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ABSTRACT The identification of benign andmalignant lung nodules is crucial for timely treatment to reduce
the risk of the progression and metastasis of diseases. However, the varied sizes, diverse morphologies, non-
fixed positions, and dynamic growth of lung nodules in computed tomography (CT) images make their
accurate identification challenging. To address these issues, we propose a multi-scale transformer-based
diagnosis (MSTD) method for benign and malignant lung nodules. To handle significant variations in the
shapes and sizes of the lung nodules, we first design a multi-scale module based on parallel branches to
extract multi-scale features. To make full use of these features, we then introduce a multi-scale transformer
fusion (MSTF) module to integrate the information obtained at different scales. Unlike conventional vision
transformers, our MSTF can simultaneously extract attention-based features from the spatial dimensions
at different scales to enhance the accuracy of classification of lung nodules. We conducted extensive
ablation experiments onmulti-scale structures and transformer-basedmethods of fusion to explore the impact
of features obtained at different scales on the accuracy of classification of lung nodules. The results of
verification on the LUNA16 dataset showed that the average F1Score, Specificity, and Sensitivity of the
proposed MSTD exceeded 90% (94.5%, 96.5%, and 91.1%, respectively), where this shows that it can
accurately identify both benign and malignant lung nodules. Its average performance was superior to the
state-of-the-art method by about 1%, 3.4%, and 3.6% in terms of the area under the curve (AUC), Accuracy,
and F1Score, respectively.

INDEX TERMS MSTD, Multi-scale network, Multi-scale transformer fusion, Lung nodule diagnosis

I. INTRODUCTION

LUNG disease is one of the most common types of dis-
eases worldwide, and lung cancer in particular poses a

significant threat to human health and life [1]. Lung nodules
are small masses or lesions in the lungs, with a diameter of
less than 3 cm, that serve as early indicators of lung cancer [2].
Radiologists can diagnose the malignancy of nodules based
on their size, density, edge-related characteristics, and shape
as depicted in computed tomography (CT) images, and can
then provide recommendations for treatment that are tailored
to the patient. However, the manual diagnosis of lung disease
is time consuming, costly, and susceptible to biases.

Deep learning algorithms can learn rich information from
large volumes of data to significantly improve the efficiency
of screening for diseases and minimize the rate of misdiag-
nosis [3]. With rapid advances in the relevant technologies

in recent years, an increasing number of researchers have
used deep learning models for identifying lung nodules [4].
The convolutional neural network (CNN) is sensitive to visual
information, and has beenwidely used for tasks of recognition
in medical imaging [5]–[8].

However, lung nodules can significantly vary in terms of
their shapes and sizes, and this makes it difficult to distin-
guish between them and the surrounding tissues. This poses
a daunting challenge in accurately identifying lung nodules,
especially small or irregularly shaped nodules, in CT images
[9]. The conventional CNN is not robust to variations in the
scale of the input data [10].

To address the above issue, we design a multi-scale module
based on multiple parallel branches (MSMPB) in this study to
extract features from images of lung nodules. To this end, we
design a network consisting of multiple, parallel branches to
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extract features at different scales. Every branch at each scale
is assigned different receptive fields through such operations
as convolution and pooling. Such a multi-scale convolutional
network can accurately capture information on the spatial
structure of the input images of lung nodules by using re-
ceptive fields at different levels. This helps the network more
accurately identify the different types of nodules appearing in
CT images of the lung.

Once multi-scale features at different scales have been
extracted by the MSMPB module, they need to be effectively
fused. Scenarios may arise during feature fusion in which
useful information is lost and redundant information is re-
tained [11]. Effectively retaining and fusing key information
obtained at various scales is thus an important issue in this
context.

The vision transformer (ViT) [12] uses a self-attention
mechanism to capture the global dependencies between dif-
ferent parts of a given image. This mechanism is useful for
handling multi-scale features as it can establish connections
between features at different scales to enhance our under-
standing of the overall structure of the image. Several recent
studies have considered methods of image processing based
on multi-scale strategies and the ViT [13]–[15]. Chen et
al. [16] proposed a dual-branch ViT to integrate patches of
images at different scales to generate more robust features.
Shao et al. [17] replaced the feed-forward network in the ViT
encoder with amixed convolutional feed-forwardmodule that
enhanced the network’s ability to capture local and multi-
scale features. However, while most currently available meth-
ods for fusing multi-scale features are based on an analysis
of their spatial dimension, few methods can simultaneously
analyze features along the dimensions of both space and
scale.

To address the above issues, we design a multi-scale trans-
former fusion (MSTF) module based on the ViT [12] to
analyze and fuse features from branches at multiple scales.
The ViT can capture the relevant information from images
through a self-attention mechanism, where this makes it ro-
bust to changes in the size and dimensions of the input feature
maps. Traditional ViT-based methods partition the spatial
dimensions of images into smaller patches. However, our
MSTF module performs patch partitioning and multi-head
self-attention-based computations on a plane composed of the
spatial and scale-related dimensions, which makes it more
sensitive to changes in the scale of images. Therefore, our
MSTF module can simultaneously extract critical scale and
spatial information from multi-scale features and fuse them.

The fused features are then fed to a classifier for the
binary classification of benign and malignant nodules. As
the MSMPB and MSTF modules can extract sufficiently rich
features from images of lung nodules, we directly use a fully
connected network [18] to perform binary classification.

Finally, we integrate the MSMPB module, MSTF module,
and classifier to construct a multi-scale transformer-based
diagnosis (MSTD)method for the classification of benign and
malignant lung nodules. We performed experiments on the

Lung Nodule Analysis 2016 (LUNA16) dataset [19] to verify
the performance of the proposed MSTD.
The LUNA16 [19] dataset contains over 1,000 CT scan

images, each with detailed annotations of the lung nodules.
The images of lung nodules in this dataset have diverse
shapes, sizes, and densities, and thus require highly flexibility,
adaptable, and automated diagnostic algorithms. The CT scan
images in this dataset vary significantly in terms of their
resolution and level of noise. This inconsistency poses a
challenge to the robustness of the diagnostic algorithms. The
environment of the lungs depicted in CT images is complex,
and contains blood vessels, airways, and ribs in addition to
lung nodules. These structures may exhibit morphological
and density-related similarities with lung nodules to further
complicate the algorithms used to distinguish between benign
and malignant nodules.
Our proposed MSTD performed well on the LUNA16

dataset, with its average scores of the F1Score, Specificity,
and Sensitivity all surpassing 90% (94.5%, 96.5%, and
91.1%, respectively). Its average diagnostic performance was
superior to that of state-of-the-art methods by approximately
1% in terms of the area under the curve (AUC), 3.4% in
terms of Accuracy, and 3.6% in terms of the F1Score. This
shows that the proposed MSTD can accurately identify lung
nodules of various sizes, shapes, and densities in clinical
environments, and can adapt to images of different resolutions
and levels of noise.
In summary, the main contributions of this study are as

follows:

• We propose the MSTD for the precise identification of
benign and malignant lung nodules. This method com-
bines the advantages of multi-scale structures and scale-
based attention mechanisms. Our experiments con-
firmed the superior performance of the MSTD in com-
parison with state-of-the-art methods.

• We use the MSMPBmodule to extract multi-scale infor-
mation on lung nodules and their contextual background.
The module is composed of multiple, parallel branches
for feature extraction, each of which represents a scale-
based information extractor.

• We design the MSTF module based on the transformer
to fuse and filter information from features obtained
at multiple scales. It not only performs self-attention
operations in the spatial dimension of the image, but also
executes them in the scale-based dimension.

The remainder of this article is organized as follows: Sec-
tion II introduces recent research on medical imaging and
the identification of lung nodules, while Section III provides
a detailed description of the proposed MSTD, including the
MSMPB module, MSTF module, and classifier. We report a
series of ablation and comparative experiments in Section IV
to verify the performance of our method, and summarize the
conclusions of this study in Section V.

II. RELATED WORKS
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A. THE ADVANCED METHODS IN THE FIELD OF MEDICAL
IMAGE PROCESSING
With advances in artificial intelligence technology, deep
learning has been used in tasks of medical image processing,
including image diagnosis [20]–[22], pathological analysis
[23], and image segmentation [24]–[27]. Deep learning be
used to automatically learn and extract features from a large
volume of data on medical images, which enables their au-
tomated processing and analysis to enhance the efficiency of
medical diagnosis and treatment.

Guo et al. [28] proposed a composite network called RK-
net that combines deep learning with an unsupervised K-
means clustering algorithm to automatically process medical
images. RK-net is more efficient than manual screening and
annotation in refining such images. Zakareya et al. [29] pro-
posed a deep learning model based on GoogLeNet and resid-
ual blocks to classify images obtained from patients of breast
cancer. It uses granular computing, shortcut connections, and
two learnable activation functions in place of traditional ac-
tivation functions to improve the accuracy of diagnosis and
reduce the workload of doctors. Granular computing can en-
hance diagnostic accuracy by capturing granular information
from images of cancerous sites. Eltoukhy et al. [30] proposed
a self-learning method that uses deep neural networks and
residual learning to circumvent the requirement of a large
number of labeled images to train deep learning models for
classifying histopathological images of breast cancer tissues.
This method provides a second opinion for radiologists using
medical images.

Cheung et al. [31] proposed a data-centric deep learning
technique with big interpolated data, Interpolation-Split, to
enhance the performance of airway tree segmentation.The
method uses an ensemble learning strategy to aggregate the
airway segments obtained at different scales. This approach
has low requirements related to RAM/GPU usage and can
be deployed on most 2D deep learning models. Cheung
et al. [32] also explored the quantification of airway met-
rics and their impact and correlation with mortality in id-
iopathic pulmonary fibrosis (IPF). They found that the seg-
mental inter-subsegmental tapering and segmental tortuosity
measurements generated by airway measurement algorithm
(AirQuant) were independently associated with mortality in
IPF patients. Vijayakumar et al. [33] employed advanced
segmentation techniques for lung cancer detection. The pre-
processed data was segmented into different groups using
UNet segmentation, and the segmented images were used in
a Capsule Neural Network (CapsNet) to determine the exact
condition of the original images.

During the training process, ViT leverages the self-
attention mechanism to better handle noise and inconsisten-
cies in images, thereby enhancing the robustness of themodel.
As a result, in recent years, ViT-based methods for medical
image processing have become increasingly popular [34]–
[37]. Chen et al. [38] proposed Mixblock, a hybrid encoder
that effectively combines the strengths of CNNs and ViT to
extract multidimensional high-level semantic segmentation

information from images, moving beyond mere local and
global spatial features representation. The method also in-
novatively incorporates frequency domain information into
skip connections to eliminate semantic ambiguity between
the encoder and decoder. Wang et al. [39] proposed a Single
Encoder-Dual Decoder architecture called DBUNet, which
integrates the ViT encoder framework. The ViT encoder is
utilized as part of the decoder branches to enhance shallow
features. A polarization amplification method for channel
weights is used before the ViT encoder modules to optimize
image segmentation. Fan et al. [40] introduced a method
called ViT with Feature Recombination and Feature Distil-
lation (ViT-FRD), which combines ViT and CNN through
knowledge distillation to enhance the performance of cardiac
structure segmentation in MRI images. The training process
allows the student model (i.e., ViT) to learn from the teacher
model (i.e., CNN) by optimizing the distillation loss.
Huo et al. [41] proposed a three-branch hierarchical multi-

scale feature fusion network structure called HiFuse, which
integrates the advantages of Transformers and CNNs at mul-
tiple scales, thereby enhancing the classification accuracy of
various medical images. This approach introduces a parallel
structure for local and global feature blocks to effectively ex-
tract local features and global representations across various
semantic scales. Liu et al. [42] proposed an efficient medical
image classification network called Eff-CTNet, based on an
alternating hybrid series connection of CNN andTransformer.
Themethod includes aGroupCascadeAttention (GCA)mod-
ule, which divides feature maps into different attention heads
to further enhance attention diversity and reduce computa-
tional costs.

B. THE ADVANCED METHODS FOR LUNG NODULE
DIAGNOSIS
With the extensive use of deep learning technology inmedical
image processing, a large number of methods have been
developed for identifying lung nodules in images.
Amrita et al. [43] improved the accuracy of the lung nod-

ule classification method by using Fractalnet architecture.
This fractal structure is considered an effective alternative
to residual structure. Fractalnet consists of 5 concatenated
Fractal Blocks, each Fractal Block containing a multi-level
convolution structure with a depth of 8. Halder et al. [44]
proposed an Atrous Convolution-based Convolutional Neural
Network (ATCNN) framework capable of segmenting and
characterizing lung nodules by capturing multi-scale features
from CT images. The method analyzed different variants of
the ATCNN framework, among which the framework with
a two-layer atrous pyramid and residual connections demon-
strated the highest nodule characterization performance in-
dices. Huang et al. [45] developed a self-supervised trans-
fer learning based on domain adaptation (SSTL-DA) 3D
convolutional neural network framework for the benign and
malignant detection and classification of lung nodules. In
the classification module, a series of 12 convolutional layers
were directly adopted for feature extraction of lung nodule
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images, followed by classification operations using three
fully connected layers. Xu et al. [46] proposed a lung nodule
classification method based on attribute privilege and capsule
networks. The eight attribute features of lung nodules are used
to enhance the discrimination ability between benign and
malignant cases. The capsule structure helps to extract and
understand the spatial relationships between different parts of
lung nodule images.

Miao et al. [47] proposed a Transformer-based model for
Ground-Glass Nodules (GGN) recognition. A 3D CNN is
used as the backbone to automatically extract features of the
3D CT image of lung nodules. The positional encoding infor-
mation is added to the extracted feature maps and inputted
into the Transformer encoder layers to obtain higher-order
asymmetric feature representations. These asymmetric fea-
tures are inputted into a support vector machine, effectively
improving the recognition accuracy of GGN. Kanipriya et al.
[48] proposed a lung nodule abnormality classification algo-
rithm based on CNN and Long Short TermMemory (LSTM).
The lung nodules were located using a K-means clustering
method and segmented using an automated active contour
level set. An Improved Capuchin Search Algorithm (ICSA)
optimized CNN and LSTM hybrid network was used to clas-
sify lung nodules into categories. Shi et al. [49] proposed
a Semi-supervised Deep Transfer Learning (SDTL) frame-
work for benign and malignant lung nodule diagnosis. They
adopt a transfer learning strategy to distinguish lung nodules
from pseudo-nodular tissue. Furthermore, they introduced a
semi-supervised approach based on iterative feature matching
to address the issue of limited samples with pathological
features. Zhang et al. [50] proposed a 3D Feature Pyramid
Network (FPN) for lung nodule detection, which solved the
problem of small nodules that cannot be well detected in CT
images. They also incorporated the Squeeze-and-Excitation
(SE) attention module to enhance detection performance.

Unlike all the other methods mentioned above, our MSTD
method combines the multi-scale strategy with space and
scale Transformer, enhancing the network’s comprehensive
utilization capacity of nodule images at different scales.

III. METHODOLOGY
The proposed MSTD includes the MSMPB module, MSTF
module, and classifier. Fig. 1 shows an overview of its work-
flow.

The MSMPB module is used to obtain multi-scale features
from raw images of lung nodules. It is composed of multiple,
parallel branches, each of which is responsible for extracting
features at a specific scale. The features are extracted from
branches at each scale through convolutional layers, and the
scale-related transformation is accomplished through pooling
operations.

The MSTF module is utilized to merge and process the
Multi-Scale Features extracted by the MSMPB module. This
module consists of a Space Transformer and a Scale Trans-
former. The Space Transformer is responsible for extracting
crucial spatial information, while the Scale Transformer is

used to extract essential scale information. The results of
these two attention mechanisms are added together to form
Space-Scale Features that simultaneously incorporate spatial
and scale information.
The classifier module categorizes the spatial–scale-related

features as either benign or malignant. It directly uses fully
connected (FC) layers to compute the logit vector and applies
the softmax function to obtain the probability distributions of
the two categories.

A. MSMPB MODULE
Multi-scale feature extraction network structures can effec-
tively handle variations in scale and spatial changes in images,
thereby enhancing the robustness of the model [51]. In the
context of lung nodule recognition, the nodule targets in
input images may exhibit different scales and spatial shapes.
Conventional convolutional networks are unable to adapt to
such variations, due to their fixed receptive fields and kernel
sizes.
To address the limitations of conventional convolutional

networks when dealing with lung nodules of different shapes
and sizes, we develop the MSMPB module to improve the
adaptability of the network to multi-scale scenarios as illus-
trated in Fig.2. Our MSMPB module consists of multiple,
parallel branches at different scales, where the branch at
each scale comprises three convolutional layers and a pooling
layer. Each convolutional layer is followed by a BN layer and
an ReLU activation function. The magnitude of the operator
of the pooling layer determines the receptive field of the
convolution. We thus generate features at different scales by
varying the size of this operator for branches at each scale.
The number of parallel branches is set to 6, and the number

of convolutional kernels in all convolution layers is set to 8.
After concatenating the feature maps from all scales along
the channel dimension, the total number of channels is 48.
Thus, we use the 2D linear interpolation layer, Interpolate, to
uniformly scale the feature maps to a size of 48×48, creating
Multi-Scale Features containing rich scale information. At
this point, the number of dimensions in the scale, width, and
height of Multi-Scale Features is exactly the same, which
facilitates to perform the feature fusion across the scale and
spatial dimensions in the subsequent MSTF module.

B. MSTF MODULE
The Multi-Scale Features obtained by the MSMPB module
contain rich scale information, and it is important to fully
utilize this information. During the fusion process, there may
be redundancy of useless information and loss of valuable
information [52]. The self-attention mechanism in ViT [12]
enables automatic adjustment of attention weights based on
the input image content, adapting to various image contents
and task requirements. This dynamic adaptability allows ViT
to perform exceptionally well in handling complex image
scenes and accommodate images of different sizes and con-
tent [53].
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FIGURE 1. The overview of the MSTD method. C is the number of channels for a scale feature, and C is set to 8.
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FIGURE 2. The MSMPB module. The Conv3*3*8 represents a convolutional
layer with 8 convolutional kernels, a kernel size of 3x3, and a step size of
1. The Average pool represents an Adaptive average pooling layer.

To extract sensitive information at multiple scales, we use
the MSTF module for feature fusion as illustrated in Fig.
4. This module consists of two parts: a Space Transformer
for computing crucial spatial features of the input data, and
a Scale Transformer for calculating their important scale-
related features.

In the Space Transformer branch, the Multi Scale Features
will be non overlapping decomposed into patches of size
C × Pw × Ph in the spatial dimension, where C represents
the channel dimension (i.e. scale dimension), Pw and Ph
respectively represent the width and height of each patch. The
values of Pw and Ph are set to 4.

Scale Branch1

Scale Branch2

Scale Branch3

Scale Branch4

Scale Branch5

Scale Feature1

Scale Feature2

Scale Feature3

Scale Feature4

Scale Feature5

Scale Feature6

1×W×H

Lung  Nodule 
Image

C×1×1

Scale Branch6

C×4×4

C×8×8

C×16×16

C×32×32

C×48×48

Multi-Scale Features
MSTF

Space Transformer

Scale Transformer

6·C×48×48

C
la

ss
ifi

er
 

Benign 
or 

Malignant

MSMPB

Interpolate

Concatenate

Space-Scale
 Features

D
ro

po
ut

R
eL

U

FC
12

8

B
N

D
ro

po
ut

So
ft

m
ax

FC
 2Space-Scale

 Features
Diagnostic 

Results

1×768 1×n_class

FIGURE 3. The detailed structure display of classifier. The BN represents
the Batch Normalization layer.

Then, these patches will be embedded to obtain Patch
Vectors, as shown in Equation (1).

vp = PatchEmbedding(xp), xp ∈ RC×Pw×Ph

= Mean(Conv2d(xp)), vp ∈ R1×dimvit
(1)

where xp is a patch, vp is a Patch Vector. Conv2d(·) represents
a 2D convolution, the kernel size is 1 × 1 and the number of
kernels is dimvit = 768, dimvit denotes the vector length of
the Transformer Encoder. Mean(·) represents the operation
of taking the average in the spatial dimension. These patches
expand the channel dimension to 768 through 2D convolu-
tion, resulting in 768×4×4 features. Then, the average value
is taken across the spatial dimensions, yielding a Patch Vector
of 1×768. At this point, each patch of the original image is
embedded into a Patch Vector, which is a form suitable for
processing by the Transformer Encoder.
For classification tasks, ViT usually creates an updated

Class Vector that will be concatenated with all Patch Vectors,
as shown in Equation (2).

Vp,cls = ClassEmbedding(Vp)

= Cat(Vp, vcls), vcls ∈ R1×dimvit
(2)

where Vp,cls is Patch Vectors that incorporates the Class Vec-
tor, Vp,cls ∈ R(Np+1)×dimvit . vcls denotes the Class Vector,
which is randomly initialized and can be updated during
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FIGURE 4. The detailed structure of MSTF module. The Transformer Encoder consists of 12 Encoder Blocks. Norm represents the Layer Normalization
function, GELU represents the Gaussian Error Linear Units activation function, the value of Dropout is 0.5, Mean represents taking the mean in the spatial
dimension, Conv represents convolutional layer, FC represents the Fully connected layer, Cat represents feature concatenation operation. Ph and Pw
represent the height and width of each cropped patch, respectively. C , W , and H respectively represent the scale, width, and height dimensions of the
Multi-Scale Features.

training. Vp represents the Patch Vectors of all patches, Vp ∈
RNp×dimvit ,Np = ⌊W/Pw⌋·⌊H/Ph⌋, ⌊·⌋ denotes the downward
rounding, the values ofC ,W , andH are all 48.Cat(·) denotes
feature concatenation operation.

ViT is not sensitive to the position of patches, so it is
necessary to add the position information to Patch Vector, as
shown in Equation (3)

Vp,cls,pos = PositionEmbedding(Vp,cls)

= Vp,cls + vpos, vpos ∈ R1×dimvit
(3)

where Vp,cls,pos ∈ R(Np+1)×dimvit , represents the Vp,cls with po-
sition information added. vpos stands for the Position Vector,
which is randomly initialized and is updated along with the
network’s parameters during training.

Then, Vp,cls,pos will go through the Transformer Encoder
to perform the self-attention mechanism, resulting in Space
Features. The Transformer Encoder [12] primarily consists
of LayerNorm, Multi-Head Attention, and MLP .

In the Scale Transformer branch, unlike the Space Trans-
former, the dimension of Multi-Scale Features will undergo a
transpose operation, transforming it into the shapeW×C×H .
SinceMulti-Scale Features are specifically designed as a cube
shape, the transposed features can still undergo the same
processing steps as in the Space Transformer branch. In the
multi-scale dimension (C × H ), Multi-Scale Features are
decomposed into patches of sizeW × Pw × Ph. At this point,
the spatial dimension (Pw×Ph) of the patches already contains
both spatial and scale information of the input features. After

being embedded into Patch Vectors, they are integrated with
the Position Vector and Class Vector. Subsequently, these
patch-related features are fed into the Transformer Encoder
for scale dimension feature extraction, to obtain the Scale
Features.
Finally, Space Features and Scale Features will be added

together to obtain Space-Scale Features, which will be fed
into the classifier module for benign and malignant classifi-
cation.
It is worth noting that, unlike traditional ViT classification

models, ourMSTFmodule not only performs attention mech-
anisms in the spatial dimension of images but also creatively
applies attention weighting in the multi-scale dimension. This
has significantly improved the performance of the entire
MSTD method.

C. CLASSIFIER MODULE
After processing lung nodule images through the MSMPB
module and MSTF module, we obtain Space-Scale Features
that contain critical spatial and scale information. At this
point, the two-dimensional image information has been com-
pressed into a one-dimensional vector (1×768) after passing
through the Transformer Encoder. Therefore, the classifier
can directly use fully connected layers, which are sensitive
to one-dimensional features, to accomplish the diagnostic
task of distinguishing between benign and malignant lung
nodules.
The detailed architecture of the classifier, as shown in
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Fig.3, consists of two fully connected layers. Since the
MSMPB and MSTF modules are connected in series, the
network depth at this point is already sufficiently deep, and
the Space-Scale Features already contain key and salient
information relevant to the categories. Therefore, it is unnec-
essary for the classifier to significantly increase the number
of network layers. We only require a limited number of fully
connected layers to transform Space-Scale Features into cat-
egory vectors.

The numbers of neurons in the first and second fully
connected layers were set to 128 and two, respectively. The
output of the fully connected layers was a logit vector that
needed to be transformed into a probability distribution. We
fed the logit vector to the softmax function to obtain the
probability distributions of the given samples belonging to
either of the two categories of benign and malignant lung
nodules. Finally, the category with the higher probability was
identified as the diagnostic result.

D. LOSS FUNCTION
The cross-entropy loss function has suitable mathematical
properties that can be used to accelerate optimization and
reduce the difficulty of training [54]. It is also sensitive to the
probability distribution of the output of the model, such that
it can accurately reflect the capability of the model to predict
the category to which a given sample belongs [55].

Benign cases often outnumber malignant cases in datasets
of images of lung nodules, which leads to a highly unbal-
anced distribution of samples in the two categories. We added
weights to different categories when calculating the loss func-
tion to prevent the decisions of the model from favoring the
category with a larger number of samples. This is illustrated
in Equation (4):

L = w0 · L0 + w1 · L1

=

N∑
i=1

{−w0 · [yilogŷi + (1− ŷi)log(1− ŷi)]yi=0

− w1 · [yilogŷi + (1− yi)log(1− ŷi)]yi=1}

=

N∑
i=1

{−w0 · [log(1− ŷi)]yi=0 − w1 · [logŷi]yi=1}

(4)

where L0 is the L0 is the loss of benign samples, L1 is the
loss of malignant samples, L is the overall loss of the two
types of samples. w0 is the weight of the benign category,
and w1 is the weight of the malignant category, and w0 =
1/n0, w1 = 1/n1, n0 is the number of benign samples and
n1 is the number of malignant samples. That is, w0 and w1

are inversely proportional to the number of samples of the
categories they represent. In this way, categories with fewer
instances receive higher weights, while categories with more
instances receive lower weights, thus balancing the model’s
attention to different categories.

E. EVALUATING INDICATORS
Several metrics are commonly used to assess the performance
of methods of medical diagnostics, as shown in Equation (5-
12).

Accuracy =
TN + TP

TN + TP+ FN + FP
(5)

Sensitivity =
TP

TP+ FN
(6)

Specificity =
TN

TN + FP
(7)

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

F1Score =
2 · Precision · Recall
Precision+ Recall

(10)

FPR =
FP

FP+ TN
(11)

AUC = Area Under the Curve of ROC (12)

where where TN (true negative), TP (true positive), FN (false
negative), and FP (false positive) represent the numbers of
samples that are correctly predicted as negative by the model,
correctly predicted as positive by it, incorrectly predicted
as negative when they are actually positive, and incorrectly
predicted as positive when they are actually negative. ROC
represents Receiver Operating Characteristic. We obtain the
ROC curve by calculating True Positive Rate (TPR, equals
Recall) and False Positive Rate (FPR) at different classifi-
cation thresholds and then plotting these points on a two-
dimensional plane. The x-axis represents FPR, and the y-axis
represents Recall. The closer the ROC curve is to the upper
left corner, the better the model’s performance. AUC stands
for the Area Under the ROC Curve. The range of AUC values
is between 0 and 1. The closer the AUC value is to 1, the better
the model’s classification performance.
Among the metrics used for evaluation, AUC, Accuracy,

and F1Score are comprehensive indicators that can be in-
dependently compared numerically to assess classification
performance. However, Specificity specifically measures the
ability to correctly identify benign lung nodules, while Sensi-
tivity measures the ability to correctly identify malignant lung
nodules. These two metrics can be influenced by the model’s
bias towards a particular class. Therefore, only when both
Specificity and Sensitivity are simultaneously high can it be
concluded that the model’s overall classification performance
is good.

IV. EXPERIMENTS AND DISCUSSIONS
To ensure the fairness of the experiments, we conducted all
of them on the same software and hardware platforms while
maintaining the consistency of the hyperparameters of the
model. The values of the hyperparameters and specifications
of the computational platform are provided in Table.1. All
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experimental results are presented as the mean ± standard
deviation.

TABLE 1. The hyperparameters of the model and parameters of the
computational platform

Hyperparameter Value

Epoch >200
Batch size 32
Optimizer Adam

Learning rate 10−5

Number of categories 2
Number of scales 6

ViT dim 768
Dropout 0.5

Computing platform Parameter

CPU AMD EPYC 7302
GPU NVIDIA 3090 24G

Operating system Ubuntu 18.04
Python 3.8.0
PyTorch 2.0.0

Cudatoolkit 11.3.0

A. DATASET
We used the LUNA16 dataset [19] for our experiments on
the identification of malignant and benign lung nodules to
verify the performance of the proposed algorithm. The dataset
was derived from a larger dataset called LIDC-IDRI [56],
which consisted of images acquired from 1,018 CT scans.
The data in this dataset were acquired by seven academic
institutions by using varying scanners and related parame-
ters. This resulted in highly heterogeneous CT scan images.
Identifying lung nodules in images from this dataset was thus
challenging, because of which the results obtained by the
model were considered to be appropriately generalizable.

We excluded CT images from the LIDC-IDRI dataset with
slices of thickness greater than 3 mm and lung nodules
smaller than 3 mm. This yielded a dataset containing 888 CT
images, known as the LUNA16 dataset. Information on the
nodules appearing in the CT images was manually annotated
by four radiologists. The LUNA16 dataset was divided into
10 subsets, eight of which were used as the training set and
the other two as the test set. We conducted 10-fold cross-
validation as well. For more information about LUNA16, the
interested reader can refer to [19].

B. MSTD PERFORMANCE EXPERIMENTS
This experiment is performed to verify the superior perfor-
mance of our MSTD method in the lung nodule diagnosis
task. Table.2 presents the performance metrics of the MSTD
method in lung nodule recognition tasks, including AUC,
Accuracy, F1Score, Specificity, Sensitivity, etc. All metrics
exceed 90%, indicating that our MSTD method exhibits high
robustness for lung nodule classification.

In the actual scenario of diagnosing lung nodules, the com-
putational burden of a model is a critical factor to consider.
If the model requires too much computational power, it may
be impractical to deploy in a clinical setting. Therefore, in

TABLE 2. The classification performance of the MSTD method

Method AUC Accuracy F1Score Specificity Sensitivity

MSTD 0.984±0.011 0.945±0.015 0.945±0.016 0.965±0.016 0.911±0.043

Table.3, we conduct a statistical analysis of the computational
cost. To illustrate the lightweight advantage of the MSTD
model, we compare it with the state-of-the-art methods using
the same computing device. CrossViT [16] is one of the most
advanced and widely used methods in the field of image clas-
sification. CrossViT also includes operations involving the
ViT module, making it an excellent candidate for comparison
with our approach.

TABLE 3. The computational and parameter complexity of the MSTD and
the state-of-the-art method

Method FLOPs Params Times GPU Memory

CrossViT [16] 16.079G 90.977M 21.342ms 1038M
Ours 6.467G 87.516M 18.813ms 812M

In Table.3, “FLOPs" stands for floating-point operations
per second. “Params" represents the number of parameters
in the model. “Times" indicates the computation time per
sample. "GPUMemory" denotes the amount of GPUmemory
used. The comparison with the CrossViT method shows that
our model slightly outperforms it in terms of computational
time and the number of parameters. This is because we use the
shallow multi-scale CNN branches to extract multi-scale fea-
tures, whereas CrossViT employs a more computationally ex-
pensive multi-ViT branch architecture for the same purpose.
Additionally, the diagnostic performance ofMSTD is slightly
better (see details in Table.7), indicating that MSTD does
not sacrifice diagnostic performance due to its lightweight
design. It’s noteworthy that although CrossViT has FLOPs
that are 2.4 times higher than MSTD, its actual computation
time is only 1.13 times that of MSTD. This discrepancy arises
because FLOPs do not account for the parallel processing
structure of CrossViT and its optimizations for GPU hard-
ware acceleration. Overall, on our computing platform, the
average time from inputting a sample into the MSTD model
to obtaining results is only 18.813ms. Therefore, the MSTD
model is lightweight and may perform rapid diagnosis of lung
nodules without significantly increasing the time cost of the
diagnostic system.
To help readers better understand the learning process of

the model, we show the variation curve of the model’s diag-
nostic performance during training in Fig.5. We separate the
curves of the three indicators: AUC, Accuracy, and F1Score
into three subplots, in order to enable readers to clearly ob-
serve the changes of each indicator as the training progresses.
From Fig.5, we can clearly see that during the 100th to 200th
epochs, all indicators on the training set tend towards 100%.
At the same time, the corresponding indicators on the test
set also maintain a high level. This indicates that the MSTD
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FIGURE 5. The learning process curves of MSTD method.

model is gradually converging and maintaining a good state
at this stage.

C. MULTI-SCALE BRANCH EXPERIMENTS
To investigate the impact of different scale information on
lung nodule diagnosis tasks, we conduct multi-scale branch
experiments, the results are shown in Table.4.

The “MSMPB" represents the proposed MSMPB model
with multiple parallel scale branches. The “No MSMPB"
represents a single-scale model without the multi-scale struc-
ture. To avoid interference from the scale model comparison
results by the MSTF module, we directly flatten the results
obtained from the scale branches and input them into the fully
connected layer of the classifier to obtain category results.

The results in Table.4 indicate that ourMSMPBmodel with
multi-scale information outperforms the single-scale model
by a significant margin. Additionally, scales 32 and 48 are
crucial for lung nodule recognition tasks. With the combined
effect of 6 scales, the AUC performance of the MSMPB
model is improved by 3.3% compared to the best single scale
model.

D. TRANSFORMER FUSION MODULE EXPERMENTS
Our MSTF module is based on the transformer method and
performs attention mechanism operations in both spatial and
scale dimensions. In this experiment, we specifically conduct
ablation experiments on the MSTF module to explore the
most suitable scale fusion method.

We first construct a baseline method “No Transformer”,
which removes all transformer operations and directly feeds
the Multi-Scale Features outputted by the MSMPB module
into the fully connected layer of the classifier. Secondly,
we remove the Scale Transformer from the MSTF and only
retain the Space Transformer to create a comparative module
called “Only Space Transformer”. Lastly, we remove the
Space Transformer from the MSTF and only retain the Scale
Transformer to create a comparative module called “Only
Scale Transformer”.

Table.5 shows the results of the ablation experiments for
fusion methods. When the network model lacks the MSTF
method, the AUC performance decreases by 5.9%. When the
network model only retains the Space Transformer method,

there is a slight improvement in classification performance
compared to when there is no Transformer. This is because
the Space Transformer method can appropriately enhance the
model’s ability to model global spatial features of Multi Scale
Features. However, this method lacks the ability to process
critical scale information. When the network model only
retains the Scale Transformer method, the classification per-
formance is better than the No Transformer and Only Space
Transformer methods. This indicates that the fusion process
of scale information is crucial for Multi-Scale Features, as
the classification task for lung nodules is more sensitive to
scale variations. When both the Space Transformer and Scale
Transformer methods operate simultaneously, the spatial and
scale information of the input features complement each
other, collectively promoting the improvement of classifica-
tion performance.

Module AUC Accuracy F1Score Specificity Sensitivity
No 

Transformer 0.925 0.840 0.834 0.946 0.671

Only Space 
Transformer 0.927 0.867 0.867 0.884 0.839

Only Scale 
Transformer 0.930 0.885 0.883 0.939 0.802

MSTF 0.984 0.925 0.926 0.924 0.930

Tr
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 ra
te
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FIGURE 6. Comparison results of ROC curves for MSTF modules.

Fig.6 shows the ROC curve results of the MSTF exper-
iments. The ROC curve of the MSTF method is located
above the Space and Scale Transformer methods, which also
validates the superior performance of our MSTF method.
The MSTF module enables the classification model to au-

tomatically focus on key information within the scale dimen-
sion. It is alsomeaningful to understand howMSTF internally
pays attention to features of different scales. Therefore, we
add an experiment to measure the contribution of different
scale features within MSTF, to help readers gain a deeper
understanding of the internal workings of MSTF and inspire
more meaningful work.
When exploring the importance of a particular scale, we

maintain the cube shape of the Multi-Scale Features un-
changed and solely set the values of the feature maps of that
scale to zero. This method cleverly eliminates the information
of a single scale within the Multi-Scale Features, without
disrupting the original structure of the model. This largely
adheres to the principle of controlling variables.
We individually remove the information of six different

scales within the Multi-Scale Features. Table.6 presents the
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TABLE 4. The results of multi-scale branch experiments

Module Method AUC Accuracy F1Score Specificity Sensitivity

No MSMPB

Single scale (1×1) 0.647±0.045 0.386±0.057 0.228±0.053 0.014±0.013 1.000±0.000
Single scale (4×4) 0.688±0.059 0.674±0.062 0.675±0.062 0.728±0.066 0.585±0.069
Single scale (8×8) 0.788±0.038 0.694±0.043 0.698±0.042 0.621±0.052 0.815±0.045
Single scale (16×16) 0.811±0.040 0.747±0.038 0.749±0.036 0.774±0.058 0.703±0.042
Single scale (32×32) 0.901±0.034 0.825±0.036 0.826±0.036 0.830±0.038 0.817±0.051
Single scale (48×48) 0.890±0.033 0.829±0.041 0.825±0.043 0.905±0.028 0.699±0.072

MSMPB Multi-scale 0.919±0.029 0.850±0.023 0.851±0.023 0.862±0.020 0.829±0.061

TABLE 5. The results of transformer fusion experiments

Module AUC Accuracy F1Score Specificity Sensitivity

No Transformer 0.919±0.029 0.850±0.023 0.851±0.023 0.862±0.020 0.829±0.061
Only Space Transformer 0.928±0.028 0.866±0.038 0.867±0.038 0.882±0.044 0.843±0.049
Only Scale Transformer 0.930±0.017 0.884±0.032 0.883±0.033 0.938±0.017 0.798±0.065

MSTF 0.984±0.011 0.945±0.015 0.945±0.016 0.965±0.016 0.911±0.043

TABLE 6. The experimental results on the contribution of different scales to MSTF performance

Module Remove Scale AUC Accuracy F1Score Specificity Sensitivity

MSTF

(48×48) 0.908±0.034 0.842±0.028 0.839±0.029 0.922±0.033 0.713±0.060
(32×32) 0.917±0.025 0.853±0.042 0.854±0.041 0.856±0.053 0.848±0.039
(16×16) 0.950±0.016 0.910±0.025 0.908±0.026 0.961±0.018 0.825±0.057
(8×8) 0.955±0.028 0.896±0.025 0.896±0.025 0.918±0.027 0.860±0.040
(4×4) 0.963±0.012 0.902±0.020 0.901±0.020 0.920±0.035 0.873±0.060
(1×1) 0.975±0.012 0.928±0.028 0.927±0.028 0.953±0.029 0.883±0.054
None 0.984±0.011 0.945±0.015 0.945±0.016 0.965±0.016 0.911±0.043

experimental results regarding the importance of different
scale features. "Remove Scale" indicates the specific scale
that is erased, while "None" represents no scale being erased,
i.e., all scales are retained. Consequently, within MSTF, the
higher the contribution of a scale, the lower the performance
metrics will be after its removal. The results in Table.6 show
that larger scales have a higher contribution to MSTF, while
smaller scales have a lower contribution, which is consistent
with the conclusions drawn from Table.4. This is because
larger scales retain more comprehensive original information
of lung nodule images, whereas smaller scales lose some
effective information due to reduced resolution. However,
each scale is indispensable for MSTF, and the classification
performance of the model is highest only when all six scales
are input into MSTF together.

E. COMPARISON WITH OTHER ADVANCED METHODS
In this experiment, we reproduce other advanced image clas-
sification methods based on multi-scale strategies and ViT
in recent years, to conduct comparative tests with the MSTD
method, thereby verifying the strong competitiveness of our
approach.

In terms of CNNmulti-scale strategies, the advancedmeth-
ods used for comparison include ATCNN [44], Res2Net
[58], and Fractalnet [43]. Notably, ATCNN and Fractalnet
methods are specifically designed to address lung nodule
classification problems. In the realm of advanced image clas-

sification methods based on ViT, the comparison methods
include HRViT [57], HiFuse [41], CrossVit [16], andMViTv2
[59]. These methods also employ multi-scale architectures
to enhance classification performance,which are suitable for
comparison with our MSTD method. To ensure fairness in
the comparative experiments, all comparison methods are
tested on the same experimental platform and dataset. The
experimental results are presented in Table.7.

It can be clearly seen fromTable.7 that the average diagnos-
tic performance of our MSTDmethod has increased by about
1%, 3.4%, and 3.6% in AUC, Accuracy, and F1Score indica-
tors compared to the most advanced methods MViTv2. This
indicates that our method based on multi-scale branch feature
extraction and multi-scale transformer fusion has reached a
leading level in the field of lung nodule diagnosis.

Fractalnet [43] uses a fractal structure, which is considered
an effective alternative to the residual structure. However, this
method is not more commonly used than the residual struc-
ture because it does not deliver strong generalization-related
performance on various tasks, like ResNet does. Furthermore,
Fractalnet consists of five fractal blocks arranged in series,
each of which contains a multi-level convolutional structure
with a depth of eight. In other words, the convolutional depth
of Fractalnet can reach 40 layers. However, the scale-related
branches in our proposed model contain only include three
convolutional layers, and all its branches are arranged in a par-
allel structure. This means that our MSMPB module required
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TABLE 7. The comparison results with other advanced methods

Author Method AUC Accuracy F1Score Specificity Sensitivity

Amrita et al. [43] 2021 Fractalnet 0.573±0.046 0.607±0.042 0.505±0.047 0.940±0.027 0.061±0.025
Gu et al. [57] 2022 HRViT 0.788±0.045 0.740±0.046 0.739±0.046 0.792±0.058 0.656±0.075

Dosov et al. [12] 2020 ViT 0.865±0.026 0.810±0.025 0.811±0.025 0.827±0.043 0.784±0.054
Gao et al. [58] 2019 Res2Net 0.933±0.022 0.867±0.030 0.867±0.029 0.897±0.050 0.815±0.048
Huo et al. [41] 2024 HiFuse 0.936±0.014 0.886±0.027 0.886±0.028 0.913±0.027 0.840±0.067
Chen et al. [16] 2021 CrossViT 0.943±0.021 0.878±0.030 0.879±0.030 0.882±0.039 0.870±0.042
Halder et al. [44] 2023 ATCNN 0.957±0.017 0.892±0.033 0.892±0.033 0.919±0.045 0.847±0.035
Li et al. [59] 2022 MViTv2 0.975±0.007 0.911±0.014 0.909±0.014 0.982±0.010 0.795±0.039

Ours MSTD 0.984±0.011 0.945±0.015 0.945±0.016 0.965±0.016 0.911±0.043

only a shallow convolution to obtain the necessary features
of the image. Therefore, the excessively deep network of
Fractalnet may lead to overfitting or the distortion of crucial
features of the images of lung nodules.

The ATCNN [44] uses atrous spatial pyramid pooling
(ASPP) and residual convolutional structures to classify lung
nodules in images. The pyramid structure of ASPP is similar
to the multi-scale structure of ourMSMPBmodule. However,
after extracting multi-scale feature maps, ASPP uses 1x1 con-
volutions to reduce the number of channels for feature fusion.
This approach relies solely on information from the spatial
dimension for feature fusion, and neglects useful information
on the scale of the image. On the contrary, we have specifi-
cally designed the MSTF to simultaneously perform feature
fusion in both the spatial and scale-related dimensions. It thus
outperformed the ATCNN.

Res2Net [58] is a mainstream model based on the multi-
scale strategy of the CNN, and can construct multi-scale
features by building multi-level residual connections within a
single residual block. Res2Net mainly extracts local features
through local convolution operations. However, the ViT can
leverage its self-attention mechanism to process long-range
dependencies in images within a global scope. Therefore,
the diagnostic performance of Res2Net was inferior to that
of CrossViT, HiFuse, MViTv2, and MSTD, which combine
multi-scale strategies of fusion with the ViT architecture.

The ViT [12] method is one of the most popular approaches
in the field of image classification, utilizing the self-attention
mechanism of Transformers to capture dependencies between
different spatial regions in images. However, ViT lacks the
ability to capture and analyze features at different image
scales. Our MSMPB method can capture features at differ-
ent scales through multiple parallel scale branches, and the
MSTF method can analyze features of different scales in both
spatial and scale dimensions simultaneously. Therefore, our
approach achieves better classification results.

The HiFuse [41] method primarily consists of a local fea-
ture branch and a global feature branch, both of which contain
scale information across four stages. The local feature branch
uses depthwise separable convolutions to extract features and
employs linear layers for information interaction between
channels. The global feature branch uses the Windows Multi-
head Self-Attention (W-MSA) [60] module based on ViT
to extract features. Features between the local and global

branches are fused through the Hierarchical Feature Fusion
(HHF) block, which includes channel attention, spatial at-
tention, and an MLP. However, the HHF method can only
fuse features at the same level, i.e., the same scale, from
the two branches and cannot simultaneously fuse features at
different scales. In contrast, our MSTF method can selec-
tively and analyze features at multiple scales simultaneously,
providing stronger scale fusion capabilities. Therefore, our
method achieves better diagnostic performance compared to
the HiFuse method.
The HRViT [57] model consists of four progressive Trans-

former stages, each representing a scale level. Within each
stage, finer-grained scale features are obtained through up-
sampling and downsampling, and fine-grained scale interac-
tions are achieved using multiple repeated augmented local
self-attention blocks (HRViTAttn). However, the scale fea-
tures across different stages are concatenated layer by layer
without the design for fusion between them. Additionally, the
full size of lung nodule images (64x64) is relatively small,
making overly fine-grained scale partitioning and repeated
self-attention blocks redundant. Therefore, HRViT quickly
falls into overfitting during training, leading to poor diagnos-
tic performance.
The CrossViT [16] method employs two independently

ViT branches to process small and large sized patches, encod-
ing them into tokens and fusing these tokens through multiple
cross attention mechanisms. Cross attention treats the tokens
from a single branch as Query (Q) and the tokens from the
other branch as Key (K) and Value (V), thereby obtaining
fused features. However, each dual-branch transformer block
can only handle features of two sizes simultaneously. To fuse
multiple different scale features, this dual-branch structure
needs to be stacked multiple times, which can result in a
complex model structure prone to overfitting issues. In con-
trast, our MSTF module, through clever feature dimension
conversions, can process multiple scale features simultane-
ously with just two ViT operations. Therefore, our MSTD
method exhibits stronger anti-overfitting capabilities and is
more lightweight.
MViTv2 [59] is a powerful image processing model that

possesses capabilities for image classification, object detec-
tion, and video recognition. In MViTv2’s Pooling Attention,
Q, K, and V undergo pooling layers to reduce the spatial
resolution of backbone features, thereby obtaining a broader
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field of view. This method then expands the channel dimen-
sions of the backbone features through an MLP to acquire
more abstract feature understanding capabilities. MViTv2
uses Pooling Attention to construct four stages of scales, ex-
tracting each scale individually, which can naturally integrate
with feature pyramid networks for image classification tasks.
The multi-scale features constructed through Pooling Atten-
tion possess stronger spatial long-range correlations, making
MViTv2’s diagnostic performance robust. However, these
multi-scale feature fusions heavily rely on spatial features and
ignore scale dimension analysis. Since our MSTFmodule has
the capability to analyse both spatial and scale dimensions
simultaneously, our method’s classification performance is
slightly higher.

Although the proposed method has improved diagnostic
performance compared to state-of-the-art approaches, it still
has some limitations. The MSMPB module extracts features
of different scales through parallel scale branches to obtain
the Multi-Scale Features. However, the shape of the Multi-
Scale Features must be a cube rather than a cuboid, limiting
the flexibility of the model’s hyperparameters. Therefore, in
future work, we will upgrade the MSTF module to flexibly
handle Multi-Scale Features of different shapes.

Additionally, the MSMPB and MSTF modules are con-
nected in series, which may result in a deeper network and
loss of some useful information from the original input data.
The scale branches ofMSMPB are shallow, avoiding the issue
of excessive network depth. However, this also limits the net-
work depth of MSMPB, preventing it from extracting high-
level semantic features. Therefore, in future work, we will
attempt to establish appropriate residual connections between
the MSMPB and MSTF modules to allow for a moderate
increase in network depth.

V. CONCLUSION
The MSTD method proposed in this paper is a novel ap-
proach specifically designed for the diagnosis of benign and
malignant lung nodules. This method obtains Multi-Scale
Features through a multiple parallel scale branch structure,
MSMPB. The scale branches are lightweight, consisting of
only 3 convolutional layers with 8 kernel channels and an
average pooling layer. The features from all scales are fused
through the MSTF module, which includes spatial and scale
transformers, to generate Space-Scale Features. Unlike con-
ventional Vision Transformers, the introduction of the scale
transformer in this paper is a novel contribution of this study.
The MSMPB module is cleverly designed to maintain con-
sistent lengths in spatial and scale dimensions for the Multi-
Scale Features, facilitating the MSTF module to perform
attention operations simultaneously in scale and spatial di-
mensions. The classifier, composed of fully connected layers,
outputs the final diagnosis of benign or malignant nodules.
Through experiments, we have demonstrated the effective-
ness of the lightweight MSMPB module and highlighted the
enhancement of classification performance achieved by the
Space and Scale Transformers.
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