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ABSTRACT Assessing the invasiveness of thyroid nodules, particularly whether they have metastasized to
lymph nodes, is crucial for guiding treatment decisions. Current diagnostic methods, including ultrasound
imaging, are limited by operator dependence and interpretative variability, complicating accurate evaluation
of nodule invasiveness. To address these limitations, this study introduces the UTV-ST Swin Transformer,
a deep learning model that combines ultrasound video data with standardized clinical information to predict
the invasiveness of thyroid nodules. The model classifies nodules into three categories: non-invasive,
central lymph node metastasis (CLNM), and central plus lateral lymph node metastasis (CLNM+LLNM).
By analyzing ultrasound video features using the Video Swin Transformer and clinical data using a text
analysis module based on the KAN network, and then fusing these features, the model achieves a
classification accuracy of 82.1% and an average AUC of 94.2%. These results surpass the performance of
traditional methods, particularly in distinguishing different degrees of invasiveness, even under noisy
conditions. This study highlights the potential of the UTV-ST Swin Transformer model in improving the
accuracy of thyroid nodule assessment, reducing reliance on operator expertise, and providing a more
consistent and automated method for evaluating nodule invasiveness.

INDEX TERMS Papillary thyroid carcinoma (PTC), Cervical lymph node metastasis, Ultrasound imaging,
Kolmogorov-Amold Network, Video Abnormal Detection

I. INTRODUCTION
Thyroid cancer is the most common endocrine

metastasis have an average recurrence rate of 22%,
whereas those without metastasis have a recurrence rate of

malignancy, with its incidence continually increasing
worldwide, particularly the significant rise in papillary
thyroid carcinoma (PTC) [1]. Patients with PTC and
follicular thyroid carcinoma (FTC) have a 5-year overall
survival rate exceeding 98%; however, once it progresses
to anaplastic thyroid carcinoma (ATC), the median overall
survival drops to only a few weeks to months [2]. Late
detection and diagnosis of PTC increase the likelihood of
dedifferentiation, potentially progressing to ATC.
Cervical lymph node metastasis is the primary pathway of
thyroid cancer spread and a major factor contributing to
local recurrence [3,4]. Patients with lymph node
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only 2% [5,6]. Once distant metastasis occurs, the 10-year
overall survival rate decreases to below 50% [6]. While
prophylactic lateral neck lymph node dissection can
reduce the risk of missing metastatic lymph nodes, it
involves extensive surgical scope, increases the incidence
of complications, and reduces patients' quality of life.
Conversely, not performing dissection may miss some
metastatic cervical lymph nodes, affecting patients' long-
term survival [7,8]. Therefore, accurate preoperative
assessment of thyroid nodule invasiveness is crucial for
determining the surgical extent of lateral neck lymph node
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dissection, formulating individualized and rational
treatment plans, and improving patient prognosis [9,10].
Traditional ultrasound image classification methods are
mainly divided into contour-based and feature-learning-
based approaches. Although these methods perform
reasonably well in classification tasks, manual feature
extraction processes are complex, and results are
sometimes suboptimal. Some researchers have used
traditional machine learning algorithms [11-13] to analyze
ultrasound images, but this requires manual design of
feature extraction algorithms, making it difficult to apply
to large-scale medical data. In contrast, deep learning
constructs deep convolutional neural networks for big data
training, featuring automatic feature learning and strong
robustness. Building upon an in-depth study of existing
mainstream deep learning methods and our team's
previous research on thyroid nodule classification [14], we
propose a novel and reliable classification model — the
UTV-ST Swin Transformer. This method employs a
multimodal learning framework that combines video data
and standardized clinical information, focusing on the
nodule regions in videos to provide recommendations for
nodule classification and treatment decisions.
II. Related Work

A. Ultrasound thyroid classification method

Despite the diversity of thyroid nodules, research typically
focuses on the binary classification of benign and
malignant cases. Early studies primarily relied on machine
learning and statistical methods to analyze imaging,
clinical, and ultrasound features individually, with few
studies addressing the integration of multimodal data. To
address this limitation, a nomogram model was developed
that combines ultrasound and clinical data to predict the
risk of central lymph node metastasis in PTC patients.
This model utilizes grayscale imaging and six relevant
features, but its prediction accuracy is compromised due
to the absence of multimodal ultrasound data. He et al. [16]
retrospectively collected B-type ultrasound data from
patients at two centers, developing 28 models using seven
machine learning algorithms combined with four types of
imaging data: B-US, B-US + CDFI + RTE, CEUS, and B-
US + CDFI + RTE + CEUS. The results showed that the
diagnostic performance of the machine learning model
was comparable to senior radiologists but outperformed
junior radiologists. Hai Du et al. [17] conducted a
retrospective study involving 1,076 thyroid nodules from
817 patients across three institutions. They extracted
radiomics and deep learning features from ultrasound
images, constructing radiomics features (Rad sig) and
deep learning features (DL _sig). Feature selection was
carried out using Pearson correlation analysis and LASSO
regression. Additionally, clinical ultrasound semantic
features (C_US sig) were derived from clinical data and

ultrasound semantic information. The final model was a
nomogram combining these three feature types.

With the advancement of deep learning technology,
particularly convolutional neural networks (CNNs),
significant progress has been made in using computer
vision tasks to diagnose thyroid nodules. Miribi Rho et al.
[18] evaluated the performance of deep CNNs in
distinguishing benign and malignant thyroid nodules
smaller than 10 mm, comparing CNN diagnostic
performance with that of radiologists. The results
demonstrated that CNNs trained on thyroid nodules larger
than 10 mm performed better than radiologists in
diagnosing and classifying smaller nodules, especially
those < 5 mm. Chen Chen et al. [19] conducted a
multicenter retrospective study using ultrasound images
from four hospitals. They developed a CNN model to
classify thyroid nodules into solid vs. non-solid and
benign vs. malignant categories, with the Inception-
ResNet architecture achieving the highest AUC (0.94). Na
Zhang et al. [20] proposed a hybrid deep learning model
combining ultrasound and infrared thermal imaging to
classify thyroid nodules, offering a promising non-
invasive diagnostic method for assessing malignancy. Liu
et al. [21] developed a novel deep learning model,
DualSwinThyroid, = which  integrates = multimodal
ultrasound imaging data and clinical information to
predict cervical lymph node metastasis in PTC patients.
This model provides early and accurate identification,
enabling better strategic decisions regarding surgical
interventions for high-risk PTC patients.

B. Swin Transformer

Swin Transformer is a deep learning model derived from
the Transformer architecture [22], demonstrating great
potential in extracting features from various data types
[23-26]. It constructs a hierarchical structure by dividing
the input into non-overlapping windows and applying self-
attention mechanisms within each window. To capture
broader contextual information, Swin Transformer
incorporates a shifted window process in subsequent
layers. Studies have shown that Swin Transformer
outperforms traditional CNN architectures in many
applications [25,26].

In video wunderstanding tasks, the Video Swin
Transformer extends the two-dimensional Swin
Transformer into three dimensions, allowing it to directly
process video data [26]. Compared to commonly used
temporal models like RNNs, Swin Transformer-based
models effectively address the vanishing gradient problem.
Moreover, by treating each 3D block of a video as a token,
they provide a more compact and efficient representation
for video processing. In contrast, RNNs require a large
number of input tokens to achieve similar video
representations [26].
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C. Kolmogorov-Amold Network

Kolmogorov-Amold Networks (KANs) are based on the
Kolmogorov-Arnold representation theorem, which states
that any multivariate continuous function can be
represented as a sum of compositions of univariate
continuous functions [37]. This provides both the
existence and a constructive method for such
representations.Unlike  MLPs, which apply activation
functions to the nodes, KANs place learnable activation
functions on the edges between nodes. These activation
functions are based on univariate B-splines, which replace
the fixed activation functions (e.g., ReLU or Sigmoid)
used in MLPs, allowing KANs to better model highly
nonlinear relationships.Similar to MLPs, a k-layer KAN
can be described as a nested structure of multiple KAN
layers, as shown in Equation (1):

KAN(Z)=(®,_, Ab, , 4. M, M,)Z. (1)

KANS consist of interconnected edges with learnable B-
spline activation functions, which evolve during training
by dynamically adjusting the number of grid points. This
flexibility improves the model's accuracy and its ability to
capture complex data patterns. By eliminating linear
layers and using parameterized activation functions at the
edges, KANs offer a more expressive and interpretable
framework for modeling complex data relationships.

D. Model Fusion

In multimodal learning, model fusion strategies mainly
include early fusion, slow fusion, and late fusion, each
differing in data integration methods [27]. Karpathy et al.
[28] compared these fusion strategies, particularly in the
context of capturing temporal and spatial dependencies in
video understanding. Their research indicates that slow

fusion, which acquires global information at a higher level, rxmxwx3

outperforms the alternative schemes of early and late
fusion. Feichtenhofer et al. [29] used pre-trained neural
networks to extract features from different data sources
and performed late fusion using CNNs. Shoukat et al. [30]
employed methods such as linear regression to perform
weighted averaging of scores from different models to
achieve late fusion. When dealing with multimodal sub-
models of varying complexity, the VLMo model [31]
proposed a staged training method: first training the more
complex models, freezing their weights, and then training
the simpler models to capture complementary information.

Despite the progress achieved by existing methods,
shortcomings remain in practical applications. Building on
our team's previous research, this paper proposes a novel
classification method for thyroid nodule invasiveness,
further deepening the multimodal fusion of ultrasound
image features and standardized text features. We
extended the application of ultrasound images to short
video analysis and optimized the model's ability to
classify invasive nodules by incorporating validated

feature fusion strategies. Experimental results demonstrate
that the proposed method surpasses existing approaches in
both classification accuracy and model robustness,
effectively enhancing the prediction of thyroid nodule
invasiveness.

lll. UThyroV-ST Swin Kansformer

A. Overall Architecture

UTV-ST Swin Kansformer is a model specifically
designed to predict thyroid nodule metastasis based on
ultrasound videos. The architecture of the model is shown
in Figure 1. The "UTV" in the name stands for
"Ultrasound Thyroid Video," indicating that ultrasound
videos are the primary input data. "ST" refers to
"Standardized Text," highlighting the inclusion of
standardized patient text data to enhance the model's
interpretability and accuracy. The "Swin Kansformer" is
an innovative enhancement that combines the Video Swin
Transformer with the KAN network, creating a robust
multimodal learning framework.

A successful multimodal predictive model must
effectively extract complementary features from each data
source and integrate information across multiple
modalities. The UTV-ST Swin Kansformer consists of
two main components: the Video Swin Kansformer, which
processes video data, and the Clinical Kansformer, which
processes standardized text data. To combine the outputs
from these components, the model uses a staged slow
fusion method in the Classification Head, a technique
proven effective in previous studies [32].

FIGURE 1. Overall architecture of UThyroV-ST Swin Kansformer
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B. .Video Swin Kansformer

The Video Swin Kansformer Blocks are formed by
combining the Video Swin Transformer [33] and the KAN
network, specifically designed for thyroid ultrasound
detection in video data, as shown in Figure 2. These
blocks utilize multi-head self-attention (MSA) modules
based on 3D shifted windows from the Video Swin
Transformer and replace the fully connected MLP layers
with the KAN network. Specifically, each Video Swin
Kansformer Block includes an MSA module based on 3D
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shifted windows, followed by a KAN network. Layer
Normalization is applied before each module, and residual
connections are incorporated after each module. The
computational formula for the Video Swin Kansformer
Blocks is provided in Equation (2).
Z' =3DW -MSA(LNZ" )@z
Z' =KAN(LNZ'))®Z'
7" = 3DSW - MSA(LN(Z' ))® Z'
Z"' = KAN(LN@Z'*' )@ 2"

@)

In Formula (2), 3D W-MSA refers to 3D Window-Based
Multi-Head Attention, and 3D SW-MSA denotes 3D
Shifted Windows Multi-Head Self-Attention [33].By
integrating the operations of the KAN network, redundant
operations are reduced while preserving the dependencies
necessary for capturing adjacent features. This not only
enriches contextual information and enhances the model's
expressiveness but also slightly reduces computational
complexity.
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FIGURE 2. Anillustration of two successive Video Swin Kansformer
blocks

The Video Swin Kansformer is designed to effectively
capture both spatial and temporal information in video
data. Video processing is conceptually similar to time
series analysis but extended to an additional spatial
dimension. As shown in Equation (3), the video data
consists of T frames, each with HxWx3 pixels. In the
Video Swin Kansformer, each 3D patch of size 2x4x4x3
is treated as a token. This results in T/2xH/4xW/4 3D
tokens, each containing 96-dimensional features. A linear
embedding layer is then applied to project the features of
each token to an arbitrary dimension denoted by C.

VERTXHXWX:’J (3)

Consistent with existing techniques [34,35] and
considering the characteristics of ultrasound data in this
study, downsampling is not performed along the temporal

dimension. This decision allows the model to maintain the
hierarchical structure of the original Swin Transformer
[36], which consists of four stages. Each stage performs
2x spatial downsampling in the patch merging layer. The
patch merging layer concatenates features from each
group of 2x2 spatially neighboring patches and applies a
linear layer to project the concatenated features to half of
their original dimensions..

C. Clinical Kansformer Blocks
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FIGURE 3. pykan LAYER structure diagram

Based on the study of KAN, this research developed the
Clinical Kansformer Blocks to extract key features from
clinical data. The structure of these blocks is shown in
Figure 3. To accelerate the computational speed of the
original pyKAN implementation [39], we utilized module
code from the Efficient KAN project [38].

This architecture further optimizes the Transformer
structure by incorporating a 1D Conv-KAN module and a
Linear-KAN block. The design philosophy behind these
modules is to replace traditional n-dimensional
convolutional layers and linear multiplication operations
with KAN operations [40]. In addition, the architecture
leverages Multi-Head Attention to obtain attention
distributions across different subspaces of the input
sequence, allowing for a more comprehensive capture of
potential pathological data associations. Specifically, the
architecture follows these steps: first, it standardizes the
input data using Layer Norm; then, the 1D Conv-KAN
module extracts features, which are followed by a residual
network after ReLU activation. Layer Norm is applied
again to balance the data, and Multi-Head Attention is
used to extract associations among pathological data.
Finally, Layer Norm and the Linear-KAN block replace
the fully connected layers commonly found in traditional
neural networks and are followed by another residual
network to complete feature processing. The Clinical
Kansformer Blocks are defined as shown in Equation (4):

X' =Relu(ID Conv - kan(LN(X'" )))® X"
X" = Attention(LN(X' ))® X' )
X™? = Linear - kan(LN(X ™' ))® X"

D. Model Fusion for UThyroV-ST Swin Kansformer
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Due to the significant differences in input token
requirements between detection video data and clinical
text data, the UTV-ST Swin Kansformer requires a
specialized feature fusion approach. While four fusion
methods have been explored in the literature [32] for
combining one-dimensional temporal and video data, we
adopted a staged slow fusion method, building on these
successful approaches, to merge the data. This process is
illustrated in Figure 4..

Figure 4(a) shows the first stage of data fusion, where
the Video Swin Kansformer Blocks are trained with
labeled video data to extract spatial and temporal features.
Figure 4(b) depicts the second stage, where the Clinical
Kansformer is trained using standardized text data. In
Figure 4(c), the parameters of the Video Swin Kansformer
Blocks are frozen to preserve the features they have
learned, while a Classification Head integrates the feature
representations from both Kansformer Blocks. This fusion
process, executed within the Classification Head, is
trained alongside the Clinical Kansformer, ensuring that
video information serves as the primary feature and
standardized clinical information acts as supplementary.
This approach enables the model to achieve effective
diagnostic results.

[ 'Video Data ] [ Structured Text Data ] [ Video Data J [ Structured Text Data ] [

- g
|| Patent ‘

| 2.Adjust video length
m : 9 i ‘

I

i
Video Swin | Clinical Kansformer |~ 1 Video Swin
Kansformer i Blocks ! | Kansformer

H
i | Clinical Kansformer
! 7
]

Qlassification head

— s
Result

Result

FIGURE 4. Segmented slow fusion method
IV. EXPERIMENT

A. Data Acquisition and Processing

We retrospectively collected patient data from the First
Hospital of Shanxi Medical University, including
individuals ~ who  underwent thyroid ultrasound
examinations followed by surgical treatment between July
2022 and July 2023. The study was approved by the
Ethics Committee of the First Hospital of Shanxi Medical
University, and informed consent was waived.

During data collection, we strictly adhered to
predefined inclusion and exclusion criteria. The inclusion
criteria were: (1) patients who underwent total or subtotal
thyroidectomy and neck lymph node dissection; (2)
nodules pathologically confirmed as papillary thyroid
carcinoma (PTC) through surgery; (3) patients who had
routine ultrasound examinations within two weeks before
surgery, with clear and complete original detection videos
available. The exclusion criteria were: (1) patients who
had received radiofrequency ablation, radiotherapy, or
chemotherapy before surgery; (2) cases where ultrasound
images of the target tumor were compromised by artifacts;

(3) patients with other concurrent malignancies; (4)
patients with a history of thyroid surgery.

According to the inclusion and exclusion criteria, a total
of 346 patients were included in the study, with 352
thyroid nodules captured in 346 ultrasound videos. The
dataset is comprehensive, containing not only the
ultrasound videos but also detailed clinical information
based on the postoperative pathological results for all 346
patients. The nodules were classified into three categories
based on their metastatic status: Class I (no metastasis),
Class II (metastasis to the central cervical lymph nodes),
and Class III (metastasis to both central and lateral
cervical lymph nodes). This rich dataset, combining real-
time ultrasound imaging and clinical data, reflects a wide
array of clinical scenarios and metastatic conditions,
making it especially valuable for training and validating
our model. The processing methods and detailed
information of the clinical data can be found in
Supplementary Table S1.

(a) Data Collection

(b) Video Processing

1.Eliminate invalid
boundaries

First Hospital of Shanxi
Medical University ... Tamsterto
Central District

& Transferto the
---central area and
Iateral neck

g Clinical ¥ =
Records (
11 """ 3.Unified clarity
= Video data N "
0y ‘Thyroid

-+ Notransfer

.. Corresponding
patient labeling

S Ultrasonography

FIGURE 5. Workflow for building a dataset. (a) The data comes from
patient thyroid ultrasound examination videos collected by the First Hospital
of Shanxi Medical University. (b) The videos are standardized through
processing software and systems to ensure that they are suitable for
algorithm processing. (c) Expert doctors at the First Hospital of Shanxi
Medical University carefully identify and manually annotate each video based
on the patient's puncture biopsy results.

During data processing, several predictive features were
initially classified as categorical variables or Boolean
values. These data were then transformed to meet the
model’s requirements. Specifically, variables such as
gender and whether the aspect ratio is greater than 1 were
encoded in a binary (0-1) format. For instance, if the
gender is "male," the value is assigned as 1, and if
"female," the value is assigned as 0. This transformation
converts categorical variables into binary format, making
them easier for the algorithm to process. For continuous
variables, such as size and age, feature scaling was
applied to normalize the measurement scales of the
various features. The normalization process can be
expressed using the following formula (5):

x'=X=H (5)
o

where X is the original value, p is the mean of the
dataset, and o is the standard deviation. This
standardization ensures that the albumin levels have a
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mean of 0 and a standard deviation of 1, enhancing
algorithm performance and expediting model convergence.

For this study, we performed data preprocessing. First,
irrelevant information from the videos, such as invalid
borders and machine model details, was removed. Then,
the video lengths were standardized. Finally, we adjusted
the video clarity. After preprocessing, all video data were
standardized to a length of 5 seconds. For longer videos,
multiple 5-second clips were extracted, while shorter
videos were looped to reach the 5-second duration. The
videos were standardized to a resolution of 224x224
pixels, ensuring that the nodules in the detection images
were clearly visible (Figure 5).

B. Experimental Settings

The experiments were conducted on a server platform
with specific hardware configurations, using the PyTorch
framework for algorithm development and model training.
The hardware specifications included an 17-14700k CPU,
128 GB of RAM, and two RTX 4090 Ti GPUs (each
equipped with 24 GB of VRAM), providing an efficient
computational environment. The dataset was randomly
split into training and testing sets in a 7:3 ratio, and five-
fold cross-validation was employed during training. The
standardized text information for each patient was
processed using a consistent classification scheme.

The Clinical Kansformer utilized an embedding
dimension of 24 and a window size of 4 to balance the
model's receptive field. Each input data point was treated
as an initial patch to ensure fine-grained analytical
capability. The architecture consisted of a single module
and employed four attention heads at all levels. A
stochastic depth rate of 0.1 was introduced during training
to improve regularization. The batch size was set to 500,
and the Adam optimizer was used with an initial learning
rate of 0.0005, decaying to 0.0001 after 100 epochs. The
model was gradually optimized as it converged, and
training continued until the validation loss reached its
minimum.

The Video Swin Kansformer Blocks comprised four
modules, with the number of attention heads in each
module set to 4, 8, 16, and 32, respectively. A stochastic
depth rate of 0.1 was employed during training, and the
AdamW optimizer was used with a batch size of 8 and an
initial learning rate of 0.001. The learning rate schedule
was divided into two stages: initially, linear scaling of the
learning rate using the LinearLR scheduler from epochs 0
to 200; thereafter, the learning rate was reduced to 90% of

its previous value every 20 epochs, followed by validation.

The epoch with the minimum validation loss was selected
as the final model, ensuring that the model converged to
an optimal solution.

For data fusion, a batch size of 8 was used, and the
SGD optimization algorithm was chosen with a learning

rate of 0.0001. Since the Video Swin Kansformer did not
require further training, its batch size was set to 2000.

C. Classification Performance
To thoroughly evaluate the performance of different
models on the clinically imbalanced thyroid ultrasound
dataset, we employed the following standard evaluation
metrics: accuracy, precision, recall, and Fl-score,
calculated using Equation (6).
TP+TN

TP+ FP+FN+TN

TP
TP+ FP
Recall=L (©6)

TP+TN

F =2 Precisionx Recall

Accuracy =

Precision =

Precision+ Recall

True positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN) are defined as follows: TP
and TN represent samples correctly predicted as positive
and negative, respectively, while FP and FN represent
samples incorrectly predicted as positive and negative,
respectively. In addition, we assessed the models using the
average AUC [41], derived from the classification
confidence.

The Clinical Kansformer demonstrated outstanding
performance in invasiveness classification, with both
accuracy and average AUC surpassing other benchmarks
(Table 1). These results indicate that the Clinical
Kansformer within the UTV-ST framework set a new
state-of-the-art performance standard in classifying

standardized clinical information.
TABLE 1
COMPARISON OF CLASSIFICATION RESULTS OF DIFFERENT CLASSIFIERS ON
STANDARDIZED DATA

Ave. . Ave.
Method Ace. Precision Recall F1 score AUC
Logistic 0692  (0.850.65050)  (0.83.0.63,045)  (0.84.0.64,047)  0.675
Regression
De;n:;on 0716 (0.87,0.680.53)  (0.85,0.67.048)  (0.86,0.67.0.50)  0.700
Naive 0732 (0.88,0.70,055)  (0.87.0.69,0.50)  (0.87.0.69,052)  0.715
Bayes
XGBoost 0765  (0.90,0.73,058)  (0.89,0.72,0.54)  (0.89,0.72.0.56)  0.740
SVM 0773 (092,0.75060)  (0.91,0.740.56)  (0.91,0.750.58)  0.755
Random 0790  (0.940.77,0.63)  (0.930.76,0.60)  (0.93.0.76,0.61)  0.770
Forest
MLP 0802 (095079065  (0.940.78,0.62)  (0.940.78,0.63)  0.785
Clinical
0823 (0.97,0.82,0.68 0.96,0.81,0.65 0.96,0.81,0.66)  0.837
Kansformer ( ) ( ) ( )

The proposed UTV-ST Swin Kansformer was compared
with other benchmark models, and the results are shown
in Table 2. To ensure fairness, all models used the same
training, validation, and testing datasets, and the
configurations of the benchmark models strictly followed
the specifications in the original literature. In all
multimodal fusion processes, an MLP was consistently
used as the classification method for standardized clinical
information. Table 3 shows that the proposed model
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outperforms all benchmark models in terms of accuracy,
AUC, and Fl-score. These results highlight the model's
excellent performance in classifying thyroid nodule
invasiveness.

Comparison among models reveals that our model
surpasses most benchmark models in AP and APS50
metrics, notably achieving 94.2% in AP50. Additionally,
the FLOPs and number of parameters are relatively
reasonable, indicating that the model strikes a good
balance between performance and computational

efficiency.
TABLE 2
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON MULTIMODAL
JOINT ULTRASONIC TESTING DATASET

Method Pretrain AP™ AP Views FLOPs Param
TimeSformer [42] ImageNet-21K 81.8 91.1 1x3 1703 1214
SlowFast R101+NL [43] - 78.2 92.3 1x3 234 59.9
X3D-XXL [44] 76.5 91.7 1x1 129 40.2
ViViT-L/16x2 [45] ImageNet-21K 79.1 92.5 - 903 352.1
MViT-B, 32x3 [46] - 81.0 92.8 1x3 455 36.6
MViT-B, 64x3 [46] 80.3 93.4 1x3 236 236
Video swin Transformer [33] ImageNet-1K 80.8 93.8 1x3 321 88.8
SwinVid[47] ImageNet-1K 81.1 93.7 1x3 372 186
YOLOv11x[48] ImageNet-1K 72.1 86.2 - 194.9 56.9
DuST([32] ImageNet-1K 80.9 92.5 1x3 257 434

Our ImageNet-1K 82.1 94.2 1x3 353 75.4

D. Ablation Study

Table 3 presents the contributions of various components
integrated into the UTV-ST Swin Kansformer network for
detection on the standardized text-video thyroid dataset.
During testing, the fusion methods from the Dual Swin
Transformer paper were adopted. The baseline model used
Swin Transformer-B as its foundation, and when
calculating accuracy, the view setting was 1x3. In the
absence of the Clinical Kansformer, an MLP was used as

a substitute.
TABLE 3
:PERFORMANCE OF DIFFERENT COMPONENTS IN THE UTV-ST SWIN
KANSFORMER NETWORK

Video Swin Kansformer

Clinical val val
Method Video Swin Kansformer AP AR,
KAN
Transformer
1 75.4 83.7
2 \ 77.2 85.0
3 78.6 87.1
4 v \ 80.3 89.5
5 \ v 81.2 92.3
6 \ N \ 82.1 94.2

The results in Table 3 indicate that when the UTV-ST
Swin Kansformer model is unimodal (Model 5), the
accuracy reaches 81.2%, and the mean Average g is
92.3%, demonstrating good performance. Under
multimodal fusion (Model 6), the results are optimal, with
the AP reaching 82.1% and  5q as high as 94.2%. These
findings provide important experimental evidence for the
optimization of the UTV-ST Swin Kansformer
architecture, suggesting that a reasonable combination of

modules can significantly enhance the model's ability to
process detailed features.

E. Visualization of the detection results

We evaluated the multimodal ultrasound dataset using the
UTV-ST Swin Kansformer model, and the results are
shown in Figure 6. The frames with the highest
confidence in the video were displayed using Python's
Matplotlib library. From the figure, it can be observed that
the confidence for Class 2 images was relatively low, but
the overall classification accuracy was high, particularly
showing advantages in classifying non-invasive nodules.
The UTV-ST Swin Kansformer performs excellently in
detecting the invasiveness of thyroid nodules, capable of
accurately  distinguishing nodule invasiveness and
effectively extracting key lesion features from combined
visual and textual data.

To gain deeper insights into the key factors influencing
the invasiveness of thyroid nodules, we conducted a
comprehensive analysis of the Clinical Kansformer
Blocks and identified the most influential factors
contributing significantly to nodule invasiveness. This
analysis also aids physicians in assessing the necessity of
considering certain factors when evaluating patients
(Supplementary Figure S1). As shown in the figure, age,
adjacency or invasion (adjacent to or infringing upon),
and suspicious lymph nodes account for a substantial
proportion.

Class:0  prob:0.94 Class:1 prob:0.89

FIGURE 6. Multimodal ultrasound evaluation results

F. Limitations and shortcomings

Despite the promising results, there are some limitations
that should be addressed for broader clinical applicability.
First, the variability in data quality, including differences
in imaging devices and patient demographics, could affect
the model's generalizability to real-world clinical
scenarios. While the datasets used in this study were
extensive, they may not fully capture the diversity of
conditions encountered in diverse clinical environments.
Expanding the dataset to include more varied patient
profiles and imaging conditions, along with employing
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data augmentation techniques, could improve the model's
robustness and generalizability.

Another limitation is the computational complexity of
the model, which presents challenges for deployment in
resource-constrained clinical settings. The large number
of parameters and high memory requirements could make
it difficult to apply the model in real-time applications. To
address this, future work will focus on model optimization
techniques, such as pruning, quantization, or knowledge
distillation, to reduce its size and improve efficiency
without sacrificing accuracy. These improvements will
make the model more feasible for use in clinical
environments with limited computational resources.

V. Conclusion

In this study, we proposed the UTV-ST Swin Kansformer
model, specifically designed to assess the invasiveness of
thyroid nodules by integrating multimodal data, including
ultrasound videos and standardized clinical information.
The main advantage of this model is its ability to combine
the spatial and temporal information of ultrasound videos
with key clinical data, providing a comprehensive
understanding of nodule invasiveness. This integration
reduces reliance on operator expertise, which is a common
limitation in ultrasound diagnosis.

Although the UTV-ST Swin Kansformer model
demonstrates excellent performance, it does have some
limitations. First, it relies on a specialized dataset, and the
availability of public data that fits the model * s
requirements is relatively limited. This constraint affects
its generalizability across different populations and
imaging devices. Second, the model ’ s performance can
still be improved, particularly in extremely complex or
low-quality imaging conditions. Additionally, the
computational complexity of the model is high, which
may hinder its real-time application in resource-limited
clinical settings. Future research should focus on
enhancing both the robustness and efficiency of the model.
Increasing the size and diversity of the dataset, especially
by including more complex cases and data from various
devices, will help improve the model’s generalizability.
Simultaneously, optimizing the computational efficiency
is crucial to ensure its applicability in resource-
constrained environments. There is significant potential in
integrating real-time diagnostic capabilities, and exploring
the application of this model in other medical imaging
fields could yield promising results.
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