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ABSTRACT
This paper proposes a clustering method for crowdsourced test reports based on a large language model
to solve the limitations of existing methods in processing repeated reports and utilizing multi-modal
information. Existing crowdsourced test report clustering methods have significant shortcomings in handling
duplicate reports, ignoring the semantic information of screenshots, and underutilizing the relationship
between text and images. The emergence of LLMprovides a newway to solve these problems. By integrating
the semantic understanding ability of LLM, key information can be extracted from the test report more
accurately, and the semantic relationship between screenshots and text descriptions can be used to guide the
clustering process, thus improving the accuracy and effectiveness of clustering. The method in this paper
uses a pre-trained LLM (such as GPT-4) to encode the text in the test report, and uses a visual model
such as CLIP to encode the application screenshots, converting the text descriptions and images into high-
dimensional semantic vectors. The cosine similarity is then used to calculate the similarity between the
vectors, and semantic binding rules are constructed to guide the clustering process, ensuring that semantically
related reports are assigned to the same cluster and semantically different reports are assigned to different
clusters. Through experimental verification, this method is significantly superior to traditional methods in
several evaluation indicators, demonstrating its great potential in improving the efficiency and quality of
crowdsourced test report processing. In the future, this method is expected to be widely used in the process
of software testing and maintenance, and further promote technological progress.

INDEX TERMS Large Language Model, Crowdsourced Testing, Test Report Clustering

I. INTRODUCTION

THE existing clustering methods for crowdsourced test-
ing reports exhibit notable limitations in addressing du-

plicate reports, particularly in harnessing the semantic in-
formation from screenshots and textual descriptions. The
emergence of large language models (LLMs) offers fresh per-
spectives for tackling this issue. By integrating the semantic
comprehension capabilities of LLMs, we can more precisely
extract critical information from testing reports and leverage
the semantic relationships between screenshots and textual
descriptions to guide the clustering process, thereby enhanc-
ing the accuracy and effectiveness of clustering. Therefore,
this paper introduces a crowdsourced testing report cluster-
ing approach based on large language models, which fully
exploits the multimodal information in testing reports, such

as the semantic associations between textual descriptions and
application screenshots. This approach aims to overcome
the limitations of existing methods and is experimentally
validated for its effectiveness. Not only does this method
improve the processing efficiency of testing reports, but it
also provides developers with more precise error detection
and remediation support, thereby advancing the application
and development of crowdsourced testing in software devel-
opment processes.

II. RESEARCH BACKGROUND & MOTIVATION
A. THE SIGNIFICANCE OF SOFTWARE TESTING
As the complexity of software systems continues to escalate,
ensuring software quality has become paramount. Software
testing serves not only as a means to guarantee the functional
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integrity of software but also as a vital link in ensuring its
reliability, security, and performance. High-quality software
not only fulfills user needs and enhances user satisfaction
but also mitigates maintenance costs and bolsters enterprises’
competitive edge in the market.

Firstly, software testing forms the cornerstone for ensuring
the proper functioning of software. Development processes
inherently introduce a myriad of errors and defects, which,
if undetected and unrepaired, can lead to software failures
in real-world operations. Through systematic testing, these
issues can be identified early in the development phase, pre-
venting them from impacting user experience post-release.
Early detection and resolution of defects minimize repair
costs, prevent problem proliferation, and enhance develop-
ment efficiency.

Secondly, software testing plays a pivotal role in safeguard-
ing software security. With the proliferation of the internet
and rapid advancements in information technology, software
security challenges have become increasingly severe. Secu-
rity incidents such as hacking attacks, data breaches, and
system intrusions pose grave threats to individual privacy and
corporate data. Security testing can uncover vulnerabilities
and potential threats within software, enabling timely remedi-
ation measures to enhance software security and protect user
data and privacy.

Furthermore, performance testing is another essential as-
pect of software testing. As user demands escalate and com-
petition intensifies, software performance becomes a crucial
factor influencing user choices. Performance testing assesses
software’s behavior under varying loads and stress conditions,
ensuring stable operation even under high concurrency and
heavy traffic. It identifies and optimizes performance bot-
tlenecks, enhancing system response speed and processing
capabilities, thereby raising user satisfaction andmarket com-
petitiveness.

Software testing’s significance extends beyond the devel-
opment phase into software maintenance and updates. As
software versions iterate and update, the introduction of new
features and optimization of existing ones can introduce new
defects or cause anomalies in existing functions. Conse-
quently, regression testing and comprehensive testing before
each version update are crucial to ensure the stability and
reliability of new versions.

In conclusion, software testing holds a pivotal posi-
tion throughout the software development lifecycle. It en-
sures software’s functionality, reliability, security, and per-
formance, elevating user experience and satisfaction, mini-
mizing maintenance costs, and fortifying enterprises’ market
competitiveness. As software systems become more complex
and user demands proliferate, the importance of software
testing will become even more pronounced, serving as a
cornerstone for safeguarding software quality and driving
technological advancements.

B. ADVANTAGES AND CHALLENGES OF CROWDSOURCED
TESTING
Crowdsourced testing, as an emerging paradigm in software
testing, has gained widespread adoption in the software de-
velopment domain due to its openness and flexibility. Unlike
traditional in-house testing, crowdsourced testing distributes
testing tasks to a vast pool of external testers, leveraging their
diverse devices and environments, thereby achieving broader
test coverage and heightened efficiency. However, alongside
its numerous advantages, crowdsourced testing also confronts
distinct challenges.
First of all, the foremost advantage of crowdsourced testing

lies in its extensive coverage. Traditional in-house testing
is often constrained by the limited number of testers and
the diversity of testing environments, making it challeng-
ing to encompass all potential usage scenarios. Conversely,
crowdsourced testing, by assigning tasks to testers world-
wide, enables testing across various hardware devices, oper-
ating systems, and network environments, uncovering more
latent issues and defects. This diversity significantly enhances
the comprehensiveness and effectiveness of testing, ensuring
software stability and compatibility in real-world usage.
In addition, crowdsourced testing can substantially reduce

testing costs. Compared to assembling a dedicated in-house
testing team, crowdsourced testing relies on external testers
who are paid based on task completion rather than fixed
salaries and benefits. This pay-per-task model significantly
lowers the testing expenses for enterprises, making high-
quality testing services accessible even to small and medium-
sized enterprises.
Furthermore, crowdsourced testing boasts high flexibility

and adaptability. Testers can select tasks based on their avail-
ability and interests, unrestrained by fixed working hours
or locations. This flexibility allows crowdsourced testing to
swiftly adapt to diverse project requirements, particularly
for time-sensitive projects such as game testing and mobile
app testing, where it can swiftly complete numerous tasks,
ensuring timely product releases.
However, alongside its benefits, crowdsourced testing

faces unique challenges. Firstly, its openness leads to varying
quality in test reports. Given the disparate technical profi-
ciencies and experiences of testers, submitted reports may
suffer from unclear descriptions, incomplete information, or
even duplicate reports. Notably, the duplication rate in crowd-
sourced testing reports can reach up to 82%. Duplicate re-
ports waste developers’ time and effort, potentially obscuring
critical issues amidst the flood of redundant information, and
hindering timely resolution. Thus, effectively filtering and
processing crowdsourced test reports to ensure their quality
is a pressing issue.
Secondly, security and privacy concerns are paramount

in crowdsourced testing. Distributing software products to
external testers can expose risks of intellectual property and
data breaches. For applications involving sensitive data, such
as financial and medical software, safeguarding user data and
corporate secrets during testing is crucial.
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Additionally, coordination and management pose a signifi-
cant challenge in crowdsourced testing.With testers dispersed
globally, effectively assigning tasks, tracking progress, eval-
uating results, and promptly addressing issues necessitates
intricate management. Lack of effective coordination can lead
to task delays and resourcewaste, impacting testing efficiency
and outcomes.

To address these challenges, crowdsourced testing neces-
sitates the integration of advanced technologies and man-
agement methodologies. For instance, leveraging automation
tools and big data analytics can refine test report filtering and
processing, enhancing quality and efficiency. Establishing ro-
bust security mechanisms and privacy safeguards can protect
the testing process, preventing data and intellectual property
breaches. Incorporating project management tools and collab-
oration platforms can elevate coordination and management
efficiency in crowdsourced testing, ensuring timely and high-
quality task completion.

C. RESEARCH MOTIVATION
1) Limitations of Current Crowdsourced Testing Report
Clustering Methods
In the realm of software development, crowdsourced testing
significantly enhances the breadth and depth of testing by har-
nessing the collective resources of numerous external testers.
Nevertheless, the current clustering methods employed for
crowdsourced testing reports exhibit numerous limitations
that hinder their full potential.

Neglect of Semantic Information in Screenshots: Be-
yond textual descriptions, crowdsourced testing reports com-
monly include screenshots of applications. These screenshots
contain abundant visual information and contextual cues that
provide vital clues about the reported issues. Nonetheless,
many existing clustering methods treat screenshots merely
as pixel data, disregarding their semantic content. For in-
stance, visually similar screenshots may represent distinct
issues, while dissimilar ones could depict the same problem.
Disregarding such semantic information leads to inaccurate
clustering results and fails to effectively group similar reports.

Inadequate Exploitation of Text-Image Relationships:
There exists a profound connection between application
screenshots and their accompanying textual descriptions.
This relationship offers amore comprehensive contextual per-
spective, which could enhance clustering outcomes. Yet, nu-
merous existing methods treat text and images as independent
entities, failing to leverage their semantic correlations. Ne-
glecting these interdependencies undermines the utilization
of all available information within the reports, compromising
the reliability and precision of clustering results.

Insufficient Handling of Duplicate Reports: Duplicate
reports are a pervasive issue in crowdsourced testing. Given
the independence of testers, it is common for multiple testers
to report the same issue. Current clustering methods often
resort to simplistic categorization based on superficial fea-
tures when dealing with duplicates, struggling to distinguish
between reports that genuinely share the same underlying

cause. This not only exacerbates the review burden for devel-
opers but also risks drowning critical issues amidst a deluge
of redundant information, hindering timely resolution.
Limitations of Clustering Algorithms: Contemporary

clustering algorithms, such as K-means and hierarchical clus-
tering, excel in handling structured data but encounter limi-
tations when dealing with high-dimensional and unstructured
data (e.g., text and images). These algorithms are often sensi-
tive to initial parameters and distance metrics, leading to un-
stable clustering results. Moreover, their high computational
complexity for large-scale data renders them inadequate for
meeting real-time requirements in practical applications.

2) Development and Application Potential of Large
Language Models
With the rapid advancements in deep learning technologies,
Large Language Models (LLMs) have achieved remarkable
progress in the field of Natural Language Processing (NLP).
By training on vast datasets, LLMs demonstrate a formidable
capacity to comprehend and generate natural language, show-
casing their robust linguistic processing abilities.
LLMs excel in natural language understanding tasks.

BERT (Bidirectional Encoder Representations from Trans-
formers), a pre-trained model introduced by Google, lever-
ages a bidirectional Transformer architecture to capture con-
textual information within sentences. In tasks such as reading
comprehension, question-answering systems, and text clas-
sification, BERT and its variants have achieved outstanding
results. Furthermore, LLMs can be applied to tasks including
sentiment analysis, named entity recognition, and relation
extraction. By pre-training on large-scale corpora and fine-
tuning for specific tasks, these models acquire extensive lin-
guistic knowledge and task-related features, thereby enhanc-
ing task accuracy and robustness.
Large languagemodels have alsomade significant progress

in natural language generation tasks. GPT-4 (Generative Pre-
trained Transformer 4), proposed by OpenAI, is a generative
model that leverages a unidirectional Transformer architec-
ture to generate coherent natural language paragraphs based
on input text. As the latest iteration in the series, GPT-4 boasts
an even larger parameter scale and more robust text genera-
tion capabilities. Large language models find applications in
text generation, dialogue systems, machine translation, and
more. For instance, GPT-4 is capable of producing high-
quality news articles, technical documentation, and literary
works, while also engaging in human-like conversations and
providing answers to questions. Its formidable generative
power presents novel opportunities for automated content
creation, intelligent customer service, and other applications.
Beyond their excellence in NLP, LLMs exhibit immense

potential inmultimodal processing. By integrating textual and
visual information, these models enable cross-modal under-
standing and generation. CLIP (Contrastive Language-Image
Pretraining), a multimodal model proposed by OpenAI, ac-
complishes tasks such as image classification, image genera-
tion, and image-text retrieval through joint training of text and
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images. The application prospects of LLMs in multimodal
processing are vast. For instance, in autonomous driving,
combining visual and linguistic information enables more
precise environmental perception and decision-making. In
healthcare, analyzing medical images and textual records aids
in diagnosis and treatment. In smart homes, voice commands
and image recognition facilitate control and management of
intelligent devices.

Based on the aforementioned remarkable performances of
LLMs in natural language understanding, generation, and
multimodal processing, they hold immense application po-
tential in crowdsourced test report clustering. Firstly, LLMs
can extract rich semantic features from textual descriptions
in test reports, capturing intricate details described by testers.
Concurrently, when integrated with image recognition tech-
nologies, these models can extract valuable information from
screenshots, such as interface elements and error messages.
The fusion of these multimodal features significantly en-
hances the representational power of test reports, providing
a more accurate foundation for clustering. Moreover, LLMs’
ability to capture semantic associations between text and
images facilitates the identification of reports describing the
same issues but phrased differently. This capability is crucial
in handling duplicate and similar reports, as it enables more
precise categorization of similar reports, alleviating develop-
ers’ workload and enhancing issue resolution efficiency.

D. RESEARCH QUESTIONS AND MAIN CONTRIBUTIONS
As software development complexity escalates, crowd-
sourced testing has emerged as a vital means of identifying
and rectifying software defects. By harnessing the resources
of a vast pool of external testers, crowdsourced testing offers
a diverse array of testing environments and device config-
urations. Nevertheless, it also introduces a deluge of du-
plicative and redundant test reports, significantly burdening
developers’ review processes. To enhance the efficiency in
processing crowdsourced test reports, clustering techniques
have been widely applied to group similar reports together.
However, existing clustering methods for crowdsourced test
reports exhibit notable limitations, struggling to fully leverage
the multimodal information within the reports, such as the
semantic correlations between textual descriptions and appli-
cation screenshots.

Large Language Models (LLMs), exemplified by GPT-4,
have demonstrated formidable capabilities in the realm of
Natural Language Processing (NLP). By training on mas-
sive datasets, LLMs can comprehend and generate natural
language texts, excelling in various NLP tasks. Leveraging
LLMs’ semantic understanding and generation abilities, we
can more precisely extract key information from test reports
and integrate screenshot content for comprehensive analysis,
thereby enhancing clustering accuracy and efficiency. The
main contributions of this paper are as follows:

1) A crowdsourced test report clustering method based on
Large Language Models is proposed, which extracts

features from both application screenshots and textual
descriptions.

2) Semantic binding rules are formulated utilizing the
semantic relationships between screenshots and textual
descriptions to guide the clustering process.

3) The effectiveness and superiority of the proposed
method are experimentally validated across multiple
evaluation metrics.

III. METHODOLOGY
A. FEATURE EXTRACTION
Feature Extraction is a pivotal step in achieving effective
clustering, primarily involving the extraction of both image
and textual features from application screenshots and tex-
tual descriptions within crowdsourced testing reports. In this
methodology, we harness the prowess of advanced large lan-
guage models (LLMs) for feature extraction, aiming to derive
richer and more precise semantic information. Specifically,
we employ a pre-trained LLM, GPT-4, for text encoding, and
a pre-trained visual model, CLIP, for encoding application
screenshots, thereby transforming both textual descriptions
and images into high-dimensional semantic vectors.
Textual Feature Extraction: LLMs exhibit formidable

capabilities in text comprehension and representation. These
models are leveraged to process the textual descriptions
within crowdsourced testing reports, whereby each segment
of text is fed into a pre-trained LLM to extract its high-
dimensional semantic vector representation. GPT-4, with its
extensive contextual understanding and generation abilities,
adeptly captures intricate semantic relationships. By utilizing
these models, every sentence and paragraph within the tex-
tual descriptions can be transformed into a high-dimensional
vector, accurately portraying their semantic content. These
high-dimensional vectors then facilitate subsequent similarity
computations and clustering tasks.
Image Feature Extraction: For image feature extraction,

pre-trained visual models are employed. CLIP, introduced
by OpenAI, is a model that jointly trains on image and text
data, enabling the mapping of both modalities into a shared
semantic space. When applying CLIP, application screen-
shots from crowdsourced testing reports are input into the
model, yielding their corresponding vector representations in
the semantic space. Compared to traditional convolutional
neural networks (e.g., VGG-16), CLIP excels in capturing
semantic information within images due to its consideration
of the interplay between images and texts. This approach
yields image vectors enriched with semantic information,
facilitating subsequent similarity computations and clustering
procedures.

B. SIMILARITY CALCULATION
Having obtained the semantic vector representations for both
images and texts, we proceed to calculate their pairwise sim-
ilarities. Cosine similarity is a commonly employed method
for this purpose, owing to its suitability in high-dimensional
vector spaces. In this approach, cosine similarity is utilized
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to compute the degree of similarity between the vectors.
Cosine similarity measures the angle between two vectors;
the smaller the angle, the higher the similarity. The formula
for cosine similarity is as follows:

Cosine Similarity =
A ·B

∥A∥∥B∥
(1)

where A · B represents the dot product of vectors A and
B, ∥A∥ represents the norm (length) of vector A, and ∥B∥
represents the norm of vector B.
By adopting this method, we can derive the semantic sim-

ilarity between application screenshots and textual descrip-
tions, providing foundational data for subsequent clustering
processes. This semantic similarity serves as a crucial input,
enabling the grouping of related items based on their under-
lying meanings, rather than mere superficial similarities.

C. CONSTRUCTION OF SEMANTIC BINDING RULES
The profound semantic comprehension ability of large mod-
els enables them to more accurately capture the semantic
relationships between application screenshots and textual de-
scriptions. These models can be leveraged to devise more
effective semantic binding rules. In this methodology, we em-
ploy two types of constraints to guide the clustering process,
which take into account both application screenshots, textual
descriptions, and theirmutual semantic relationships. The two
types of rules used to specify these relationships are:

• YES-LINK: Indicates that two data instances (reports)
should be assigned to the same cluster.

• NO-LINK: Indicates that two data instances (reports)
should be allocated to different clusters.

These rules possess transitivity properties. If Report A and
Report B are YES-LINK, and Report B and Report C are also
YES-LINK, then Report A and Report C must necessarily be
YES-LINK; similarly, if Report A and Report B are YES-
LINK, while Report B and Report C are NO-LINK, Report A
and Report C should be NO-LINK, and so forth.

Largemodels can be utilized to perform semantic matching
for every pair of test reports, and based on the aforementioned
rules, the relationships between reports can be formulated.
For instance, if the similarity of the combined feature vec-
tors of two reports exceeds a certain threshold, they can be
labeled as YES-LINK; conversely, if the similarity falls below
a threshold, they are labeled as NO-LINK. The application
of these rules in conjunction with the semantic matching
capabilities of large models can significantly enhance the
accuracy and consistency of the clustering process.

D. REPORT CLUSTERING
During the clustering process, an initial set of semantic
binding rules is constructed. For all pairs of reports, their
similarities are queried, and the semantic binding rules are
applied, ultimately resulting in a collection of report pairs
categorized as YES-LINK and NO-LINK. In each iteration
of the clustering, the set of semantic binding rules is utilized

to verify any instances that violate these rules, and subsequent
re-clustering is performed accordingly. The K-Medoids algo-
rithm, a variant of clustering algorithms, is employed in this
methodology. The specific clustering procedure involves:

1) Determining the Number of Clusters (K).
2) Randomly selecting K initial medoids and verifying

them against the semantic rules to ensure no instances
violating the must-link and cannot-link rules coexist
within the initial set of medoids.

3) In each iteration, calculating the distances between all
non-medoid instances and the medoids, and applying
the set of semantic binding rules for verification and
adjustment.

4) Termination of iterations occurs when all instances sat-
isfy the semantic binding rules, and the medoids remain
unchanged, indicating a stable clustering result.

Compared to the K-Means algorithm, the K-Medoids clus-
tering algorithm maintains actual test reports as the clus-
ter centers (medoids) during the iterative clustering process,
thereby avoiding the potential deviation of centroids from
actual data points.
In summary, the workflow of the method can be summa-

rized as Figure 1.

IV. EXPERIMENT
To evaluate the effectiveness of the Large Language Model
(LLM)-guided crowdsourced test report clustering method,
researchers formulated three research questions and con-
ducted experiments on a dataset comprising 847 reports. The
experimental results demonstrated the superiority of the pro-
posed method over baseline approaches and different config-
urations across various evaluation metrics.

A. RESEARCH QUESTIONS
Three questions were posed to assess the effectiveness of the
LLM-guided crowdsourced test report clustering method:

• RQ1: How does the proposedmethod perform compared
to baseline methods?

• RQ2: How does different components contribute to the
proposed method?

• RQ3: Are there significant differences in clustering re-
sults under different prompts?

• RQ4: What is the time overhead of the proposed
method?

B. TEST SUBJECTS
The dataset used in the experiments encompassed 847 crowd-
sourced test reports from 18mobile applications, spanning di-
verse application categories such as finance, communication,
lifestyle, etc. The number of reports per application ranged
from 4 to 152. Table 1 provides detailed information about
the dataset.
The dataset was sourced from one of the most popular

and representative crowdsourced testing platforms in China.
This platform offers crowdsourced test reports for real-world
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FIGURE 1: Method Workflow

TABLE 1: Apps and Test Reports under Investigation

App Domain # Report Bug Category Report / Category

A1 Finance 134 9 14.89
A2 System 29 6 4.83
A3 Business 13 3 4.33
A4 Reading 13 3 4.33
A5 Reading 26 4 6.50
A6 Reading 152 8 19.00
A7 Reading 41 4 10.50
A8 System 75 5 15.00
A9 Finance 26 5 5.20
A10 Life 5 3 1.67
A11 Finance 10 2 5.00
A12 Travel 17 17 1.00
A13 Communi. 131 8 16.38
A14 Travel 88 15 5.87
A15 Music 51 8 6.38
A16 Education 4 2 2.00
A17 Life 12 3 4.00
A18 System 24 5 4.80

Sum / Avg 847 109 6.93

applications and has supported numerous academic studies.
To ensure the representativeness of the dataset, researchers
invited three experts with extensive experience in mobile
application development and testing to annotate the reports.

C. EVALUATION INDICATORS
To evaluate the effectiveness of the Large Language Model
(LLM)-guided crowdsourced test report clustering method,
researchers employed multiple evaluation metrics, including
Precision, Recall, F1-measure, Purity, Adjusted Rand Index
(ARI), and Normalized Mutual Information (NMI).

Precision: The proportion of correctly identified reports
among the clustering results.

Precision =
TP

TP+ FP
(2)

Recall: The proportion of actual correct reports that are
correctly identified.

Recall =
TP

TP+ FN
(3)

F1-measure: The harmonic mean of Precision and Recall,
offering a balanced perspective.

F1 = 2 · Precision · Recall
Precision+ Recall

(4)

Purity: The extent to which a cluster contains a single
class. Let N be the total number of samples, Ck represent the
kth cluster, Lj the jth true class, and |Ck ∩ Lj| the size of the
intersection between cluster Ck and true class Lj.

Purity =
1

N

∑
k

max
j

|Ck ∩ Lj| (5)

Adjusted Rand Index (ARI): The Adjusted Rand Index
(AR) is used to evaluate the quality of clustering, adjusting
for chance.

RI =
TP+ TN

TP+ FP+ FN + TN
(6)

ARI =
RI − E(RI)

max(RI)− E(RI)
(7)

Normalized Mutual Information (NMI): Normalized
Mutual Information measures the consistency between the
clustering results and the true classes. Specifically, I(Ω;C)
represents the Mutual Information, calculated as: I(Ω;C) =
H(Ω)− H(Ω | C), where H(Ω) and H(C) are the entropies
of the clustering results and true classes, respectively.

NMI =
2 · I(U ;V )

H(U) + H(V )
(8)

D. EXPERIMENTAL RESULTS
In this section, we present the experimental results of an
LLM-directed crowdsourcing test designed to evaluate the
effectiveness of various clustering methods. The detailed ex-
perimental data can be found in Table 2 (where "Deep" refers
to DeepPrior and "LLM" refers to LLM-guided), while a
summary is provided in Table 3. Figure 2 shows a t-SNE
visualization of the clustering outcomes, clearly illustrating
the distinct separation of clusters, which highlights the ef-
fectiveness of our methods in clustering crowdsourced test
reports.
For RQ1, the LLM-guided crowdsourced test report clus-

teringmethod shows significant improvement over the bench-
mark methods SETU and DeepPrior. Specifically, the LLM-
directed crowdsourced test report clustering method showed
significant improvements in accuracy, recall, F1 values, pu-
rity, ARI, andNMI. For example, the accuracy and recall rates
of the method are 0.86 and 0.92, respectively, while SETU is
0.23 and 0.26, and DeepPrior is only 0.31 and 0.42, respec-
tively. In terms of purity, the method is 0.89, which is 71.2%
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App SETU Deep LLM

A1 0.21 0.30 0.90
A2 0.15 0.23 0.88
A3 0.30 0.38 0.82
A4 0.28 0.37 0.84
A5 0.18 0.38 0.93
A6 0.18 0.20 0.92
A7 0.41 0.40 0.81
A8 0.14 0.29 0.91
A9 0.32 0.41 0.76
A10 0.31 0.43 0.83
A11 0.18 0.20 0.91
A12 0.20 0.20 0.89
A13 0.25 0.21 0.81
A14 0.15 0.25 0.80
A15 0.21 0.38 0.91
A16 0.31 0.48 0.83
A17 0.12 0.40 0.89
A18 0.25 0.40 0.83

(a) Precision

App SETU Deep LLM

A1 0.25 0.63 0.93
A2 0.28 0.58 0.89
A3 0.28 0.34 0.84
A4 0.33 0.35 0.85
A5 0.12 0.18 0.83
A6 0.39 0.59 0.98
A7 0.30 0.56 0.97
A8 0.10 0.20 0.80
A9 0.13 0.34 0.96
A10 0.28 0.57 0.99
A11 0.22 0.20 0.85
A12 0.25 0.28 0.92
A13 0.27 0.38 0.95
A14 0.31 0.37 0.80
A15 0.09 0.18 0.82
A16 0.30 0.58 0.99
A17 0.37 0.64 0.89
A18 0.40 0.59 0.82

(b) Recall

App SETU Deep LLM

A1 0.23 0.40 0.91
A2 0.20 0.33 0.88
A3 0.29 0.36 0.83
A4 0.23 0.36 0.84
A5 0.15 0.25 0.88
A6 0.26 0.29 0.95
A7 0.34 0.47 0.88
A8 0.12 0.23 0.85
A9 0.17 0.37 0.85
A10 0.34 0.49 0.91
A11 0.20 0.20 0.88
A12 0.22 0.24 0.90
A13 0.26 0.27 0.88
A14 0.21 0.30 0.80
A15 0.13 0.25 0.86
A16 0.34 0.53 0.91
A17 0.18 0.49 0.89
A18 0.30 0.48 0.83

(c) F1-Measure

App SETU Deep LLM

A1 0.42 0.55 0.92
A2 0.72 0.85 0.92
A3 0.46 0.46 0.87
A4 0.36 0.66 0.86
A5 0.48 0.57 0.84
A6 0.31 0.40 0.85
A7 0.65 0.83 0.91
A8 0.58 0.71 0.84
A9 0.60 0.63 0.87
A10 0.48 0.56 0.88
A11 0.33 0.50 0.88
A12 0.48 0.53 0.88
A13 0.57 0.42 0.93
A14 0.74 0.81 0.89
A15 0.72 0.73 0.87
A16 0.37 0.39 0.91
A17 0.56 0.70 0.95
A18 0.51 0.51 0.96

(d) Purity

App SETU Deep LLM

A1 -0.02 0.08 0.91
A2 0.01 0.03 0.89
A3 0.01 0.16 0.99
A4 -0.02 0.07 0.94
A5 -0.02 0.12 0.98
A6 0.01 0.13 0.96
A7 0.01 0.14 0.98
A8 -0.03 -0.02 0.97
A9 -0.01 0.00 0.92
A10 0.01 0.02 0.98
A11 -0.03 0.13 0.89
A12 -0.01 0.18 0.90
A13 0.03 0.07 0.98
A14 -0.03 0.04 0.97
A15 -0.01 0.13 0.93
A16 -0.04 -0.01 0.95
A17 -0.01 0.18 0.94
A18 -0.02 0.19 0.94

(e) ARI

App SETU Deep LLM

A1 0.32 0.42 0.97
A2 0.35 0.47 0.98
A3 0.20 0.41 0.92
A4 0.20 0.50 0.97
A5 0.22 0.47 0.90
A6 0.25 0.32 0.94
A7 0.30 0.39 0.96
A8 0.37 0.48 0.90
A9 0.20 0.27 0.95
A10 0.27 0.33 0.97
A11 0.31 0.38 0.96
A12 0.37 0.46 0.91
A13 0.22 0.36 0.98
A14 0.20 0.38 0.94
A15 0.26 0.30 1.00
A16 0.35 0.37 0.94
A17 0.23 0.28 0.92
A18 0.42 0.45 0.97

(f) NMI

App SETU Deep LLM

A1 20.9s 19.4s 12.5s
A2 8.6s 8.1s 3.7s
A3 7.1s 6.3s 1.8s
A4 7.2s 6.4s 1.8s
A5 8.4s 7.7s 2.9s
A6 23.3s 19.1s 16.4s
A7 10.2s 9.5s 4.3s
A8 12.6s 13.0s 7.8s
A9 8.6s 7.6s 3.1s
A10 6.4s 5.6s 0.9s
A11 6.8s 6.2s 1.4s
A12 7.7s 6.6s 2.1s
A13 18.6s 19.4s 12.0s
A14 15.7s 14.1s 10.1s
A15 10.6s 10.0s 5.8s
A16 6.3s 5.5s 0.8s
A17 7.2s 6.3s 1.6s
A18 8.1s 7.4s 2.9s

(g) Time overhead

TABLE 2: Detailed Experiment Results for RQ1

TABLE 3: Summary of Experiment Results for RQ1

SETU DeepPrior LLM-guided

Precesion 0.23 0.31 0.86
Recall 0.26 0.42 0.92

F1-measure 0.24 0.34 0.89
Purity 0.52 0.60 0.89
ARI -0.01 0.09 0.95
NMI 0.28 0.39 0.95

Time overhead 10.8s 9.9s 5.1s

FIGURE 2: Clustering Results Visualization

higher than SETU and 48.3% higher than DeepPrior. To
assess the statistical significance of the performance improve-
ment over other methods, we apply theWilcoxon signed-rank
test. The p-values for our method, when compared to SETU
and DeepPrior across seven metrics—precision, recall, F1-
measure, purity, ARI, NMI, and time overhead—are all on the
order of 7× 10−6, which is well below the threshold of 0.05.
This demonstrates that the improvement in clustering effec-
tiveness achieved by our method is statistically significant.
These results show that LLM-guided method has excellent
performance in forecasting accuracy, clustering consistency
and information capture, and has high practical value and
reliability.

For RQ2, we analyze the contributions of different com-
ponents to the proposed method by comparing the perfor-
mance of three configurations: LLM-guided(T) (using only
text features), LLM-guided(I) (using only image features),
and LLM-guided (using both text and image features). The
results presented in Table 4 show that integrating both text
and image features provides the best performance across all

TABLE 4: Summary of Experiment Results for RQ2

LLM-guided(T) LLM-guided(I) LLM-guided

Precesion 0.74 0.77 0.86
Recall 0.68 0.84 0.92

F1-measure 0.76 0.80 0.89
Purity 0.67 0.69 0.89
ARI 0.82 0.71 0.95
NMI 0.79 0.69 0.95

evaluationmetrics. For Precision, Recall, and F1-measure, the
LLM-guided method (using both features) outperforms the
individual feature-based approaches. F1-measure improves
from 0.76 (LLM-guided(T)) and 0.80 (LLM-guided(I)) to
0.89 (LLM-guided), indicating that combining the two fea-
tures leads to more accurate results. Similarly, Purity, ARI,
and NMI also show clear improvements when both features
are used. Purity rises from 0.67 (LLM-guided(T)) and 0.69
(LLM-guided(I)) to 0.89 (LLM-guided), suggesting better
clustering quality. Both ARI and NMI increase to 0.95 in
the combined model, compared to 0.82 and 0.79 for LLM-
guided(T), and 0.71 and 0.69 for LLM-guided(I). These re-
sults demonstrate that integrating text and image features
enhances the method’s performance, making it more effective
at clustering and improving overall accuracy.

For RQ3, different prompt has some effect on the final clus-
tering result. Detailed and specific prompt can significantly
improve the quality of feature extraction, semantic binding
rule generation and application, and reported clustering pro-
cesses, thereby improving the accuracy and consistency of the
final clustering results. On the contrary, simple and vague
prompt can lead to uncertainty in the individual steps and
instability in the quality of the results. Therefore, in practical
applications, providing as much detailed and specific guid-
ance as possible is critical to ensuring high-quality clustering
results.

For RQ4, the LLM-guided crowdsourced test report clus-
tering method has a lower time overhead compared to the
benchmark method. While the benchmark methods SETU
and DeepPrior both have a time overhead of around 10
seconds, the LLM-guided method takes only 5.7 seconds to
classify each report, which is a significant improvement in
clustering speed.
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E. ERROR ANALYSIS
While the proposed method demonstrates significant im-
provements over existing approaches, there are several po-
tential failure cases and limitations that should be consid-
ered. The method assumes that the semantic similarity be-
tween reports is best represented by cosine similarity in
the high-dimensional embedding space. However, this metric
may not fully capture all nuances of report relationships,
particularly in cases where the reports exhibit highly non-
linear or context-dependent similarities. For example, reports
with similar content but slightly different wording or those
containing non-standard screenshots might be misclustered
or split across multiple clusters. Additionally, the proposed
method assumes that the input data (text and images) are of
sufficient quality. In real-world crowdsourcing environments,
however, test reports may often be noisy, incomplete, or con-
tain errors, such as poorly cropped images or ungrammatical
text. These issues can significantly degrade the performance
of the model, resulting in suboptimal clustering outcomes.
Future research should aim to address these limitations by
exploring alternative similarity measures that better account
for the inherent complexity of test reports, and developing
more adaptive clustering mechanisms that can better handle
noisy or incomplete data.

F. THREATS TO VALIDITY
When evaluating the crowdsourced test report clustering
method based on Large Language Models (LLMs), we must
meticulously consider several potential threats that may im-
pact the validity of our research.

Firstly, the representativeness of the dataset can signifi-
cantly influence the study’s outcomes. The dataset employed
in this research comprises 847 test reports from 18 differ-
ent mobile applications, spanning 109 bug categories. While
these datasets aim to reflect a wide range of application
scenarios, their diversity and representativeness may still fall
short of comprehensively representing all possible testing
environments. Consequently, future studies should incorpo-
rate more diversified and larger-scale datasets to validate the
universality and robustness of the proposed method.

Secondly, the randomness inherent in the clustering pro-
cess can introduce uncertainty. As clustering algorithms ex-
hibit randomness when dealing with large-scale and complex
data, we mitigate this by running each algorithm 10 times to
eliminate the adverse effects of randomness. This approach
reduces biases stemming from single-run random factors,
enhancing the stability and reliability of the results.

Thirdly, the annotation quality of crowdsourced test reports
poses a crucial validity threat. Annotation relies on testers’
professional knowledge and experience, which can lead to
variation in inter-annotator agreement. To mitigate this threat,
we invited experts with extensive experience in mobile ap-
plication development and testing to conduct independent
annotations and employed cross-validation to ensure consis-
tency. In cases of annotation discrepancy, annotators engaged

in discussions to reach a consensus, thereby ensuring data
accuracy and reliability.
Furthermore, the language issue of the dataset also con-

stitutes a potential threat. Our dataset primarily comprises
Chinese reports, which may affect the model’s performance
on data in other languages. However, our baseline models
(including SETU [1] and DeepPrior [2]) also handle similarly
distributed data, featuring primarily Chinese with some inter-
spersed English. Additionally, modern natural language pro-
cessing techniques excel in multilingual settings, suggesting
that substituting the feature extraction with NLP models tai-
lored for other languages would likely have minimal impact
on validity. Hence, we did not undertake additional language
optimizations for the baseline models.
Lastly, the computational resource requirements and opera-

tional efficiency of LLMs are concerns that warrant attention.
Large-scale language models typically necessitate substantial
computational resources and storage space, potentially en-
countering performance bottlenecks in practical applications.
When processing massive test reports, the model’s real-time
response and speed directly influence its practicality and
scalability. Consequently, optimizing themodel’s architecture
and algorithms to improve computational efficiency repre-
sents an essential direction for future research.

G. DISCUSSION ON SCALABILITY
The scalability of our proposed clustering method is a key
consideration for its application to large datasets. The method
leverages pre-trained large language models for text encoding
and visual models for encoding images, both of which are
highly optimized for efficient performance. These models
can process large volumes of data in parallel during the en-
coding phase, making them suitable for handling substantial
datasets. Once the text and image data are encoded into high-
dimensional semantic vectors, the cosine similarity calcu-
lation, which is computationally efficient, enables effective
clustering even as the dataset size increases.
While the initial encoding process may demand signifi-

cant computational resources, this challenge can be mitigated
by distributing the workload or utilizing cloud-based infras-
tructure. This parallel processing capability ensures that the
method can scale to larger datasets without compromising
performance. Furthermore, the simplicity and efficiency of
cosine similarity calculations allow for the seamless expan-
sion of the method to handle large-scale applications, ensur-
ing that it remains effective as the dataset grows.

H. REAL-WORLD IMPACT DISCUSSION
To evaluate the impact of Large Language Model (LLM)-
based clustering methods for crowdsourced test reports in
practical project maintenance, we conducted a user study.
Five graduate students were invited to inspect test reports for
Application A9, which consisted of 26 reports describing 5
distinct defects. Participants were randomly divided into two
groups: one provided with clustered test reports, and the other
without. During the experiment, participants were unaware of

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3530960

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



the exact number of defects and had no fixed order for report
inspection.

Within the experiment, we calculated the total number of
reports inspected, inspection time, and number of defects
discovered by each group. The three participants in the first
group opted to inspect all 26 reports, with an average inspec-
tion time of 574 seconds, equating to 22.1 seconds per report.
They identified 5, 5, and 4 defects respectively. The three
participants in the second group, leveraging the clustering
results, selected one representative report from each cluster
for inspection, achieving an average inspection time of 93
seconds, or 18.6 seconds per report. They discovered 5, 4,
and 5 defects, respectively. To ensure no significant differ-
ence in defect detection capabilities between the two groups,
we conducted a significance test, which revealed no notable
differences in defect inspection abilities among the students.
The similarity in average inspection times indicates that all
participants required similar timeframes to inspect individual
reports.

Participants in the first group, lacking clustering results,
had to inspect all reports individually. In contrast, those in the
second group utilized the clustering outcomes, necessitating
the inspection of just one representative report from each clus-
ter. This is because reports within a cluster typically describe
the same defect, allowing for the effective identification of
all defects within the cluster through a single representative
report. Consequently, despite inspecting only 5 reports, the
second group participants discovered the same number of
defects as the first group, demonstrating the purpose of clus-
tering technology: to reduce the number of reports inspected
while maintaining defect detection capabilities.

The experimental results highlight that employing LLM
for clustering can significantly enhance the efficiency of
crowdsourced test report inspection. In real-world project
maintenance, LLM-guided clustering methods can reduce the
inspection workload for developers while preserving efficient
defect detection capabilities, thereby greatly improving the
efficiency and effectiveness of test report inspection. This
research finding underscores the immense potential of LLMs
in practical applications, promising significant improvements
in software testing and maintenance processes.

For future work, several specific research avenues can be
explored. First, the integration of other multi-modal models,
which combine textual, visual, and contextual information,
could further enhance the clustering process. By incorpo-
rating different types of data, such models may capture a
wider range of defects and provide more nuanced insights,
potentially improving the accuracy of test report inspection.
Second, incorporating feedback loops from human testers
could refine the clustering results by enabling iterative model
updates based on real-world insights. This approach would
facilitate continuous improvement of the model’s accuracy,
ensuring that it adapts to evolving developer practices and
project-specific contexts. Third, conducting case studies in
industrial settings with diverse test report datasets would val-
idate the scalability and robustness of the proposed method.

This effort would also provide an opportunity to assess the
practical impact of clustering on real-world software mainte-
nance workflows, further bridging the gap between research
and application.

V. RELATED WORK
Crowdsourcing is a method that harnesses the collective
power of diverse individuals to efficiently tackle large-scale
tasks that are traditionally costly or time-consuming [3], [4].
Crowdsourced testing leverages this concept by engaging
testers with varied backgrounds, skills, and global distribution
through an online platform [5]. By aggregating the exper-
tise of numerous testers, this approach enables comprehen-
sive software testing at reduced costs and shorter timelines,
thereby uncovering more potential issues and defects. How-
ever, while crowdsourced testing offers extensive coverage,
cost-effectiveness, and efficiency, it also presents challenges
such as quality control difficulties, data security risks, and
complex management.
In response to the challenges in traditional mobile appli-

cation testing, numerous researchers have been dedicated to
exploring more effective and efficient crowdsourcing testing
methods and strategies aimed at enhancing the efficiency of
final developer review reports. Drawing on an understanding
of testing background, competence, and domain knowledge,
Wang et al. [6] introduced a multi-objective crowdsourced
worker recommendation method (MOCOM) that suggests a
minimal number of crowdsourced workers for detecting the
maximum number of vulnerabilities in the task. Addition-
ally, Wang et al. [7] presented iRec, a context-based process
for recommending workers dynamically to enhance the effi-
ciency and effectiveness of crowdsourcing testing. Moreover,
[8], [9] ISENSE was proposed as an automated decision
support method that enhanced management efficiency and
cost-effectiveness through incremental sampling and predic-
tive models in crowdsourcing testing. Furthermore, Ge et
al. [10] put forward an assistant method for automated An-
droid testing by constructing an annotatedWindowTransition
graph (AWTG) model based on dynamic and static analysis
results to improve the quality and efficiency of crowdsourcing
testing.
Currently, there is an increasing focus on utilizing multi-

modal information and richer classification methods for pro-
cessing crowdsourced test reports. Wang et al. [1] suggested
using screenshots to enhance accuracy in repeatedly detecting
GUI system crowdsourced test reports as a solution to existing
limitations with text-based detection methods. Meanwhile,
DeepPrior [2] was introduced as a prioritization method
for analyzing application screenshots and text descriptions
deeply to improve processing efficiency and accuracy of test
reports. Similarly addressing report prioritization is DivRisk
[11], which improved inspection efficiency through diversity-
and risk-based strategies; additionally there existed a multi-
objective optimization priority processing technology based
on image understanding [12]. In terms of report classification,
Wang et al. [13] proposed a clustering-based classification
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method effectively distinguishing real faults from industrial-
scale crowdsource test reports while improving accuracy and
efficiency.LOAF [14] achieved superior results compared
with existing methods by reducing manual labeling burden
when classifying true fault reports. Focusing on classifica-
tion quality, Chen’s TERQAF framework [15] significantly
enhanced developers’ handling efficiencies by systematically
quantifying characteristics within test reports using logistic
regression classifiers.

In terms of repeated detection of defect reports, researchers
have proposed a variety of methods to improve the accuracy
and efficiency of detection. A repeated defect report detection
method called DBTM [16] was proposed, which significantly
improves detection accuracy by combining IR-based and
subject-based features. Alipour et al. [17] proposed a method
to improve defect removal by using context information, and
its effectiveness was verified in the defect library of the
Android ecosystem. The results showed that the context of
software engineering cannot be ignored when using infor-
mation retrieval tools to remove defects. Similarly, Hindle et
al. [18] also focused on context information and proposed a
method to improve defect removal by using domain-specific
context information, and verified its effectiveness in multiple
software systems. In addition, Sun et al. [19] proposed an
optimized retrieval function (REP) that improves the accu-
racy of repeated detection of defect reports by combining
information from text and non-text fields, and validates its
effectiveness in multiple large software defect libraries. Ad-
vances in discriminant models have improved the accuracy of
repeated defect report detection and demonstrated significant
performance improvements in several large software defect
libraries [20].

VI. CONCLUSION
This paper proposes a Large Language Model (LLM)-based
clustering method for crowdsourced test reports, addressing
the issue of redundancy in such reports. By integrating se-
mantic information from both textual descriptions and screen-
shots, our approach overcomes limitations in existing meth-
ods regarding handling duplicate reports and underutilizing
multimodal information. Experimental results demonstrate
that the LLM-based method significantly enhances cluster-
ing accuracy and efficiency, thereby reducing the workload
of developers and improving the quality and consistency of
test reports. The novelty of this method lies in leveraging
LLMs to extract rich semantic features from both text and
images, and guiding the clustering process through semantic
binding rules. This approach not only achieves theoretical
breakthroughs but also showcases its immense potential value
in practical applications.
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