JSD) as a metric for unlabeled datasets.
This metric indicates which algorithm has an SS length
distribution closest to a Poisson distribution. In Table 7, the
JSD metric was applied to the unlabeled CAP and MASS-
SS1,3,4,5 datasets and the labeled MASS-SS2 and INTA-
UCH datasets. The labeled datasets are used for comparison
purposes. It can be observed that USSD achieves the lowest
JSD in all datasets. Figure 12 shows the distributions of the
length of SSs in the CAP dataset for the USSD, A7, and
LUNA models.

Table 7. Jensen-Shannon Divergence.
Jensen-Shannon divergence between the distributions of the SS detection
durations made by USSD, LUNA, and A7 models, with respect to the best
Poisson distribution.

Dataset USSD LUNA A7

CAP 0.11 0.27 0.21
MASS-SS 1345 0.14 0.24 0.29

MASS-SS2 0.14 0.17 0.33
INTA-UCH 0.12 0.29 0.32

F. TRANSFER LEARNING
In this section, we evaluate the performance of pre-training
the SEED supervised deep learning model [25] on the CAP
dataset, using the SSs detected by the unsupervised algo-
rithms USSD, A7, and LUNA as labels. After pre-training
SEED with the automatically labeled CAP dataset, it was
fine-tuned using the labeled MODA dataset. SEED was fine-
tuned using 10 and 20 % of the training set from the MODA
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Figure 12. SS detection length distributions.
The length distributions of SS detections in the CAP dataset obtained by USSD,
A7, and LUNA are used to compute the Jensen-Shannon divergence with the
best Poisson distribution.

dataset. The performance of SEED without pre-training was
also evaluated in the CAP dataset.
Table 8 shows that fine-tuning a pre-trained SEED model
with 10% of MODA reached an F1-score of approximately
0.77. This result is independent of the unsupervised model
that automatically labels the CAP dataset. Using 20% of the
MODA dataset, a state-of-the-art performance is achieved
with an F1-score of 0.81, with no significant difference be-
tween the three unsupervised models, where the permutation
test yields a p-value ≥ 0.09.
The results indicate that there is no difference between the
three models, but there is a clear advantage in using auto-
matically labeled datasets with unsupervised algorithms to
pre-train SEED.

Table 8. Transfer learning results.
SEED was pre-trained with the CAP dataset automatically labeled by the
unsupervised algorithms, and then fine-tuned with different percentages of the
MODA training set. The performance was evaluated with the MODA test set.
The term None indicates that SEED was not pre-trained with CAP and was
only trained with the MODA training set. The p-values show that there are no
statistical differences between the mean results of the A7 and LUNA models
and those of the USSD model.

MODA Pre-train F1-score p-value mIoU p-value
% Method

100% None 0.82± 0.01 0.83± 0.01

10% None 0.74± 0.04 0.75± 0.04
USSD 0.77± 0.02 0.78± 0.01

A7 0.78± 0.02 0.09 0.76± 0.02 0.15
LUNA 0.76± 0.02 ≥ 0.09 0.77± 0.01 1.0

20% None 0.78± 0.02 0.79± 0.01
USSD 0.81± 0.02 0.80± 0.01

A7 0.81± 0.01 0.09 0.79± 0.01 0.37
LUNA 0.81± 0.02 ≥ 0.09 0.80± 0.01 0.59

VI. DISCUSSION
In this section, we discuss the limitations, drawbacks, and
costs of the proposed USSD algorithm. The main limitation

is the size of the available SS-labeled datasets, which implies
that a small number of subjects were used for training,
validation, and testing. Despite that, the proposed USSD
algorithm outperforms the A7 and LUNA algorithms on the
tested datasets. Our algorithm performs very well in detecting
events of medium and long duration, but the performance
drops to approximately 60% for short-duration events of less
than 0.5s. It is worth mentioning that according to the AASM
standard criteria, the shortest duration of a spindle is 0.5 s.
However, it is a common practice for experts to annotate
shorter events, too. Improving the detection of short-duration
events could be addressed in future work by considering
additional information, e.g., the spectral power of events
in the original signal. To compute the proposed adaptive
threshold, the current version of the algorithm requires a
continuous EEG recording of at least one hour. The drawback
is that the current version of the USSD algorithm cannot
process datasets composed of small window samples. The
proposed fine-tuning algorithm (see Section IV) corrects the
output of the USSD algorithm using a small percentage of
labeled SSs, but it does not adjust the whole algorithm. This
is left for future work. All unsupervised algorithms were
run on a 2.2GHz 6-core Intel Core i7 MacBook Pro, with
16 GB of memory. The computational time of running the
unsupervised algorithms one iteration on a 240-minute-long
EEG recording are as follows: USSD 259.8 s, MPP 254.1 s,
A7 237.7 s, and LUNA 9.5 s. As can be observed, LUNA is
approximately 25 times faster than USSD, MPP, and A7. The
USSD algorithm has not been optimized, and there is room
for improvement by using GPUs and parallelism.

VII. CONCLUSIONS
We have proposed an unsupervised algorithm for detecting
sleep spindles in sleep EEG recordings based on dictionary
learning. Our algorithm incorporates a novel unsupervised
adaptive threshold method based on the distribution of de-
tection durations. The proposed USSD method can automat-
ically adapt to EEG recordings from subjects of all ages and
coming from different datasets, addressing a typical transfer-
learning challenge, especially for unsupervised algorithms.
Automated methods provide robust detection of sleep spin-
dles, eliminating the variability among human experts inher-
ent to manual evaluation. Unsupervised methods enable the
analysis of unlabeled datasets. Consequently, USSD emerges
as an algorithm that could benefit research on sleep spindles
by analyzing large unlabeled datasets such as NSRR [34].
USSD assigns a probability of being a sleep spindle to
each detection, which could be useful for diagnosing and
monitoring both sleep disorders and sleep-related disorders
from early to late periods of the vital cycle. The proposed
USSD algorithm performed better than A7 and LUNA, with
an average F1-score of 0.72. On the other hand, the proposed
adaptive threshold method demonstrated excellent perfor-
mance compared to the optimal threshold when maximizing
the F1-score on the MASS-SS2 and INTA-UCH datasets.
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The proposed USSD includes standard AASM criteria such
as frequency and amplitude for adjusting detections and,
at the same time, provides a score indicating how likely
a detection is a sleep spindle, which is not available in
other unsupervised algorithms. The USSD algorithm has
good interpretability, since the atoms and the SS detections
associated with each atom can be visualized.
A fine-tuned USSD model was also implemented, which
increases the performance of the USSD from an F1-score of
0.72 to 0.78 in the MASS-SS2 dataset and from 0.72 to 0.75
in the INTA-UCH dataset when using 20 % of the labeled
SS detections. While the performance of USSD is lower
than that of supervised models such as SEED based on deep
learning, our unsupervised model can be employed to pre-
train deep learning-based models. Using our unsupervised
model, we can automatically generate a labeled dataset for
pre-training neural network-based models, which can be
further fine-tuned. Pre-training with unsupervised models
allows using 10 − 20% of the labeled set for fine-tuning
to achieve state-of-the-art performance. This is especially
valuable because obtaining labeled SS data to train neural
networks is expensive and challenging.

ACKNOWLEDGMENTS
E. Ramírez acknowledges financial support from the Na-
tional Agency for Research and Development (ANID)
/ Scholarship Program / DOCTORADO NACIONAL /
2018—21181277.
P. A. Estévez and C.A. Perez acknowledge financial sup-
port from ANID-Chile through Millennium Science Initiative
Program ICN2021-004; Basal Funding for Scientific and
Technological Center of Excellence, IMPACT #FB210024;
and FONDECYT 1220829.
M. Adams acknowledges financial support from Agencia
Nacional de Investigación y Desarrollo (ANID - National
Research Agency, Chile)/Programa de Investigación Asocia-
tiva (PIA) Project AFB230001 and ANID Fondo Nacional de
Desarrollo Científico y Tecnológico (FONDECYT) project
1231658.

References
[1] S. Clocchiatti-Tuozzo, C. A. Rivier, D. Renedo, et al.,

“Suboptimal sleep duration is associated with poorer
neuroimaging brain health profiles in middle-aged in-
dividuals without stroke or dementia,” Journal of the
American Heart Association, vol. 13, no. 1, Jan. 2024.
DOI: 10.1161/JAHA.123.031514.

[2] R. B. Berry, R. Brooks, E. C. Gamaldo, et al., “The
AASM manual for the scoring of sleep and associated
events : rules, terminology, and technical specifica-
tions,” American Academy of Sleep, vol. 28, no. 3,
pp. 391–397, 2016.

[3] P. Peirano, C. Algarín, and R. Uauy, “Sleep-wake
states and their regulatory mechanisms throughout
early human development,” in Journal of Pediatrics,
vol. 143, Mosby Inc., 2003, pp. 70–79. DOI: 10.1067/
s0022-3476(03)00404-9.

[4] E. G. Ibarra-Coronado, A. M. Pantaleón-Martínez,
J. Velazquéz-Moctezuma, et al., “The Bidirectional
relationship between sleep and immunity against in-
fections,” Journal of Immunology Research, vol. 2015,
2015. DOI: 10.1155/2015/678164.

[5] L. Xie, H. Kang, Q. Xu, et al., “Sleep drives metabolite
clearance from the adult brain,” Science, vol. 342,
no. 6156, pp. 373–377, 2013. DOI: 10.1126/science.
1241224.

[6] O. Lahl, C. Wispel, B. Willigens, and R. Pietrowsky,
“An ultra short episode of sleep is sufficient to pro-
mote declarative memory performance,” Journal of
Sleep Research, vol. 17, no. 1, pp. 3–10, 2008. DOI:
10.1111/j.1365-2869.2008.00622.x.

[7] R. E. Dahl, “The Impact of Inadequate Sleep on
Children’s Daytime Cognitive Function,” Seminars in
pediatric neurology, vol. 3, no. 1, WB Saunders, Ed.,
pp. 44–50, 1996. DOI: 10 . 1016 / s1071 - 9091(96 )
80028-3.

[8] M. Mirmiran, Y. G. Maas, and R. L. Ariagno, “De-
velopment of fetal and neonatal sleep and circadian
rhythms,” Sleep Medicine Reviews, vol. 7, no. 4,
pp. 321–334, 2003. DOI: 10.1053/smrv.2002.0243.

[9] H. P. Roffwarg, J. N. Muzio, and W. C. Dement,
“Ontogenetic development of the human sleep-dream
cycle the prime role of "dreaming sleep" in early life
may be in the development of the central nervous
system,” Science, vol. 152, no. 3722, pp. 604–619,
1966.

[10] S. Chokroverty and R. J. Thomas, Atlas of sleep
medicine: expert consult-Online and print. Elsevier
Health Sciences, 2013.

[11] L. M. Fernandez and A. Lüthi, “Sleep spindles:
mechanisms and functions,” Physiological Reviews,
vol. 100, no. 2, pp. 805–868, 2020. DOI: 10 . 1152 /
physrev.00042.2018.

[12] L. M. O’Brien and D. Gozal, “Neurocognitive dys-
function and sleep in children: From human to rodent,”
Pediatric Clinics of North America, vol. 51, no. 1,
pp. 187–202, 2004. DOI: 10 . 1016 / S0031 - 3955(03 )
00184-6.

[13] C. Algarin, K. D. Karunakaran, S. Reyes, et al., “Dif-
ferences on brain connectivity in adulthood are present
in subjects with iron deficiency anemia in infancy,”
Frontiers in aging neuroscience, vol. 9, 2017. DOI:
10.3389/fnagi.2017.00054.

[14] M. A. Hahn, D. Heib, M. Schabus, K. Hoedlmoser,
and R. F. Helfrich, “Slow oscillation-spindle coupling
predicts enhanced memory formation from childhood
to adolescence,” eLife, vol. 9, pp. 1–21, 2020. DOI: 10.
7554/eLife.53730.

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3532536

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1161/JAHA.123.031514
https://doi.org/10.1067/s0022-3476(03)00404-9
https://doi.org/10.1067/s0022-3476(03)00404-9
https://doi.org/10.1155/2015/678164
https://doi.org/10.1126/science.1241224
https://doi.org/10.1126/science.1241224
https://doi.org/10.1111/j.1365-2869.2008.00622.x
https://doi.org/10.1016/s1071-9091(96)80028-3
https://doi.org/10.1016/s1071-9091(96)80028-3
https://doi.org/10.1053/smrv.2002.0243
https://doi.org/10.1152/physrev.00042.2018
https://doi.org/10.1152/physrev.00042.2018
https://doi.org/10.1016/S0031-3955(03)00184-6
https://doi.org/10.1016/S0031-3955(03)00184-6
https://doi.org/10.3389/fnagi.2017.00054
https://doi.org/10.7554/eLife.53730
https://doi.org/10.7554/eLife.53730


Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[15] R. F. Helfrich, B. A. Mander, W. J. Jagust, R. T.
Knight, and M. P. Walker, “Old brains come uncou-
pled in sleep: slow wave-spindle synchrony, brain at-
rophy, and forgetting,” Neuron, vol. 97, no. 1, pp. 221–
230, 2018. DOI: 10.1016/j.neuron.2017.11.020.

[16] A. K. Joechner, S. Wehmeier, and M. Werkle-Bergner,
“Electrophysiological indicators of sleep-associated
memory consolidation in 5- to 6-year-old children,”
Psychophysiology, vol. 58, no. 8, 2021. DOI: 10.1111/
psyp.13829.

[17] M. Mölle, T. O. Bergmann, L. Marshall, and J. Born,
“Fast and slow spindles during the sleep slow oscilla-
tion: disparate coalescence and engagement in mem-
ory processing,” Sleep, vol. 34, no. 10, pp. 1411–1421,
2011. DOI: 10.5665/SLEEP.1290.

[18] N. Leresche and R. C. Lambert, “T-type calcium chan-
nels in synaptic plasticity,” Channels, vol. 11, no. 2,
pp. 121–131, 2017.

[19] T. T. Dang-Vu, A. Salimi, S. Boucetta, et al., “Sleep
spindles predict stress-related increases in sleep dis-
turbances,” Frontiers in Human Neuroscience, vol. 9,
2015. DOI: 10.3389/fnhum.2015.00068.

[20] D. J. Buysse, A. Germain, M. L. Hall, et al., “EEG
spectral analysis in primary insomnia: NREM period
effects and sex differences,” Sleep, vol. 31, no. 12,
2008. [Online]. Available: https://academic.oup.com/
sleep/article-abstract/31/12/1673/2454125.

[21] A. Castelnovo, B. Graziano, F. Ferrarelli, and A.
D’Agostino, “Sleep spindles and slow waves in
schizophrenia and related disorders: main findings,
challenges and future perspectives,” European Journal
of Neuroscience, vol. 48, no. 8, pp. 2738–2758, 2018.
DOI: 10.1111/ejn.13815.

[22] M. S. Chan, K. F. Chung, K. P. Yung, and W. F.
Yeung, “Sleep in schizophrenia: A systematic review
and meta-analysis of polysomnographic findings in
case-control studies,” Sleep Medicine Reviews, vol. 32,
pp. 69–84, 2017. DOI: 10.1016/j.smrv.2016.03.001.

[23] S. Ritter-Makinson, A. Clemente-Perez, B. Hi-
gashikubo, et al., “Augmented Reticular Thalamic
Bursting and Seizures in Scn1a-Dravet Syndrome,”
Cell Reports, vol. 26, no. 4, p. 1071, 2019. DOI: 10.
1016/j.celrep.2019.01.037.

[24] L. Feng, J. E. Motelow, C. Ma, et al., “Seizures and
sleep in the thalamus: Focal limbic seizures show di-
vergent activity patterns in different thalamic nuclei,”
Journal of Neuroscience, vol. 37, no. 47, pp. 11 441–
11 454, 2017. DOI: 10.1523/JNEUROSCI.1011- 17.
2017.

[25] N. I. Tapia-Rivas, P. A. Estevez, and J. A. Cortes-
Briones, “A robust deep learning detector for
sleep spindles and K-complexes: towards population
norms,” Scientific Reports, vol. 14, no. 1, 2024. DOI:
10.1038/s41598-023-50736-7.

[26] S. Chambon, V. Thorey, P. J. Arnal, E. Mignot, and
A. Gramfort, “DOSED: A deep learning approach to

detect multiple sleep micro-events in EEG signal,”
Journal of Neuroscience Methods, vol. 321, pp. 64–78,
2019. DOI: 10.1016/j.jneumeth.2019.03.017.

[27] P. M. Kulkarni, Z. Xiao, E. J. Robinson, et al., “A
deep learning approach for real-time detection of sleep
spindles,” Journal of neural engineering,, vol. 16,
no. 3, 2019. DOI: 10.1088/1741-2552/ab0933.

[28] S. C. Warby, S. L. Wendt, P. Welinder, et al., “Sleep-
spindle detection : crowdsourcing and evaluating per-
formance of experts , non-experts and automated
methods,” Nature methods, vol. 11, no. 4, p. 385, 2014.
DOI: 10.1038/nmeth.2855.

[29] C. O’Reilly, N. Gosselin, J. Carrier, and T. Nielsen,
“Montreal archive of sleep studies: An open-access
resource for instrument benchmarking and exploratory
research,” Journal of Sleep Research, vol. 23, no. 6,
pp. 628–635, 2014. DOI: 10.1111/jsr.12169.

[30] K. Lacourse, B. Yetton, S. Mednick, and S. C. Warby,
“Massive online data annotation, crowdsourcing to
generate high quality sleep spindle annotations from
EEG data,” Scientific Data, vol. 7, no. 1, 2020. DOI:
10.1038/s41597-020-0533-4.

[31] K. Lacourse, J. Delfrate, J. Beaudry, P. Peppard, and
S. C. Warby, “A sleep spindle detection algorithm that
emulates human expert spindle scoring,” Journal of
Neuroscience Methods, vol. 316, pp. 3–11, 2019. DOI:
10.1016/j.jneumeth.2018.08.014.

[32] S. M. Purcell, D. S. Manoach, C. Demanuele, et al.,
“Characterizing sleep spindles in 11,630 individuals
from the National Sleep Research Resource,” Nature
Communications, vol. 8, pp. 1–16, 2017. DOI: 10 .
1038/ncomms15930.

[33] C. A. Loza, M. S. Okun, and J. C. Principe, “A marked
point process framework for extracellular electrical
potentials,” Frontiers in systems neuroscience, vol. 11,
pp. 1–17, 2017. DOI: 10.3389/fnsys.2017.00095.

[34] G. Q. Zhang, L. Cui, R. Mueller, et al., “The national
sleep research resource: towards a sleep data com-
mons,” Journal of the American Medical Informatics
Association, vol. 25, no. 10, pp. 1351–1358, 2018.
DOI: 10.1093/jamia/ocy064.

[35] M. Mölle, L. Marshall, S. Gais, and J. Born, “Group-
ing of spindle activity during slow oscillations in hu-
man non-rapid eye movement sleep,” Journal of Neu-
roscience, vol. 22, no. 24, pp. 10 941–10 947, 2002.

[36] F. Ferrarelli, R. Huber, M. J. Peterson, et al., “Re-
duced sleep spindle activity in schizophrenia patients,”
American Journal of Psychiatry, vol. 164, no. 3,
pp. 483–492, 2007. DOI: 10.1176/ajp.2007.164.3.483.

[37] T. Andrillon, Y. Nir, R. J. Staba, F. Ferrarelli, C.
Cirelli, and G. Tononi, “Sleep spindles in humans : in-
sights from intracranial EEG and unit recordings,” The
Journal of Neuroscience, vol. 31, no. 49, pp. 17 821–
17 834, 2011. DOI: 10.1523/JNEUROSCI.2604- 11.
2011.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3532536

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1016/j.neuron.2017.11.020
https://doi.org/10.1111/psyp.13829
https://doi.org/10.1111/psyp.13829
https://doi.org/10.5665/SLEEP.1290
https://doi.org/10.3389/fnhum.2015.00068
https://academic.oup.com/sleep/article-abstract/31/12/1673/2454125
https://academic.oup.com/sleep/article-abstract/31/12/1673/2454125
https://doi.org/10.1111/ejn.13815
https://doi.org/10.1016/j.smrv.2016.03.001
https://doi.org/10.1016/j.celrep.2019.01.037
https://doi.org/10.1016/j.celrep.2019.01.037
https://doi.org/10.1523/JNEUROSCI.1011-17.2017
https://doi.org/10.1523/JNEUROSCI.1011-17.2017
https://doi.org/10.1038/s41598-023-50736-7
https://doi.org/10.1016/j.jneumeth.2019.03.017
https://doi.org/10.1088/1741-2552/ab0933
https://doi.org/10.1038/nmeth.2855
https://doi.org/10.1111/jsr.12169
https://doi.org/10.1038/s41597-020-0533-4
https://doi.org/10.1016/j.jneumeth.2018.08.014
https://doi.org/10.1038/ncomms15930
https://doi.org/10.1038/ncomms15930
https://doi.org/10.3389/fnsys.2017.00095
https://doi.org/10.1093/jamia/ocy064
https://doi.org/10.1176/ajp.2007.164.3.483
https://doi.org/10.1523/JNEUROSCI.2604-11.2011
https://doi.org/10.1523/JNEUROSCI.2604-11.2011


Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[38] A. L. Sampson, C. Lainscsek, C. E. Gonzalez, et
al., “Delay differential analysis for dynamical sleep
spindle detection,” Journal of Neuroscience Methods,
vol. 316, pp. 12–21, 2019. DOI: 10.1016/j.jneumeth.
2019.01.009.

[39] C. A. Loza and L. L. Colgin, “Deep neural dynamic
bayesian networks applied to EEG sleep spindles mod-
eling,” In: de Bruijne, M., et al. Medical Image Com-
puting and Computer Assisted Intervention – MICCAI
2021. MICCAI 2021. Lecture Notes in Computer Sci-
ence(), vol 12905. Springer, Cham., vol. 12905, 2021.
[Online]. Available: https://doi.org/10.1007/978-3-
030-87240-3_53.

[40] S. Devuyst, T. Dutoit, J. F. Didier, et al., “Automatic
sleep spindle detection in patients with sleep disor-
ders,” International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, pp. 3883–3886,
2006.

[41] F. Wang, L. Li, Y. Wan, et al., “An efficient sleep spin-
dle detection algorithm based on MP and LSBoost,”
Computers, Materials and Continua, vol. 76, no. 2,
pp. 2301–2316, 2023. DOI: 10 . 32604 / cmc . 2023 .
037727.

[42] P. Durka, M. Dovgialo, A. Duszyk-Bogorodzka, and
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