
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.0429000

SViG: A Similarity-thresholded Approach for
Vision Graph Neural Networks
ISMAEL ELSHARKAWI, HOSSAM SHARARA, AND AHMED RAFEA
Department of Computer Science and Engineering, The American University in Cairo, New Cairo 11835 Egypt

Corresponding author: Ismael Elsharkawi (ismaelelsharkawi@aucegypt.edu).

ABSTRACT Image representation in computer vision is a long-standing problem that has a great effect
on the performance of a model. The traditional methods rely on treating the image as a grid, then
using Convolutional Neural Networks (CNNs) to generate an image representation. Afterwards, Vision
Transformers and MLP-Mixers were introduced to represent an image as a sequence of features similar
to other sources of data. More recently, Vision Graph Neural Network (ViG) have proposed the treatment of
an image as a graph of nodes. Nevertheless, the graph construction in ViG depends on k-nearest neighbours
(k-nn). This leads to a number of challenges; first, determining the right value for the k in every layer, and
more importantly, that this value is the same for all nodes, which leads to limiting the graph expressiveness in
capturing the image details, as some parts of the image can be similar to a larger number of other parts, while
for other parts, we might be forcing completely irrelevant neighbours to satisfy the k-nn condition. In this
work, we propose a new approach that relies on the similarity score thresholding to create the graph edges
and, subsequently, the neighboring nodes. Rather than the number of neighbours, we allow the specification
of the normalized similarity threshold as an input parameter for each layer, which is more intuitive. We also
propose a decreasing threshold framework for selecting the input threshold for all layers. We show that our
proposed method is able to achieve higher performance than the ViG model for image classification on the
benchmark ImageNet-1K dataset, without increasing the complexity of the model.

INDEX TERMS Graph Neural Networks, Vision Graph Neural Networks, Image Classification

I. INTRODUCTION
In computer vision, a number of different types of back-
bone models have been introduced in the literature for large
datasets. The purpose of these backbones is to have a pre-
trained model that could be fine-tuned for different down-
stream tasks. The most famous task used during the pre-
training of a model is image classification on ImageNet-1K
[1]. The challenge is to represent an image in the best possible
method. Themost prominent 3methods are ConvolutionNeu-
ral Networks (CNN) [2], Vision Transformers (ViT) [3], and
Multi-Layer Perceptron Mixers (MLP-Mixers) [4]. Recently,
Vision Graph Neural Networks (ViG) were introduced as well
to tackle this task. Figure 1 shows a comparison between the
different ways of representing an image.

CNNs apply moving learnable filters to images with an
increasing depth. By treating an image as a grid, CNNs
provide spatial locality and shift in-variance. AlexNet [5] was
among the first attempts for using CNNs for the classification
of ImageNet [1] images.

More recently, the emergence of Vision Transformers [3]
and MLP-Mixers [4] proposed the treatment of images as

patches, which means dividing an image into a grid of equal-
sized squares, then treating them as a sequence. Similar to
the core idea of NLP Transformers [6], Vision Transformers
treat an image as a sequence of patches and allow the patches
to attend to one another, however, that comes at the cost of
a large number of parameters and Floating Point Operations
(FLOPs). MLP-Mixers rather treat an image as a table of
"patches x channels", then use channel-mixingMLP layers in
addition to patch-mixing MLP layer. Each of those "mixing"
layers is a transpose operation, followed by an MLP layer for
each dimension.

In order to have a more generic relation between patches,
Vision Graph Neural Networks (ViG) [7] proposes treating
an image as a graph of patches. Representing the image as a
graph does not limit the receptive field of a node in the graph.
In addition, it is a more flexible and effective method to rep-
resent the relationships between patches. However, a graph
requires a different type of ML algorithms than structured
data, such as images and text. Graph ML is traditionally used
for data that is naturally represented as a graph. Examples of
these include social networks [8], citation networks [9] and

VOLUME 12, 2024 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



I. Elsharkawi et al.: SViG: A Similarity-thresholded Approach for Vision Graph Neural Networks

biochemical graphs [10].
When it comes to computer vision, the use of Graph ML

has been proposed for 3D computer vision tasks, such as
scene graph generation, point cloud classification and seg-
mentation. A recent example for the point cloud classifica-
tion and segmentation is DGCNN [11], which used k-nearest
neighbours (k-nn) to construct the graph of points in the
point cloud in addition to proposing EdgeConv, which is a
type of graph convolution (GCN) [12] layer tailored for point
cloud data. Following from that, DeepGCNs [13] proposed
the use of linear layers before and after a GCN in order
to fight oversmoothing. Oversmoothing is the phenomenon
where the representation of nodes in a graph become similar
to each other after multiple graph convolutions. DeepGCNs
also proposed a different type of graph convolution operation,
which is Max-Relative Graph Convolution. In addition, they
proposed the use of dilated k-nn convolution, where for each
node, the set of k∗d nearest neighbors (or most similar nodes)
is picked. Then k neighbors are chosen in a stochastic manner
from that set. ViG [7] adopted a very similar methodology
to the one proposed by DeepGCNs, however, they applied
it to 2D images to be able to have a generic graph-based
framework for 2D computer vision tasks. Rather than a graph
of point clouds, an image is treated as a graph of patches.

The backbone of a ViG is composed of a cascade of a type
of GCN [12] layers, called Grapher modules, where the graph
is constructed based on the similarity matrix of the patches
(or nodes). The receptive field of a node is dependant on
feature extractor, called the Stemmodule, and the input image
resolution. The graph is reconstructed in each GCN layer,
where the neighborhood of each node is the k-closest nodes
to it in the latent space of that layer.

It is important to note that the number of patches might
be different in each layer, depending on the architecture of
the network. That means that the receptive field of each node
(or a patch) might be different in each layer. That difference
is only there in pyramid architectures, but not the traditional
isotropic architectures. In isotropic architectures, the number
of nodes is kept constant across all layers, whereas in pyramid
architectures, the number of nodes is lowered as the network
goes deeper.

The methodology in ViG [7] has a major drawback: each
node might pick irrelevant nodes as neighbors because the
k is fixed by definition and popular nodes might have a
fewer number of neighbors than they should, which leads
to missing important information in the aggregation opera-
tion. To address this drawback, we propose a new similarity-
thresholding approach which focus on picking the neighbor-
ing nodes based on a similarity threshold, which then allows
each node to have different numbers of neighbours in the
graph based on its properties. In this paper, we will focus
on testing our approach on the tiny version of the isotropic
ViG. While trying different model sizes, different pyramid
architectures might yield better performance, we leave the
Neural Architectural Search (NAS) task for future work.Our
contribution can be summarized as follows:

• We propose a more robust and flexible approach for
graph construction without introducing a computational
overhead or making assumptions about the topology
of the constructed graph. Unlike the k-nn graph con-
struction in ViG, we simply pick edges for the whole
graph based on their corresponding normalized simi-
larity score and a threshold. Moreover, our approach
fights oversmoothing by introducing a decrement in the
thresholds across layers.

• We achieve a Top-1 validation accuracy of 74.6% on
ImageNet-1K, a 0.7% improvement compared to the
ViG-Ti baseline [7].

• Our implementation is generic and does not force pick-
ing the exact same number of neighbors for each node
in a graph in the latent space. It can also operate on any
input adjacency matrix without introducing a memory or
a computational overhead.

The structure of this paper is as follows: we first carry
out a literature review in section II, then we explain our
proposed methodology in section III and how to construct
a graph using similarity-thresholding. Section IV discusses
the experimental setup and the experimental results, mainly
Top-1 and Top-5 accuracies of the GNNmodels on ImageNet
[1]. In section V, we summarize our contributions again and
highlight future directions of work.

FIGURE 1. Different image representations (a) CNN Grid Structure. (b)
Vision Transformers Sequeunce Structure. (c) k-nn Vision GNN (ViG) Graph
Structure, k = 2. (d) Our proposed Graph Structure (SViG):
similarity-thresholded graph construction for a threshold = 0.8. (The
normalized similarity scores on edges are hypothetical and self-edges are
ignored).

II. RELATED WORK
Since the introduction of Vision Graph Neural Networks [7],
there have been two types of improvement proposed to ViG:
proposing changes in the graph construction methodology
and proposing new hybrid CNN-GNN model architecture to
have the best of both worlds. This section is going to focus
on the graph construction methodology. We leave the Neural
Architectural Search (NAS) task for future work.
To solve the graph construction problem, ViGHNN [14]

proposed the use of a hyper-graph rather than the use of a
graph. A hyper-graph means that having clusters of nodes
in the graph, such that: for each cluster, message passing is
done from all nodes in the cluster to a virtual super-node to
represent each cluster. This is followed by another message
passing from that super-node to the nodes in the cluster. They

2 VOLUME 12, 2024

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



I. Elsharkawi et al.: SViG: A Similarity-thresholded Approach for Vision Graph Neural Networks

use Fuzzy C-Means to create clusters of patches, where the
clusters can have overlapping nodes. The drawback of that
approach is that the clustering of nodes is computationally
expensive.

Another method proposed for graph construction in Mo-
bileViG [15] was to create an edge between each node and
the nodes on the dilated axes of that node. A dilated axis is
the set of every other node on the row or the column to which
that node belongs. Nevertheless, the approach of MobileViG,
while efficient, aggregates noisy information from irrelevant
neighbors to each node. In order to limit the number of
edges picked for each node, GreedyViG [16] proposed using
dynamic axial graph construction, which means that each
node will pick neighbors on its dilated axes only if they have
a euclidean distance smaller than µ− σ, where both µ and σ
are estimated values for each dilated axis. While this method
is more efficient than the one used in MobileViG, important
neighbors might still be dropped simply because they are not
on the dilated axes of a node. In addition, this method of
graph construction makes a strong assumption that important
neighbors strictly have a distance that is smaller than the
µ− σ for all Grapher modules, which is not always the case.
Likewise, MobileViGv2 [17] proposed picking a pre-defined
number of neighbors from the nodes on each dilated axis,
where that number would be a hyper-parameter. Nonetheless,
the graph construction method proposed by MobileViGv2 is
exactly like the k-nn graph construction, except for the fact
that neighbors have to be on the dilated axes.

All of the previously mentionedmodels were trained on the
ImageNet-1K image classification task. Another Computer
Vision task that could make use of variants of ViG is Super
Resolution (SR), which is the task of creating a high reso-
lution image given a low resolution one. Image Processing
GNNs (IPG) [18] used a variant of ViG for SR. For each
patch, IPG performs a local search neighborhood (the 8 sur-
rounding patches) and a global search (a grid that skips every
other column and row of the patch grid). For each patch, IPG
determines the importance of each patch depending on the
detail retained in the image when down sampling the patch,
then upsampling it again. This importance of a patch is used
to determine the degree of the node. The method IPG uses has
3 drawbacks. First, it is specifically tailored for the SR task,
because the node degree is determined based on the effort
needed to reconstruct that node when downsampled. Second,
determining the degree-node for each node, then picking the
top-k neighbors for each node is computationally expensive.
Third, the search space of the neighbors of any node should
include all the patches in an image, rather than a subset, to
avoid limiting the receptive field of a node.

In order to address the aforementioned shortcomings, we
propose a flexible, yet simple, method of graph construction,
where the neighborhood of a node could include any other
node in the graph. In addition, our proposed method does not
require heavy computation for clustering nodes and it is well-
suited to awide range of tasks, and is not tailored for a specific
task.

III. METHODOLOGY
This section describes the notations used, the architecture
of our proposed Similarity-thresholded Vision Graph Neural
Network (SViG), then the method of the graph construction
in each layer, and finally the flexible aggregation framework
we use. In our work, we only focus on the tiny isotropic ViG
architecture.

A. NOTATIONS
An input image I ∈ RH×W×3 is divided into N nodes using
the stem module. The input data matrix to a Grapher module
l is X l = [x l1, x

l
2, x

l
3, ..., x

l
N ], where 1 ≤ l ≤ LG and LG is

the number of Grapher modules in the backbone. Each node
feature vector x li ∈ RD, where D is the dimension of the
embedding of each node. A graph G = (V ,E) is composed
of a set of nodes V and the edges E that connect those nodes.
Each node vi has an associated feature vector x li for each
Grapher layer l. The edge between two nodes u and v is
denoted by eu,v. The distance between the representations of
two nodes u and v is denoted as d(u, v) and the similarity is
denoted as s(u, v).

B. OVERVIEW: SVIG-TI
The architecture of the SViG-Ti is adopted from ViG-Ti [7].
A ViG consists of a stem module, followed by the backbone,
then an average 2D pooling layer, then a prediction head.
The backbone is a sequence of Grapher modules followed by
Feed-Forward Networks (FFN). This architecture is shown in
figure 2.
A stem module is a Convolution Neural Network (CNN)

module that is used to extract features from an image. The
output of the Stem module is H

16 × W
16 × D, where D is the

number of filters of the last convolution operation. This output
can be regarded as a set of N nodes (N = H

16 × W
16 ) of the

graph G in the first Grapher layer. Thus, each node feature
vector has dimensions 1 × 1 × D and the number of nodes
in the graph is H

16 × W
16 . Following the stem module we add

learnable positional embeddings.
A Grapher module is composed of a fully connected layer,

followed by a GCN layer, followed by a concatenation with
the input feature vector, then a fully connected layer and fi-
nally, another fully connected layer. MaxRelative convolution
[13] is the GCN operation. A Grapher module is described by
the following set of equations:

hi1 = xilWin

hi2 = max(hu − hi1|u ∈ Neighborhood(vi))

hi3 = σ([hi1, hi2]Wupdate)Wout

xil+1 = hn3 + x li

(1)

where Wupdate, Win and Wout are learnable weights and hik is
the intermediate representation of node vi in that layer. The
second linear layer in the Grapher module (Wupdate) is a multi-
head update operation. The activation function used is GELU
[19]. Figure 3 shows a Grapher module architecture.

VOLUME 12, 2024 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



I. Elsharkawi et al.: SViG: A Similarity-thresholded Approach for Vision Graph Neural Networks

FIGURE 2. SViG-Ti Model Architecture: This figure shows the architecture of SViG-Ti, which is composed of a stem module to construct the embedding of
the nodes. For a 224 × 224 × 3 image, each node in the graph represents a 19x19 patch in the image. The backbone is a cascade of Grapher and FFN
modules. The final part of the model is an average 2D pooling layer and a classification head that outputs a classification score for each of the 1000
classes in ImageNet.

A Feed-Forward Network (FFN) is intended to increase
the feature diversity and fight oversmoothing. An FFN is
composed of 2 linear layers with a GELU activation function
in between, in addition to a residual connection. An FFN is
described by the following equation:

Z = σ(YW1)W2 + Y (2)

where Y ,Z ∈ RN×D, Y is the output of the Grapher module
and Z is the input to the next Grapher module.

C. SVIG-TI ARCHITECTURE
We focus on the isotropic architecture rather than the pyramid
architecture in our work. To be able to check the effect of
the graph construction independently, we adopt the smallest
isotropic architecture suggested by [7], which is ViG-Ti. ViG-
Ti has 12 Grapher modules. The Stem module has 5 convo-
lution layers. The number of multi-heads in the second linear
layer of the Grapher module (Wupdate) is taken as 4. In this
work, the downstream task used to evaluate the performance
of the model is image classification. The classification head
is composed of 2 fully connected layers.

In our work, we pick D = 192. We resize all input images
to 224× 224× 3. The size of the patch embeddings (after the
Stem module) is 14×14×192. This means that the receptive
field of each node, or the patch size, is 19× 19 in the image.
Thus, a graph would have 196 nodes. A node feature vector
x li ∈ R192 is the feature vector of node vi in Grapher layer l.

D. GRAPH CONSTRUCTION
In ViG [7], the graph was reconstructed dynamically in every
Grapher module. This construction was based on the stochas-
tic dilated k-nn selection of the neighborhood of each node in
the latent space. However, this methodology makes a strong
assumption about the graph topology; it forces each node to

select the exact same number of neighbors, which might lead
to noise in the aggregation operation in addition to missing
out on important neighbors in for other nodes. To alleviate
this issue, we use a similarity-thresholded approach to allow
each node to pick a variable number of neighbors based on
how similar they are to it. This allows a more realistic graph
construction process.
First, we compute the pairwise distances between every

pair of nodes in an image as follows:

d(v, u) = v · vT − 2v · u+ u · uT (3)

The similarity score of an edge ev,u is s(v, u) = −d(v, u). As-
suming that the distribution of the similarity scores of edges
in a fully connected graph follows a normal distribution, the
similarity scores are normalized as follows:

snorm(v, u) =
s(v, u)− µS

σS
(4)

where µS and σS are calculated for all edges in an image,
and not per node. They are calculated dynamically during
runtime, using the feature vector X l for Grapher layer l in-
dependent from other Grapher layers.
A new hyper-parameter ti is introduced. ti represents the

threshold at Grapher module i. The selection is made as
follows:

if snorm(v, u) > CDF−1(ti) : ev,u = 1

else : ev,u = 0
(5)

where CDF−1(ti) is the inverse of the CDF (cumulative
distribution function) of the standard normal distribution at ti.
This means that an edge is picked if its normalized similarity
score exceeds the threshold of that layer, where the threshold
represents the CDF of the normal distribution (i.e. for a
threshold = 0.9, top 10 percentile of all edges are picked,

4 VOLUME 12, 2024

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



I. Elsharkawi et al.: SViG: A Similarity-thresholded Approach for Vision Graph Neural Networks

FIGURE 3. Left: A Grapher Module is composed of a linear layer, followed by a graph construction layer, then a Graph Convolution layer, and finally 2
linear layers. For the graph construction layer, the graph topology is determined based on the normalized similarity score of the edge between every two
nodes. Each square in the Graph Construction layer is the representation of one node (1 × 1 × 192) in the graph. Some nodes in the graph construction
layer (in red) are chosen to show the graph construction process to the right. Right: An edge is constructed between two nodes if the normalized similarity
score between those two nodes exceeds a predefined threshold ti . Non-selected edges are not shown in this graph.

assuming the distribution of the similarity scores follows a
normal distribution).

This simple thresholding method ensures that an edge is
chosen in both directions since s(v, u) = s(u, v). It also
makes sure that "popular" nodes have more incoming edges,
which leads to a better representation after the aggregation.
In addition, this thresholding method picks edges rather than
picking neighbors for each node.

Due to the over-smoothing [20], node representations be-
come similar in later layers. To overcome over-smoothing,
the threshold ti needs to be lower in later layers to have a
larger neighborhood for each node and thus aggregate from
nodes that are less similar. We choose to have a constant
decrement for ti, which we call dt , where ti − ti+1 = dt . We
show experimentally in section IV the importance of having
a decrement dt .

E. FLEXIBLE AGGREGATION
To implement a graph convolution layer, the tensor of the fea-
tures of source nodes and target nodes are needed to perform
the aggregation in equation 1. The representation of the tensor
of the features of source or target nodes puts a constraint
on the graph construction and aggregation, especially in the
second step in equation 1.

When representing the neighbors of each node, ViG [7] had
a fixed k neighbors for all nodes in an image, and all images
in a batch. ViG creates a tensor of self nodes, and a tensor
of neighbor nodes, to be able to do the subtraction operation

in equation 1, rather than tensors of source and destination
nodes. This means that in ViG [7], the tensors of the self nodes
and neighbor nodes have dimensions [B,N ,D, k], where B is
the batch size and k is the pre-defined number of neighbors
for each node, used in the k-nn graph construction. ViG [7]
performs a subtraction of the self and neighbor tensors, then
a max operation on the last dimension representing the k
neighbors, as a part of the MaxRelative Convolution1. This
essentially restricts each node, in every image in the batch, to
have exactly k neighbors.

To solve this issue in SViG, without adding an extra mem-
ory consumption overhead, we use one global graph. The con-
struction of the global graph starts with the graph construc-
tion for each image individually. Afterwards, a global graph
containing all graphs in a batch is created, where each graph,
or image, is an isolated graph in that large graph. Figure 4
shows how the global graph construction is performed. This
is inspired by the method of batch implementation in PyTorch
Geometric (PyG) [21].

To implement the flexible graph construction, we reshape
the input tensor, from [B,N ,D] to [B ∗ N ,D]. An edge index
would have the dimensions [2,Eall ], with each pair determin-
ing the source and destination node indices. It is worth men-
tioning that the indices in this context are global graph indices
(i.e. they range from 1 to B ∗ N ). Also, Eall is the number of
all edges in the whole batch. The tensor of source nodes and
destination nodes have dimensions [Eall ,D]. We perform the
subtraction using the source and destination indexed feature

VOLUME 12, 2024 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



I. Elsharkawi et al.: SViG: A Similarity-thresholded Approach for Vision Graph Neural Networks

tensors. Then we perform the maxpooling operation in the
aggregation using a scatter operation, that is available in
PyG [21], and the target node indices. After the aggregation,
the target tensor, with dimensions [B ∗ N ,D], represents the
features of all the nodes in all images in a batch. Then, it is
reshaped to restore the batch dimensions (the dimensions are
[B,N ,D]). This tensor corresponds to h2i in equation 1 for the
whole batch. PyTorch-like code is shown in algorithm 1 for
the flexible aggregation. With this flexible implementation,
there is no constraint on the number of edges or the number of
neighbors that each node can have. The aggregation operation
can be performed using any input adjacency matrix, without
having tomask a part of the data, and thus without introducing
a memory overhead. In addition, as shown in section IV,
our flexible aggregation does not introduce a computational
overhead in terms of the number of FLOPs.

FIGURE 4. This figure shows the different stages for the flexible graph
aggregation. (a) This is a batch of 3 images, where each image is
represented by a 3 × 3 feature map. The total number of nodes per image
is 9. (b) A graph is constructed for each image on its own, based on the
similarity-threshold-ed graph construction. (c) The 3 graphs for the images
are merged together into the 3 isolated sub-graphs within a larger graph.

IV. EXPERIMENTS
In this section, We show our results on the ImageNet image
classification task and compare themwith other models in the
literature.

A. DATASET DESCRIPTION
In our experimental setup, we use ImageNet ILSVRC 2012
dataset [1]. The dataset license is available at https://www.
image-net.org/download. This dataset has 1000 classes with
1.2 million training images and 50k testing images.

B. EXPERIMENTAL SETUP
We implement our model using PyTorch [22], Timm [23]
and PyTorch Geometric (PyG) [21]. We use 8 NVIDIA V100

GPUs, with 32GB of GPU memory each, in our training.
For a fair comparison, we use the same hyper-parameters and
training strategy used in ViG [7]. The Table 1 has the hyper
parameters used in the training setup. The effective batch
size is 1024. For each reported result, the model is trained
from scratch on ImageNet [1] for 300 epochs. The size of all
input images is set to 224x224. We use AdamW [24] as an
optimizer with a base learning rate of 2e-3. In addition, we
use cosine annealing schedule with 20 warm-up epochs. The
data augmentation strategy used include RandAugment [25],
MixUp [26], CutMix [27], random erasing [28] and repeated
augment [29]. Unless stated otherwise, t1 is set to 0.89 and dt
is set to 0.03.

TABLE 1. Hyper-parameters used in the training of SViG-Ti

Hyper-parameter Value set for SViG-Ti

Epochs 300
Optimizer AdamW [24]
Batch size 1024

Start learning rate (LR) 2e-3
Learning rate Schedule Cosine

Warmup epochs 20
Weight decay 0.05

Label smoothing [30] 0.1
Stochastic path [31] 0.1

Repeated augment [29] ✓
RandAugment [25] ✓
Mixup prob. [26] 0.8
Cutmix prob. [27] 1.0

Random erasing prob. [28] 0.25
Exponential moving average 0.99996

C. EXPERIMENTAL RESULTS
We focus on the comparison between SViG-Ti and other tiny
(with the similar number of parameters) isotropic architec-
tures that use GNNs exclusively in their backbones to have
a fair comparison. We illustrate the performance of our pro-
posed SViG-Ti in comparison with ViG-Ti [7] and ViGHNN-
Ti [14] GNN in Table 2.

TABLE 2. Comparing SViG-Ti to isotropic GNN architectures of similar
sizes on ImageNet.

Model Params (M) FLOPs (B) Top-1 Top-5

ViG-Ti [7] 7.2 1.3 74.2 92.0
ViHGNN-Ti [14] 8.2 1.8 74.3 92.5

SViG-Ti 7.2 1.3 74.6 92.2

Our proposed SViG-Ti model outperforms ViG-Ti, that
has a comparable number of parameters and FLOPs, with an
improvement of 0.7% on Top-1 and 0.2% on Top-5. SViG-
Ti also outperforms ViHGNN-Ti [14] with 0.3% on Top-1,
while using much lower number of parameters and FLOPs.

6 VOLUME 12, 2024

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.image-net.org/download
https://www.image-net.org/download


I. Elsharkawi et al.: SViG: A Similarity-thresholded Approach for Vision Graph Neural Networks

Algorithm 1 PyTorch-like Code of Max-Relative Convolution with Flexible Aggregation

class MaxRelativeConvlution(nn.Module):
"""
B: Batch size
N: Number of nodes in a graph
D: Number of Channels or features in the vector representation of a node
E(all): Number of edges in the whole Batch

x: [B, N, D]
edge_index: [2,E(all)] where index 0 is the source and index 1 is the target
"""
...
...
def forward(self, x, edge_index):

B, N, D = x.shape
x_all_batches = x.reshape(B*N,D)
x_i = x_all_batches[edge_index[0]] #Destination nodes
x_j = x_all_batches[edge_index[1]] #Source nodes (neighborhood)
x_res = x_j - x_i # [E(all), D]
x_out = torch_scatter.scatter(src=x_res,

index=edge_index[0], dim=0,
reduce=’max’) # [B*N, D]

x_out = x_out.reshape(B, N, D)
...

It is worth noting that a specific configuration of ViGHNN-
Ti achieves a Top-1 accuracy of 75.0%, however, this comes
at the cost of 9.7M parameters and 3.8B FLOPs. Thus, with
a comparable number of parameters and FLOPs, SViG-Ti is
still outperforming it.

D. COMPUTATIONAL COMPLEXITY OF SIMILARITY
THRESHOLDED GRAPH CONSTRUCTION
The computational complexity of the similarity matrix calcu-
lation isO(N 2∗D), since the similarity score is calculated for
every pair of nodes (thus N 2) and dot product computational
complexity is equal to the number of features per feature vec-
tor (henceD). It is worth mentioning that the similarity matrix
calculation is performed for the k-nn graph construction in
ViG [7]. The computational complexity of the threshold-
based graph construction for each layer isO(N 2), where each
similarity score, corresponding to a possible edge is normal-
ized and threshold-ed once, thus there is no need for sorting
(opposed to k-nn graph construction). Assuming that N ≈ D,
the complexity of the similarity matrix calculation would be
O(N 3). Thus, the complexity of the graph construction is
dominated by the similarity matrix calculation, which is done
in both k-nn and similarity thresholded graph construction. As
a result, our similarity thresholded graph construction does
not introduce a computational overhead. This complexity is
validated by the comparable number of FLOPs of our SViG-
Ti model and the baseline ViG-Ti model as seen in table 2.

E. ABLATION STUDIES
Since there are 2 newly introduced hyper-parameters, we first
show the effect of varying t1 while keeping dt constant, then
we show the effect of varying dt while keeping t1 constant.

1) Effect of varying the starting threshold t1
We show the effect of varying t1 in Table 3. Each data point
reported in table 3 represents a training experiment from

scratch on ImageNet with dt = 0.03 and t1 values in table
3. The reported results represent the validation accuracies.
The general trend seems to be that decreasing the thresholds
gets better results until it saturates at t1 = 0.86. The best
Top-1 validation accuracy was 74.6% at t1 = 0.86, 0.89.
Changing the starting threshold changes all the thresholds in
all Grapher modules by the same amount, which is why the
Top-1 validation accuracy does not drop when decreasing t1.

TABLE 3. Training SViG-Ti from scratch on ImageNet while varying t1, with
dt = 0.03. This table shows the Top-1 and Top-5 validation accuracy.

t1 0.86 0.89 0.91 0.93 0.96

Top-1 Accuracy 74.6 74.6 74.5 74.4 74.2
Top-5 Accuracy 92.1 92.2 92.2 92.1 92.2

2) Effect of varying the decrement dt

In this study, we show how varying dt affects the Top-1
validation accuracy in Table 4. The experimental results in
table 4 are reported for models that are trained from scratch
on ImageNet using t1 = 0.89 and dt values in table 4.
Having no decrement gives a relatively low Top-1 validation
accuracy. This shows the importance of having a decrement
and not using the same threshold for all layers. It also shows
that having a decrement helps fight oversmoothing. When
increasing the decrement dt , the Top-1 validation accuracy
seems to improve. The highest Top-1 validation accuracy is
74.6% at dt = 0.03. It is interesting that increasing the
decrement from 0.03 to 0.04 decreases the Top-1 validation
accuracy by 0.6%. This shows that a high decrement leads to
aggregation from irrelevant neighbors in later layers, which
hurts the Top-1 validation accuracy. This is due to the fact that
changing the decrement dt does not change the thresholds of
the Grapher modules uniformly, like changing t1. This is the

VOLUME 12, 2024 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



I. Elsharkawi et al.: SViG: A Similarity-thresholded Approach for Vision Graph Neural Networks

reason the model performance is more sensitive to changes in
dt than changes in t1.

TABLE 4. Training SViG-Ti from scratch on ImageNet while varying dt , with
t1 = 0.89. This table shows the Top-1 and Top-5 validation accuracy.

dt No Decrement 0.02 0.03 0.04

Top-1 Accuracy 74.1 74.2 74.6 74.0
Top-5 Accuracy 92.0 92.1 92.2 91.9

V. CONCLUSION
In our work, we proposed a powerful alternative to k-
nn through a decreasing similarity-thresholding technique,
which overcomes the bias that k-nn causes without increasing
the computation overhead. Ourmethod for graph construction
does not impose any graph topology over the network. More-
over, our framework proposed only two hyper-parameters (t1
and dt ) instead of picking a k for each layer. As a result
of our graph construction, our model SViG-Ti achieves a
competitive performance of 74.6% Top-1 validation accuracy
on a ImageNet, which is a robust benchmark. We propose
a more robust implementation for the aggregation to avoid
the constraint of having a fixed number of neighbors for each
node. We do that without increasing memory or computation
overhead. For future work, we plan on exploring the same
technique with pyramid architectures, and larger isotropic
models. We also hope that this work inspires more robust
graph construction methods that do not enforce assumptions
about the underlying graph topology.

REFERENCES
[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein et al., ‘‘Imagenet large scale visual
recognition challenge,’’ International Journal of Computer Vision, vol.
115, no. 3, pp. 211–252, 2015. 1, 2, 6

[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learning
applied to document recognition,’’Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998. 1

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
and N. Houlsby, ‘‘An image is worth 16x16 words: Transformers for image
recognition at scale,’’ ICLR, 2021. 1

[4] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,
J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic, and A. Doso-
vitskiy, ‘‘Mlp-mixer: An all-mlp architecture for vision,’’ arXiv preprint
arXiv:2105.01601, 2021. 1

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf 1

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2023. [Online].
Available: https://arxiv.org/abs/1706.03762 1

[7] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, ‘‘Vision gnn: An image is
worth graph of nodes,’’ in NeurIPS, 2022. 1, 2, 3, 4, 5, 6, 7

[8] W. L. Hamilton, R. Ying, and J. Leskovec, ‘‘Inductive representation
learning on large graphs,’’ in NIPS, 2017, pp. 1025–1035. 1

[9] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad,
‘‘Collective classification in network data,’’ AI magazine, vol. 29, no. 3,
pp. 93–93, 2008. 1

[10] N. Wale, I. A. Watson, and G. Karypis, ‘‘Comparison of descriptor spaces
for chemical compound retrieval and classification,’’ Knowledge and In-
formation Systems, vol. 14, no. 3, pp. 347–375, 2008. 2

[11] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, ‘‘Dynamic graph CNN for learning on point clouds,’’ CoRR,
vol. abs/1801.07829, 2018. [Online]. Available: http://arxiv.org/abs/1801.
07829 2

[12] T. N. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in ICLR, 2017. 2

[13] G. Li, M. Müller, A. K. Thabet, and B. Ghanem, ‘‘Can gcns go as
deep as cnns?’’ CoRR, vol. abs/1904.03751, 2019. [Online]. Available:
http://arxiv.org/abs/1904.03751 2, 3

[14] Y. Han, P. Wang, S. Kundu, Y. Ding, and Z. Wang, ‘‘Vision HGNN:
an image is more than a graph of nodes,’’ in IEEE/CVF International
Conference on Computer Vision, ICCV 2023, Paris, France, October
1-6, 2023. IEEE, 2023, pp. 19 821–19 831. [Online]. Available: https:
//doi.org/10.1109/ICCV51070.2023.01820 2, 6

[15] M. Munir, W. Avery, and R. Marculescu, ‘‘Mobilevig: Graph-based sparse
attention for mobile vision applications,’’ in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2023 - Workshops,
Vancouver, BC, Canada, June 17-24, 2023. IEEE, 2023, pp. 2211–2219.
[Online]. Available: https://doi.org/10.1109/CVPRW59228.2023.00215 3

[16] M. Munir, W. Avery, M. M. Rahman, and R. Marculescu, ‘‘Greedyvig: Dy-
namic axial graph construction for efficient vision gnns,’’ in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2024. 3

[17] W. Avery, M. Munir, and R. Marculescu, ‘‘Scaling graph convolutions for
mobile vision,’’ in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2024, pp. 5857–
5865. 3

[18] Y. Tian, H. Chen, C. Xu, and Y. Wang, ‘‘Image processing gnn: Breaking
rigidity in super-resolution,’’ in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2024, pp.
24 108–24 117. 3

[19] D. Hendrycks and K. Gimpel, ‘‘Gaussian error linear units (gelus),’’ 2023.
[Online]. Available: https://arxiv.org/abs/1606.08415 3

[20] Q. Li, Z. Han, and X.-M. Wu, ‘‘Deeper insights into graph convolutional
networks for semi-supervised learning,’’ in AAAI, 2018, pp. 3538–3545. 5

[21] M. Fey and J. E. Lenssen, ‘‘Fast graph representation learningwith PyTorch
Geometric,’’ in ICLR Workshop on Representation Learning on Graphs
and Manifolds, 2019. 5, 6

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., ‘‘Pytorch: An imperative style,
high-performance deep learning library,’’ NeurIPS, 2019. 6

[23] R. Wightman, ‘‘Pytorch image models,’’ https://github.com/rwightman/
pytorch-image-models, 2019. 6

[24] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,’’
arXiv preprint arXiv:1711.05101, 2017. 6

[25] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, ‘‘Randaugment: Practical
automated data augmentation with a reduced search space,’’ in CVPR
Workshops, 2020. 6

[26] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, ‘‘mixup: Beyond
empirical risk minimization,’’ in ICLR, 2018. 6

[27] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, ‘‘Cutmix:
Regularization strategy to train strong classifiers with localizable features,’’
in ICCV, 2019. 6

[28] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, ‘‘Random erasing data
augmentation,’’ in AAAI, vol. 34, no. 07, 2020, pp. 13 001–13 008. 6

[29] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and D. Soudry,
‘‘Augment your batch: Improving generalization through instance repeti-
tion,’’ in CVPR, 2020. 6

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. 6

[31] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q.Weinberger, ‘‘Deep networks
with stochastic depth,’’ in ECCV. Springer, 2016, pp. 646–661. 6

8 VOLUME 12, 2024

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/1904.03751
https://doi.org/10.1109/ICCV51070.2023.01820
https://doi.org/10.1109/ICCV51070.2023.01820
https://doi.org/10.1109/CVPRW59228.2023.00215
https://arxiv.org/abs/1606.08415
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


I. Elsharkawi et al.: SViG: A Similarity-thresholded Approach for Vision Graph Neural Networks

ISMAEL ELSHARKAWI received his BSc from
the American University in Cairo (AUC) in 2022.
He is also currently pursuing a MSc in Com-
puter Science at the American University in Cairo
(AUC). Ismael received the Alfi Scholarship for
both his Bachelor and Master’s degree at AUC.
His research interests are Computer Vision and
Graph Machine Learning. He has been working as
a Software Engineer in Siemens EDA since June
2022.

HOSSAM SHARARA joined the Department of
Computer Science and Engineering at The Amer-
ican University in Cairo (AUC) as an Assistant
Professor in July 2018. He got his BSc and MSc
degrees in computer science and engineering from
Alexandria University, Egypt, in 2004 and 2007,
respectively. He then joined the Department of
Computer Science at the University of Maryland,
College Park, USA as a research assistant in the
year 2007, from where he obtained another MSc

degree in 2010 and received his PhD degree in relational machine learning
and data ,ining in 2012 under the supervision of Prof. Lise Getoor. His PhD
research was partially supported by the Dean’s fellowship award, which
he was granted from the University of Maryland, College Park, in 2010.
From 2012 to 2018, Sharara worked as a senior engineer/research scientist
at Google (2012 - 2016), and Facebook (2016 - 2018). He returned to Egypt
in early 2018, joining Uber Egypt as a Senior Manager of Business and Data
Analytics.

AHMED RAFEA served as the Chair of the Com-
puter Science Department and the Vice Dean with
the Faculty of Computers and Information, Cairo
University. He also served as a Visiting Professor
with San Diego State University and National Uni-
versity, USA. He was the Principal Investigator of
several projects for developing Intelligent Systems
and Machine Translation in collaboration with Eu-
ropean and American Universities. He is currently
a Computer Science Professor and the Ex-Chair of

the Computer Science and Engineering Department, The American Univer-
sity in Cairo. He has led many projects aiming at using Artificial Intelligence
and Expert Systems Technologies for the development of the Agriculture
sector in Egypt. He has authored over 200 scientific articles in International
and National Journals, Conference Proceedings, and Book chapters. His
research interests are data, text and web mining, natural language process-
ing and machine translation, knowledge engineering, and knowledge-based
system development. Dr. Rafea was a member with the Center of Excellence
on Data Mining and Computer Modeling, sponsored by the Ministry of
Communication and Information Technology.

VOLUME 12, 2024 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3531691

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Related Work
	Methodology
	Notations
	Overview: SViG-Ti
	SViG-Ti Architecture
	Graph Construction
	Flexible Aggregation

	Experiments
	Dataset Description
	Experimental Setup
	Experimental Results
	Computational Complexity of similarity thresholded graph construction
	Ablation Studies
	Effect of varying the starting threshold t1
	Effect of varying the decrement dt


	Conclusion
	REFERENCES
	Ismael Elsharkawi
	Hossam Sharara
	Ahmed Rafea


