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ABSTRACT This paper proposes Koopman operator-based Stochastic Model Predictive Control (K-SMPC)
for enhanced lateral control of autonomous vehicles. The Koopman operator is a linear map representing
the nonlinear dynamics in an infinite-dimensional space. Thus, we use the Koopman operator to represent
the nonlinear dynamics of a vehicle in dynamic lane-keeping situations. The Extended Dynamic Mode
Decomposition (EDMD) method is adopted to approximate the Koopman operator in a finite-dimensional
space for practical implementation. We consider the modeling error of the approximated Koopman operator
in the EDMD method. Then, we design K-SMPC to tackle the Koopman modeling error, where the error
is handled as a probabilistic signal. The recursive feasibility of the proposed method is investigated with
an explicit first-step state constraint by computing the robust control invariant set. A high-fidelity vehicle
simulator, i.e., CarSim, is used to validate the proposed method with a comparative study. From the results,
it is confirmed that the proposed method outperforms other methods in tracking performance. Furthermore,
it is observed that the proposed method satisfies the given constraints and is recursively feasible.

INDEX TERMS Autonomous vehicles, data-driven control, Koopman operator, predictive control, stochastic
model

NOMENCLATURE
• {XYZ} : Global coordinate frame
• {xyz} : Local coordinate frame
• Cαi : Cornering stiffness of tire, i ∈ {f , r}
• Vx : Longitudinal speed
• Vy : Lateral speed
• m : Total mass of vehicle
• li : Distance between front (rear) tire and center of

gravity (CG) , i ∈ {f , r}
• Iz : Yaw moment of inertia of vehicle
• ay : Lateral acceleration in {xyz}
• L : Look-ahead distance
• ey = y− ydes : Lateral position error w.r.t. lane
• eyL : Lateral position error on look-ahead point w.r.t. lane
• ψ : Yaw angle of vehicle in global coordinate
• eψ = ψdes −ψ : Heading angle error in local coordinate

w.r.t. lane
• δ : Steering angle
• R: Turning radius
• β: Vehicle side slip angle at CG

I. INTRODUCTION

AUTONOMOUS driving vehicles provide advanced
driver assistance functions to relieve humans from

monotonous long drives and can significantly decrease traf-
fic congestion and accidents. A typical autonomous driving
setup comprises essential components such as perception,
communication [1], [2], localization, decision-making, tra-
jectory planning [3], and control. During trajectory planning
and control, knowledge of vehicle dynamics is necessary to
execute accurate and safe maneuvers, particularly in complex
and unpredictable road environments. Thus, it is essential
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to have a lateral vehicle dynamic model to design a lateral
controller. Lateral control of autonomous driving has gained
much attention inmany areas, such as automated parking con-
trol [4], lateral control on curved roads [5], [6], and automated
lane change systems [7]. The bicycle lateral dynamic motion
model has been widely used to develop lateral control [8].
In the dynamic model, lateral tire force and acceleration
are used to capture the dynamic motion of a vehicle for
high-speed driving to represent accurate vehicle behavior.
Although many studies have used the bicycle lateral dynamic
model, i.e., linear dynamic model, for practical applications
under certain conditions, such as a small tire slip angle with a
given vehicle speed, the nonlinearity of the vehicle dynamics
cannot be ignored because the tire model is highly nonlinear
due to the vertical load transfer [9]. Moreover, the vehicle
speed is no longer constant in dynamic driving. Therefore,
obtaining a model that captures the full vehicle dynamics for
various driving conditions is necessary even though a linear
vehicle model may be useful for designing a linear controller
under specific assumptions.

Numerous studies have attempted to identify the unknown
nonlinear dynamics in different research fields [10]. Recently,
a modeling approach has received significant attention for
complex systems whose dynamics are challenging to cap-
ture [11]. Based on the data-driven model identification, sev-
eral methods exist to design a data-driven Model Predictive
Control (MPC). Sparse Identification of Nonlinear Dynamics
(SINDy)-based MPC is proposed [12] for a nonlinear sys-
tem. The result of SINDy is generally a nonlinear model.
Thus, the authors designed a nonlinear MPC to control the
plant. Another method is Data-enabled Predictive Control
(DeePC) [13]. The method uses the input and output data
to conduct model identification at every sample time recur-
sively. In order to obtain an accurate system model, we need
an extensive dataset containing much information about the
system [14]. However, there is no big change in input and
output signals in the steady state. Thus, with the recursive
model identification, the methodmight bring the computation
burden and difficulty of extracting the system dynamics in a
steady state. In this context, the Koopman operator has been
used in model identification of complex dynamics in recent
years. The Koopman operator is a linear map representing
nonlinear systems on the manifold in an infinite-dimensional
space [15], [16]. One of the primary benefits of using the
Koopman operator is that the linear model can express the
underlying nonlinear behavior. As a result, a linear control
design method can be applied to a general nonlinear dynamic
system.

In recent years, the Koopman operator-based modeling
and control approach has been widely adopted in automated
driving because vehicles have highly nonlinear behaviors.
In [17]–[20], the authors proposed model identification of
nonlinear vehicle dynamics to control vehicle lateral and/or
longitudinal velocity. In [21] and [22], the authors considered
the global position control of the vehicle. Position control is
essential for controlling vehicles properly on roads. In [23],

the authors considered the local position with respect to the
given trajectory. Then, a mini-sized car was used to show the
effectiveness of the proposed system. For practical implemen-
tation of the Koopman operator, the papers mentioned above
used Extended Dynamic Mode Decomposition (EDMD) or
neural networks to approximate the Koopman operator in
a finite-dimensional space. Unfortunately, the approximated
Koopman operator causes approximation uncertainty, which
results in the presence of modeling errors because there
is a residual term in the optimization problem of approxi-
mation of the Koopman operator [24]–[26]. Therefore, the
model mismatch can not be negligible in using the Koopman
operator, even though the Koopman operator has a power-
ful linear property representing the nonlinear dynamics. To
tackle this problem, [27] proposes a method of handling the
approximation error with an estimator. In [25], [28], [29],
the authors design Robust Model Predictive Control (RMPC)
for the nonlinear system with constraints satisfaction under
uncertainties. However, it is challenging to obtain a robust
positively invariant set against the uncertainties of the ap-
proximated Koopman operator because it is difficult to find
the upper bound of the approximation error outside of the
given training dataset. Moreover, even if we can obtain the
Robust Positively Invariant (RPI) set, the size of the RPI set
can be large because of the abnormal signal coming from
the noise, which makes an RMPC conservative [30], [31].
To resolve the problem, stochastic MPC (SMPC) is proposed
to consider the probability of uncertainties and allow con-
straint violation where the uncertainties rarely occur. Then,
constraint tightening can be relaxed, and the conservativeness
of the RMPC is reduced, while most cases of constraints are
satisfied with certain probability [30]. Therefore, with the
SMPC approach, we can effectively handle the uncertainties
of the approximated Koopman operator by considering the
chance constraints of the SMPC.
In this context, this paper proposes a Koopman operator-

based SMPC (K-SMPC) for enhanced lateral control of au-
tonomous vehicles. The EDMD method is adopted to obtain
the approximated Koopman operator in a finite-dimensional
space for practical use of the Koopman operator. Our work
considers the approximation error coming from the EDMD-
based approximation of the Koopman operator. Since the
Koopman operator is defined in an infinite-dimensional
space, the approximation error of the EDMD approach is
inevitable. In addition, it is not easy to compute the RPI
set against the error, and the RPI set might be much larger
because of the abnormal error. Therefore, we consider the
approximation error to be a probabilistic signal and design
the chance constraints in SMPC to handle the error. As a
result, the proposed method is less conservative than the
RMPC with respect to the error. To our knowledge, this paper
is the first research in which the SMPC is used to resolve
the modeling error of the approximated Koopman operator
in the LKS application. All constraints are satisfied under
the Koopman modeling error with recursive feasibility in the
proposed method. A high-fidelity vehicle simulator, CarSim,
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is used to validate the proposed method. The simulation
results confirmed that the proposed method always satisfies
the constraints and is recursively feasible. Moreover, a com-
parative study shows that the proposed method outperforms
other methods: the linear vehicle model-based SMPC (L-
SMPC) and the Koopman-based Linear Quadratic Regulator
(K-LQ) [32]. The contributions of the paper are three-fold:

• We compute the Koopman-based vehicle model for the
Lane Keeping System (LKS). The vehicle model has
highly nonlinear dynamic motion in dynamic driving,
such as varying vehicle speed or cornering stiffness.
Thus, we reformulate the Koopman-based vehicle model
from [32] to effectively capture the vehicle nonlinear
dynamics for the LKS in various driving situations.

• The approximation error of the Koopman operator in a
finite-dimensional space is considered and handled as
a probabilistic error. Since the approximated Koopman
model may fail to represent the system accurately, we
designed K-SMPC to predict the expected state of the
system and satisfy constraints under uncertainties of the
approximated Koopman model. With the proposed algo-
rithm, we generated K-SMPC resistant to an error in the
model identification and uncertainties in the dynamics.

• We prove the recursive feasibility of the proposed K-
SMPCwith an explicit first-step state constraint by com-
puting a robust control invariant set by providing a the-
orem. Compared to a mixed worst-case/stochastic pre-
diction for constraint tightening, the proposed method is
less conservative but has recursive feasibility.

The rest of the paper is structured as follows: Section II
investigates the vehicle nonlinear dynamics. Section III in-
troduces the background of the Koopman operator theory and
its application to vehicle dynamics for the LKS. Based on the
obtained Koopman operator, Section IV presents the SMPC
design process with recursive feasibility. The simulation re-
sults are shown in Section V, and the conclusion of the paper
is described in Section VI.

II. NONLINEAR VEHICLE DYNAMICS ON ROADS
A. CLOTHOID ROAD LANE MODEL
We introduce a road lane where a vehicle may run to be rep-
resented by a cubic polynomial curve. The cubic polynomial
curve is defined by the clothoid curve, where the curvature
of the curve is continuous and slowly varying [6], [33]. To
consider the clothoid constraint with slowly varying curvature
κ, it can be defined as

κ(s) = 2C2 + 6C3s, (1)

where s denotes the arc length, 2C2 denotes the curvature at
s = 0, and 6C3 denotes the curvature rate. For a small curva-
ture, the arc length s can be approximated by the longitudinal
distance x [8]. Then, integrating (1) twice leads to a clothoid
cubic polynomial road model such that

f (x) = C0 + C1x + C2x2 + C3x3, (2)
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FIGURE 1. Look-ahead lateral dynamic model [33].

where C0 denotes the lateral offset, and C1 denotes the head-
ing angle error. Generally, the clothoid lane curve model
is widely applied with the assumption of a plain road in a
camera-based lane recognition (see [34]–[36] and references
therein). The clothoid model can be applied to represent the
various road shapes, e.g., the circular or S-shape road [8],
[36]. It is well known that the road model is obtained by a
camera sensor. Moreover, from (1), C2 and C3 are the shape
of the road, which is not dependent on the vehicle motion. On
the other hand, C0 and C1 in (2) are dependent on the vehicle
motion since they show the relationship between the vehicle
and the road lane curve.
This paper considers the look-ahead distance to mimic

human driving behavior [37]. By using (2), the heading angle
error and a lateral offset at look-ahead distance L can be
computed as

f (L) = eyL = C0 + C1L + C2L2 + C3L3,

f ′(L) = eψL = C1 + 2C2L + 3C3L2,
(3)

as shown in Fig. 1. In this case, L is the specific point on the
longitudinal axis of the vehicle as shown in Fig. 1.

B. LATERAL VEHICLE MOTION MODEL
In this subsection, we derive the lateral vehicle motion model
as the nonlinear dynamics. To begin with, consider Newton’s
second law in the lateral direction of the vehicle such that

may = Fyf + Fyr (4)

where ay is the lateral acceleration of the vehicle at the center
of gravity and Fyf and Fyr are the lateral tire forces at the
front and rear wheels, respectively. The lateral tire force can
be represented as a nonlinear function with respect to the tire
slip angle αf , αr , and the vehicle state, which is given by

Fyf = 2Cαf (αf ) ·
(
δ − arctan(

Vy + lf ψ̇
Vx

)
)
,

Fyr = 2Cαr(αr) ·
(
− arctan(

Vy − lr ψ̇
Vx

)
)
,

(5)
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where Cαf and Cαr are the cornering stiffness which is a
function of the tire slip angle. Cαf and Cαr are the ratio
between the tire slip angle and the tire lateral force. There
are two terms contributing to the lateral acceleration: the
translational acceleration ÿ, and the centripetal acceleration
Vxψ̇ such that

ay = ÿ+ Vxψ̇. (6)

Substituting (4) into (6) leads to

ÿ = −Vxψ̇ +
Fyf + Fyr

m
. (7)

In addition, the yaw dynamics of the vehicle along the z-axis
are represented by

Izψ̈ = lf Fyf − lrFyr , (8)

where lf and lr are the distances of the front wheel and the
rear wheel from the center of gravity, respectively.

Let us obtain the heading angle error rate

ėψ = ψ̇des − ψ̇, (9)

and the lateral position error rate

ėy = ẏ− ẏdes = ẏ+ Vxeψ. (10)

Then, we can obtain

ëy = ÿ− ÿdes = ÿ+ Vx ėψ

= −Vxψ̇ +
Fyf + Fyr

m
+ Vx ėψ.

(11)

In order to mimic the general behavior of expert drivers, it is
necessary to consider error at the look-ahead distance [36], as
shown in Fig. 1. Then, the lateral offset error at the look-ahead
distance is given by

ėyL = Vx(eψL − β) + Lėψ

= ėy − Lψ̇ + Vx(eψL − eψ) + Lψ̇des.
(12)

Now, let us define the state, the input, and the external signal
of the vehicle dynamics [32], [36], [38]

x =
[
ey eyL ėy eψ ψ̇ ay Vy

]T
,

u = δ,

φ =
[
Vx C2 C3

]T
,

(13)

where x ∈ Rn, u ∈ Rm, and φ ∈ Rd . Then, we can describe
the nonlinear vehicle dynamics such that

ẋ = fv(x,u, φ). (14)

Since the lateral tire force (5) is highly nonlinear with respect
to the tire slip angle and vehicle motion, (14) can be repre-
sented as a nonlinear structure. Then, discretizing (14) leads
to a discrete-time vehicle nonlinear model given by

xk+1 = fd(xk ,uk , φk). (15)

As reported in [8], the vehicle dynamics have strong cou-
plings in lateral and longitudinal directions due to the tire
characteristics. Thus, it can be challenging to identify the
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FIGURE 2. Single track bicycle model [8].

cornering stiffness parameters. Figure 2 shows the schematic
illustration of vehicle dynamics. We can see how the lateral
and longitudinal forces on tires make vehicle motion, such as
Vx , Vy, and β at CG.Moreover, it is observed how tire slips αf
and αr are derived geometrically. Here, this paper tackles this
nonlinearity of the vehicle dynamics by taking advantage of
an emerging technique in the field of data-driven modeling,
i.e., the Koopman operator theory. It is not necessary to have
any prior knowledge of the internal parameters of the vehicle.
Only the collected dataset of the system state and input are re-
quired to obtain the Koopman operator. Using the property of
the Koopman operator, we construct a linear vehicle dynamic
model precisely representing (15) in a lifted space. We will
discuss the detailed design process in the following sections.

III. KOOPMAN OPERATOR
A. PRELIMINARY
The Koopman operator was initially proposed to capture the
nonlinear autonomous dynamics in an infinite-dimensional
space [15]. Thus, let us consider the discrete-time nonlinear
autonomous dynamics such that

ηk+1 = fa(ηk), (16)

where ηk ∈ N is the state of the system, fa is the nonlinear
map, and k ∈ Z+ is the discrete-time. Let us consider a real-
valued scalar function πa : N → R, which is the so-called
observable [10], [16]. Each function πa is an element of an
infinite-dimensional function space Fa (i.e., πa ∈ Fa) [16].
Then, the Koopman theory provides an alternative represen-
tation of (16) by a linear operator, i.e., the Koopman operator
Ka : Fa → Fa in the space Fa such that

Kaπa(ηk) = πa(fa(ηk)) (17)

for every πa ∈ Fa, where the function space Fa is invariant
under the Koopman operator [16], [24]. Let us define the
lifted state such that zk = πa(ηk). Then, we can rewrite (16)
as Kazk = zk+1. The schematic illustration of the Koopman
operator is shown in Fig. 3.
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FIGURE 3. Schematic illustration of the Koopman operator [10].

There are several ways to apply the Koopman operator to
controlled nonlinear systems with a slight change [24], [39],
[40]. This paper adopts the data-driven method from [24],
which is a rigorous and practical approach. Let us consider
a controlled discrete-time nonlinear system such that

ηk+1 = f (ηk ,νk), (18)

where νk ∈ V is the system input. We can then define the
extended state-space N × I(V), where I(V) is the space of
all the control sequences, µ := (νk)

∞
k=0. Using the scheme

from [24], we can define the extended state given by

χ =

[
η
µ

]
. (19)

With the extended state (19), (18) can be in the form of an
autonomous system such that

χk+1 = F(χk) :=
[
f (ηk ,µk(0))

Lµk

]
, (20)

where L is the left shift operator, i.e., Lµk = µk+1, and
µk(0) = νk is the first element of the control sequence of
µ at the time step k [24]. Now, we can define the Koopman
operator Kf : F → F for (20) as

Kf π(χk) = π(F(χk)), (21)

where π : N×I(V) → R is a real-valued function, which be-
longs to the extended function space F [16]. Interestingly, it
is observed that the Koopman operator is linear in the function
spaceF , even though the dynamical system is nonlinear [16].

B. KOOPMAN OPERATOR-BASED VEHICLE MODELING
In this subsection, we introduce the Koopman operator-based
vehicle modeling approach. In (21), we can see that the Koop-
man operator Kf lies in the infinite-dimensional space for
representing the original nonlinear dynamics [15], [16]. Thus,
it is challenging to directly use the Koopman operator if the
finite-dimensional approximation of the Koopman operator
is not obtained. To resolve this problem, this paper uses
the EDMD method from [24], [41]. Let us first recall the
state, the control input, and the external signal of the vehicle
dynamics (15) such as (13).

Remark 1. Since this paper focuses on vehicle modeling for
lateral motion control, the longitudinal speed Vx can be the
external signal. In addition, the curvature and curvature rate
of the road lane, i.e., C2 andC3, are independent of the vehicle
motion, as mentioned in Subsection II-A. See [32], [35], [36],
[42], [43] and references therein for the details. Thus, C2 and
C3 can be the external signal. In general, φ is available with
an in-vehicle sensor and a camera. ♢

Then, we take and modify the approach from [24], [41] to
define the extended state given by

Xk =

xkuk
φk

 , (22)

whereXk ∈ Rn+m+d is the extended state. Then, we can have
the discrete-time autonomous system for the extended state
such that

Xk+1 = F(Xk) :=

fd(xk ,uk , φk)uk+1

φk+1

 . (23)

The Koopman operator can then be obtained by

Kξ(Xk) = ξ(F(Xk)), (24)

where ξ(xk ,uk , φk) =
[
ϕ(xk) uk wk

]T
is the lifting

function. In this case, we consider ϕ(xk) as

ϕ(xk) =


ϕ1(xk)
ϕ2(xk)

...
ϕN (xk)

 ∈ RN , (25)

where ϕi : Rn → R is the real-valued lifting function,
and N ≫ n. In general, the lifting function ϕi is a user-
defined nonlinear function. In this paper, the EDMD method
from [24] is used to approximate the Koopman operator
in (24) as a finite-dimensional linear operator. The analytical
solution is obtained by

min
K

M−1∑
i=0

∥ξ(Xi+1)−Kξ(Xi)∥22, (26)

where M is the length of a dataset. To solve the optimization
problem, we first need to collect a dataset by conducting
several numerical simulations. Then the dataset matrices are
given as

X =
[
x0 x1 . . . xM−1

]
∈ Rn×M ,

U =
[
u0 u1 . . . uM−1

]
∈ Rm×M ,

D =
[
φ0 φ1 . . . φM−1

]
∈ Rd×M ,

Y =
[
x1 x2 . . . xM

]
∈ Rn×M ,

(27)

where M is the length of a dataset. Let us define the basis
function ϕi such that

zk = ϕ(xk) :=


xk

ϕN−n(xk)
...

ϕN (xk)

 ∈ RN . (28)
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FIGURE 4. Schematic illustration of the proposed method. The
approximation error of the Koopman operator is handled as a stochastic
uncertainty.

Since predicting the future input and external signal is not of
interest [24], [26], this paper omits the last (m + d) rows of
each ξ(Xi+1) − Kξ(Xi) in (26). However, we focus on the
first N rows such that

min
K

M−1∑
i=0

∥∥∥
ϕ(xk+1)

uk+1

φk+1

−K

ϕ(xk)uk
φk

∥∥∥2
2

(29)

where

K =

 A B Bφ
(∗) (∗) (∗)
(∗) (∗) (∗)

 .
Then, (26) can be converted into

min
A,B,Bφ

∥Ỹ − AX̃− BU− BφD∥2F , (30)

where

X̃ =
[
ϕ(x0) ϕ(x1) . . . ϕ(xM−1)

]
,

Ỹ =
[
ϕ(x1) ϕ(x2) . . . ϕ(xM )

]
,

and ∥ · ∥F is the Frobenius norm. By solving the optimization
problem (30) [24], [32], we can obtain the linear model such
that

zk+1 = Azk + Buk + Bφφk + Gwk ,

xk = Czk .
(31)

where the reconstruction matrix C is obtained by C =[
I(n×n) 0

]
. Here, note that this paper introduces the residual

termwk in (31). This is because there may be a residual term
in solving (30), which results in the approximation error of
the Koopman operator [24]–[26]. Thus, the modeling error
of the tuplet (A,B,Bφ) is inevitable due to the approxi-
mated Koopman operator in a finite-dimensional space. To
resolve the problem, we consider the residual term wk of the
Koopman-based model in designing the controller. Moreover,
we assume that wk is the bounded probabilistic signal such
thatwk ∈ W = {wk |∥wk∥∞ ≤ w̄}, E[wk ] = 0, and the co-
variance matrix ofwk is Σw. In the following subsection, we
will introduce the design process of the proposed controller
considering the approximation error wk .

IV. KOOPMAN OPERATOR-BASED STOCHASTIC MODEL
PREDICTIVE CONTROL
A. SYSTEM STATE, OBJECTIVE, AND CONSTRAINTS
In this subsection, we first describe the system state to be
controlled. One can denote the predicted trajectories with

k + i|k , i.e., predicted at time k and i steps into the future.
We define zk+i|k as

zk+i|k = sk+i|k + ek+i|k , (32)

where the state zk+i|k is decomposed into two parts: the
deterministic state sk+i|k and the zero mean stochastic error
ek+i|k , i.e., E[zk+i|k ] = sk+i|k . Let us define the stabilizing
control gain K satisfying the following Riccati equation such
that

P = ATPA− ATPB(R+ BTPB)−1BTPA+ Q (33)

whereK = (R+BTPB)−1BTPA. Then, as it is common in the
linear SMPC scheme, e.g., [30], the control strategy is given
by

uk+i|k = Kzk+i|k + vk+i|k (34)

where vk+i|k ∈ Rm is the optimal control input obtained by
solving the SMPC problem. Using (32) and (34), one can
derive the dynamics of the deterministic state and error state
given by

sk+i+1|k = Aclsk+i|k + Bvk+i|k + Bφφk+i|k (35a)

ek+i+1|k = Aclek+i|k + Gwk+i|k (35b)

where Acl = A− BK is strictly stable.

Remark 2. As mentioned in II-A, C2 and C3 are intrinsic
parameters of a road shape independent of the vehicle’s
lateral motion [8]. Thus, with a given road, it is immediate to
obtain C2 and C3 in the prediction horizon [35]. Moreover,
the vehicle speed can be obtained with speed planning and
control according to the road curvature [5]. Therefore, this
paper assumes that φ is available in the horizon N . ♢

Let the cost function in a stochastic framework be

J = E

[ Np−1∑
i=0

(
zTk+i|kQxxzk+i|k + zTk+i|kQxvvk+i|k

+ vTk+i|kQvvvk+i|k

)
+ zTNp|kPzNp|k

]
,

(36)

where E[·] denotes the expectation value, Qxx ⪰ 0, Qxv ⪰ 0,
Qvv ≻ 0, and P is the solution to (33). Substituting (32)
into (36) leads to the cost function in a deterministic frame-
work by using E[zk+i|k ] = sk+i|k such that

J =

Np−1∑
i=0

(
sTk+i|kQxxsk+i|k

+ sTk+i|kQxvvk+i|k + vTk+i|kQvvvk+i|k

)
+ sTk+Np|kPsk+Np|k + c,

(37)

where c = E[
∑Np−1

i=0 (eTk+i|kQxxek+i|k) + eTNp|kPeNp|k ] which
does not depend on the decision variables vk+i|k . Thus, we
can convert the stochastic cost function into the deterministic
cost function.

In terms of the stochastic error and its influence on the
deterministic state, the state constraints at the i-th time step
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in the receding horizon can be described as probabilistic
constraints based on the risk level or allowable probability
of violation, i.e., ϵi ∈ [0, 1], such that

P[Hizk+i|k ≤ hi] ≥ 1− ϵi, (38)

where P[·] denotes the probability, Hi ∈ Rp×N , and hi ∈ Rp.
Then, the following theorem provides the process to con-
vert (38) into the deterministic constraints.

Theorem 1. At time k with a given prediction horizon Np, the
probabilistic constraints of (38) are satisfied if and only if the
following deterministic constraints are satisfied such that

Hisk+i|k ≤ hi − qi(1− ϵi), for i = 0, · · · ,Np − 1 (39)

where qi(1− ϵi) =
√
HT
i ΣiHi

√
1−ϵi
ϵi
. ♢

Proof. By using (32), we can rewrite (38) as

P[Hisk+i|k ≤ hi − Hiek+i|k ] ≥ 1− ϵi. (40)

Then, we can obtain

Hisk+i|k ≤ hi − qi(1− ϵi) (41)

where P[−qi(1 − ϵi) ≤ −Hiek+i|k ] = 1 − ϵi because
sk+i|k is the deterministic variable. Then, it is immediate to

derive qi(1−ϵi) =
√
HT
i ΣiHi

√
1−ϵi
ϵi

by Chebyshev–Cantelli

Inequality [44], where Σi+1 = ATclΣiAcl + GTΣwG with
Σ0 = Σw.

Consequently, we can define the sets of the deterministic
state constraints and input hard constraints for the K-SMPC
as

S = {sk+i|k ∈ RN | Hisk+i|k ≤ hi − qi(1− ϵi)}, (42a)

U = {uk+i|k ∈ Rm | u ≤ uk+i|k ≤ u}, (42b)

∆U = {∆uk+i|k ∈ Rm |∆u ≤ ∆uk+i|k ≤ ∆u}, (42c)

where u, u, ∆u, and ∆u denote the lower bound input,
the upper bound input, the lower bound input rate, and the
upper bound input rate, respectively. Moreover, ∆uk+i|k =
uk+i|k − uk+i−1|k is the input rate. A constraint tightening
method similar to (41) can be applied to define the terminal
region such that

Sf = {sk+Np|k ∈ R
N | HNsk+Np|k ≤ hNp − qN (1− ϵNp)}.

(43)

B. RECURSIVE FEASIBILITY AND STABILITY OF RESULTING
K-SMPC ALGORITHM
In order to guarantee the recursive feasibility of the K-SMPC,
we construct the first-step state constraint of the prediction
horizon [45]. In [46], it was reported that the probability of the
constraint satisfaction in i steps of the prediction horizon at
time k is not equal to the probability of the constraint satisfac-
tion in i−1 steps of the prediction horizon at time k+1. Thus,
we need to use further constraints to satisfy the recursive
feasibility. In [46], the authors proposed a mixing stochastic
and worst-case state prediction in constraint tightening for

FIGURE 5. Recursive set projected on the space of the first and third state
of sk .

recursive feasibility in the presence of perturbation. However,
in [47], the authors point out the mixed stochastic/worst-
case approach is rather restrictive and has higher average
costs if the solution is near a chance constraint. Instead, [47]
proposed the constraint only in the first step of the prediction
horizon where only the recursive feasibility is of interest.
Therefore, we focus on the first step state constraint for
recursive feasibility, proposed by a paper in the model-based
setting [45]. Thus, the proposed method is less conservative
than the mixed-state prediction approach, e.g., [46].
Let us define the following set

CT =

 s0|k ∈ RN
∃v0|k , · · · ,vNp−1|k
(35a) and (42) hold
sk+Np|k ∈ Sf


as the T -step set with a feasible first step state constraint
for the deterministic system (35a) under tightened con-
straints. The T -step set is obtained by the backward recursion
from [48]. SinceCT is not necessarily robust positively invari-
ant with respect to the disturbance setW , further computation
of the robust control invariant polytope C∞

T is required. To
calculate C∞

T , let us define a set as

C i+1
T =

{
s ∈ C i

T
∃v0|k such that (42c) holds,
sk+1 ∈ C i

T ⊖ GW.

}
(44)

The set C∞
T is then computed by C∞

T = ∩∞
i=0C

i
T , where the

initial set is C0
T = CT . The recursive computation method

can provides the C∞
T until C i

T = C i+1
T [45], [49]. This paper

adopts the Multi-parametric toolbox from [50] in MATLAB
to compute the set C∞

T , as shown in Fig. 5.
In this paper, we additionally consider the soft constraints

on the first-step input. Thus, the slack variables, i.e., σ ∈ R
and σ ∈ R, are used in the cost function given by

Js = J + σTSσ + σTSσ (45)

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3530984

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



J. S. Kim et al.: K-SMPC: Koopman Operator-Based Stochastic Model Predictive Control for Autonomous Vehicles

where S > 0. Then, we have the final K-SMPC algorithm
such that

v∗
·|k = arg min

vk+i|k

Js (46a)

subject to

sk+i+1|k = Aclsk+i|k + Bvk+i|k + Bφφk+i|k , (46b)

sk+i|k ∈ S, (46c)

uk+i|k ∈ U , ∆uk+i|k ∈ ∆U , (46d)

sk+1|k ∈ C∞
T ⊖ GW, (46e)

us − σ ≤ uk|k ≤ us + σ, (46f)

0 ≤ σ ≤ us − u, 0 ≤ σ ≤ u− us, (46g)

sk+N |k ∈ Sf , (46h)

sk|k = zk|k , (46i)

i ∈ {0, . . . ,N − 1}, (46j)

where us ∈ R and us ∈ R are the upper and lower bound
for the first control input, respectively. In (46f), we can see
that the soft constraint is used in the first-step input. We also
consider the slack variable to satisfy the input constraint (46d)
by imposing (46g).

Remark 3. We impose the input constraint (46d) to con-
sider the physically bounded front tire angle δ of vehicles. In
addition, it is needed to minimize the tire angle on straight
roads or curved roads with small curvature. To that end,
we additionally impose the input constraint (46f) with slack
variables, i.e., σ and σ. ♢

As mentioned above, the recursive feasibility is guaranteed
by the constraint (46e). Moreover, the following theorem
provides the details of the recursive feasibility and its proof.

Theorem 2 (Recursive Feasibility [51]). Let us consider the
lifted system (31)with the controller (34). If there exists a fea-
sible solution when k = 0, then the optimization problem (46)
is feasible for k > 0. ♢

Proof. If the K-SMPC optimization problem (46) is feasible
at k = 0, then sk+1|k ∈ C∞

T ⊖ GW . In the next time step,
we can obtain zk+1 = sk+1|k + Gwk ∈ C∞

T for every
realizationwk ∈ W , i.e., zk+1 is the feasible state in the next
time. Therefore, the K-SMPC optimization problem (46) is
recursively feasible. Refer to [51] for more details.

In order to prove the stability of the closed-loop system
constructed by (46), we introduce a discrete-time Input-to-
State Stability (ISS) Lyapunov function [52].

Definition 1 (ISS-Lyapunov function [52]). A function V :
RN → R+ is an ISS-Lyapunov function for system zk+1 =
fL(zk , µk) if the following holds:

• There exist K∞ functions α1, α2 such that

α1(∥z∥) ≤ V (z) ≤ α2(∥z∥), ∀z ∈ RN .

• There exist a K∞ function α3 and a K function γ such
that

V (fL(z, µ))− V (z) ≤ −α3(∥z∥) + γ(∥µ∥)

for all z ∈ RN , and µ ∈ M.

♢

Using Definition 1, the following theorem provides the sta-
bility of the closed-loop system.

Theorem 3 (Stability of closed-loop system). If feasibility
of (46) at k = 0 is given, then the closed-loop system (46)
under the proposed controller is input-to-state stable with the
ISS-Lyapunov function

V (z∗k ) = E
{ Np−1∑

i=0

(
∥z∗k+i|k∥

2
Q + ∥u∗

k+i|k∥
2
R

)
+ ∥z∗k+Np|k∥

2
P

}
.

♢

Proof. Let V (z∗k ) and V (z
∗
k+1) be an ISS-Lyapunov candi-

date function at time k and k + 1, respectively. With the
stabilizing control input after prediction horizon uk+N |k =
Kzk+N |k , we have

E{V (z∗k+1)} − V (z∗k )

= E
{ Np−1∑

i=1

(
∥z∗k+i|k∥

2
Q + ∥u∗

k+i|k∥
2
R

)
+ ∥z∗k+Np|k∥

2
Q

+ ∥u∗
k+Np|k∥

2
R + ∥z∗k+Np+1|k∥

2
P

}
− V (z∗k )

≤ E
{
∥z∗k+Np|k∥

2
Q + ∥z∗k+Np|k∥

2
KTRK + ∥z∗k+Np|k∥

2
ATclPAcl

+ ∥Bφφk+Np|k∥
2
P + ∥Gwk+Np|k∥

2
P − ∥z∗k|k∥

2
Q − ∥u∗

k|k∥
2
R

− ∥z∗k+Np|k∥
2
P

}
= E

{
− ∥z∗k|k∥

2
Q − ∥u∗

k|k∥
2
R + ∥Bφφk+Np|k∥

2
P

+ ∥Gwk+Np|k∥
2
P

}
≤ −∥z∗k|k∥

2
Q + ∥Bφφk+Np|k∥

2
P + E

{
∥Gwk+Np|k∥

2
P

}
(47)

where s∗k|k = z∗k|k , and A
T
clPAcl + K TRK + Q = P since P

is the solution of (33). Therefore, V (z∗k ) is the ISS-Lyapunov
function and the closed-loop system is input-to-state stable.

Moreover, summing (47) over k = 0, 1, . . . leads to

lim
n→∞

1

n

n∑
k=0

E(∥zk∥2Q + ∥uk∥2R) ≤ Lss (48)

where Lss = limn→∞
∑n

k=0E(∥Bφφk∥2P + ∥Gwk∥2P)/n by
using discrete-time version of Dynkin’s Formula [53]. It is
straightforward that the state of the closed-loop system does
not converge asymptotically to the origin but remains within
a neighborhood of the origin due to the external signal and
uncertainty by viewing (48), which means mean-square sta-
bility [30], [46].
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Algorithm 1 Procedure of the proposed method
Offline Phase:
1: Collect dataset (27)
2: Design the lifting function ϕ(·) (28)
3: Find the approximated Koopman operator (30)
4: Design the stabilizing control gain K (33)
5: Compute the constraints (42)
6: Compute the set C∞

T using (44)
Online Phase:
7: for k = 0, · · · do
8: Measure zk|k , φk|k
9: Solve the optimization problem (46)
10: Obtain the optimal solution v∗

·|k
11: Use the first element of v∗

·|k for the control input
12: end for

V. SIMULATION RESULTS
A. SIMULATION SET-UP AND KOOPMAN
OPERATOR-BASED VEHICLE MODELING
The proposed method was validated using the co-simulation
platform with MATLAB/Simulink and CarSim. The vehicle
dynamic simulator, CarSim, provides a vehicle model with
27 degrees of freedom for representing the highly nonlinear
vehicle dynamics allowing for testing of the realistic motion
of a vehicle. We used various roads provided by CarSim
to obtain the training dataset for computing the Koopman
operator with a sample time of 0.01s. Some of the system
states are related to the given road lane, i.e., ey, eyL , ėy,
and eψ; thus a path-follow controller stabilizing the vehicle
lateral motion is needed to obtain the dataset. Moreover,
random signals are added to the input to sufficiently excite
the nonlinear vehicle dynamics. For more details, refer to our
previous work [32], [38]. Then, the dataset matrices (27) is
obtained with M = 1.22 × 105. We chose N = 22 in (25)
to obtain the lifted state. In addition, it is reported that a thin
plate spline radial basis function is an effective lifting function
in autonomous vehicle modeling compared to the other basis
functions [32]. Thus, the nonlinear lifting functions ϕi are
selected as the thin plate spline radial basis functions, i.e.,
ϕi(x) = ∥x − cl∥22 · log∥x − cl∥2 where cl is randomly
selected with a uniform distribution in a certain range [24].
The number of thin plate spline radial basis functions is set to
15 in (28).
Based on the obtained training dataset, we approximate the

Koopman operator in the finite-dimensional space using (30).
The approximated Koopman operator is tested to validate
the modeling accuracy with a validation dataset. The fitting
performance is shown in Fig. 6. The red line depicts the true
state of the vehicle acquired fromCarSim, and the blue line il-
lustrates the predicted vehicle state by the Koopman operator-
based vehicle model. As shown in Fig. 6, the Koopman-based
vehiclemodel can predict the vehicle state well.Moreover, we
can observe that the last three states are also well predicted
through zoom-in windows.
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FIGURE 6. Model fitting accuracy of the Koopman model with validation
set.

B. COMPARATIVE STUDY

We conducted a comparative study to validate the effective-
ness of the proposedmethod, i.e., the Koopman-based vehicle
model and the SMPC scheme. To do this, we adopted two
different methods, i.e., K-LQ and L-SMPC. The K-LQ uses
the Koopman-based vehicle model with an LQR controller.
We can observe the effectiveness of the SMPC scheme by
comparing the proposed system with the K-LQ. On the other
hand, the L-SMPC is the same as the proposed method except
for the vehicle model, i.e., the L-SMPC uses the linear vehi-
cle model. Thus, the validity of the Koopman-based vehicle
model can be confirmed by comparing the proposed method
with the L-SMPC. The details of each method are as follows.

1) K-LQ

The K-LQ method [32] uses the Koopman operator-based
vehicle model, the same as (31). However, the linear quadratic
regulator was adopted to control the system, i.e., the only
difference with the proposed method is the control scheme.
From [32], the road information, i.e., φ, was not considered
in the controller design. Thus, we can evaluate the tracking
performance of the proposed scheme on high-curvature roads
by comparing the performance of the K-LQ.
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FIGURE 7. Tire slip angle in dataset.

2) L-SMPC
The linear vehicle model was adopted as the look-ahead
lateral dynamic model from [5], [36] with the state xTv =[
eyL ėy eψ ψ̇

]T
given by

ẋv = Avxv + Bvuv + Bvφφv, (49)

where

Av =


0 1 0 −L
0 a22 a23 a′24
0 0 0 −1
0 a′42 a43 a44

 , Bv =

.0
b′21
0
b41

 ,

Bvφ =


L Vx
Vx 0
1 0
0 0

 , uv = δ, φv =

[
ψ̇des

eψL − eψ

]
,

with

a22 = −
2Cαf + 2Cαr

mVx
, a23 = −a22Vx ,

a24 = −1−
2Cαf lf − 2Cαr lr

mVx2
, a′24 = (a24 − 1)Vx ,

a42 = −
2Cαf lf − 2Cαr lr

Iz
, a′42 = a42/Vx ,

a43 = −a42, a44 = −
2Cαf lf 2 + 2Cαr lr2

IzVx
,

b21 =
2Cαf
mVx

, b′21 = b21Vx , b41 =
2Cαf lf
Iz

.

Then, the linear vehicle model was discretized with the
zero-order-holder method. We designed the SMPC to be sim-
ilar to (46) except for the system model (46b). The linear
model-based SMPC for the LKS was successfully studied
in [54]. However, the linear model is not appropriate since
the cornering stiffness is no longer linear with respect to the
tire slip angle when the road curvature is high and vehicle
speed rapidly changes [8], [54]. Therefore, we can confirm
the effectiveness of the proposed method in dynamic lane-
keeping scenarios by comparing the result of the L-SMPC.

For a fair comparison with the proposed method, we used
the same weighting matrix on the system state and con-
trol input in the design of the controller of each method.
Specifically, the weighting matrix for the method using the

(a) Vx

(b) C0, C1, C2, and C3

FIGURE 8. L-SMPC has large tracking error (C0 and C1) in pink-colored
section, where vehicle speed is rapidly varying. K-LQ has large tracking
error (C0 and C1) in blue-colored section, where road has high curvature:
(a) Vehicle longitudinal speed, and (b) road coefficients.
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FIGURE 9. ey histogram.

Koopman-based model (i.e., K-LQ and K-SPMC) is as Q =
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(a) Lateral position error w.r.t. lane, ey
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(b) Lateral position error on the look-ahead point, eyL
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(c) Derivative of the lateral position error, ėy
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FIGURE 10. Control results of the system state.
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 ∈ RN×N ,R = Rv ∈ Rm where Qv ∈ R4×4
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FIGURE 11. Uncertainty wk for each system state.

and Rv ∈ R is the weighting matrix for L-SMPC, and N
is the dimension of the lifted state in (28). Moreover, this
paper designs the longitudinal controller to control the vehicle
speed with respect to the road curvature with a proportional-
derivative (PD) controller. The design process of the longi-
tudinal controller is out of the scope of this paper; hence,
the reader can refer to the authors’ work [55] for a detailed
description. In Fig. 8 (a), it can be shown that the vehicle
longitudinal speed is equal to each method. Thus, the tracking
performance of each method only depends on each lateral
controller.
We use the race-track road provided by CarSim to validate

the tracking performance of each method. As shown in Fig. 7,
the race-track road has high-curvature curved roads so that the
vehicle can have a highly nonlinear motion, i.e., the tire slip
angle is large. Since the comparative study is conducted to
test the utility of each method in nonlinear vehicle motion,
the race track can be appropriate for a test environment. The
road lane coefficients, i.e., C0, C1, C2, and C3 in (2), are
illustrated in Fig. 8 (b). The blue line represents the result
of the K-LQ, the red line is the L-SMPC, and the green line
depicts the result of the proposed method. It should be noted
that C2 is the curvature of the lane, representing the road
shape. Hence, each control method was conducted on the
same path. As mentioned in II-A, C0 denotes the lateral offset
error, and C1 denotes the heading angle error. We can see
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FIGURE 12. Results of control input and slack variables.
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FIGURE 13. SMPC infeasibility: 0 for feasible, 1 for infeasible.

that the proposed method has a lower lateral position error
and a lower heading angle error, i.e., C0 and C1, compared
to other methods in Fig. 8 (b). In particular, the proposed
controller had a lower error on the lane with a high curvature,
as shown by the blue section in Fig. 8 (b). However, the L-
SMPC had a large error in the pink section in Fig. 8 (b)
compared to other methods because the linear vehicle model
is no longer accurate with rapid varying of vehicle speed [8],
as illustrated by the pink section in Fig. 8 (a). On the other
hand, the K-LQ can track the given lane even with rapid
speed changes because the Koopman operator-based vehicle
model can represent the highly nonlinear vehicle dynamics.
However, the K-LQ has a larger error on roads with a high
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FIGURE 14. Results of the tire slip angle.

curvature, as depicted by the blue region in Fig. 8 (b). This is
because the K-LQ does not consider the future system state,
while the K-SMPC and the L-SMPC predict the future state
with the curved road information from φ in the optimization
problem. As mentioned before, C0 denotes the lateral offset
error, which is equal to the system state ey. Thus, we observe
that the proposed method has the lowest lateral error by the
statistical way, i.e., histogram, as is shown in Fig. 9.
The results of the controlled system state are observed in

Fig. 10. As defined by the state of the system in (13), some
states represent the path-tracking performance. Specifically,
ey and eyL are the lateral position errors at CG and the look-
ahead distance, respectively. In addition, ėy is the lateral speed
tracking error, and eψ is the heading angle tracking error.
In Fig. 10, the blue line represents the K-LQ, the red line
represents the L-SMPC result, the green line represents the
proposed method, and the black line represents the tightened
constraints of each state. We set the constraints as |ey| ≤ 1 m,
|eyL | ≤ 1 m, |ėy| ≤ 0.95 m/s, |eψ| ≤ 10 deg, and |ψ̇| ≤
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30 deg/s to keep the vehicle within the given lane. Besides,
we set the covariance matrix Σw from the data. The uncer-
taintywk is computed, as shown in Fig. 11. First, we compute
each state uncertainty’s mean value µ. The variance then is
calculated for each state such that 1

M

∑M
i=1(xi−µ)2 whereM

is the length of the dataset in (26). We use the variance for
the covariance matrix. The covariance matrix is defined as
Σw = diag

[
σ1 σ2 σ3 σ4 σ5 σ6 σ7 01×(N−7)

]
where σ1 = 1.43e − 5, σ2 = 2.70e − 5, σ3 = 1.31e − 3,
σ4 = 7.64e − 6, σ5 = 2.46e − 3, σ6 = 1.5, and σ7 =
1.41e− 3.
As shown in Fig. 10, it can observed that the proposed

method has less error in the lateral position, lateral speed,
and heading angle, i.e., ey, eyL , ėy, and eψ . Moreover, the
proposed controller satisfies the given constraints of each
system state, while other methods violate the constraints in
some sections. As a result, the proposed method has better
tracking performance than the other methods in the LKS
application.We can observe the quantitative results in Table. 1
and Table. 2. It can be confirmed that the proposed method
dramatically reduces the lateral position error in terms of the
root mean squared error and the max error than the other
methods.

In Fig. 12 (a), the control input rate of each method is
depicted. The result of the K-LQ is the blue line, the L-SMPC
method is the red line, the K-SMPC is the green line, and the
constraints are shown as the black dotted line.We can observe
that the K-LQ violates the given constraints, while the L-
SMPC and the K-SMPC satisfy the constraints. However, the
L-SMPC has a large input rate in some ranges, which means a
large oscillation of control input. In Fig. 12 (b), we can see the
control inputs of eachmethod. It can be seen that the L-SMPC
has a large oscillation in some ranges because the L-SMPC is
infeasible where the given constraints are violated, as shown
in Fig. 13. On the other hand, the K-LQ and the K-SMPC
method have a smooth control input. In addition, the proposed

TABLE 1. Comparison of controller performance on validation road

Root Mean Squared Error

State ey eyL ėy eψ ψ̇

K-LQ 0.517 0.571 0.252 0.055 0.088
L-SMPC 0.333 0.374 0.281 0.045 0.088
K-SMPC 0.130 0.180 0.220 0.045 0.088

TABLE 2. Comparison of controller performance on validation road

Max Error

State ey eyL ėy eψ ψ̇

K-LQ 1.608 1.746 0.978 0.175 0.396
L-SMPC 1.200 1.253 1.741 0.211 0.392
K-SMPC 0.356 0.472 0.817 0.117 0.381
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FIGURE 15. Boxplot of control results of the system state.

method slightly violates the input constraints at about 600 m
and 1800 m to control the vehicle on the high curvature road.
However, note that we consider the soft constraints on the first
step of the input. Thus, the slack variables can be observed,
as shown in Fig. 12 (c).
The results of each tire slip angle are shown in Fig. 14

for each method. The pink section of Fig. 14 represents the
linear relationship between the lateral tire force and the tire
slip angle [8], [32], i.e., the cornering stiffness is a linear
function of the tire slip angle in (5). In this paper, the linear
region is selected within±3 deg of the tire slip angle because
the lateral tire force and the tire slip angle can be in a linear
relationship provided by CarSim data and references [8],
[32]. The Koopman-based vehicle model (i.e., K-LQ and K-
SMPC) maintains the tire slip in the linear region. Thus, it can
be seen that the Koopman-based model captures the vehicle’s
nonlinear behavior and effectively controls the vehicle under
dynamic situations. On the other hand, the L-SMPC method
leaves the linear region so that the linear vehicle model is
no longer valid. In Fig. 15, the boxplot of the control results
of each system state is depicted. The green box is the result
of the proposed method, the blue box is the result of the K-
LQ, and the red box is the result of the K-SMPC. The bottom
and top of each box are the 25th and 75th percentiles of the
data, respectively. The red line in the middle of each box
is the median value. We can see that the proposed method
remarkably reduces the lateral position error compared to
other methods. Note that lateral position error can be the most
important criteria in tracking performance.

VI. CONCLUSION
In this paper, we proposed the K-SMPC for the enhanced
LKS of autonomous vehicles. The EDMD method was used
to approximate the Koopman operator in a finite-dimensional
space for practical implementation. The modeling error of
the approximated Koopman operator in the EDMD method
was handled as a probabilistic signal. We then designed K-
SMPC to tackle the modeling error. The recursive feasibility
of the proposedmethod was guaranteed with the explicit first-
step state constraint by computing the robust control invariant
set. A high-fidelity vehicle simulator, CarSim, was used to
validate the effectiveness of the K-SMPC for the simulation.
We conducted a comparative study between K-LQ and L-
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SMPC, confirming that the proposed method outperforms
other methods with respect to tracking performance. Further-
more, we observed that the proposed method satisfies the
given constraints and is recursively feasible. In future work,
a comparative study will be conducted with the Koopman-
based RMPC to evaluate the conservativeness quantitatively.
Future research may also include a real-car experiment. We
will consider the real-time feasibility of implementing the
proposed method in the real world. The optimization prob-
lem (46) should always be solved on a real-time platform, e.g.,
MicroAutoBox from dSPACE. Therefore, analysis of compu-
tation burden on a real-time platform will be considered as
future work.
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