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ABSTRACT Computer-aided detection (CAD)models play a critical role in the clinical diagnosis of cerebral
aneurysms, significantly contributing to the reduction of mortality rates associated with this condition. This
article provides a comprehensive overview of the evolution of CAD models for aneurysm detection, with
a particular focus on MRI modalities. It explores the motivations behind CAD systems, the methodologies
employed, and their respective advantages and limitations, offering valuable insights into the current state-
of-the-art (SOTA) CAD systems. The research papers selected for this review focus on research utilizing
TOF MRA as the imaging modality and emphasize computer-aided detection through both traditional and
deep learning techniques, with a particular emphasis on Convolutional Neural Networks (CNNs). CNNs
have proven to be a crucial component in improving the accuracy and efficiency of aneurysm detection by
automatically learning features from raw imaging data, bypassing the need for manual feature extraction.
The article also presents a detailed experimental analysis of deep learning models, benchmarked using TOF
MRA datasets. Key research gaps are identified, including the need for large training samples, challenges
in Maximum Intensity Projection (MIP) imaging, limitations of 2D architectures, and issues related to
overfitting and computational complexity. The review also observes that shallow networks and pretrained
models are effective in addressing these challenges. In addition to identifying these gaps, the review outlines
future directions for the development of CAD systems, aiming to further advance CADmodels for aneurysm
detection.

INDEX TERMS Cerebral Aneurysms, Computer Aided Detection, Magnetic Resonance Imaging, Machine
Learning, Deep Learning, Convolutional Neural Networks.

I. INTRODUCTION

CEREBRAL aneurysm is a physical condition that causes
weakness in the arterial walls of the brain with an in-

creased risk of rupture [1]. A ruptured aneurysm is a prevalent
condition for most non-traumatic subarachnoid hemorrhage
(SAH), with a high mortality rate (23% - 51%) [2]. The
International Study of Unruptured Intracranial Aneurysms
(ISUIA) [3] informs that the rupture risk is closely associated
with the size, shape, location, and morphological features

of aneurysm and thereby closely monitoring these factors,
clinicians can decide the treatment plan.
Health professionals use different imaging modalities [4]
to analyse the morphological characteristics and location of
the aneurysms. Unfortunately, because of its asymptomatic
nature, clinicians often diagnose aneurysms in rupture sit-
uations or accidentally detect them from the images taken
for other diagnostic purposes. Clinicians can address this
situation by regularly monitoring the growth and rupture risk
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of aneurysms in individuals with a family history or risk
factors associated with aneurysms. Non-invasive magnetic
resonance imaging (MRI) techniques [5], with time-of-flight
magnetic resonance angiography (TOF MRA) in particular,
have gained significant acceptance in monitoring tasks due to
their non-invasive nature and ability to provide physiological
parameters of vascular structures for accurately identifying
and assessing the risk of aneurysm rupture.

A. WHAT MAKES CAD SYSTEMS NECESSARY?
Detection of cerebral aneurysms from TOF MRA volume is
challenging for radiologists, especially for small-sized and
medium-sized aneurysms, due to the overlapping of blood
vessels in the maximum intensity projection (MIP) represen-
tation of TOF MRA volume. It may also lead to inter- and
intra-observer variability in the diagnostic process. Hence,
it is requisite to develop a computer-aided system to assist
clinicians in their workflow by reducing the turn-around time,
the chance of manual error, and under-detection. This impulse
led to the development of computer-aided detection (CAD)
systems in cerebral aneurysm detection.
This article provides a detailed review of the evolution of
CAD systems in cerebral aneurysm detection using MRI
modality. In general, CAD systems can be broadly classi-
fied into handcraft feature-based (first-generation) and deep
learning-based (second-generation) systems. The reliability
of the first-generation system is affected by the feature se-
lection, while the second-generation systems learn features
automatically from raw data and become more acceptable
nowadays. However, deep learning is a data-driven approach
demanding relevant and versatile samples for better perfor-
mance.

B. RELATED SURVEYS
Few review articles [6]–[8] in the literature specifically ad-
dress computer-aided cerebral aneurysm detection problems.
Most focus onmeta-studies and do not explore deeply into the
computational approaches. Among the surveys, [6] discusses
computational growth models used for rupture risk estima-
tion rather than aneurysm detection and does not analyze
performance using a common dataset. [7] is a meta-study
that does not cover the theoretical aspects of computational
approaches. [8] explores computational methods but lacks
experimental evaluation. Additionally, the approaches differ
based on the imaging modality, and there is a significant gap
in the literature regarding reviews specifically focused on
MRI-based aneurysm detection.
In this article, we aim to address these gaps by conducting an
in-depth examination of various approaches utilized in exist-
ing CAD systems for cerebral aneurysm detection usingMRI.
We further provide a quantitative analysis of deep learning
models, benchmarked against TOF MRA datasets, offering
valuable insights into their performance and applicability.

C. KEY CONTRIBUTIONS OF THE ARTICLE
The major contributions of the article are:

1) The article provides a critical analysis of traditional
methods, especially in handling 3D TOF MRA volumes
for cerebral aneurysm detection, and discusses the need
for deep learning-based approaches. Additionally, it em-
phasizes the importance of deep learning by demonstrat-
ing its superior ability to capture inherent patterns within
3D TOF MRA volumes.

2) Due to the unavailability of publicly accessible datasets
for cerebral aneurysm detection from TOF MRA vol-
umes, previous studies have not evaluated the efficacy
of deep learning models under a common evaluation
protocol. This article addresses this gap by conducting
experiments on common datasets and comparing the per-
formance of various deep learning models for aneurysm
detection.

3) This article discusses the key observations from the
experiments, emphasizing both theoretical and empirical
limitations. This analysis helps researchers to identify
the challenges faced by state-of-the-art models, partic-
ularly in the handling of 3D TOF MRA volumes for
aneurysm detection.

4) The article provides a roadmap for future research, iden-
tifying critical gaps and discussing future directions for
improving aneurysm detection from 3D TOF MRA vol-
umes.

The remainder of this article is organized as follows: Section
2 provides a comprehensive overview of different approaches
used in CAD systems; Section 3 discusses the observations
from the experimental analysis of CAD systems with the TOF
MRA challenge dataset; Sections 4 discuss the potential chal-
lenges and future perspective of CAD system development
and section 5 summarize the contribution of this study.

II. EVOLUTION OF CAD SYSTEMS
Cerebral aneurysm detection using CAD systems can be
considered as a three-stage process. The first stage is a pre-
processing stagewhere the vascular regions are segmented for
prioritizing candidates with a higher likelihood of aneurysm
presence. In the second stage, candidate regions are chosen
based on the extracted features or the training samples. In
the final stage, false predictions are eliminated, and the confi-
dence score of the developedmodel is improved. Fig. 1 briefly
summarizes the pipelines of first and second-generation CAD
systems.

A. FIRST GENERATION CAD SYSTEMS
First-generation (1G) CAD systems are semi-automatic be-
cause they build the model from handcrafted features, and the
domain-specific pre-defined rules on these features decide the
aneurysm candidate. The basic pipeline of a 1G CAD system
consists of a pre-processing stage, candidate region identifi-
cation, and false positive removal. Each stage is detailed in the
following section, utilizing state-of-the-art methods available
in the literature.
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FIGURE 1. Comparison of pipelines used by 1G and 2G CAD Systems

1) Pre-processing Stage

In the pre-processing stage, 1G CAD systems adopt various
vessel segmentation techniques for extracting the major ves-
sel regions where the chance of aneurysm occurrence is very
high. Arimura et al. [9] andUchiyama et al. [10] in their works
employed a global thresholding technique [11] to identify the
vessel regions, with the threshold being determined by the
linear discriminant analysis of the histogram. Kobashi et al.
[12] applied a fuzzy information granulation (IG) methodol-
ogy [13] to segment arterial vessels. This approach employs
a fuzzy-model-based watershed segmentation to generate 3D
quanta from the raw volume data, followed by a pre-trained
neural network [14] that categorizes these units into vascu-
lar or background regions. Yang et al. [15] performed au-

tomated artery segmentation using a combination of global
thresholding and region-growing segmentation techniques.
Sunaiga et al. [16] employed a direction-dependent level set
approach [17] for vessel segmentation. This approach utilizes
the eigenvectors of vesselness filters [18] to incorporate di-
rection information for direction-dependent level set vessel
segmentation. Hanaoka et al. [19] extracted the vessel region
by a conventional region growing method. In this method, a
seed threshold> Ī +3σ and a growing threshold> Ī +2.5σ
were applied, with Ī representing the average intensity and
σ representing the standard deviation of the brain region.
Nomura et al. [20] applied global thresholding followed by
connected component analysis and morphological operations
to extract vessel regions.
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2) Candidate Region Identification
Following the identification of vessel regions, the first-
generation CAD system proceeds to detect candidate
aneurysm regions in the second stage with the help of filter-
based approaches. The filter-based methods can be cate-
gorised into shape-based, skeleton-based, and hybrid depend-
ing on the information used to select candidate regions.
The shape-based methods [9], [10], [20]–[22] utilize filters
designed to enhance the spherical or hemispherical shape,
which is a characteristic feature of an aneurysm structure.
The methods in [9], [20], [22] incorporated eigenvalue anal-
ysis of the Hessian matrix in the filter design to enhance
the aneurysm shape. Arimura et al. [9] use dot enhancement
filters [23] that enhance dot-like structures by considering the
magnitude and likelihood functions of these filters. The filter
response is given as follows.

D(λ1, λ2, λ3) =
|λ3|2

λ1
, if λ1, λ2, λ3 < 0 (1)

where λ1, λ2, λ3 represents the three eigen values of the
Hessian matrix that satisfy |λ1| ≥ |λ2| ≥ |λ3|. Then
the aneurysm candidate is identified by using a gray-level
thresholding technique on dot-enhanced images and region-
growing method by monitoring some image features.
Nomura et al. [20] also use eigenvalue analysis of the Hessian
matrix [18] to enhance blob, line, and bifurcation information,
and the response is given by:

Sblob(λ1, λ2, λ3) =
|λ3|
λ1

, if λ1, λ2, λ3 < 0 (2)

Sline(λ1, λ2, λ3) =
|λ2| − |λ3|

λ1
, if λ1, λ2, λ3 < 0 (3)

Sbifurcation(λ1, λ2, λ3) = S(λ1, λ2, λ3)h(λ1, λ2, λ3) (4)

S(λ1, λ2, λ3) =
|λ1 − λ2| − |λ2 − λ3|

|λ1||λ2|
(5)

h(λ1, λ2, λ3) = exp(−▽I2

2α2
) (6)

After computing these responses, they performed a voxel-
based differentiation process [24] using the Mahalanobis dis-
tance ratio followed by morphological operation and con-
nected component analysis to detect candidate regions.
Hentschke et al. [22] also use Hessian matrix-based blobness
filters [25] that enhance blob-like structures to determine the
initial candidate regions. The filter response is given by:

B(λ1, λ2, λ3) =
|λ1|√
λ2λ3

, if λ1, λ2, λ3 < 0 (7)

Then, a modified k-mean clustering is applied to this filtered
image to decide the final volume of interest.
Uchiyama et al. [10] use a gradient concentrate (GC) filter
[26] that effectively enhances and detects rounded convex
regions of different sizes and contrasts. It is an iris filter that
evaluates only the direction of gradient vectors without the
magnitude. The filter can be represented as follows:

G(p) =
1

M

∑
R

cos θj (8)

Here, M represents the total number of voxels where the
gradient magnitude at position j is greater than zero, and
θj represents the angle between the direction vector from
point p to point j and a gradient vector at point j. The filter
response is calculated within a sphere of radius R, centered
at p. Subsequently, a gray-level thresholding is applied to the
GC image to identify the aneurysm candidates.
The skeleton-based methods [12] utilize the vascular struc-
ture of arterial vessels to identify candidate regions. In vas-
cular structure analysis, most approaches rely on thinning
algorithms, which produce a skeletonized representation of
arterial vessels.
Kobashi et al. [12] employ a 3D thinning algorithms [27]
to generate thinning lines for segmented arterial vessels, es-
timate normal artery radii along these lines, and construct
normal arteries. Candidate regions are then determined by
subtracting these assumed normal arteries from the initially
segmented arteries obtained in the pre-processing step.
The hybrid methods [15], [16], [19], [21] combine shape and
skeleton based approaches to determine the candidate region.
Arimura et al. [21] use the shape-based difference image
technique (SBDI) [28]–[30] and dot enhancement filtering in
[23] to identify the various categories of candidate regions.
Yang et al. [15] employ a combination of a skeleton-based
centerline computation method [31], a difference image tech-
nique [32], and dot enhancement filtering [23] to distinguish
vessel, floater, and dot-type candidate regions from the ex-
tracted vascular structures. They use a 3D thinning algorithm
[31] to identify vessel centerlines, which are transformed into
trunk representations. The radius and length of each vessel
segment at every trunk point are calculated using the inner
tangent sphere testing method. Then the candidate regions
are determined using distance transformation [32] and radius
fitting techniques [15].
Suniaga et al. [16] apply an iterative thinning technique [31]
to extract the 3D centerlines for identifying the endpoints and
bifurcations in segmented vessels. Then, they utilize a vessel-
ness filter [16], [18] based on the Hessian matrix to enhance
blob-like features. Finally, they employ a 3D Forstner filter
[33] to enhance structures with high surface curvatures.
Hanaoka et al. [19] introduced histogram of triangular paths
in graph (HoTPiG), a novel graph-based representation for
detecting abnormalities in vessel-like structures. HoTPiG
captures morphological features and local branching patterns
of graph nodes, and candidate regions are identified through a
3D histogram analysis of shortest-path distance-based nodes.

3) False Positive Removal
In the final stage of 1G CAD systems, features that support
aneurysm detection are extracted, and mathematical or ma-
chine learning models are adopted for false positive removal.
Table.1 provides the list of feature sets used in 1G CAD
systems.
Arimura et al. in [9] and [21] use predefined rules on the
extracted features followed by linear discriminant analysis
(LDA) to filter out false positives. Similarly, Uchiyama et al.
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TABLE 1. Feature sets used in 1G CAD systems

Model Feature sets

Arimura et al. [9] Average and standard deviation voxel value, effective diameter, sphericity, relative SD, maximum and
minimum distance between centroid and surface, length of protrusion.

Uchiyama et al. [10] Size, degree of sphericity, and mean value of GC image.

Kobashi et al. [12] Spreadness, sphericity, intensity homogeneity and 3-D curvature.

Yang et al. [15] Distance to the trunk, radius of the vessel, planeness, cylinder surfaceness, gaussian and mean curvatures,
shape undex.

Sunaiga et al. [16] Bifurcation distance, vessel thickness, blobness value, vesselness value, Forstner value.

Hanaoka et al. [19] HoTPiG features and Hessian derived features (dot enhancement filters and shape index).

Nomura et al. [20] Number of voxels and surface voxels, statistics of voxel values (minimum, maximum, mean, second
moment, standard deviation, skewness, kurtosis and entropy), contrast measures, sphericity, similarity of
sphere, statistics of the distance between the center of the candidate and its boundary, statistics of shape
index and curvedness.

Arimura et al. [21] Average and standard deviation voxel value, effective diameter, sphericity, relative SD, maximum and
minimum distance between centroid and surface, length of protrusion and maximum or average distance
value of distance-transformed image.

Hentschke et al. [22] Average, minimum and maximum values of intensity, blobness and vesselness, distance of the region of
interest(ROI) to the image boundary.

[10] use a rule-based system to eliminate false alarms and
perform a quadratic discriminant analysis (QDA) to further
reduce false positives (FP). Kobashi et al. [12] implement
a case-based reasoning system [34] based on fuzzy logic
to assign confidence scores to detected candidate regions,
effectively eliminating false positives.
Hentschke et al. [22] performed feature analysis with the
help of rule-based systems and removed false positives by
assessing the symmetric similarity measure of features. Yang
et al. [15] developed a rule-based system that eliminates most
false positives while assigning probabilities to the remaining
candidates. Subsequently, clustering algorithms select candi-
dates with the highest likelihood from each cluster.
Recently, rule-based systems in 1G CAD systems have been
replaced with machine learning algorithms, and [16] and [19]
use support vector machine [35] for feature analysis and
effectively categorize true positives and false positives.
Nomura et al. [20] studied how re-training a classifier af-
fects 1G CAD system performance in a clinical setting. They
used an ensemble classifier [36] and found that CAD system
performance is closely related to the quality and quantity
of extracted features. Miki et al. [37] analyzed radiologist's
performance in a clinical environment with the model in [20]
and found that the CAD system's assistance enhances the

clinical workflow.
Table. 2 gives an overview of the first-generation CAD sys-
tems in the literature. From the literature, it is clear that CAD
system performance highly relies upon features' quantitative
and qualitative properties, and feature engineering plays an
essential role in model development. It necessitates an auto-
mated tool that inherently extracts suitable features from the
data and serves the CAD system's objective.

B. SECOND GENERATION CAD SYSTEMS

Second-generation (2G) CAD systems employ deep learning
[38], particularly convolutional neural networks (CNNs), to
automatically learn relevant features and perform complex
data analysis through convolution process. In 2G CAD sys-
tems, the CNN model performs the feature engineering and
feature analysis tasks to identify aneurysm candidates with
fewer false positives.
2G CAD systems can be classified into classification and
segmentation models based on their task. The classification
model categorizes MRI slices as either benign or malignant,
leading to a quicker turnaround time for routine analysis as
clinicians focus exclusively on the malignant data. The seg-
mentation model assists clinicians in categorizing aneurysm
cases into different risk categories and determining the proper

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3530932

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Summary of first-generation CAD Systems

Model Pre-processing Candidate Region Detection FP Removal Disadvantages

Arimura et al. [9] Global thresholding Dot enhancement filter with region
growing (Short and Large type), lo-
cal structures based on skeleton image
(Short branch, single vessel and bifur-
cation type).

Rule-based system
with LDA

Specificity of the model would de-
pend on the patient with other vas-
cular diseases. Under detection of
large and short-branch type small
aneurysms.

Uchiyama et al.
[10]

Global thresholding Gradient concentrate filter with
thresholding

Rule-based system
with QDA

Only small type aneurysm was con-
sidered for study. Difficult to quantify
the shape using the sphericity feature
alone which will lead to more FP.

Kobashi et al. [12] Fuzzy information
granulation(IG) based
segmentation with
pretrained neural
network

Normal artery model using Thinning
algorithms

Case-based reasoning Under detection of aneurysms in the
straight artery. Fusiform aneurysms
are not considered for study. Features
used are redundant which lead tomore
FP.

Yang et al. [15] Region growing
segmentation with
thresholding

Hybrid approach which uses thinning
algorithms for vessel POIs, difference
image based technique with region
growing for floater POIs and dot-
enhancement filter for dot POIs.

Rule-based system
with clustering

Low sensitivity to aneurysms nearby,
as well as for recurrence or residual
aneurysms.

Sunaiga et al. [16] Direction dependent
level set method

Hybrid approach that uses iterative
thinning alogithms for endpoints and
bifurcation, blobness filter for blob
like structures and Forstner filter for
structures with high surface curva-
tures.

SVM Choice of kernel function has a cru-
cial impact to the classification. Only
saccular aneurysm have been used in
the study.

Hanaoka et al. [19] Region growing
method with
thresholding

Histogram of Triangular Paths in
Graph (HoTPiG) Feature Set

SVM Evaluate only shape of the tissue
and discard all image intensity in-
formation. Under detection of small
aneurysms.

Nomura et al. [20] Global thresholding
with connected
component analysis
and morphological
operations

Eigenvalue analysis of Hessianmatrix
with a voxel based differentiation pro-
cess based on Mahalanobis distance

Ensemble of weak
classifiers

Candidate region identification using
voxel based differentiation was com-
putationally complex.

Arimura et al. [21] Global thresholding. Dot enhancement filter with region
growing (Short and Large type), lo-
cal structures based on skeleton image
(Short branch, single vessel and bifur-
cation type), Shape-based difference
image (SBDI) technique (single ves-
sel and bifurcation type).

Rule based system
with LDA

Under detection of large and short-
branch type small aneurysms.

Hentschke et al.
[22]

- Blobness filter with K-means cluster-
ing

Rule-based system
with symmetric
similarity measure

Sensitivity and feature selection de-
pends on the modality. Under detec-
tion of small aneurysms.

treatment plan by giving a semantic segmentation of the given
TOF MRA volume. The following sections provide an in-
depth look at the existingmethods employed for classification
and segmentation in the context of aneurysm detection.

1) Classification Models

This section outlines the various CNN models used for
aneurysm classification in the literature. Since the perfor-
mance of CNN networks is highly influenced by data dis-
tribution, the selection of training samples plays a vital role

in the performance of the trained model. Therefore, the clas-
sification models have employed artery vessel segmentation
techniques as a pre-processing step.
Nakao et al. [39] use the segmentation method in [19] for
extracting arterial vessel patches for training. Ueda et al.
[40] employed a curvature feature-based volumetric analy-
sis [41] to identify the patches with abnormalities like true
aneurysms, infundibular dilations, vessel bifurcations, and
vessel stenosis. These patches are then used for training the
model. Terasaki et al. [42] use a global thresholding technique
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to segment vessel patches. Joo et al. [43] employ a two-
stage vessel segmentation approach [44]. The first stage in-
volves segmenting foreground and background regions using
Otsu's method, while the second phase utilizes statistical
distribution-based thresholding to extract vessel regions from
foreground pixels.
Various augmentation techniques are employed in 2G CAD
systems to generate sufficient positive samples to meet the
requirement of balanced data distribution for classification
models. Also, downsampling is applied to balance negative
samples with positive ones. The downsampling process in-
volves either random selection or a gradient decision tree-
based classifier. In the second stage, raw patches from the
segmented artery regions are fed into the convolution layer
of DNN for feature extraction. The obtained feature maps
with suitable activation function decides the probability of
aneurysm occurrence.
Classification models in the literature use variants of CNN
[38] for inherent feature engineering and decision-making.
Nakao et al. [39] presented a 2D CNN-based model employ-
ing MIP representation of arterial voxel patches for aneurysm
prediction. Similarly, Ueda et al. [40] utilized MIP of various
arterial patches (arterial abnormalities, aneurysms, and bifur-
cation) to train a 2D ResNet18 [45] model. However, relying
on MIP and 2D architecture might compromise topological
information, potentially resulting in increased false alarms in
these approaches [39], [40].
Joo et al. [43] employ a 3D ResNet-based architecture [46]
for aneurysm detection, utilizing the topological information
from the 3D arterial voxel patches. Terasaki et al. [42] in-
corporate topological and spatial information in their model
using a multipath architecture of SE-ResNet [47] with a 3D
network path for raw TOF MRA volume and a 2D network
path for MIP of arterial patches. However, these models
[42], [43] demand large training samples to avoid overfitting
and are also computationally complex due to the number of
parameters associated with the 3D model.

2) Segmentation Models
U-net [48] variants are widely employed in the segmentation
task for accurate aneurysm localization. These models learn
the inherent features suitable for pixel-wise classification
(semantic segmentation) from the raw TOF MRA patches,
and hence eliminating inter-observer variability in aneurysm
size estimation.
Stember et al. [49] introduced a model for aneurysm segmen-
tation based on the 2D U-Net architecture with MIP patches.
The use of this 2D-based architecture adversely impacts the
sensitivity of aneurysm detection due to the limitations of the
2D representation.
To overcome the drawback of 2D representation, Schitermann
et al. [50] presented a model that uses DeepMedic architec-
ture [51], a multi-scale, multi-path 3D CNN for semantic
segmentation of TOF MRA volume. The size estimation of
segmented aneurysms is quantified by employing a condi-
tional random field (CRF) [52] in the pipeline. Since each

input TOF MRA patch contains normal and aneurysm tissue,
the model alarms many false positives, which is undesirable
for the CAD system.
To reduce the false positives, Claux et al. [53] use bi-sequence
3D network architecture in which the first network employs
an artery segmentation, and the latter performs the localiza-
tion task. The segmentation network uses a modified version
of U-net architecture and utilizes the topological information
from the binary mask produced by the first network for
segmenting the aneurysm.
Dataset annotation for model development is time-
consuming, requiring experienced radiologists to generate
binary masks or labels for specific data distributions. This
results in insufficient training samples for creating models in
the aneurysm detection domain. Di Noto et al. [54] addressed
this issue by proposing a weak label scheme for training the
model. This method uses a customized 3D U-net architecture
[55] and employs anatomically informed sliding window
approaches for selecting positive and negative samples.
Table. 3 summarizes 2G CAD systems in the literature.
However, the performance of the 2G CAD systems are highly
affected by the availability of training patches needed to
optimize the trainable parameters of the model.

III. EXPERIMENTAL ANALYSIS OF STATE-OF-THE-ART
CAD SYSTEMS
This section provides an insight into the factors that affect the
2G CAD systems performance by analyzing the classification
models in the literature with the publicly available LAU-
SANNE Dataset and Aneurysm Detection and Segmentation
(ADAM) [56] challenge dataset. This was the first article
that experimentally analysing the CAD systems with standard
datasets and provided observations that help in the CAD
system development.

A. DATASETS
This section provides a demographic analysis of the datasets
used in this study. A significant challenge in aneurysm detec-
tion research is the limited availability of publicly accessible
datasets, as most related works rely on in-house datasets that
are not publicly available. For our experimental analysis, we
utilized the ADAM and LAUSANNE datasets, as they are the
only datasets available for our study on cerebral aneurysm de-
tection. While the LAUSANNE dataset is publicly available,
access to the ADAM dataset requires official registration for
the MICCAI 2020 ADAM Challenge.

1) ADAM Dataset
The ADAM dataset is adopted from the Aneurysm Detec-
tion And segMentation (ADAM) Challenge 2020 [56] con-
ducted in connection with the Medical Image Computing and
Computer Assisted Intervention Society Conference (MIC-
CAI 2020). The training set of ADAM challenge consists
of 113 cases, with 93 aneurysm cases and 20 normal scans.
One-quarter of the scans have more than one aneurysm,
and a total of 125 saccular type aneurysms are present in
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TABLE 3. Summary of second-generation CAD Systems

Model Pre-processing Model Type Deep Learn-
ing Model

Input Type Loss Function Disadvantages

Nakao et al. [39] Region growing
method with
thresholding

Classification 4-layer CNN 2D MIP vessel
patches

Binary cross
entropy

Under detection of small
aneurysm in the overlapped
region due to MIP
representation.

Ueda et al. [40] Curvature feature-
based volumetric
analysis

Classification ResNet18 2D MIP
abnormal
vessel patches

Binary cross
entropy

Under detection of large
aneurysms and detectability
of aneurysms decreases with
heterogeneity in the flow.

Terasaki et al. [42] Global threshold-
ing

Classification 3D and 2D
SE-ResNet

2DMIP and 3D
vessel patches

Binary cross
entropy

Difficult to optimize 3D CNN
without overfitting. Under de-
tection of small aneurysm due
to insufficient training samples.

Joo et al. [43] Two stage vessel
segmentation

Classification 3D ResNet 3D vessel
patches

Binary cross
entropy

Under detection of small
aneurysms and specificity was
low for vessels with irregular
shape.

Stember et al. [49] - Segmentation 2D U-net 2D MIP
aneurysm
patches and its
masks

Negative Dice
coefficient

False positive rate is high for
bifurcation due to MIP repre-
sentation.

Sichtermann et al.
[50]

- Segmentation DeepMedic
CNN

3D aneurysm
patches and its
masks

Binary cross
entropy

Poor specificity due to the lim-
ited number of training sam-
ples.

Claux et al. [53] - Segmentation Artery
segmentation
U-net and
modified
U-net for
aneurysm
segmentation

3D aneurysm
patches and its
masks

Soft dice Sensitivity was affected by in-
sufficient samples of small and
large aneurysms.

Di Noto et al. [54] - Segmentation 3D U-net 3D aneurysm
patches and its
masks

Dice and
Crossentropy

Sensitivity of small aneurysm is
low due to insufficient samples.

the dataset. Among subjects with unruptured intracranial
aneurysms (UIAs) (N = 93), the median age was 55 years
(ranging from 24 to 75 years), with 75% of them being
female. A subset of the dataset (N = 35) included two scans
from each subject: a baseline and a follow-up scan after more
than six months. The sizes of the UIAs varied, with a median
maximum diameter of 3.6 mm, ranging from 1.0 mm to 15.9
mm. Comparatively, the median age of individuals without
UIAs was 41 years (ranging from 19 to 61 years), with
65% being female. All images were pre-processed with N4
bias-field correction [57]. The ADAM training set comprises
original and pre-processed data, with this study specifically
utilizing the pre-processed data for conducting experiments.

2) LAUSANNE Dataset
The LAUSANNE dataset [54] is an open-access dataset
available on OpenNeuro under the CC0 license at
https://openneuro.org/datasets/ds003949 and comprises 284
TOF-MRA subjects. Among these, 127 are healthy controls,

and 157 are patients with one or more cerebral aneurysms,
with 178 saccular and 20 fusiform type aneurysms. Among
subjects with unruptured intracranial aneurysms (UIAs) (N
= 157), the median age was 56 years, with 66% of them
being female. The sizes of the UIAs varied, with a median
maximum diameter of 3.7 mm, ranging from 1.0 mm to 20
mm. The median age of individuals without UIAs was 46,
with 52% female.

B. EXPERIMENTAL SETUP
This section describes the experimental setup for the compar-
ative analysis, covering input patch selection, training details,
model configurations, and evaluation metrics to ensure the
reproducibility of the results.

1) Input Patch Selection
A patch sampling technique was utilized to ensure a balanced
representation of both positive and negative samples. Using
a region-growing-based method, 64×64×64 arterial vessel
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patches were extracted, classified as "positive" if they con-
tained aneurysm voxels and "negative" otherwise. Notably,
the number of positive patches was lower than that of negative
patches. To address this imbalance, Albumentations [58], an
open-source library for data augmentation, was employed to
generate additional positive samples. Meanwhile, negative
samples were randomly downsampled to balance the dataset
alongside the positive cases.

2) Training Details
To ensure consistent evaluation across all deep learning mod-
els in this study, we established a unified training configura-
tion as follows: all models were trained for 100 epochs with
a batch size of 8, utilizing an adaptive learning rate strategy
(initial learning rate = 0.001) and the Adam optimizer [59].
Training and evaluation were conducted using PyTorch 2.1.2
+ CUDA 12.1 on an NVIDIA A30 Tensor Core GPU with 25
GB of RAM.

3) Model Configurations
Most of the related works in aneurysm detection rely on
in-house datasets for model development, which limits the
comparability of results. To address this, a comparative anal-
ysis of different models requires evaluating their performance
on common datasets. Instead of depending on the results
presented in the original papers, we trained the state-of-the-
art (SOTA)models [39], [40], [42], [43] using the ADAM and
LAUSANNE datasets. Our performance analysis is based on
these new results.
In this study, pretrained models including VGG16 [64],
ResNet18, ResNet34, ResNet50, ResNet101, ResNet152
[45], and DenseNet121 [65] from the PyTorch package were
employed to evaluate the performance of popular deep neural
network (DNN) models in aneurysm detection.

4) Evaluation metrics
The prediction's sensitivity and false positive rate decide the
classification models' reliability, and the evaluation metrics
[60]–[62] help to generalize the model's predictive power.
In this study, evaluation metrics like accuracy, error rate,
true positive rate (sensitivity or recall or TPR), true negative
rate (specificity or TNR), false positive rate (FPR), false
negative rate (FNR), precision, F1-score, Matthew's corre-
lation coefficient (MCC) [63] and area under the receiver
operating characteristics (AUROC or AUC) are used for the
analysis. Five-fold cross-validation is employed to compare
the model's performance.

C. DISCUSSION
The review considered the existing classification models such
as [39], [40], [42], and [43] for the quantitative analysis, and
the results are detailed in Table 4. Among these models, the
first two are based on 2D CNN, while the model in [43]
operates on a 3D CNN framework, and [42] utilizes both
2D and 3D approaches. The study also analysed the perfor-
mance of popular DNN architecture such as VGG16 [64],

FIGURE 2. Learning trajectory of shallow model (Nakao et al. [39]) for
assessing the impact of overfitting.

FIGURE 3. Learning trajectory of complex model (Ueda et al. [40]) for
assessing the impact of overfitting.

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152 [45]
and DenseNet121 [65] in the aneurysm classification task,
and the analysis is given in the Table 5. The observations are
discussed in the following section.

1) Necessity of sufficient data samples
Complex DNN models demand large amounts of data to
prevent overfitting. Although complex models perform well
in training samples, they often encounter challenges in gener-
alizing to new or unseen data, resulting in overfitting. Table.4
indicates that complex models such as Ueda et al. [40] and
Terasaki et al. [42] struggle to generalize when provided with
limited data, ultimately leading to overfitting and yielding
lower performance than other models such as Nakao et al.
[39] and Joo et al. [43]. The learning curves given in Fig. 2
and Fig. 3 illustrate that complex models like Ueda et al. [40]
tend to experience overfitting when trained on a restricted
dataset (ADAM). Conversely, simple models such as Nakao
et al. [39] show no signs of overfitting during training and
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TABLE 4. Performance analysis of existing CAD models in Cerebral Aneurysm Detection using five-fold cross-validation on ADAM and LAUSANNE Datasets

Dataset Model Accuracy Error Rate TNR FNR Precision F1-Score AUROC MCC

ADAM

Nakao et al. [39] 0.70±0.05 0.30±0.05 0.85±0.02 0.50±0.07 0.77±0.03 0.63±0.06 0.71±0.08 0.41±0.08

Ueda et al. [40] 0.64±0.08 0.36±0.08 0.89±0.08 0.63±0.23 0.60±0.34 0.45±0.26 0.69±0.11 0.28±0.16

Terasaki et al. [42] 0.59±0.06 0.41±0.06 0.48±0.42 0.30±0.38 0.65±0.18 0.56±0.22 0.59±0.07 0.23±0.14

Joo et al. [43] 0.77±0.04 0.23±0.04 0.87±0.04 0.34±0.08 0.82±0.03 0.73±0.04 0.86±0.04 0.54±0.08

LAUSANNE

Nakao et al. [39] 0.74±0.06 0.26±0.06 0.75±0.07 0.37±0.06 0.21±0.04 0.31±0.04 0.75±0.03 0.25±0.04

Ueda et al. [40] 0.70±0.03 0.30±0.03 0.69±0.03 0.27±0.06 0.19±0.01 0.30±0.02 0.77±0.02 0.25±0.02

Terasaki et al. [42] 0.70±0.29 0.30±0.29 0.74±0.36 0.75±0.39 0.05±0.04 0.07±0.08 0.59±0.14 0.05±0.03

Joo et al. [43] 0.75±0.10 0.25±0.10 0.76±0.12 0.34±0.17 0.23±0.05 0.33±0.03 0.79±0.02 0.28±0.02

TABLE 5. Performance analysis of popular DNN models with three different variants: Model A: Architectures initialized with random weights, Model B:
architectures initialized with weights pre-trained on ImageNet, and Model C: architectures with pre-trainable parameters set to false.

Model Model
Type

Accuracy Error Rate TNR FNR Precision F1-Score AUROC MCC

ResNet18 [45]
Model A 0.64±0.08 0.36±0.08 0.89±0.08 0.63±0.23 0.60±0.34 0.45±0.26 0.69±0.11 0.28±0.16
Model B 0.78±0.04 0.22±0.04 0.89±0.03 0.33±0.07 0.85±0.03 0.75±0.05 0.86±0.03 0.58±0.08
Model C 0.72±0.02 0.28±0.02 0.86±0.02 0.44±0.06 0.78±0.04 0.65±0.04 0.79±0.03 0.44±0.04

ResNet34 [45]
Model A 0.56±0.09 0.44±0.09 0.97±0.08 0.88±0.26 0.16±0.34 0.30±0.13 0.53±0.17 0.09±0.19
Model B 0.77±0.04 0.23±0.04 0.84±0.04 0.30±0.07 0.80±0.04 0.74±0.04 0.85±0.03 0.54±0.07
Model C 0.70±0.03 0.30±0.03 0.84±0.04 0.43±0.07 0.76±0.04 0.64±0.04 0.79±0.02 0.41±0.05

ResNet50 [45]
Model A 0.59±0.07 0.41±0.07 0.89±0.11 0.73±0.26 0.42±0.38 0.32±0.30 0.63±0.08 0.17±0.16
Model B 0.76±0.04 0.24±0.04 0.86±0.03 0.35±0.05 0.81±0.03 0.72±0.04 0.83±0.04 0.52±0.06
Model C 0.64±0.02 0.36±0.02 0.90±0.02 0.64±0.03 0.77±0.06 0.49±0.04 0.74±0.01 0.31±0.05

ResNet101 [45]
Model A 0.62±0.03 0.38±0.03 0.86±0.05 0.64±0.09 0.70±0.07 0.47±0.08 0.69±0.04 0.25±0.07
Model B 0.74±0.04 0.26±0.04 0.85±0.02 0.38±0.08 0.79±0.04 0.69±0.06 0.82±0.03 0.49±0.07
Model C 0.62±0.04 0.38±0.04 0.88±0.02 0.65±0.07 0.73±0.03 0.47±0.06 0.73±0.02 0.80±0.04

ResNet152 [45]
Model A 0.60±0.07 0.40±0.07 0.83±0.12 0.65±0.24 0.52±0.30 0.41±0.25 0.66±0.10 0.20±0.14
Model B 0.76±0.05 0.24±0.05 0.86±0.03 0.36±0.08 0.81±0.03 0.72±0.07 0.82±0.05 0.53±0.09
Model C 0.68±0.06 0.32±0.06 0.89±0.01 0.54±0.12 0.79±0.03 0.58±0.09 0.77±0.05 0.39±0.09

VGG16 [64]
Model A 0.72±0.05 0.28±0.05 0.83±0.04 0.40±0.07 0.77±0.04 0.67±0.06 0.79±0.07 0.44±0.09
Model B 0.79±0.01 0.21±0.01 0.89±0.02 0.31±0.02 0.85±0.02 0.76±0.01 0.89±0.01 0.59±0.02
Model C 0.67±0.04 0.33±0.04 0.90±0.02 0.57±0.07 0.79±0.04 0.55±0.05 0.77±0.04 0.37±0.06

DenseNet [65]
Model A 0.72±0.06 0.28±0.06 0.83±0.03 0.39±0.12 0.77±0.02 0.67±0.09 0.81±0.05 0.45±0.10
Model B 0.78±0.05 0.22±0.05 0.86±0.02 0.30±0.09 0.82±0.03 0.75±0.06 0.87±0.04 0.57±0.08
Model C 0.72±0.03 0.28±0.03 0.85±0.04 0.42±0.05 0.79±0.05 0.66±0.03 0.80±0.03 0.45±0.05

demonstrate improved performance on unfamiliar data.

2) Trade-off between Sensitivity and False Positive Rate
A reliable CAD system must show high sensitivity towards
aneurysm samples with fewer false alarms. Fig. 4 shows that
deeper CNN models such as Terasaki et al. [42] and Ueda et
al. [40] fail to maintain the trade-off between sensitivity and
FPR compared to shallower CNN architectures of Nakao et
al. [39] and Joo et al. [43]. Even though the sensitivity of [42]
reaches 70%, they tend to produce over 50% false positives.

3) Suitable representation of MRI-TOF data

Another factor affecting the CAD system's performance is
the type of samples fed into the network. MIP representation
may lead to under-detection due to various factors, such
as the unusual locations of aneurysms and overlapping of
aneurysms with the blood vessels [12], [39] and the quality of
MIP images. MIP representation is susceptible to the noises
present in the MRA TOF sequence.
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FIGURE 4. Performance of state-of-the-art models based on Sensitivity
and False Positives

4) Two-dimensional Vs Three-dimensional Convolutional
Neural Networks
The inter-dependency among the MRI slices helps to identify
the aneurysm in the vascular structure. 3D CNN architectures
considered this long-term dependency for decision-making.
Conversely, 2D CNN captures only spatial information and
does not consider this topological information. From the
FROC analysis given in Fig. 5, it is evident that the 3D
architecture of Joo et al. [43] surpasses the 2D architectures
of Nakao et al. [39] and Ueda et al. [40] in the classification
task. Hence, 3D CNN models are more suitable for detecting
cerebral aneurysms from TOF MRI sequences compared to
2D models.

FIGURE 5. FROC analysis of 2D and 3D CNN architectures

5) Impact of deepness on network architecture
The review performs a comparative study of ResNet architec-
ture across various depths to study the influence of deepness,
selecting ResNet18, ResNet50 and ResNet101 architectures
initialized with weights pre-trained on ImageNet for evalu-
ation. As indicated in Fig. 6 , it is evident that ResNet18
outperforms the other networks. The study observes that shal-

FIGURE 6. FROC analysis of different ResNet Architectures

lower CNN models exhibit greater suitability for aneurysm
detection tasks than deeper architectures.

6) Effectiveness of Transfer Learning
Transfer learning approaches have been widely used in the
medical domain to overcome data scarcity and computational
requirements [66], [67]. To investigate the impact of transfer
learning, three different variants of model initialization were
tested:
a) Model A (Random Initialization): Architectures initial-

ized with random weights, allowing the models to learn
from scratch based on the training data.

b) Model B (Pretrained on ImageNet): Architectures ini-
tialized with weights pre-trained on ImageNet, enabling
the models to utilize learned features from a large-scale
natural image dataset for improved generalization.

c) ModelC (Frozen Pre-trained Parameters): Architectures
with pre-trainable parameters set to false, effectively
freezing the pre-trained weights to retain their learned
features without further adaptation during training.

These configurations were designed to explore the effec-
tiveness of transfer learning in enhancing the performance
of DNN models for aneurysm detection. Table 5 and Fig.
7 indicate that the pretrained model with ImageNet weight
performs well with the ADAM data set. Therefore, transfer
learning is an effective solution for converging a complex
model with limited training samples like the ADAM dataset.

IV. CAD FOR CEREBRAL ANEURYSM DETECTION: A
FUTURE PERSPECTIVE
This section provides an overview of the key considerations
in developing a CAD system for aneurysm detection. Recent
CAD system advancements help the clinicians to reduce their
workload and turn-around time in the clinical environment.
However, the current computing approaches have limitations
in fully utilizing the information embedded in the TOF MRA
data. The review highlights these challenges and provides
suggestions for addressing them.
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FIGURE 7. Effectiveness of Transfer Learning in Detecting Cerebral Aneurysms Using the ADAM Dataset

1) Data Availability and Imbalance in Aneurysm Detection

Cerebral aneurysm detection problems are often constrained
by data availability and unbalanced data distribution. Sev-
eral data augmentation techniques are available in the lit-
erature [68], [69] to handle the data availability and unbal-
anced problem. Conventional data augmentation techniques
rely upon linear and label-preserving transformation-based
algorithms. Recent studies show that evolutionary learning-
based and generative adversarial networks (GAN) based non-
linear transformation techniques [70]–[72] are better suited
for handling medical data augmentation problems than linear
techniques.
Self-Supervised Learning (SSL) [73] is an effective approach
for training models with limited labeled data. It utilizes un-
labeled data to enable the network to learn meaningful rep-
resentations without needing labeled examples. When inte-
grated with GAN, SSL can generate additional synthetic data
samples, making it a powerful augmentation technique for
addressing imbalanced data distribution in medical domain
challenges, such as aneurysm detection.

2) Capturing Long-Range Dependencies in Aneurysm
Detection

The capability of capturing haemodynamic flow make the
TOF MRA sequence the most widely accepted tool for de-
tecting unruptured aneurysms. Hence to fully capture these
characteristics, the model must utilise the long-range depen-
dencies. CNN achieved this by deeply stacked convolutional
layers but with high computational complexity. Alternatively,

attention models, inspired by the transformer architecture
[74] serve the same purpose, yet these techniques often re-
quire excessive memory usage, leading to inefficient and
unnecessarily complex architectures. Graph neural networks
(GNN) [75] have emerged as a powerful tool for captur-
ing long-term dependencies, offering researchers a valuable
method for aneurysm detection.

V. CONCLUSION
This article provides a detailed review of the development of
CAD models for aneurysm detection using TOF-MRA vol-
ume. The review systematically analyses the different CAD
systems available in the literature and highlights key chal-
lenges in developing CAD system for aneurysm detection.
One of the main challenges is the availability of sufficient
balanced data samples essential for training deep learning
models without overfitting. Another challenge identified is
the limitation of CNN models in effectively capturing long-
range dependencies within the 3D TOF-MRA volume, which
are crucial for identifying key features in the vessel structure
for aneurysm detection. The review highlights the signifi-
cance of low-level features in aneurysm detection, indicating
that shallow networks outperform deeper networks in this
task, mainly when dealing with limited samples and avoiding
overfitting.
The review suggests that transfer learning, self-supervised
learning, and GAN-based models are promising candidates
for addressing the data scarcity challenges in developing
CAD systems for aneurysm detection. GNN and attention-
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based models can be effectively adopted for CAD develop-
ment to capture the long-range dependencies in the 3D TOF-
MRA volume to enhance the detection performance. These
approaches can capture the unique characteristics of 3D TOF-
MRAvolumemore effectively, advancing the field of cerebral
aneurysm detection.
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