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ABSTRACT CCTVs and telecom base stations act as sensors, and collect massive face and phone related
data. When used for person localization and trajectory characterization, they each present quite different
spatiotemporal characteristics: CCTV is associated with slowly sampled face ID trajectories with spatial
resolution of approximately 20 meters, while telecom readings provide fast sampled phone ID trajectories
with spatial uncertainty of a few hundred meters. Face or phone trajectory can be seen as an observation of
the real trajectory of a moving pedestrian. It is useful to identify correspondence between face and phone
trajectories to reconstruct trajectory of moving persons. To this end, we propose a complementarity-oriented
feature fusion mechanism (COFFM) to model and utilize the common embedding and complementarity
of these two measurement modalities. Specifically, a Cycle Heterogeneous Trajectory Translation Network
(CCTTN) is proposed to realize a TFE (Trajectory Feature Extractor) which captures the latent transforming
relationships between the face and phone modalities. The latent features from both transforming directions
are concatenated in the Feature Unifying (FU) module and fed into a binary face-phone trajectory matching
discriminator (FPTPMD) to infer whether a face-phone trajectory pair corresponds to the same underlying
motion trajectory. We evaluated our method on a large real-world face-phone trajectory data set, and showed
promising results with the accuracy of 97.1% which exceeds the comparable similarity-based methods. The
developed principle and framework generalize well to other multi-modality trajectory matching tasks.

INDEX TERMS Multi-modality trajectory matching, feature fusion, trajectory feature extraction, common
domain embedding, pedestrian tracking, trajectory reconstruction.

I. INTRODUCTION

RECONSTRUCTION of pedestrian trajectory is an im-
portant task in tracking human subjects, for security or

safety purposes. Security CCTV can capture a person’s facial
image when the subject is within the view range, typically
within a radius of about 20 meters. Face ID is typically
generated with face recognition technique, and coordinates of
camera when such identifying frame is captured approximate
the subject’s location associated with the same time tag.
Therefore, querying face ID from the CCTV footage can pro-
vide an approximate trajectory of the pedestrian. Similarly,
as mobile phones move, their communication routing via the
telecom base stations are also recorded and their geographic
trajectory can be approximated by the location of their closest

base station, tagged by the time of communication. If amobile
phone is associated with a pedestrian, then both the CCTV-
derived face ID trajectory and the telecom-derived phone
ID trajectory manifest from the same underlying continuous
pedestrian movement and can be considered as two observa-
tion modalities, each with its own characteristics. The face
trajectory has a high geographic resolution but a low temporal
sampling rate, available only when the pedestrian is within
20 meters of a camera. On the other hand, the mobile phone
trajectory has a high temporal sampling rate but at the cost
of low geographic position resolution, in the order of a few
hundred meters.

These two observation modalities provide complementary
information about the pedestrian trajectory and it is desirable
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to integrate them for the underlying reconstruction problem.
One critical task for this Integration is to identify the corre-
sponding face-phone trajectory pairs among the massive raw
data.

Existing works on trajectory matching mostly focus
on mono-modality trajectory data collected by same kind
of sensors [1]–[11] typically relying on measurement of
(dis)similarities between trajectories to establish correspon-
dence. Unfortunately, such setup does not translate well to
the face-phone matching problem where spatiotemporal res-
olution differ significantly across modalities. To fill in this
critical gap between available methodology and application
gap, we propose an innovative Complementarity-Oriented
Feature Fusion Mechanism (COFFM) framework as shown
in Fig 1. At the center of the COFFM is a Cycle Consistent
Trajectory Translation Network (CCTTN) for bi-directional
embedding of sequence-encoded features from both modali-
ties. These features are concatenated and fed into the Face-
Phone Trajectory Pair Matching Discriminator (FPTPMD,
yellow in Fig 1) to distinguish true corresponding face-phone
trajectories from other pairings. Experiments on large scale
data have demonstrated that our complementarity-based ap-
proach achieves good performance for face-phone trajectory
matching with the accuracy of 97.1%.

This framework aims to address the modality trajectory
matching problem, particularly with different spatiotempo-
ral characteristics. The central Cycle Consistent Trajectory
Translation Network uses LSTM as basic building blocks
for dynamic information encoding and constructs a mutual
embedding to capture the complementarity of the modalities.
Subsequent discriminator based on the concatenation of ab-
stract features from CCTTN ensures that both the common
and differential information are efficiently utilized.While this
work is motivated by the face-phone matching problem, our
development and design generalize to other multi-modality
trajectory fusion problems quite naturally.

II. RELATED WORKS
A. SIMILARITY-BASED METHOD FOR MONO-MODALITY
TRAJECTORY MATCHING
Most existing work on trajectory matching focus on trajec-
tories collected from the same type of sensors. For example,
reference [12] worked on travel recommendations by mining
multiple pedestrians’ GPS traces. The common theme is to
investigate similarity metric to define difference between two
trajectories [1]–[11], with the possibly semantic considera-
tions. These methods typically require domain knowledge to
design similarity metrics on pairing trajectories with com-
patible lengths and sampling rates. In contrast, our work
automatically extracts features for multi-modality sampled
trajectories originated from the same underlying continuous
movement by leveraging deep network, and performs trajec-
tory matching without the need for ad-hoc sample alignment
across the different trajectories.

B. MULTI-MODALITY TRAJECTORY MATCHING
Multi-modality trajectory matching has been a focal point
of research, given the potential of combining diverse data
sources to enhance tracking precision. Several studies, includ-
ing [13], [14], and [15], have explored methods for associ-
ating heterogeneous trajectories. Among these, the work in
[13] is particularly relevant to ours, as it presents a feature
engineering-based approach for matching face and phone
trajectories, utilizing spatiotemporal features such as Multi-
Granularity SpatioTemporal Window Searching (MGSTWS)
and Big GeoDis and Small TimeDiff (BGST) to identify
potential matches. While effective in controlled settings, this
method is constrained by its reliance on manually crafted
features, which limits adaptability in scenarios with vary-
ing spatial resolutions and temporal frequencies—a chal-
lenge commonly encountered in face-phone trajectory data.
In contrast, our approach employs a data-driven feature fusion
mechanism, designed to flexibly integrate cross-modality in-
formation and enhance robustness in complex environments.
In addition, [15] investigates vehicle-phone trajectory

matching, employing multiple similarity metrics to increase
robustness. However, this approach does not address key
challenges specific to face-phone matching, such as differing
statistical properties between data sources and the need for
modality complementarity. Likewise, [14] introduces Vi-Fi,
a framework that associates visual and wireless data through
a deep learning-based similarity matrix, effectively linking
camera-detected individuals with their corresponding wire-
less signals. Although Vi-Fi mitigates some limitations of
vision-based matching (e.g., reliance on color features) and
demonstrates adaptability in dynamic conditions, it primar-
ily targets visual-wireless alignment and does not tackle the
unique requirements of face-phone data.
Our work advances beyond these methods by addressing

the distinct challenges of face-phone trajectory matching
through an approach that unifies and maximizes complemen-
tary information across modalities, enabling more effective
and adaptive trajectory alignment.

C. TRAJECTORY EMBEDDINGS
Trajectory embedding is necessary to provide a homogenized
inputs from different modalities by transforming raw trajecto-
ries into a common linear vector space. The design of this tra-
jectory embedding should account for the data characteristics
– in the current context, the face ID/phone ID raw trajectories
are presented as variable length sequences and needs to be
converted to a homogeneous form for further processing.
There are few works concerning this trajectory embedding

process. Reference [16] uses Recurrent Neural Network to
characterize trajectory. In contrast, we use LSTM to learn the
trajectory embedding since LSTM excels in extracting forma-
tion in long sequences. References [17]–[19] learn a mapping
function to transfer trajectories into low-dimensional vector
representations based on only geographical correlativeness
in trajectories. In contrast, our framework considers not only
geographical correlation but also temporal correlation in tra-
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FIGURE 1. Framework for face-phone trajectory matching based on Complementarity-Oriented Feature Fusion Mechanism.

jectories. Ref. [20] attempts to capture the semantic similar-
ities in trajectories by directly learning an embedding from
predicting the context aspect tokens whose generation relies
on clustering. In sharp contrast, our method automatically
extracts trajectory semantic with versatility.Moreover, we ob-
tain trajectory embedding with a two-phase encoding frame-
work. Phase-1 is analogous to transforming autoencoders in
previous synthesis works, phase-2 further enhances the em-
bedding by unifying the abstract representation for different
trajectory modalities. In doing so, our two-phase trajectory
embedding addressed the desire to capture complementarity
for true matched face-phone pairs.

D. CYCLE-CONSISTENT GENERATIVE NETWORK
Motivated by Cycle-GAN [21] we design a cycle consistent
trajectory translation network (CCTTN) tomodel the comple-
mentarity in real matching face-phone trajectory pairs and to
enhance the trajectory embedding’s distinctiveness orienting
towards differentiating true matching face-phone trajectory
pairs from the artificial ones.

III. PROPOSED APPROACH
Let OA =

{
oA1, . . . , o

A
M

}
denote a set of M face ID trajec-

tories. In OA, each face trajectory oAi = [oAi (1), . . . , o
A
i (x)]

consists of x trajectory points for the i − th face ID. The
αth-trajectory point where α ∈ 1, . . . , x is formally repre-
sented as a triplet oAi (α) = [lon, lat, ts], where lon and lat
denotes the longitude and latitude of the camera respectively
which approximates a pedestrian’s geographic position, and
ts denotes the timestamp for the pedestrian’s appearance on
the CCTV camera. Similarly, OB = oB1, . . . , o

B
N denotes a

set of N phone ID trajectories. In OB each phone trajectory
oBj = [oBj (1), . . . , o

B
j (y)]consists of y trajectory points for the

j−th phone ID. The βth-trajectory point where β ∈ 1, . . . , y is
formally represented as a triplet oBi (β) = [lon, lat, ts], where
lon and lat denotes the longitude and latitude of the communi-
cation base station respectively that the phone communicates
with at timestamp ts , approximating the pedestrian’s location.
The aim of this work is to perform trajectory pairing of the
face trajectory oAi ∈ OA and the mobile phone trajectory
oBi ∈ OB, originated from the same one pedestrian.

The entire network is shown in Fig 1. First, to fully
exploit this latent complementarity, we build a two-phase-
embedding process called Complementarity-Oriented Fea-
ture Fusion Mechanism (COFFM), containing a Trajectory
Feature Extraction (TFE) module and a Multi-modality Tra-
jectory Feature Unifying (MTFU) module. Specifically, the
TFE module encodes a face/phone trajectory into an initial
latent feature vector such that it is amicable to decoding into
the other modality. The subsequent MTFU module uses a
cycle-consistent Trajectory Translation Network (CCTTN) to
obtain a unified abstract trajectory representation. Second,
we formulate the trajectory matching problem as a binary
classification task, and train a Face-Phone Trajectory Pair
Matching Discriminator (FPTPMD) module to accomplish it
– it takes the output of MTFU module to infer a decision of
whether a face-phone trajectory is a true match.

A. TRAJECTORY FEATURE EXTRACTION (TFE)
Phase one of the COFFM is the Trajectory Feature Extrac-
tion (TFE) module that is designed to extract preliminary
features to capture modality transfer behaviors. To this end,
we propose to use a general auto-encoder-decoder frame-
work with long-short-term memory (LSTM) blocks [22]–
[26]. The modality transfer aspect is achieved by having
different modalities as the encoder input and decoder output.
The LSTM blocks are amicable to variable and inconsistent
sequence lengths, alleviating the stringent requirement of
existing work for matched lengths in the sequences [26]–[30].
The contrast between MLP and LSTM respectively used for
trajectory feature extraction is shown in Fig 2.
When TFE is used to perform face-to-phone trajectory

transformation, the encoder takes the face trajectory oAi as
input and encodes oAi into a 64-dimensional feature vector
vA2Bi , and the decoder uses this feature vector vA2Bi to recon-
struct corresponding phone trajectory oBi . The latent feature
vector vA2Bi contains directional information of face trajectory
oAi and the phone trajectory o

B
i . Upon completion of training,

the encoder can be applied to any face trajectory to obtain
a representation vA2Bi that is phone-compatible. Similarly, a
face-compatible phone representation vB2Aj can be obtained
when the roles of face and phone sequence are reverted.
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FIGURE 2. Trajectory Feature Extraction (TFE) module.

LSTM network modules are used as basic building blocks in
the TFE to capture the semantics of the sequential data.

The vA2Bi or vB2Aj preliminarily capture the complemen-
tarity within corresponding face-phone trajectory pairs. In
subsequent HTFU, the complementarity will be enhanced. To
express the phased process of capturing the complementarity,
we would call the vA2Bi or vB2Aj as Phase-1 embedding for a
trajectory.

B. MULTI-MODALITY TRAJECTORY FEATURE UNIFYING
(MTFU)
The second phase of the COFFM is the MTFU module to ob-
tain abstract mapping embedding. Specifically, it is designed
to enhance the complementarity of the vector representations
from TFE alone. While the face-to-phone and phone-to-face
paths are modality-translating in their own rights, there is an
intrinsic directionality that does not quite offer the symmetry
we desire for an ideal complementary common embedding.

Whether a 1-phase trajectory embedding is originated from
a face trajectory or phone trajectory, HTFU deals with it in
the same way. Specifically, HTFU transforms a 1-phase face
trajectory embedding to a 2-phase face trajectory embedding
and HTFU deals with a 1-phase phone trajectory embedding
in a quite similar way. For simplicity, in this section we
temporarily do not differentiate the specific type of original
trajectory source, but generally call one source as A-type and
another source as B-type. For example, if A-type means that
the source is face trajectory and then B-type means phone
trajectory source, or vice versa.

Motivated by the idea of cycle consistency [21], [31]
in generative adversarial networks, we design a Cycle-
consistent Trajectory Translation Network (CCTTN) to
achieve unified abstract representation, as shown in Fig 3.

The preliminary features
{
vA2Bi

}
and

{
vB2Aj

}
from TFE

are used as input to a cycle consistent auto-encoder pair
AEA2B→B2A and AEB2A→A2B. The intermediate feature vec-
tors wA2B→B2A and wB2A→A2B are concatenated to form a
single representation. The training of CCTTN is driven by a

loss L(AEA2B→B2A,AEB2A→A2B) (as shown in (4)) consisting
weighted sum of mean squared error losses for directional
translators AEA2B→B2A and AEB2A→A2B, and a cycle consis-
tency criterion Lcyc(G,F) (as shown in (3), (4).) The weight
λ is set to one in our experiments.

LAEA2E→B2A(
{
vA2B, vB2A

}
;AEA2B→B2A) =

EvA2B
[∥∥AEA2B→B2A

(
vA2B

)
− vB2A

∥∥
2

]
.

(1)

LAEB2A(F ,B,A) =

EoB,1−phase
i ∼Pdata(o

B,1−phase
i )

[∥∥∥G(oB,1−phase
i )− oA,1−phase

i

∥∥∥
2

]
.

(2)

Lcyc(G,F) =

EoA,1−phase
i ∼Pdata(o

A,1−phase
i )

[∥∥∥F(G(oA,1−phase
i ))− oA,1−phase

i

∥∥∥
2

]
+EoB,1−phase

i ∼Pdata(o
B,1−phase
i )

[∥∥∥G(F(oB,1−phase
i ))− oB,1−phase

i

∥∥∥
2

]
.

(3)

L(AEA2B→B2A,AEB2A→A2B) =

LAEA2B + LAEB2A + λLcyc(AEA2B→B2A,AEB2A→A2B).
(4)

Concatenating the intermediate vectors wA2Bi and wB2Ai
provides symmetric two-way translation, preserving both the
inherent similarity and the directional translation difference.

C. FACE-PHONE TRAJECTORY PAIR MATCHING
DISCRIMINATOR
The face-phone trajectory matching problem can be formu-
lated as a binary classification problem to indicate a true
match. We call this classifier as Face-Phone Trajectory Pair
Matching Determinator, abbreviated as FPTPMD.
For a face-phone trajectory pair, COFFM respectively gen-

erates an abstract representation vector for the face trajectory
and the phone trajectory. We concatenate these two vectors
into one vector as the abstract representation of the face-
phone trajectory pair (abbreviated as AFPPV for simplicity).
The classification network generates an output of a two-
dimensional category vector. The two elements in this cate-
gory vector respectively indicate the probability of matching
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FIGURE 3. Architecture of MTFU module based on cycle consistent trajectory translation network (CCTTN).

between the face and phone trajectory at input. The higher
possibility is taken to predict the matching decision as true
or false, which respectively represents that the original face-
phone pair is real matching or non-matching.

Since the raw trajectory dataset contains only true match-
ing face-phone trajectory pairs, it is necessary to generate
negative samples to prevent the discriminator from over-
fitting the matching pairs. Since one pedestrian’s face tra-
jectory does not match another pedestrian’s phone trajectory,
we randomly select face trajectories and phone trajectories to
generate non-matching face-phone trajectory pair to generate
AFPPV as negative samples.

IV. EXPERIMENTS AND ANALYSIS
A. RAW DATASET DESCRIPTION AND PROPERTIES

Face and phone trajectory datasets were used in our exper-
iments. The face trajectory dataset Dft consisted of 43423
face trajectories. A specific example of a face trajectory
point is a triplet <1598316054, 1 ∗ 4.72184214004113, 2 ∗
.344966375887772> where the ‘∗’ hides the true values for
legal considerations. All face trajectories have been trans-
formed to CCTV coordinates face recognition performed
by the data provider, ridding all privacy information. The
mobile-phone trajectory dataset Dpt is consisted of 43423
phone trajectories and each of these phone trajectories is
composed of a series of trajectory points in the form of <time,
longitude, latitude>. A specific example of a face trajectory
point is a triplet like <1598314054, 1∗4.72184214004113, 2∗
.344966375887772>. The third dataset Dfp match appends an
indicator at face-phone pairs to indicate true match.

A trajectory’s length is defined as the number of trajectory
points in the trajectory. I presents the statistics of the lengths
ofDft andDpt . It can be observed that the face trajectories are
typically very sparse, with amedian length of 3. This indicates
that only partial information about pedestrian movement can
be derived from face trajectory.

Significant length difference can also be observed between
the face and phone trajectories. Let Minconsistency be the ratio
of a phone trajectory length to a face trajectory length and
describe the severity of length inconsistency. II and Fig 4
show the distribution of Minconsistency of the 43423 matching
face-phone pairs in Dfp match, with the average and median
being 24 and 8.6 respectively, illustrating significant length
inconsistency between the two modalities, making classic
similarity-based methods inapplicable.

B. EXPERIMENTAL SETUP
The CCTTN consists of two pairs of cascaded encoder-
decoder, and each encoder/decoder consists of a 64-
dimension input layer and two 64-dimension hidden layers.
FPTPMD is a 2-layer Multi-Layer Perceptron (MLP) with
128-dimensional layers, Relu as activation functions between
hidden layers, and Softmax following the output layer. We
train CCTTN and FPTPMD separately, each with RMSprop
[32] for 40 epochs at the learning rate of 0.1. For CCTTN,
batch size is set as 10 and dropout rate as 0.5. For FPTPMD,
the batch size is set as 100.
For training our frame in Fig 1, we reserve 20% of face-

phone trajectory pairs indicated in Dfp match as testing sets
(Dtest in III). The rest of the real matching pairs are used
as positive pair samples, together with randomly constructed
non-matching trajectory pairs as negative pair samples, for
training. Only the positive pairs are used in training CCTTN.

C. EVALUATION
Since the face-phone trajectory matching is solved by using
binary classifier, we use four metrics: Accuracy (A), Preci-
sion (P), Recall (R), and F1-score (F1) to comprehensively
evaluate the performance of different methods. A, P, R, F1
are respectively defined in (5). In these definitions, TP is
the number of true positive face-phone matching pairs; FP is
the number of false positive pairs, TN is the number of true
negative pairs, and FN is the number of false negative pairs.
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TABLE I. Statistical property of the number of trajectory points.

Trajectory Dataset Number of Trajectories Average Minimum Quarter Median Third-Quarters Maximum
Face Trajectory 43423 8 1 1 3 7 7744
Phone Trajectory 43423 92 1 8 37 123 5640

TABLE II. Statistics of Minconsistency of real matching face-phone trajectory pairs.

Average Minimum Quarter Median Third-Quarters Maximum
Minconsistency 24 0.01 3.3 8.6 23 3110

FIGURE 4. Distribution of Minconsistency of matching face-phone pairs. The left histogram shows the distribution of the Minconsistency of all matching
face-phone trajectory pairs, the right histogram specially shows the Minconsistency of matching face-phone trajectory pairs with Minconsistency ≤ 500.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
,

Precision =
TP

TP+ FP
,

Recall =
TP

TP+ FN
,

F1 = 2 ∗ Precision ∗ Recall
Precision+ Recall

.

(5)

Our complementarity-based method is compared with tra-
ditional similarity-based trajectory matching methods. Two
earlier methods, Dynamic Time Warping (DTW) [33] and
Discrete Frechet (DF) [34], [35], may also be used to calculate
similarity between a pair of heterogeneous trajectories such as
face-phone trajectory pair. DTW captures flexible similarities
under time distortions, and DF measures the similarity of
two polygonal curves – both compatible with sequences of
different length and can be used as baselines.

In the benchmark similarity-based methods, mismatch is
expressed with a real number, in contrast to our binary deci-
sion. To fairly and meaningfully compare the effectiveness
of our method with DTW/DF concerning the face-phone
trajectory matching task, since the testing sets are with ratio

of 1:1 (number of positive pairs to number of negative pairs),
we use the median of the trajectory similarities computed
with DTW/DF based on the training set as the threshold for
determining a match.
To comprehensively compare various methods as for face-

phone matching task, we set aside 3 testing sets for evalua-
tion. The 3 testing sets are: (1) Dtest to evaluate a method’s
general performance. (2) Dsparse consists of face trajectory
and phone trajectory with very short face trajectories to eval-
uate a method’s robustness towards sparse face trajectory.
(3)Dinconsistency with severe length inconsistency to evaluate
a method’s performance on inconstant face-phone trajectory
pairs. The description of the 3 testing datasets is summarized
in III.
We applied the benchmark DTW, DF, and the proposed

COFFM on the above 3 testing datasets. IV reports the per-
formance, among which accuracy is the evaluation metric
most concerned by our project-launching part as for the real
application. It can be observed that our approach generally
outperforms the baseline on all testing datasets.
Our approach achieves an Accuracy of 97.1% on Dtest ,

exceeding DTW by 48.1% and DF by 38.6%. We mainly at-
tribute the advantage of our method over DTW/DF to that our
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TABLE III. Building of testing datasets.

Testing Dataset Number of Trajectory Pairs Testing Dataset Building Description

Dtest 8685× 2 Half of the face-phone trajectory pairs in Dtest is sampled in this way: we randomly select real matching
trajectory pairs’ faceIDs and phoneIDs from Dfp match, and take corresponding trajectory form Dft and
Dpt to form real matching trajectory pairs, i.e., positive pairs. Another half of face-phone trajectory pairs
in Dtest is obtained by randomly selecting face trajectory in Dpt and phone trajectory in Dft excluding the
pairs which are labeled as real matching in Dfp match.

Dsparse 4894× 2 The construction of Dsparse is the same with that of Dtest , but the trajectory pairs in Dsparse are those
with very sparse face trajectory (face trajectory length ≤ 3).

Dinconsistency 4010× 2 The construction of Dinconsistency is the same with that of Dtest , but the trajectory pairs in Dinconsistency are
those with very high inconsistency (Minconsistency ≥ 10).

complementarity-oriented method obtains discriminative fea-
ture representation of face-phone trajectory pair, and avoids
confusion between positive pairs and negative pairs, while
DTW and DF ignore the complementarity between positive
face-phone trajectory pairs.

Our approach achieves an Accuracy of 94.8% on Dsparse,
demonstrating our model’s robustness against sample sparse-
ness. This is partly because the dense (long) phone trajectory
compensates the lack of useful information in the sparse face
trajectories. In addition, we can observe that DTW shows a
15.3% Accuracy improvement on Dsparse than on Dtest , which
may be attributed to the point-reuse of sparse face trajectory
by DTW.

Finally, our approach achieves an Accuracy of 95.6% on
Dinconsistency, compared to 18.4% from DTW and 51.6% from
DF, demonstrating our method’s ability to capture the com-
plementarity.

V. DISCUSSIONS AND CONCLUSION
Pedestrians typically move with high randomness in various
direction at relatively low speeds, resulting in trajectories
with relatively poor regularity and sparsity in face trajec-
tory, compared to fast moving vehicles conforming to roads
with relative regular and dense trajectories. The phase-phone
matching problem presents significant challenges in coping
with sample sparsity in face trajectories and low spatial reso-
lution in phone trajectories.

The proposed COFFM has a novel CCTTN as its cen-
tral component, capturing the implicit and hard-to-describe
complementarity. The network structure and phased encoding
alleviates the need to set ad-hoc parameters in our method,
compared to other existing similarity-based and unisource
modality oriented method. The phased scheme is simple and
offers interpretability. One may consider a joint training ap-
proach for CCTTN and FPTPMD with more complex tasks.

There may be a need to emphasize recall compared to
precision. Since false positivity may be corrected with a
secondary module or even benefit for certain tasks such as
companion or traffic behaviors among pedestrians [7], [12].
The TPTPMD classifier can be easily adjusted to reflect such
preference.

Our study shows that two-way translation fusion mecha-

nism is beneficial in solving trajectory matching problems,
especially under challenging sparseness and length inconsis-
tency conditions. While our work a framework for multi-
modality matching, it is expected that application specific
characteristics would necessitate network retraining depend-
ing on the setting.
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