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ABSTRACT The transient electromagnetic method (TEM) is an efficient physical detection method widely 

used in underground space detection. However, electromagnetic noise interference poses significant 

challenges, as the TEM late signal is often submerged in noise, severely impacting the detection accuracy 

and depth. Therefore, this study proposes a TEM data noise suppression method based on the marine 

predators algorithm (MPA) to optimize variational mode decomposition (VMD) combined with singular 

value decomposition (SVD). Firstly, MPA is employed to select the main parameters of VMD. Secondly, the 

noisy data are decomposed into several intrinsic mode functions using the adaptive variational property of 

VMD. Finally, the mode containing signal information undergoes SVD to remove residual noise, after which 

the denoised TEM signal is reconstructed. This study simulates TEM signals with different noise levels for 

testing. The proposed method is compared to stacking-averaging, wavelet threshold denoising, SVD, 

empirical mode decomposition, and unoptimized VMD. The results showed that the model exhibits superior 

noise reduction performance. In addition, measured noise experiments are conducted to verify the 

practicability of the method. Simulation and field experiments indicated that MPA-VMD-WTD is an effective 

method for suppressing TEM data noise.  

INDEX TERMS Electromagnetic data, noise reduction, VMD, MPA, SVD.

I. INTRODUCTION 

With the rapid development of the global economy and the 

increasing population, underground space development has 

become an inevitable trend. Geological exploration can 

prevent geological disasters, protect workers’ personal and 

property safety, provide a scientific basis for underground 

engineering, and ensure the successful implementation of 

the project. The transient electromagnetic method (TEM) is 

an efficient and convenient geophysical exploration 

method. However, due to the influence of urban 

environments, substantial noise is present in the collected 

electromagnetic data, which causes serious interference in 

the late-stage TEM signal. This noise affects the accuracy 

of subsequent inversion interpretations, leading to 

suboptimal exploration results. 

Accordingly, researchers have proposed many methods 

to improve the signal-to-noise ratio (SNR) of TEM late 

signals. These methods are mainly divided into deep 

learning algorithms and digital signal processing methods. 

Chen et al. proposed a signal-to-image conversion method 

to convert the TEM signal into an image and model the 

noise signal using a deep convolutional neural network 

(CNN)-based denoising method. This method further 

incorporates residual learning to enhance denoising 

performance [1]. Wu et al. combined the long short-term 

memory (LSTM) network with an autoencoder to develop 

a new neural network structure [2]. Wang et al. proposed a 

TEM deep denoising network based on noise learning, 

which utilizes a generative adversarial network to learn 

noise from real signals. The generator constructs a training 

set by generating noise, improving the generalization 

ability of neural network-based denoising methods [3]. Sun 

et al. proposed a method that combines the least noise 

separation algorithm with deep learning [4]. After the SNR 

of TEM is improved to a certain extent using minimum 

noise fraction, the spatiotemporal features of the signal are 

extracted by CNN and gated recursive unit. In addition, a 

double-loss function is selected as a training guide to 
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achieve TEM data denoising. Pan et al. introduced a one-

dimensional time-series denoising model, which 

effectively solves the overfitting phenomenon of 

convolutional residual networks in one-dimensional time-

series denoising using a one-dimensional convolution and 

a visual transformer encoder architecture [5]. Yan et al. 

proposed a new method combining variational modal 

decomposition (VMD) optimized by the reptile search 

algorithm with a deep neural network to identify and 

eliminate noise [6]. In this method, the optimized VMD 

decomposes the noisy signal and then integrates CNN and 

LSTM to extract temporal correlation features, further 

improving the SNR. Deng et al. introduced a semi-airborne 

TEM signal denoising network based on the variational 

diffusion model (VDM) [7]. This approach incorporates a 

supervised fine-tuning strategy based on wavelet transform 

as a constraint, which improves the model’s generalization 

ability. Although the denoising algorithm based on neural 

networks performs well, a significant disparity remains 

between the noise reduction performance of simulated data 

and field data. 

Wei et al. utilized VMD and empirical mode 

decomposition (EMD) to address various noises in the 

TEM signal [8]. The results showed that VMD 

outperformed EMD. Feng et al. employed the whale 

optimization algorithm to obtain the optimal parameters of 

VMD and then applied the Bhattacharyya distance 

algorithm to identify the effective and noise modes, 

achieving signal reconstruction [9]. Qi et al. proposed a 

transient electromagnetic signal denoising algorithm based 

on VMD and wavelet threshold denoising (WTD) [10], 

where the gray wolf optimization algorithm was employed 

to determine the optimal parameters of VMD, followed by 

denoising the mixed mode with WTD, and finally merging 

the signal with the denoised mode. Wei et al. proposed a 

noise identification and elimination method combining the 

slime mold algorithm for optimizing VMD with WTD [11]. 

Xing et al. considered the transverse continuity of the 

multichannel data of the TEM detector and presented a 

noise processing stream for 2D time-domain 

electromagnetic data using multivariate variational modal 

decomposition and multivariate detrended fluctuation 

analysis, achieving a superior denoising effect compared to 

single-channel data processing [12]. Tan et al. developed 

an intelligently optimized time-space fractional diffusion 

model [13], which dynamically thresholds the signal and 

uses the Harris Hawk algorithm, combined with golden sine 

and energy-updating algorithm, to determine the optimal 

filter for each signal stage, yielding better performance than 

traditional algorithm. Accordingly, modern signal 

processing methods based on wavelet transform, modal 

decomposition, and sparse decomposition have been 

extensively applied in TEM signal noise reduction. 

However, setting the critical parameters of these denoising 

algorithms is essential for achieving good results. At 

present, the key parameters of the algorithm are set based 

on personal experience, which prevents the achievement of 

the best denoising effect. Therefore, there is an urgent need 

to develop a modern digital signal processing method based 

on the optimization algorithm.   

In 2020, Faramarzi et al. proposed MPA inspired by the 

predation law of marine organisms [14]. It solves the 

optimization problem by simulating the movement and 

behavior of marine predators during hunting. Conventional 

intelligent optimization algorithms often encounter the issue 

of being trapped in a local optimum. In contrast, the population 

individuals in the MPA adapt their movement mode based on 

the number of iterations, allowing the MPA to flexibly 

perform global and local searches in the solution space, 

avoiding iterative convergence to suboptimal solutions. For 

this reason, the MPA algorithm is employed in this study to 

optimize the VMD parameters. 

Accordingly, this study proposes a TEM data noise 

suppression method that utilizes MPA to optimize VMD in 

combination with singular value decomposition (SVD). 

The paper’s organization is as follows: the second section 

presents the theoretical background of the MPA-VMD-

SVD model; the third section details the simulation 

experiment results; and the fourth section validates the 

performance and reliability of the model through field tests. 

II. THEORIES AND MODEL 

VMD is a modal decomposition method proposed by 

Dragomiretskiy and Zosso in 2014 [15]. This method 

adaptively decomposes a complex signal into a set of intrinsic 

modal functions (IMF), where each IMF corresponds to an 

independent frequency component within the signal. An IMF 

is essentially an AM and FM signal, representing the 

information of the signal within a specific frequency band. 

This decomposition reflects the local characteristics of the 

signal across the time scale, which can be expressed as follows: 

𝑢𝑘(𝑡) = 𝑎𝑘(𝑡)𝑐𝑜𝑠⁡(𝜙𝑘(𝑡))  (1) 

where 𝑢𝑘(𝑡) is the 𝑘-th modal function, 𝑎𝑘(𝑡) is the envelope 

of the 𝑘-th IMF component, 𝜙𝑘(𝑡) is the phase function of the 

𝑘-th IMF component. 

VMD decomposes the signal by optimizing the variational 

objective function, which is expressed as: 

𝑚𝑖𝑛{𝑢𝑘},{𝜔𝑘}
{∑ ‖𝜕𝑡 [(𝛿(𝑡) + 𝑗

1

𝜋𝑡
) × 𝑢𝑘(𝑡)] 𝑒

−𝑗𝜔𝑘𝑡‖
2

2
𝐾
𝑘=1 }

 (2) 

where 𝜔𝑘 is the center frequency of the 𝑘-th modal function, 

𝐾  is the number of decomposed modes, 𝜕𝑡 ⁡ is the time 

derivative, δ(𝑡) is the unit pulse function. This is a constrained 

optimization problem, and the constraint for reconstructing the 

signal 𝑓(𝑡) is expressed as: 

𝑓(𝑡) = ∑ 𝑢𝑘(𝑡)
𝐾
𝑘=1  (3) 
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VMD introduces the Lagrangian function ℒ to address this 

constraint. The Lagrangian function not only includes the 

original objective function but also introduces a penalty factor 

𝛼  and a Lagrange multiplier 𝜆  to manage the constraints, 

which can be expressed as follows: 

ℒ(𝑢𝑘, 𝜔𝑘 , 𝜆) = ∑‖𝜕𝑡 [(𝛿(𝑡) + 𝑗
1

𝜋𝑡
) × 𝑢𝑘(𝑡)] 𝑒

−𝑗𝜔𝑘𝑡‖
2

2𝐾

𝑘=1

 

+
𝛼

2
‖𝑓(𝑡) −∑𝑢𝑘(𝑡)

𝐾

𝑘=1

‖

2

2

 

+𝜆(𝑡)(𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)
𝐾
𝑘=1 ) (4) 

The Lagrangian function forms the foundation of VMD 

optimization and is solved iteratively using the alternating 

direction multiplier algorithm (ADMM). This algorithm 

decomposes the Lagrangian function into sub-problems and 

optimizes each one alternately. Initially, the current center 

frequency and the Lagrangian multiplier are fixed, and the 

signal for each modality is updated. The modal update is 

expressed as follows: 

𝑢𝑘
𝑛+1 = 𝑎𝑟𝑔 ⁡𝑚𝑖𝑛𝑢𝑘 (∑‖𝜕𝑡 [(𝛿(𝑡) + 𝑗

1

𝜋𝑡
)

𝐾

𝑘=1

× 𝑢𝑘(𝑡)] 𝑒
−𝑗𝜔𝑘𝑡‖

2

2

+
𝛼

2
‖𝑓(𝑡) −∑𝑢𝑘(𝑡)

𝐾

𝑘=1

‖

2

2

) 

 (5) 

Secondly, after fixing the modal function, the center 

frequency is updated with the expression: 

𝜔𝑘
𝑛+1 =

∫ 𝜔|𝑢𝑘(𝜔)|
2𝑑𝜔

∞
−∞

∫ |𝑢𝑘(𝜔)|
2𝑑𝜔

∞
−∞

 (6) 

where 𝑢̂𝑘 is the spectrum of the 𝑘-th modal function. 

Finally, the Lagrangian multiplier is updated to minimize 

the error and ensure convergence through the inclusion of a 

penalty term, ensuring that the superposition of the modes 

closely approximates the original signal, which is expressed as 

follows: 

𝜆𝑛+1(𝑡) = 𝜆𝑛(𝑡) + 𝜏(∑ 𝑢𝑘
𝑛+1(𝑡)𝐾

𝑘=1 − 𝑓(𝑡)) (7) 

where 𝜏 is the learning rate, which is utilized to control the 

speed at which the Lagrange multiplier is updated. 

By alternately updating the mode 𝑢𝑘, the center frequency 

𝜔𝑘  and the Lagrangian multiplier 𝜆 , the value of the 

Lagrangian function is gradually minimized, yielding the IMF 

that satisfies the constraints. 

The MPA divides the optimization process into three stages, 

with predators employing distinct hunting strategies at each 

stage. In the initial stage, the predator utilizes Brownian 

motion to explore the search space, with its position update 

formula expressed as follows: 

𝑃𝑟𝑒𝑦𝑖,𝑗 = 𝑃𝑟𝑒𝑦𝑖,𝑗 + 𝑃 × 𝑅 × 𝑅𝐵𝑖,𝑗 

× (𝐸𝑙𝑖𝑡𝑒𝑖,𝑗 − 𝑅𝐵𝑖,𝑗 × 𝑃𝑟𝑒𝑦𝑖,𝑗) (8) 

where Prey𝑖,𝑗  is the position of the 𝑖 -th prey in the 𝑗 -th 

dimension, 𝑃  is the migration probability, 𝑅  is the random 

number in the range [0,1], RB𝑖,𝑗  is the Brownian random 

number, Elite𝑖,𝑗 is the position of the current best prey in the 

𝑗-th dimension. During the intermediate phase, the predators 

use a mixture of Brownian motion and Lévy flight for 

exploration and exploitation. Half of the predators perform 

Brownian motion, and their position update formula is 

expressed as follows: 

𝑃𝑟𝑒𝑦𝑖,𝑗 = 𝐸𝑙𝑖𝑡𝑒𝑖,𝑗 + 𝑃 × 𝐶𝐹 × 𝑅𝐵𝑖,𝑗 

× (𝐸𝑙𝑖𝑡𝑒𝑖,𝑗 × 𝑅𝐵𝑖,𝑗 − 𝑃𝑟𝑒𝑦𝑖,𝑗) (9) 

where CF is the control factor that balances exploration and 

exploitation. The other half of predators make a Levy flight, 

and their position update formula is described as follows: 

𝑃𝑟𝑒𝑦𝑖,𝑗 = 𝑃𝑟𝑒𝑦𝑖,𝑗 + 𝑃 × 𝑅 × 𝑅𝐿𝑖,𝑗 

× (𝐸𝑙𝑖𝑡𝑒𝑖,𝑗 − 𝑅𝐿𝑖,𝑗 × 𝑃𝑟𝑒𝑦𝑖,𝑗) (10) 

where RL𝑖,𝑗 is the Levy random number. In the later stage, the 

predators use Levy flight to develop and avoid falling into 

local optimum, and their position update formula is expressed 

as follows: 

𝑃𝑟𝑒𝑦𝑖,𝑗 = 𝐸𝑙𝑖𝑡𝑒𝑖,𝑗 + 𝑃 × 𝐶𝐹 × 𝑅𝐿𝑖,𝑗 

× (𝐸𝑙𝑖𝑡𝑒𝑖,𝑗 × 𝑅𝐿𝑖,𝑗 − 𝑃𝑟𝑒𝑦𝑖,𝑗) (11) 

MPA also simulates the eddy formation and the effect of 

fish aggregating devices (FADs) in the ocean. This approach 

helps the algorithm balance global search and local 

development, enhancing its ability to locate the global optimal 

solution. Initially, the predators are classified and assessed to 

determine each predator’s movement rule. The evaluation 

conditions are expressed as follows: 

𝑈𝑖,𝑗 = {
1⁡𝑖𝑓⁡𝑟𝑎𝑛𝑑𝑖,𝑗 < 𝐹

0⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡
 (12) 

where 𝑈𝑖,𝑗 is the element in the judgment matrix, rand𝑖,𝑗 is the 

random number within the range [0,1], and 𝐹 is the probability 

threshold of the FAD effect. When the value of 𝑈𝑖,𝑗 is 1, the 

movement of the current predator follows the Eddy formation 

effect, which is expressed as follows: 

𝑃𝑟𝑒𝑦𝑖,𝑗 =⁡𝑃𝑟𝑒𝑦𝑖,𝑗 + 𝐶𝐹 

× (𝑋𝑚𝑖𝑛,𝑗 + 𝑟𝑎𝑛𝑑𝑖,𝑗 × (𝑋𝑚𝑎𝑥,𝑗 − 𝑋𝑚𝑖𝑛,𝑗)) (13) 

where 𝑋min,𝑗 is the lower boundary of the 𝑗-th dimension, and 

𝑋max,𝑗 is the upper boundary of the 𝑗-th dimension. When the 
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value of 𝑈𝑖,𝑗  is 0, the movement of the current predator 

follows the FADs effect, which is expressed as: 

𝑃𝑟𝑒𝑦𝑖,𝑗 =⁡𝑃𝑟𝑒𝑦𝑖,𝑗 + (𝐹 × (1 − 𝑟𝑖,𝑗) + 𝑟𝑖,𝑗) 

× (𝑃𝑟𝑒𝑦𝜋1(𝑖),𝑗 − 𝑃𝑟𝑒𝑦𝜋2(𝑖),𝑗) (14) 

where 𝑟𝑖,𝑗 is a random number in the range [0,1], 𝑃𝑟𝑒𝑦𝜋1(𝑖),𝑗 
is the position of the first prey in the 𝑗-th dimension after 

random arrangement, 𝑃𝑟𝑒𝑦𝜋2(𝑖),𝑗 is the position of the second 

prey in the 𝑗-th dimension after random arrangement. 

As a nonlinear analysis method, sample entropy is mainly 

utilized to measure signal complexity and uncertainty in time 

series. The larger the sample entropy value, the higher the 

complexity and randomness of the signal. In contrast, when 

the sample entropy is smaller, the signal shows higher 

repeatability and regularity. In TEM data, it is theoretically 

feasible to use sample entropy to distinguish between signal 

and noise because the noise has high randomness and 

uncertainty, and the effective signal usually conforms to the 

exponential attenuation law. The formula for calculating the 

sample entropy is expressed as follows: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = − 𝑙𝑛 (
𝐴(𝑚)(𝑟)

𝐵(𝑚)(𝑟)
) (15) 

where 𝑚 is the length of the subsequence, 𝑟 is the similarity 

tolerance, 𝑁  is the length of the sequence, 𝐵(𝑚)(𝑟)  is the 

probability of two sequences matching 𝑚 points, and 𝐴(𝑚)(𝑟) 
is the probability of two sequences matching 𝑚 + 1 points. 

SVD is a matrix factorization method in linear algebra that 

decomposes data into different components, preserving 

primary information and eliminating minor noise components. 

The formula for SVD is expressed as: 

𝐴 = 𝑈𝛴𝑉𝑇 (16) 

where 𝐴 is the original matrix, 𝑈 is the left singular vector 

matrix, 𝑉𝑇  is the right singular vector matrix, and Σ  is the 

diagonal matrix, which contains the singular values of the 

original matrix. The singular values are arranged from largest 

to smallest, with larger singular values representing the active 

components of the signal and smaller singular values 

corresponding to noise-dependent components. The residual 

noise in the TEM signal mode is effectively filtered out by 

truncating the singular values. 

Based on the above principles, this study proposes a new 

noise reduction method, the MPA-VMD-SVD model. Firstly, 

MPA is employed to optimize the main parameters of VMD 

by selecting sample entropy as the fitness criterion. 

Continuous iteration determines the optimal parameter 

combination, enabling the decomposed mode to achieve the 

minimum sample entropy. Secondly, VMD decomposes the 

signal into several modes based on the specified 

decomposition mode 𝐾 and the penalty factor 𝛼, identifying 

the mode with the smallest mean square error (MSE) as the 

signal mode. Finally, the SVD of the mode containing the 

signal information is performed to remove the residual noise, 

and the TEM signal, after denoising, is reconstructed. The 

flowchart of the MPA-VMD-SVD model is shown in Fig. 1. 

 

Start

Select the IMF

with the signal componentl

Input the TEM signal 

Use MPA to optimize

VMD parameters

Use optimized VMD to 

decompose the signal

Get several IMFs

Use SVD to remove 

residual noise from IMF

Signal reconstruction

End
 

FIGURE 1. The flowchart of MPA-VMD-SVD. 

III. SIMULATION 

In electronics, SNR is commonly utilized to represent the ratio 

of signal to noise in the data, expressed in dB as: 

𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10
∑ 𝑠2(𝑡)

∑𝑛2(𝑡)
 (17) 

where 𝑠(𝑡)  is the signal sequence and 𝑛(𝑡)  is the noise 

sequence. In the actual geological exploration measurement, 

workers pay more attention to the deeper geological 

information, and the late TEM signal corresponds to the deep 

underground information. In addition, the amplitude of the 

early TEM signal is typically larger, resulting in a higher 

SNR. In contrast, the late TEM signal is weaker, leading to a 

lower SNR. Hence, this study emphasizes reducing the noise 

in the late TEM signal. The improvement in SNR for the last 

20% of the data before and after processing is defined as the 

signal-to-noise improvement ratio (SNIR), a quantitative 

indicator of the noise reduction effect. 

A. SIMULATE SIGNAL AND NOISE 

The TEM signal has exponential decay characteristics, with 

a strong initial signal attenuating rapidly, while the later 

signal is weak and heavily influenced by noise. Its frequency 

spectrum ranges from a few hertz to several hundred 

thousand hertz, with the main components concentrated in 
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the low-frequency range, making it a broadband signal. The 

waveform and frequency domain diagram are presented in 

Fig. 2. 

 

FIGURE 2. Simulated TEM signal. (a) Time domain waveform; (b) 
Frequency domain diagram. 

 

Random noise is the main component affecting the late 

TEM signal, often appearing as Gaussian white noise. 

Gaussian white noise refers to a substantial number of 

unpredictable disturbances generated randomly, which are 

Gaussian in nature and widely distributed across various 

frequencies. The time domain waveform and frequency 

domain diagram of Gaussian white noise are shown in Fig. 

3. The TEM signal combined with Gaussian white noise is 

depicted in Fig. 4.  

This study simulated signals with strong, moderate, and 

weak noise levels, corresponding to SNR values of 10, 15, 

and 20 dB, respectively. 

B. MPA-VMD OPTIMIZATION PROCESS 

The VMD model is optimized using MPA, with the number 

of predators set to 25 and the maximum number of iterations 

set to 20. Two parameters are optimized, where the number 

of decomposed modes 𝐾 is in the range of [1,10], and the 

penalty factor 𝛼  is in the range of [1,50000]. After 20 

iterations, the convergence curve of the algorithm is 

presented in Fig. 5. At the fifth iteration, the minimum value 

of sample entropy was 7.1301 ∗ 10−3, corresponding to the 

optimal decomposition mode number 𝐾 of 6 and the penalty 

factor, 𝛼 of 42489. 

 

 

FIGURE 3. Simulated noise. (a) Time domain waveform; (b) Frequency 
domain diagram. 

 

 

FIGURE 4. Noisy signal. (a) Time domain waveform; (b) Spectrogram. 
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FIGURE 5. Convergence curve of MPA-VMD. 

C. MPA-VMD-SVD DENOISING EXPERIMENT 

In the previous section, the optimal parameters of the VMD 

model were determined using MPA. These parameters were 

applied to VMD to obtain several IMFs, as illustrated in Fig. 

6.The MSE of the IMFs derived from the original signal is 

calculated, and the results are shown in Fig. 7. IMF1 has the 

smallest MSE compared to the original signal. The Fourier 

transform is applied to the IMFs, and the resulting spectrum 

is illustrated in Fig. 8. IMF1 closely matches the original 

signal, while IMF2–IMF6 corresponds to noise components 

at different frequencies. Accordingly, VMD effectively 

extracted the signal components into IMF1 and isolated the 

noise components into the remaining IMFs. 

 

 

FIGURE 6. Time domain waveforms of each IMF. 

 

 

FIGURE 7. MSE of IMFs. 

 

 

FIGURE 8. Frequency domain diagrams of IMFs. 

 
Then, SVD is employed to process the IMF containing the 

signal components to filter out the residual signal. The one-
dimensional modal sequence is upgraded to a two-
dimensional matrix with a window length of half the length 
of the original sequence. The one-dimensional modal 
sequence is upgraded to a two-dimensional matrix with a 
window length of 1000. SVD is then utilized to decompose 
the reconstructed data, and the distribution of singular values 
is shown in Fig. 9. 
 

 

FIGURE 9. The distribution of singular values. 

 
The singular values are subjected to thresholding, where 

the threshold is set to the average of the singular values to 
eliminate residual noise components. This method preserves 
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the larger singular values associated with the signal 
components. The MPA-VMD-SVD model is applied to 
process TEM data noise, and the denoising effect is 
illustrated in Fig. 10. After denoising, the signal waveform 
becomes smoother, and the number of glitches is greatly 
reduced. 
 

 

FIGURE 10. MPA-VMD-SVD simulation noise suppression results. (a) 
Before; (b) After. 

D. COMPARATIVE ANALYSIS WITH TRADITIONAL 
ALGORITHM 

Several modern digital signal processing algorithms were 

selected for comparative experiments, including stacking-

averaging, WTD, SVD, EMD, and VMD, to verify the 

superiority of the MPA-VMD-SVD model in addressing 

TEM data noise. The denoising performance of these 

algorithms was evaluated under three levels of noise. 
Stacking-averaging obtains the denoised signal by 

summing and averaging 16 channels of signals; however, the 
processed signal continues to exhibit numerous glitches. 
WTD decomposes the signal into several layers and uses the 
threshold function to select specific wavelet coefficients for 
reconstruction. For the parameter settings, the number of 
decomposition levels was set to 5, the soft threshold function 
was selected, and the threshold value was set to 10−5, and 
Symlet 4 wavelet was used as the decomposition basis 
function. SVD transforms the one-dimensional time series 
into a matrix, performs eigenvalue decomposition, applies 
thresholding, and reconstructs the matrix to obtain denoised 

data. For this process, the window size was set to 30, and the 
threshold was set to the average of the eigenvalues. In 
another setting, the window size was adjusted to 1000, and 
the threshold was set to the average eigenvalue of the matrix. 
EMD decomposes the signal into several IMFs based on 
amplitude, eliminates the IMFs consisting of noise 
components, and reconstructs the effective signal. Although 
this method is conceptually simple, it encounters significant 
waveform distortion in its initial stages. For the unoptimized 
VMD, the number of decomposition modes 𝐾 was set to 10, 
and the penalty factor 𝛼 was set to 1000. The parameters 
mentioned above were determined based on human expertise 
and adjusted to achieve optimal results to ensure a fair 
comparison among the algorithms in this study. 

Fig. 11 shows the test and scaling results under three levels 

of noise interference. Compared to the traditional algorithm, 

the signal processed by the MPA-VMD-SVD model 

demonstrated the best fit to the ideal signal under different 

conditions and achieved the most effective noise reduction. 

Repeated experiments were conducted using the above 

algorithm. A total of 100 data groups containing three noise 

levels were processed, and the average SNIR value was 

calculated. The results are listed in Table 1. The MPA-VMD-

SVD model consistently achieved superior processing 

performance under each noise level, which verifies the 

effectiveness and stability of the model. 

 
TABLE 1. The average SNIR of the data processed by the algorithms. 

Model 
Strong 

(10dB) 

Moderate 

(15dB) 

Weak 

(20dB) 

Stacking-

averaging 
12.05 12.04 12.04 

EMD 11.53 10.87 9.74 

WTD 18.27 18.29 18.25 

SVD 21.83 21.80 21.85 

VMD 7.56 5.57 3.21 

MPA-VMD-SVD 41.77 39.56 36.92 

 

The simulated noise experimental results fully prove that 

the MPA-VMD-SVD model effectively preserves the 

original information of the early TEM signal while 

accurately restoring the attenuation trend of the late signal to 

the greatest extent. Compared to traditional denoising 

algorithms, the model exhibits superior noise suppression 

performance, making it more suitable for processing TEM 

data. 

IV. FIELD NOISE TEST 

Experiments on field noise were conducted to verify the 

performance of the proposed model. The field noise data 

samples were obtained from the Key Laboratory of Geo-

Information Detection Instruments, Ministry of Education, 

Jilin University. The time-domain waveform and frequency-

domain diagram are presented in Fig. 12. 
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The processing results for pure noise samples are shown 

in Fig. 13. The SNIR of the signals processed using stacking-

averaging, EMD, WTD, SVD, VMD, and MPA-VMD-SVD 

were 16.39, 16.35, 21.05, 24.74, 10.64, and 45.79 dB , 

respectively. Compared to traditional algorithms, the signal 

curve processed by MPA-VMD-SVD is closer to the ideal 

signal, achieving the maximum SNIR. The experimental 

results demonstrate the superiority of this method. 

 

 

FIGURE 11. Comparison of simulation noise suppression effect with 
traditional algorithms. (a) Strong noise; (b) Moderate noise; (c) Weak 
noise. 

 

FIGURE 12. Field noise data. (a) Time domain waveform; (b) Frequency 
domain diagram. 

 

 

FIGURE 13. Comparison of field noise suppression effect to traditional 
algorithms. 

V. CONCLUSIONS 

This study proposes the MPA-VMD-SVD noise reduction 

model to address the challenge of parameter selection when 

applying modern digital processing algorithms to TEM data 

noise. The MPA is utilized to efficiently identify the optimal 

global solution and optimize the parameters of VMD. SVD 

is then applied to filter out residual noise in the signal modes, 

enhancing the accuracy of signal-noise separation. This 

research categorizes noise into three levels: strong, moderate, 
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and weak. Several traditional algorithms are selected for 

comparative experiments, with SNIR used as an evaluation 

metric to analyze the noise reduction performance on both 

simulated and field data. The experimental results show that 

the MPA-VMD-SVD can suppress the TEM late signal noise 

and effectively recover the signal attenuation trend under 

different SNR conditions. This method exhibits superior 

performance, providing an innovative TEM data noise 

suppression solution. 
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