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ABSTRACT In automatic control systems, sensors and cameras are often used to capture images of
the environment or processes being monitored. The quality of these images is paramount as it directly
affects the system’s ability to accurately interpret and respond to the visual information. Image Quality
Assessment (IQA) is a crucial metric for intelligent control systems and computer vision tasks, such as
surveillance, restoration, and fingerprint identification, significantly advancing algorithm development in
these areas. Recently, transformer-based algorithms have excelled in computer vision, particularly in image
classification, surpassing convolutional neural network (CNN)methods. To enhance IQA using transformers,
we propose Swin-MIQT, a multi-scale spatial pooling transformer with shifted windows. As a no-reference
(NR) IQA method, Swin-MIQT processes images at their original resolution without resizing or cropping,
unlike standard vision transformers. By using shifted windows, we reduce computational load through
efficient self-attention processing. Additionally, a spatial pyramid pooling layer captures diverse image
quality information, improving IQA accuracy for distorted images. Comprehensive experiments show that
Swin-MIQT achieves state-of-the-art performance on three synthetic distortion databases (LIVE, LIVEMD,
TID2013) and competitive results on three authentic distortion databases (LIVE Challenge, KonIQ-10K,
SPAQ).

INDEX TERMS Image quality assessment, multi-scale, no-reference/blind, spatial pooling, shifted window,
transformer.

I. INTRODUCTION

In the digital network monitoring and intelligent control sys-
tems, a vast number of digital images are generated daily
across various electronic devices, such as smartphones, cam-
eras, and computers [1]. However, these images are often
subjected to a range of distortions during acquisition, pro-
cessing, transmission, storage, and display [2]. As a result,
assessing the perceptual quality of digital images becomes a
crucial task. Image quality assessment (IQA) seeks to assign
a quantifiable quality score to each distorted image, with
this score closely correlating to human perception of image
quality. IQA is widely used in many computer vision tasks:
(a) quality screening of image capturing systems [3], e.g.,
face recognition and fingerprint recognition; (b) imaging
systems [4], e.g., balancing between the used CT doses and
CT image quality in low-dose CT imaging, and multi-modal

image registration and fusion systems; (c) search engines
regard the weighted sum of image quality and content indexes
as a ranking indicator to sort the searched images, and then the
image with the highest quality and most relevant content will
be listed first for end-users [5]. These application scenarios
enumerated above drive IQA forward and vice versa.

IQA is usually divided into subjective IQA and objective
IQA. Although subjective IQA through subjective experi-
ments can obtain the quantified quality scores of damaged im-
ages which are consistent with human visual system (HVS), it
is very time-consuming and money-consuming to implement.
Due to the reasons mentioned above, subjective IQA can only
be applied in laboratory environment and is difficult to be
used for large-scale images. The purpose of objective IQA
is to design a computational model that is consistent with
HVS, where the model can automatically evaluate the quality
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of images. Accordingly, considering economy and efficiency,
objective IQA is of great research value. In recent years,
although many objective IQA models [6]–[14] have been
proposed to promote the development of IQA community,
and can achieve good results for dealing with natural images
on synthetic distortions, they perform poorly for authentically
distorted and content-specific images. According to the used
information amount of each reference image, these models
can be divided into three types: full-reference IQA (FR-IQA)
for the whole information of each reference image used,
reduced-reference IQA (RR-IQA) for part information of
each reference image used, and no-reference/blind IQA (NR-
IQA/BIQA) for without reference images used. In fact, most
of the images we receive and send have no the corresponding
pristine reference images, which makes NR-IQA more prac-
tical and valuable. Nowadays, NR-IQA is a research focus in
the field of IQA. Notably, for quantifying the quality of some
content-complex and scene-specific images which have the
corresponding reference images, FR-IQA can perform better
than NR-IQA.

In the era of machine learning, the blood of IQA task is
the labeled databases with mean opinion scores/differential
mean opinion scores (MOSs/DMOSs), and the evolution of
these databases reflects the development trend and research
status of IQA industry.

The early IQA databases are artificially synthesized, and
their sizes are small, e.g., IVC [15], LIVE [16], and CSIQ
[17]. Models designed and trained on these synthetic im-
ages are limited and their test results on real-world distorted
images are poor. In order to improve the performance of
models tackling authentic images, some large-scale databases
in the wild have been created recently, e.g., KonIQ-10K [18],
SPAQ [19], and PaQ-2-PiQ [20], which bring a great chal-
lenge to IQA. Some NR-IQA approaches use hand-crafted
features [21], [22] or learned features from convolutional
neural networks (CNNs) [23], [24] to represent the perceptual
quality for distorted images, and then project these extracted
features into quality scores by utilizing support vector regres-
sion (SVR). Some NR-IQA approaches avoid using SVR to
achieve end-to-end architecture, e.g., CNN-based models [1],
[25], [26], ranking-based models [27]–[29] for mitigating the
shortage of available training data, and generative adversarial
networks (GANs) based models [30], [31].

Recently, transformer-based algorithms [32], [33] have at-
tained competitive performance on IQA. They have a com-
mon merit that multi-resolution images can be received as
inputs without cropping or resizing. Transformer [34] is char-
acterized by self-attention mechanism which computes the
interaction of image patches. How to improve the predicted
accuracy further in accordance with HVS highly is very im-
portant.

In this paper, we introduce a multi-scale spatial pooling
image quality transformer, named Swin-MIQT, designed to
quantify the quality of distorted images in an end-to-end
manner using shifted windows. Swin-MIQT demonstrates
impressive results across six public IQA databases. For im-

age inputs, we initially select ResNet50 [35] as the image
encoding module to obtain embedded features. Subsequently,
we employ a spatial pyramid pooling layer [36] to generate
multi-scale representations of these embedded features. To
mitigate the computational complexity of the transformer, we
conduct multi-head self-attention (MHSA) processing within
each shifted window, enabling the model to learn global
features related to perceptual quality [37]. For six benchmark
databases, our proposed model Swin-MIQT achieves both
state-of-the-art (SOTA) performance on three synthetically
distorted databases (LIVE [16], LIVEMD [38], and TID2013
[39]) and competitive performance on three authentically
distorted databases (LIVE Challenge [40], KonIQ-10K [18],
and SPAQ [19]).
The remainder of this article is organized as follows. Sec-

tion 2 reviews the latest research findings on IQA, especially
transformer-based variants for IQA. Section 3 details the
architecture of proposed model Swin-MIQT. Section 4 details
the experimental results, and conducts ablation experiments
to show the impacts of loss functions, multi-scale representa-
tions, and hyper-parameters. Finally, we conclude the whole
article in Section 5.

II. RELATED WORKS
With the rapid development of semi-conductor industry, the
cost of computing power is keeping down, which makes
big models popular to deal with practical problems. In this
section, we detail the latest research findings on perceptual
IQA.
Recently, some models based on weight distribution [26],

[41], [42] are proposed to tackle both synthetically and au-
thentically distorted images. Most of them utilize a deep con-
volution network to learn perceptual quality representation
for images, and then the learned representation is projected
into a quality score by using a multi-layer perceptron (MLP)
module. However, the convolution operation can only cap-
ture fine-grained feature and cannot capture coarse-grained
feature for images. In order to solve the limitation of con-
volutional operation, self-attention mechanism derived from
transformer [34] is introduced to extract both local and global
features. Transformer [34] is a natural language processing
(NLP) model proposed in 2017, and it has now become a
paradigm for language modeling, image classification, object
detection, and semantic segmentation. Since transformer was
introduced into vision tasks, many representativemodels have
been produced, such as DETR [43], ViT [44], DeiT [45],
and Swin Transformer [37]. Transformer-based models have
shown strong performance, and broken the situation of CNNs
dominating visual tasks.
IQT [46] is a champion model of the NTIRE 2021 Chal-

lenge on perceptual IQA at CVPR 2021 [47]. The challenge
uses expanded PIPAL database [48] as benchmark, which
contains outputs of GAN-based image restoration or GAN-
based compression algorithms. IQT [46] uses Inception-
Resnet-V2 [49] pre-trained on ImageNet [50] with fixed
weights to extract image features, and then uses classical en-
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FIGURE 1: Overview of proposed Swin-MIQT. SPLayer and R mean spatial pooling layer and representation modules
respectively.

TABLE 1: Details regarding six databases utilized.

Database Year Distorted type No. of No. of No. of Distorted types of Degraded levels of Rating MOS/DMOSreference images distorted images distortion types each image each distortion type distribution
LIVE [16] 2006 Synthetic 29 779 5 1 5∼7 No DMOS[0,100]
LIVE MD [38] 2012 Synthetic 15 480 3 2 4 Yes DMOS[0,100]
TID2013 [39] 2013 Synthetic 25 3,000 24 1 5 No MOS[0,9]
LIVE Challenge [40] 2016 Authentic 0 1,169 N/A N/A N/A No MOS[0,100]
KonIQ-10K [18] 2018 Authentic 0 10,073 N/A N/A N/A Yes MOS[1,5]
SPAQ [19] 2020 Authentic 0 11,125 N/A N/A N/A No MOS[0,100]

coder, decoder, andMLP headmodules to predict image qual-
ity. TRIQ [32] uses ResNet50 as the convolutional backbone,
and achieves arbitrary resolution inputs by adopting adaptive
position encoding based on transformer.MUSIQ [33] predicts
quality score for each image by using the corresponding
multi-scale inputs, which include the original image and its
variants of different resolutions with the same aspect ratio.
MANIQA [42] utilizes transposed attention and scale swin
transformer blocks to strengthen global and local interaction
of extracted features.

III. SWIN-MIQT FOR IMAGE QUALITY ASSESSMENT
In this section, we first depict the proposed NR-IQA model,
Swin-MIQT, which is illustrated in Fig. 1, and then detail the
loss functions which we used for training Swin-MIQT.

A. MODEL ARCHITECTURE
Swin-MIQT is a transformer-based variant which mainly
consists of image encoding (IEncoding), multi-scale spatial
pooling (MSPooling), swin-transformer blocks (SBlocks),
feature fusion (FFusion), and score regression (SRegression)
modules. These modules will be detailed below, along the
pipeline of the proposed model.

For each received image X ∈ RC×H×W , ResNet50 fol-
lowed by a 1 × 1 convolutional layer is used as image en-
coding module to embed patch-wise information, where the

1 × 1 convolution aims to project the channel number of
ResNet50’s output into D. The embedded feature is denoted
by

F1 = fIEncoding(X) = Conv1×1(ResNet50(X)). (1)

Multi-scale spatial pooling module consists ofN spatial pool-
ing layers (SPLayers) in a parallel manner, where each layer
achieves one different scale representation. The i-th represen-
tation is denoted by

Ri = SPLayeri(F1). (2)

The i-th spatial pooling layer SPLayeri projects F1 into a
resolution-specific representaion Ri ∈ RD×Hi×Wi . In order to
remain the positional information of distorted image, we fol-
low traditional transformer adding the position embeddings
for each representation. We follow MUSIQ [33] to define a
learnable position matrix M ∈ RG×G, where each element in
M is a vector of D dimensions. For each pixel-wise patch at
position (j, k) in Ri, it will be projected intoM proportionably
at position (mj,mk), namely satisfying

j
Hi

=
mj

G
,
k
Wi

=
mk

G
. (3)

In order to remain scale information inspired by MUSIQ, we
define N learnable scale vectors with D dimensions for N
representations respectively. And then the scale embeddings
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and position embeddings are added into the corresponding
representations. Each multi-scale representation is flattened
along the height and width to attain an (Hi · Wi) × D fea-
ture. Swin-transformer blocks module is a stack of L swin-
transformer blocks. For an input I ∈ Rn×d , the operation of
self-attention (SA) in swin-transformer is denoted by

SA(Q,K ,V ) = Softmax(
QK⊤
√
d

+ B)V , (4)

where (Q,K ,V ) = I(WQ,WK ,WV ), WQ,WK ,WV ∈ Rd×d ,
and B ∈ Rn×n is a learnable bias of relative position. And the
operation of MHSA can be denoted by

MHSA(I) = Concat(Head1, · · · ,Headk)WC , (5)

where Headi = SA(Qi,Ki,Vi), Concat means concatenating
k heads along width, and WC means a linear layer.

One swin-transformer block consists of two successive
parts that one operation is based on regular window partition
and the other operation is based on shifted window partition.
For input X1, the operation based on regular window partition
is shown below.

Y1 = X1 +MHSAwin(LN (X1)), (6)

Z1 = Y1 +MLP(LN (Y1)). (7)

And the operation based on shifted window partition is shown
below.

Y2 = Z1 +MHSASwin(LN (Z1)), (8)

Z2 = Y2 +MLP(LN (Y2)). (9)

Where win means that the MHSA operation is conducted
within each regular window, and Swin means that the MHSA
operation is conducted within each shifted window.

Feature fusion module consists of N parallel convolutions
that convert the channels of SBlocks module’s outputs to 8,
where each convolution is followed by one adaptively average
pooling to attain a feature of 4×4 size. Then all scale features
are concatenated along the channel dimension. For a set of
inputs {T1, · · · ,TN}, feature fusion module is formulated as

Y = Concat(T 1
1 , · · · ,T 1

N ), (10)

where T 1
i = AvgPool4×4(Convi(Ti)). Finally, in order to

project the fused feature Y into a quality score, a two-layer
MLP is proposed as score regression module, where hidden
layer is followed by a GELU activation function [51], and the
extended coefficient of hidden layer is set to 3. SRegression
module can be formulated as

O = Linear2(GELU(Linear1(Y ))). (11)

B. LOSS COMPUTING
Loss functions are regarded as a metric to evaluate the dis-
tance between labels and model outputs, and they guide mod-
els to converge. Nowadays, two kinds of loss functions are
utilized in IQA [18]. The first kind aims to train models by
predicting aMOS/DMOS for each image, e.g., mean absolute
error (MAE) and mean square error (MSE). The second kind
aims to train models by predicting a distribution of ratings for
each image, e.g., Huber loss (HLoss) [24], cross entropy, and
Earth Mover’s Distance (EMD) [52].
Considering that MAE is similar to MSE, we only use

MAE as the loss function to train proposed model for pre-
dicting MOSs/DMOSs. Since Huber loss makes a signifi-
cant progress of model performance in [24], we use Huber
loss to train the proposed model for predicting rating dis-
tributions on KonIQ-10K in ablation study, which aims to
research the impact of different loss functions. For image
labels (MOSs/DMOSs) {x1, · · · , xm} and predicted scores
{y1, · · · , ym}, MAE is formulated as

MAE =
1

m

m∑
i=1

|xi − yi| , (12)

wherem is the size of mini-batch. Huber loss for a scalar error
is denoted by

hδ(x) =

{
x2

2 , if x ≤ δ,

δ · (|x| − δ
2 ), otherwise,

(13)

where the degree of loss is contorlled by δ. Huber loss is
effective for limiting larger error. For ground-truth distri-
butions of ratings {q1, · · · , qm} and predicted distributions
{p1, · · · , pm}, the Huber loss is formulated as

HLoss =
1

mn

m∑
i=1

n∑
j=1

(hδ(q
j
i − pji)), (14)

where qi =
{
q1i , · · · , qni

}
, pi =

{
p1i , · · · , pni

}
, m represents

the size ofmini-batch, and n represents the dimentions of each
rating distribution.

IV. EXPERIMENTS AND ANALYSIS
In this section, we first introduce six benchmark databases,
implementation details, and performance metrics. Subse-
quently, the experimental results are contrasted with the cur-
rent state-of-the-art (SOTA) models in Blind Image Quality
Assessment (BIQA). Finally, we conduct ablation study to
show the impacts of different loss functions and multi-scale
representations, as well as choice of some hyper-parameters.

A. BENCHMARK DATABASES
In order to evaluate the performance of proposed Swin-MIQT,
we run experiments on six benchmark databases which in-
clude three synthetic databases (LIVE [16], LIVE MD [38],
and TID2013 [39]) and three authentic databases (LIVEChal-
lenge [40], KonIQ-10K [18], and SPAQ [19]).
LIVE [16] consists of 29 pristine reference images and

779 singly distorted images. These distorted images include
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TABLE 2: Results of SROCC and PLCC on three synthet-
ically benchmark databases. The top two results on each
database are highlighted in boldface.

SROCC LIVE [16] LIVE MD [38] TID2013 [39]
BRISQUE [22] 0.939 0.886 0.604
CORNIA [21] 0.947 0.899 0.678
M3 [53] 0.951 0.892 0.689
Kang-CNN [25] 0.956 0.933 0.558
IL-NIQE [6] 0.902 0.902 0.521
HOSA [7] 0.946 0.913 0.735
BIECON [8] 0.961 0.909 0.717
ResNet50 [35] 0.950 0.909 0.712
DIQaM-NR [26] 0.960 0.906 0.835
WaDIQaM-NR [26] 0.954 — 0.761
FRIQUEE [9] 0.940 0.923 0.680
RankIQA [29] 0.981 0.908 0.780
MEON [10] 0.943 — 0.808
DB-CNN [1] 0.968 0.927 0.816
HyperIQA [41] 0.962 — —
Swin-MIQT 0.984 0.952 0.863

PLCC LIVE LIVE MD TID2013
BRISQUE [22] 0.935 0.917 0.694
CORNIA [21] 0.950 0.921 0.768
M3 [53] 0.950 0.919 0.771
Kang-CNN [25] 0.953 0.927 0.653
IL-NIQE [6] 0.908 0.914 0.648
HOSA [7] 0.947 0.926 0.815
BIECON [8] 0.962 0.933 0.762
ResNet50 [35] 0.954 0.920 0.756
DIQaM-NR [26] 0.972 0.931 0.855
WaDIQaM-NR [26] 0.963 — 0.787
FRIQUEE [9] 0.944 0.934 0.753
RankIQA [29] 0.982 0.929 0.793
MEON [10] 0.954 — —
DB-CNN [1] 0.971 0.934 0.865
HyperIQA [41] 0.966 — —
Swin-MIQT 0.986 0.940 0.881

TABLE 3: Results of SROCC and PLCC on database LIVE
Challenge. The top three results on each metric are high-
lighted in boldface.

Model SROCC PLCC
BRISQUE [22] 0.608 0.629
CORNIA [21] 0.629 0.671
M3 [53] 0.607 0.630
Kang-CNN [25] 0.516 0.536
IL-NIQE [6] 0.594 0.589
HOSA [7] 0.640 0.678
BIECON [8] 0.595 0.613
ResNet50 [35] 0.819 0.849
DIQaM-NR [26] 0.606 0.601
WaDIQaM-NR [26] 0.671 0.680
FRIQUEE [9] 0.682 0.705
RankIQA [29] 0.641 0.675
MEON [10] 0.688 0.693
DB-CNN [1] 0.851 0.869
HyperIQA [41] 0.859 0.882
MetaIQA [11] 0.802 0.835
Swin-MIQT 0.841 0.869

169 JPEG compressed (JPEG) images, 175 JPEG2000 com-
pressed (JP2K) images, 145 Gaussian blur (GB) images, 145
white noise (WN) images, and 145 images of bit errors in
JP2K bit stream, i.e., 779 distorted images = 169 JPEG
images + 175 JP2K images + 145 GB images + 145 WN

TABLE 4: Results of SROCC and PLCC on database KonIQ-
10K. The best result on eachmetric is highlighted in boldface.

Model SROCC PLCC
DIIVINE [54] 0.589 0.612
BRISQUE [22] 0.705 0.707
CORNIA [21] 0.780 0.795
Kang-CNN [25] 0.572 0.584
IL-NIQE [6] 0.501 0.537
HOSA [7] 0.805 0.813
BIECON [8] 0.618 0.651
WaDIQaM-NR [26] 0.797 0.805
DB-CNN [1] 0.875 0.884
HyperIQA [41] 0.906 0.917
MetaIQA [11] 0.850 0.887
Swin-MIQT 0.917 0.934

images + 145 bit-error images. Each image in LIVE has a
DMOS in the range [0, 100], and lower DMOS corresponds
to higher image quality. LIVE MD [38] consists of 2 groups
of 480 multiply distorted images generated from 15 pristine
reference images. The first group of images are generated by
blurring and then JEPG compressing, and the second group
of images are generated by blurring and then noising, where
each type of distortion has 4 degraded levels containing 0
level for no distortion, i.e., 480 distorted images=15×4×4+
15×4×4. Each image in LIVEMD has a DMOS in the range
[0, 100]. TID2013 [39] consists of 25 pristine reference image
and 3, 000 singly distorted images. These distorted images
are derived from 24 distorted types at 5 different degraded
levels, i.e., 3, 000 distorted images = 25 pristine reference
images× 24 distorted types× 5 degraded levels. Each image
in TID2013 has a MOS in the range [0, 9], and higher MOS
corresponds to higher image quality.

LIVE Challenge [40] consists of 1, 169 authentically dis-
torted images captured from some representative mobile de-
vices. Each image in LIVE Challenge has a MOS in the range
[0, 100], and the acquisition of MOSs is based on a subjective
quality assessment of over 8, 100 subjects. KonIQ-10K [18]
consists 10, 073 authentically distorted images with MOSs
obtained from a subjective quality assessment of 1, 459 sub-
jects. Each image in KonIQ-10K has a 5-scale distribution of
ratings. SPAQ [19] consists of 11, 125 realistically distorted
images taken by 66 smartphones, and each image has a MOS
in the range [0, 100]. The overall information of six IQA
databases mentioned above is summarized in Table 1.

B. IMPLEMENTATION AND PERFORMANCE
We split each database into two non-overlapping subsets by
following previous literature [1], [33]. One subset including
80% data is regarded as training set, and the other subset
including 20% data is regarded as testing set. In order to
train a content-independent model, we split each database
according to pristine reference images for LIVE, TID2013,
and LIVEMD , which aims to attain non-overlapping content
subsets. For databases LIVE Challenge, KonIQ-10K, and
SPAQ, we directly divide each database according to the
principle of training/testing = 4/1. To the best of our knowl-
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TABLE 5: Results of SROCC and PLCC on database SPAQ.
The top two results on eachmetric are highlighted in boldface.

Model SROCC PLCC
DIIVINE [54] 0.599 0.600
BRISQUE [22] 0.809 0.817
CORNIA [21] 0.709 0.725
QAC [55] 0.092 0.497
IL-NIQE [6] 0.713 0.721
ResNet50 [35] 0.908 0.909
FRIQUEE [9] 0.819 0.830
DB-CNN [1] 0.911 0.915
Swin-MIQT 0.908 0.913

TABLE 6: Results of SROCC on comparing generalization
ability of models. The best result in each column is high-
lighted in boldface.

Trained set LIVE TID2013
Testing set TID2013 LIVE
BRISQUE [22] 0.358 0.790
CORNIA [21] 0.360 0.846
M3 [53] 0.344 0.873
HOSA [7] 0.361 0.846
DIQaM-NR [26] 0.392 –
WaDIQaM-NR [26] 0.462 –
FRIQUEE [9] 0.461 0.755
DB-CNN [1] 0.524 0.891
Swin-MIQT 0.533 0.823

edge, the evenly distributed datasets are critical to perform
model potential. We use fixed training and testing sets to
evaluate our proposed model, which aims to adjust hyper-
parameters according to eliminating interference from uneven
distribution of data, and keep data distribution even.

ResNet50 pretrained on ImageNet is used as image encod-
ing module. Although transformer-based models can process
arbitrary resolution images, they cannot conduct batch train-
ing directly. The common practice is padding or cutting each
sequence of patches to an identical length. we randomly crop
multiple resolution-specific patches from one image for the
databases that contain images of different resolutions, which
aims to achieve batch training. For small size images, we use
two-scale spatial pooling operations, i.e., S1=6 and S2=12,
where S1=6 means the resolution of first representation is
6 × 6, and S2=12 means the resolution of second represen-
tation is 12 × 12. For large size images, we use three-scale
spatial pooling operations, i.e., S1=7, S2=14, and S3=21.
Since self-attention processing is conducted within each win-
dow, multi-scale representations derived from the output of
multi-scale spatial pooling module need to meet a condition,
which these representations are divisible by window size.
For databases LIVE, TID2013, and LIVE Challenge, we use
two-scale spatial pooling operations with window size 6. For
databases LIVE MD, KonIQ-10K, and SPAQ, we use three-
scale spatial pooling operations with window size 7. For
database LIVE, each image provides one random patch of
420×420 pixels in training phase and three random patches of
420× 420 pixels in testing phase. Images share ground-truth
lebels with the corresponding patches. The average predicted

TABLE 7: Results of SROCC and PLCC under different loss
functions on database KonIQ-10K. The best result in each
column is highlighted in boldface.

Model SROCC PLCC
Swin-MIQT (HLoss) 0.913 0.931
Swin-MIQT (MAE) 0.917 0.934

TABLE 8: SROCC and PLCC results on database SPAQ. The
best result in each column is highlighted in boldface.

Scale LIVE MD KonIQ-10K
SROCC PLCC SROCC PLCC

[21] 0.945 0.937 0.912 0.929
[21,14] 0.944 0.938 0.910 0.928
[21,14,7] 0.952 0.940 0.917 0.934

score of these three patches serves as the ultimate predicted
quality score of corresponding image. For database SPAQ,
each image has a resolution in the range from 1, 080× 1, 080
pixels to 5, 488×6, 656 pixels. In order to control the amount
of computation for affording model training, we resize each
image to 1, 080×1, 080 pixels. AdamWoptimizer with cosine
warm-up is set for all training processes. Learning rate is set to
0.00001 for LIVE, LIVE MD, TID2013, KonIQ-10K, SPAQ,
and 0.0001 for LIVE Challenge. (batch size, epochs) is set
to (48,100), (20,15), (46,10), (38,100), (22,100), (14,100) for
LIVE, LIVE MD, TID2013, LIVE Challenge, KonIQ-10K,
and SPAQ, respectively. We use MAE as loss function for
these six benchmark databases by default.

Two metrics are used to evaluate the consisitency between
image labels and predicted scores commonly. Spearman’s
rank-ordered correlation coefficient (SROCC) is a metric that
quantifies the monotonicity of predicting, and Pearson’s lin-
ear correlation coefficient (PLCC) is a metric that quantifies
the accuracy of predicting. For two one-dimensional arrays,
{xi}ni=1 and {yi}

n
i=1, their SROCC can be denoted by

SROCC = 1− 6

n (n2 − 1)

n∑
i=1

(rxi − ryi)
2
, (15)

where rxi and ryi mean the ordered numbers of xi and yi in
their repective arrays. And the PLCC can be denoted by

PLCC =
1

n− 1

n∑
i=1

(
xi − x̄
σx

)(
yi − ȳ
σy

)
, (16)

where x̄ and ȳ are means of variables x and y respectively,
and σx and σy are standard deviations of variables x and y
respectively. For these two metrics, higher value corresponds
to better model performance. A good IQAmodel should have
SROCC and PLCC that are close to 1.

C. EXPERIMENTAL RESULTS
In order to show the powerful performance of our proposed
model Swin-MIQT, we conduct some experiments on syn-
thetically and authentically benchmark databases. There are
two factors we have to take into account before compar-
ing experimental results with current SOTA BIQA models.
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TABLE 9: SROCC and PLCC results on LIVE MD using
three-scale representations. The two best results are high-
lighted in boldface.

No. L K D SROCC PLCC
1 [1,1,3,1] [3,6,12,24] 96 0.916 0.908
2 [1,1,3,1] [3,6,12,24] 192 0.909 0.899
3 [1,1,3,1] [3,6,12,24] 384 0.922 0.911
4 [1,1,3,1] [3,6,12,24] 576 0.928 0.914
5 [1,1,9,1] [3,6,12,24] 384 0.952 0.940
6 [1,1,9,1] [3,6,12,24] 576 0.949 0.943
7 [3,3,3,3] [6,6,6,6] 384 0.924 0.913
8 [3,3,3,3] [6,6,6,6] 576 0.943 0.943

Among these SOTA BIQA models, CNN-based models are
difficult to reproduce the good results showed in respectively
original papers and reproducing always descends model per-
formance. Although reproducing is the best way to validate
model performance, we respect and report the results that
are reported and validated extensively in previous papers.
Then, three ablation experiments are conducted for showing
the effectiveness of multi-scale designing, and determining
model hyper-parameters and default loss function.

For validating the performance of Swin-MIQT, we conduct
experiments compared with eighteen current SOTA BIQA
models, which include DIIVINE [54], BRISQUE [22], COR-
NIA [21], QAC [55], M3 [53], Kang-CNN [25], IL-NIQE [6],
HOSA [7], BIECON [8], ResNet50 [35], DIQaM-NR [26],
WaDIQaM-NR [26], FRIQUEE [9], RankIQA [29], MEON
[10], DB-CNN [1], HyperIQA [41], and MetaIQA [11]. The
numerical results of referenced models are reported by [1],
[11], [18], [19], [41], [56], [57].

1) Results on synthetically distorted databases
Table 2 shows the results of SROCC and PLCC on three
synthetically distorted benchmark databases. As listed in
Table 2, Swin-MIQT outperforms the other BIQA models.
Compared to ResNet50, Swin-MIQT averagely improves the
values of SROCC and PLCC about 8% and 6%, respectively.
The increases of performance show the effectiveness of addi-
tional modules after image encoding module. Notably, deep
learning based models attain competitively performance, es-
pecially models RankIQA and DB-CNN. In order to further
perceive the results of Swin-MIQT visually, some scatter
diagrams are made in Fig. 2. In each scatter diagram, the axis
of objective score represents predicted scores, and the axis of
subjective score representsMOSs/DMOSs. Each scatter point
represents an image, and a curve is fitted for all scatter points
in diagram by using a non-linear logistic regressive function
[16] denoted by

Quality(x) = β1(
1

2
− 1

1 + eβ2(x−β3)
) + β4x + β5, (17)

where five parameters (β1, β2, β3, β4, and β5) are computed
according to all scatter points.

We plot a scatter diagram for each training set and testing
set. As shown in Fig. 2, the curves on training sets are consis-

tent with the curves on testing sets, and all curves are fitted
well with the scatter points. These two facts demonstrate that
Swin-MIQ has powerful learning and generalization abilities
on synthetically distorted databases.

FIGURE 2: Experimental rusults of Swin-MIQT on three
synthetically distorted benchmark databases (from the first to
the third lines): LIVE, LIVE MD and TID 2013.

2) Results on authentically distorted databases
Table 3, 4, and 5 show the results on databases LIVE
Challenge, KonIQ-10K, and SPAQ. Our proposed model
achieves the top performance on these three authentically
distorted databases. Specifically, on database KonIQ-10K,
Swin-MIQT outperforms the other models by a large margin.
On database SPAQ, Swin-MIQT has a tiny gap with the
best results. Some scatter diagrams are plotted in Fig. 3 to
visually perceive the numerical results of Swin-MIQT on
three authentic databases.
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FIGURE 3: Experimental rusults of Swin-MIQT on three
authentically distorted benchmark databases (from the first
to the third lines): LIVE challenge, KonIQ-10K, SPAQ.

3) Comparing on generalization ability of models
An excellent model should have a good generalization ability.
Nowadays, the generalization performance of learning-based
models is still at low level. How to improve their generaliza-
tion ability on unknown distortions is a challenge. Table 6
shows the evaluated results of cross-database, where all mod-
els are trained on LIVE or TID2013, and then tested on the
other entire database. We only conduct experiments between
synthetical databases, since there is a big gap on distortions
between synthetical database and authentical database, which
makes it difficult to perform models well [1]. As listed in
Table 6, some findings can be attained. TID2013 has more
distorted types than LIVE, so the results trained on TID2013
and tested on LIVE are superior to those trained on LIVE and
tested on TID2013. For the result of training on LIVE and
testing on TID2013, Swin-MIQT achieves the best SROCC.
Although Swin-MIQT is inferior to other models on result

of training on TID2013 and testing on LIVE, it is still able
to attain a high SROCC. For visually perceiving the cross-
database results of Swin-MIQT, two scatter diagrams are
plotted in Fig. 4.

FIGURE 4: Cross-database evaluation for Swin-MIQT be-
tween LIVE and TID2013. (a) Testing results on entire
TID2013 using Swin-MIQT trained on LIVE. (b) Testing re-
sults on entire LIVE using Swin-MIQT trained on TID2013.

4) Ablation study
Impacts of different loss functions. The results of SROCC
and PLCC are improved a lot according to predict rating
distributions, which was reported by [24]. In this part, instead
of directly predicting MOSs for images, we use Huber loss
function to train Swin-MIQT that aims to predict a distri-
bution of ratings for each image in KonIQ-10K, where the
parameter δ is set to 1

9 as done in [24]. The output layer
of Swin-MIQT uses 5 neural units followed by a Softmax
operation that normalizes the 5 outputs to a five-dimensional
vector of length 1 for each image, i.e.,

∑5
i=1 pi = 1. The

objective score for each image can be formulated as

p =
5∑
i=1

i · pi. (18)

MAE is the default loss function for training Swin-MIQT. The
results under Huber loss and MAE are shown in Table 7. As
listed in Table 7, Swin-MIQT has a better performance under
MAE than Huber loss.
Impacts of different multi-scale representations. In or-

der to validate the importance of multi-scale representations,
three different compositions of scale are tested on LIVE
MD and KonIQ-10k. The results of SROCC and PLCC are
shown in Table 8. When Swin-MIQT is trained on LIVE
MD and KonIQ-10K by using three-scale representations, it
has a better performance than those using single-scale repre-
sentation and two-scale representations. It means that multi-
scale representations can capture more quality information at
different granularities to further improve model performance.
Choice of hyper-parameters in swin-transformer

blocks module. Some hyper-parameters in swin-transformer
blocks need to be determined. The hyper-parameters are
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denoted by L for the number of swin-transformer blocks, K
for the number of heads in swin-transformer block, and D
for the channel number of scale representation. Following the
philosophy of designing in [37] and [58], some combinations
of L, K , and D are tested on LIVE MD, which aims to re-
search the interaction of hyper-parameters and find an optimal
combination for Swin-MIQT. Three-scale representations
[21, 14, 7] are applied to proposed model throughout those
experiments of hyper-parameter choosing. Table 9 shows the
results of SROCC and PLCC, where all blocks are split into
four stages. We first increase the value of D from 96 to 576,
and keep L = [1, 1, 3, 1] and K = [3, 6, 12, 24] fixed, which
corresponds to No. 1, No. 2, No. 3, and No. 4 in Table 9.
When D = 384 or 576, Swin-MIQT achieves a promising
result, so we increase the values in L and adjust the values in
K to make our proposed model perform better. Although No.
5 and No. 6 are the two best compositions, No. 5 has a smaller
D, which indicates No. 5 consumes fewer resources than No.
6. Therefore, No. 5 is an optimal composition.

V. CONCLUSION
In this paper, we introduce a model named Swin-MIQT,
designed to blindly assess image quality. Swin-MIQT lever-
ages a transformer-based architecture to learn multi-scale
representations, enabling it to process images at their orig-
inal resolution, similar to typical vision transformers. Our
results demonstrate that the multi-scale representations ef-
fectively capture quality information across various granu-
larities, thereby enhancing model performance. Swin-MIQT
exhibits robust performance in handling both synthetic and
authentic distortions, achieving state-of-the-art (SOTA) re-
sults on three synthetically distorted databases and compet-
itive performance on three authentically distorted databases.
Finally, Swin-MIQT is notable for its extensibility, featuring
fivemodules that can be seamlessly upgraded with alternative
architectures, potentially enhancing model performance even
further.
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