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ABSTRACT Grass seed infestation is a significant issue in the Australian sheep industry. Detecting the seeds
when they are in wool or on the surface of the skin could assist with prevention of the grass seed infestation.
Terahertz imaging provides a viable option for detecting seeds due to its short wavelength, non-ionizing
feature, and penetration ability through wool. Here we demonstrate that accuracy of seeds detection can be
improved utilising a Convolutional Neural Network even when the seeds are not visually distinguishable in
terahertz images. Our studies reveal accuracies of greater than 95% and 67% can be achieved in identification
of seed hidden underneath 1 cm and 2 cm thick wool under normal incidence. Moreover, our analysis finds
that terahertz frequencies in the 0.3–0.4 THz range have better overall classification accuracy compared to
other frequency bands. The combination of machine learning and terahertz imaging has the potential to be
widely implemented in rapid and on-site detection of grass seed infestation with high efficiency.

INDEX TERMS Convolutional Neural Network, Grass seed infestation, Terahertz imaging.

I. INTRODUCTION

GRASS seed infestation (GSI) has been a significant
issue in the Australian sheep industry. The seeds are

picked up in the fleece when sheep are grazing. If not acted
upon in a timely manner, the seeds may penetrate through
the pelt in a few days, leading to contamination and skin
damage. Problems caused by GSI include infections and feet
inflammation, lower growth rate, and carcasses with less
volume, leading to low quality meat and wool [1], [2]. The
losses due to GSI of the Australian market alone is about
AUD 47.5 million yearly, highlighting the magnitude of the
problem [3]. As a result, some seed management strategies
have been applied by Meat and Livestock Australia including
grazing management, limiting the size of grazing grounds,
premature shearing, and using herbicides on the grass early in
the growing season [4]. These management strategies come
with a trade-off and high cost, which are impractical in the
long run for addressing the GSI problem. Therefore, early
surface detection of seeds before they penetrate the skin is
potentially helpful for GSI management.

Imaging is an option that can be used for prevention or di-
agnosis of GSI. However, commercial imaging technologies

such as computed tomography (CT), ultrasonography, fluo-
rescent imaging, and infrared (IR) imaging are not feasible
for seed detection. Note that CT imaging uses ionizing X-
rays and ultrasonography requires skin contact, which may
cause health issues in the livestock [5], [6]. Fluorescent and IR
radiation cannot penetrate throughwool due to high scattering
effects, and thus are not able to identify seeds [7].

The terahertz band refers to the region of the electromag-
netic spectrum with frequency at 0.1–10 THz (3000–30 µm
of wavelength) [8]. The non-ionizing nature of the terahertz
radiation has made it attractive for health and biomedical ap-
plications, which is ideal for non-contact measurements and
does not cause any harm to biological species [9], [10]. There-
fore, terahertz spectroscopy has potential to be used to detect
seeds in sheep fleece, contributing to the prevention of GSI. In
our previous work, we demonstrated that terahertz waves can
be utilized for the early detection of seeds in the animal fleece
or on the pelt [11], [12]. Our experimental results show that
terahertz imaging can clearly detect seeds in uncovered ham,
pork skin and wool, which can be easily observed from RGB
images by the human eye. But when concealed by a thick
layer of wool, which is the same scenario as grass seed in-
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festation, it becomes challenging to discern seeds from RGB
images by the human eye. Moreover, human eye observation
has limitations in terms of identification speed and accuracy,
which is time-consuming and inefficient for batch image pro-
cessing. Hence, machine learning techniques can assist with
image processing, particularly for tasks such as identification
and classification [13]–[16]. Various approaches utilizingma-
chine learning techniques for terahertz image processing have
been investigated. For instance, a Support Vector Machine
(SVM) with parameter optimization has effectively classi-
fied transgenic and bacterial blight resistant seeds [17]–[19].
Principal Component Analysis (PCA) followed by SVMwere
applied to identify moldy wheat, achieving a prediction accu-
racy of over 90% [20]. Furthermore, SVM and Deep Neural
Network (DNN) methods achieve high accuracies in classi-
fying glucose and lactose frequency spectra, providing clas-
sification accuracies of 99% and 89.6%, respectively [21].
Convolutional Neural Networks (CNNs) have proven to have
improved accuracy over other widely used machine learning
methods in real-time liquid contraband classification [22],
as well as in the detection of bacterial blight-resistant rice
seeds [19].

Inspired by existing works, CNNs are potentially an ideal
option for improving GSI diagnosis. By contrast with other
applications where machine learning has been used for ter-
ahertz imaging, in this work the seeds are covered by wool,
making it more difficult to detect due to the scattering and
blocking of the terahertz beam. Whereas in most of other
applications there is no blockage between the samples and
terahertz beam. In addition, unlike most of the reported works
that have used flat containers to hold the seeds, for GSI the
seeds are usually on or in the skin, which is not flat and may
cause more scattering compared to a flat surface. Moreover,
GSI may have different type of seeds with various shapes and
orientations, which will affect the accuracy. Previously, we
have demonstrated that one cumin seed on a piece of ham
covered by 1 cm-thick wool can be detected using CNNs,
providing an identification accuracy of 95.8% [23].
In this work, we combine machine learning with terahertz

imaging to improve accuracy of seed identification. Tera-
hertz images are acquired using time-domain pixel-by-pixel
reflection scans with normal and 45° incidences. The samples
include three types of seeds placed on a piece of ham, which
are covered by wool with different thickness. We investigate
the detection accuracy for different terahertz frequencies.
The effect of wool thickness, seed shape and orientation are
also studied. Additionally, we also compare the results with
normal and 45° incident beams. Under normal incidence, the
detecting accuracies of> 95% and> 67% are achieved when
the sample is covered by 1 cm and 2 cm wool, respectively.
Whereas under 45° incidence the detecting accuracy is> 71%
when covered by 1 cm wool.

II. TERAHERTZ IMAGE COLLECTION
Generally, there are two types of experimental setup for ter-
ahertz imaging including transmission mode and reflection

mode [24]. In transmission mode, the terahertz wave needs
to penetrate the sample [25], [26], whereas in reflection
mode, the terahertz wave is reflected by the sample [27],
[28]. Moreover, reflection mode can be divided into oblique
reflection and normal reflection. For normal reflection, beam
splitting is often needed when the transmitter and receiver are
not integrated in one port. Compared to oblique reflection,
normal reflection will lose part of the terahertz power due
to the beam splitter, but the alignment is much easier. Most
of the existing studies on seed detection use transmission or
oblique reflection mode [18], [19], [29]–[31]. In this work,
since transmission mode is not feasible for seed identification
in the pelt, we utilize oblique and normal reflection modes for
terahertz imaging.

FIGURE 1. Schematic of the experimental setup with (a) normal and (b)
45° incidence. The insets are photos of the experimental setup.

We use a TERASMART time-domain terahertz spectrom-
eter from Menlo Systems, which has a bandwidth > 5 THz
and dynamic range > 90 dB. Two modes of experimental
setup are used for the measurements including normal (Fig. 1
(a)) and 45° oblique (Fig. 1 (b)) incidence, where the electric
field is polarized along the y direction, and the sample is
set in a frame mounted on a two-axis stage moving in xy-
plane. For normal incidence shown in Fig. 1 (a), we use three
polymethylpentene (TPX) lenses to focus the terahertz beam
to the sample and detector. A silicon beam splitter is used to
split the beam and reflect it to the terahertz detector. For 45°
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incidence shown in Fig. 1 (b), the emitter and the detector
are positioned at 45 degrees from the normal to the surface,
and four TPX lenses are used to focus the terahertz beam to
the sample and back to the detector. The samples, which are
mounted in a frame (see insets of Fig. 1), are scanned pixel by
pixel with a step size of 0.5 mm. This process ensures that the
terahertz beam is focused on each pixel. Similar setups and
imaging methods have been used in our previous work [11].

FIGURE 2. 5 mm-thick ham without seeds (a) exposed and (b) covered by
1 cm-thick wool. (c) and (d): Samples with four seeds corresponding to (a)
and (b). Normalized time-domain peak-to-peak amplitude of sample in
part (a) covered by (e) 1 cm-thick and (f) 2 cm-thick wool under normal
incidence. (g) Normalized time-domain peak-to-peak amplitude of
sample in part (a) covered by 1 cm-thick wool under 45° incidence.
Normalized time-domain peak-to-peak amplitude of sample in part (c)
covered by (h) 1 cm-thick and (i) 2 cm-thick wool under normal incidence.
(j) Normalized time-domain peak-to-peak amplitude of sample in part (c)
covered by 1 cm-thick wool under 45° incidence.

The samples used for experiments are a piece of 5 mm-
thick ham (Fig. 2 (a)), which are covered by wool (density
0.04 g/cm3) with 1 cm or 2 cm thickness when being scanned.
For reference, we firstly scan samples without seed (Fig. 2
(b)). Then four seeds are inserted to the same ham sam-
ple including two cumin seeds in different orientations, one
coriander, and one barley seed (Fig. 2 (c)), which are then
covered by wool (Fig. 2 (d)). Since fresh grass seeds contain
more moisture than the packed ones, the seeds are soaked in
tap water for 3 hours before inserting to the ham. In reality,

it is difficult to maintain the surface of the samples to be
exactly perpendicular to the ground. Therefore, to include the
effect of this factor, each sample is scanned three times with
different rotation along x-axis, including zero (perpendicular
to the ground) and ±5°.

FIGURE 3. (a)–(c) Normalized spectrum amplitude at 0.3 THz
corresponding to Figs. 2 (e)–(g). (d)–(f) Normalized spectrum amplitude at
0.3 THz corresponding to Figs. 2 (h)–(j).

FIGURE 4. (a)–(c) Normalized spectrum amplitude at 0.4 THz
corresponding to Figs. 2 (e)–(g). (d)–(f) Normalized spectrum amplitude at
0.4 THz corresponding to Figs. 2 (h)–(j).

FIGURE 5. (a)–(c) Normalized spectrum amplitude at 0.5 THz
corresponding to Figs. 2 (e)–(g). (d)–(f) Normalized spectrum amplitude at
0.5 THz corresponding to Figs. 2 (h)–(j).

Figure 2 (e)–(j) show the normalized time-domain peak-
to-peak amplitude, where the data are normalized to the lo-
cal maximum of each image. Generally, existence of seeds
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will increase the deep blue area due to the scattering. When
covered by 1 cm wool, the area where the seeds are located
can be roughly observed by eye (Fig. 2 (h)). However, for
samples covered by 2 cm wool (Fig. 2 (i)) or measured
using 45° incidence (Fig. 2 (j)), it is difficult to observe by
the human eye. To find the optimized frequencies for seed
identification, we apply a Fast Fourier Transform (FFT) to
the time-domain data and obtain frequency-domain images
from 0.2 THz to 0.5 THz with a step of 0.02 THz. Figure 3–
5 shows the normalized amplitude at 0.3 THz, 0.4 THz and
0.5 THz, respectively. The seeds are discernible to the hu-
man eye when the sample is covered with 1 cm wool and
illuminated by normal incidence (Fig. 3 (d), 4 (d) and 5
(d)), whereas identification becomes challenging with 2 cm
wool (Fig. 3 (e), 4 (e) and 5 (e)) or 45° incidence (Fig. 3
(f), 4 (f) and 5 (f)). The contrast between samples with and
without seeds is less pronounced in terahertz images, with
the difference expected to diminish further with increased
wool thickness. Consequently, this motivates the application
of machine learning techniques to analyze terahertz images
for grass seed identification, given the limitations of human
eye observation in such scenarios.

FIGURE 6. Measured time-domain signals of (a) seeds area and (b) ham
area covered by 1 cm and 2 cm wool under normal and 45° incidence. (c)
Contrast spectrum between ham and seeds area for 1 cm and 2 cm wool
under normal and 45° incidence.

Figure 6 (a) and (b) show examples of measured terahertz
signals at seeds area (the first cumin seed of each sample)
and ham area, respectively. It can be observed that under
normal incidence in a seed region, the sample with 1 cm
wool has slightly weaker signal than the sample with 2 cm
wool, which may be due to the fact that more signal can reach
the seed and scatter away, leading to less signal reflected
to the detector. Whereas in a ham region, the sample with
1 cm wool has stronger signal than the sample with 2 cm
wool due to improved reflection. This is why the sample
with 1 cm wool has a higher terahertz contrast in the seed

region than sample with 2 cm wool. For a 45° incidence, the
reflected signal is higher than at normal incidence in both
the seed and ham regions due to the lack of power loss from
the beam splitter. Figure 6 (c) shows the contrast spectrum
between the ham and seed regions. It can be observed that the
samplewith 1 cmwool under normal incidence has the overall
highest contrast, which is consistent with the observations
from Fig. 3–5. It is noteworthy that in this work no reference
signal is needed because the wool and seeds only affect the
signal strength by attenuating and scattering it. Therefore, by
examining the signal strength (weaker when it encounters the
seed) and shape for areas with strong contrast, we can identify
the existence of foreign matter.

III. TERAHERTZ IMAGE PROCESSING
A. CONVOLUTIONAL NEURAL NETWORK FRAMEWORK
Terahertz imaging is an emerging modality that offers de-
tailed insights into the internal and surface properties of ma-
terials, making it a promising tool for this kind of biological
inspection. However, due to the complexity of data generated
by terahertz imaging, manual analysis becomes impractical.
Consequently, we employ CNNs, a class of DNNs specifi-
cally designed for image processing tasks, to automate the
detection and classification process. Notably, CNNs excel
at recognizing patterns in image data by capturing intricate
features through a hierarchical, multi-layer structure [32].
The use of convolutional filters that effectively process and
extract relevant features prior to classification, makes CNNs
particularly well-suited for identifying grass seeds based on
the subtle variations present in terahertz images. Addition-
ally, studies have demonstrated that CNNs outperform other
widely used machine learning methods on terahertz image
classification [19], [22]. Moreover, CNNs have been com-
pared with SVMs in image classification tasks, showing sig-
nificant improvements in accuracy [33], [34].
The CNN architecture is structured in such a way that it

progressively learns to identify increasingly complex features
within the images. The initial layers of a CNN typically detect
basic patterns, such as edges and textures, while deeper layers
capture more abstract and complex features, such as shapes
or specific object details. In our case, this hierarchical feature
extraction process assists in distinguishing images containing
seeds and those without, based on terahertz data.
Since our experiment requires significant time to collect

data, we do not have a large enough dataset to construct a
CNN from scratch. Therefore, we adopt the transfer learn-
ing technique, selecting a well-established, pre-trained CNN
based on a large dataset, and retrain it for the seed identifi-
cation task [35]. This approach significantly simplifies the
CNN construction process while enabling us to train our
model with our dataset. In this context, we utilize the pre-
trained GoogleNet model1 and fine-tune it with our terahertz
image data using MATLAB Deep Network Designer tool.

1GoogleNet is a 22-layer deep convolutional neural network, with 144
layers when counting all operations, originally designed for ImageNet clas-
sification across 1,000 categories such as animals and everyday objects.
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Specifically, we implement two changes to the GoogleNet
network structure. First, we replace the third-to-last layer, the
‘fullyConnectedLayer’, with a new one, setting the input size
to 2, and adjusting the weight and bias learning rate factors to
10. Next, we replace the final ‘classificationLayer’ to ensure
the output size is automatically set to 2, allowing the network
to classify the samples as either containing a seed or not.

The CNN model undergoes gradual adjustments to its
neuron weights throughout the training process, iteratively
refining its ability to classify samples based on the presence
or absence of seeds. To facilitate this, we set a low initial
learning rate of 0.0001 in the training option, enabling the
CNN model to fine-tune its neuron weights using our data.
Additionally, we set the MiniBatchSize to 50, MaxEpochs
of 100 and ValidationFrequency to 1. All other parameters
are left at their default settings to maintain general training
behavior.

By employing this approach, we leverage the power of deep
learning and transfer learning to address the challenge of seed
detection in terahertz images with a limited dataset, while
ensuring our CNN model is effectively trained for accurate
classification. This method provides a practical solution to
the constraints of our experimental setup, offering a balance
between model complexity and data availability.

B. RESULTS AND DISCUSSION
1) Impact of frequency band, wool thickness, and incidence
scheme
The CNN model’s performance is evaluated using classifica-
tion accuracy, which reflects its ability to correctly identify
samples with or without seeds. During training, the model’s
validation accuracy converges after a certain number of it-
erations, indicating it has reached an optimized state. Given
that data was collected from normal and 45° incidence angles
across different wool thicknesses (1 cm and 2 cm), we trained
the CNNmodel separately on each dataset and determined the
validation accuracies. This thorough approach yielded varied
accuracies across different frequency bands, as summarized
in Table 1.

Table 1 shows the impact of wool thicknesses and inci-
dence scheme in different frequency bands, where 80% of the
data are used for training and the rest 20% of the data are used
for validation. It can be observed that under normal incidence,
thicker wool leads to a drop in accuracy across all frequency
bands. This decline suggests that the CNN model faced dif-
ficulties in accurately classifying seed presence in samples
with thicker wool, potentially due to increased attenuation
and scattering of the terahertz beam. Notably, the minimum
classification accuracy observed for 1 cmwool in the selected
frequency bands is 92.9%, which is significantly higher than
the 67.9% achieved for 2 cm wool. Furthermore, under the
normal incidence with 1 cm wool, both the 0.2–0.5 THz band
and its sub-bands achieve a classification accuracy exceeding
90%, meeting the desired performance threshold.

Moreover, upon comparing the accuracy between normal
and 45° incidence, we consistently find that normal incidence

outperforms the 45° incidence approach with 1 cm wool,
as given in Table 1. In particular, the 45° incidence setup
achieves a maximum classification accuracy of 85.7% in the
frequency band of 0.3–0.4 THz, while the normal incidence
setup attains a perfect classification accuracy of 100% in the
0.4–0.5 THz band. One reason is that 45° incidence has longer
traveling distance than normal incidence (in this case 2 cm for
normal incidence, 2.82 cm for 45° incidence), leading to more
scattering and attenuation from the wool. Another factor is the
system alignment for 45° incidence is more complicated than
normal incidence due to the non-flat surface of the ham sam-
ple. Additionally, it is noteworthy that for normal incidence
with 2 cmwool and 45° incidence, the 0.3–0.4 THz frequency
band yielded the highest validation accuracy. While the 1 cm
normal incidence setup achieves very high accuracy across
multiple frequency bands, our analysis shows that the 0.3–
0.4 THz band consistently delivers good performance across
all setups, making it the optimal frequency band for seed
detection.

TABLE 1. Validation accuracy with different wool thicknesses for different
frequency bands under normal and 45° incidence.

1 cm wool, nor. 2 cm wool, nor. 1 cm wool, 45°
0.2–0.5 THz 95.4% 67.9% 71.1%
0.2–0.3 THz 92.9% 70.8% 71.4%
0.3–0.4 THz 92.9% 79.2% 85.7%
0.4–0.5 THz 100% 75% 78.6%

2) Impact of seed shape and orientation
We also study the effect of seed shape and orientation. The
sample includes two cumin seeds placed horizontally (named
seed 1) and vertically (named seed 3), and two coriander seeds
(named seed 2 and 4) on a piece of 3-layer ham covered by
2 cm wool (see fig. 7 (a) and (b)), which is scanned using
normal incidence. Figure 7 (c)–(h) show the normalized spec-
trum amplitude of sample without and with seeds covered by
2 cm wool at 0.3 THz, 0.4 THz and 0.5 THz, respectively. As
expected, the identification becomes challenging in terahertz
images with 2 cm wool. We divide the sample into four
sections, each containing one seed. Thenwe feed the terahertz
images at 0.2–0.5 THz band including independent seed and
the combinations of same type of seed (seed 1 & 3, seed 2
& 4) to the CNN model for identification. Table 2 shows the
validation accuracy for each seed and combination. It can be
observed that coriander seeds have higher validation accuracy
than cumin seeds for both separated and combined cases.
Specifically, our setup achieves 100% accuracy in classifying
samples containing coriander seeds in the separated case,
while the accuracy drops to 64.3% for Seed 3 (cumin). Even
when combining seeds of the same type for classification, the
accuracy for detecting coriander seeds in the absence of other
seeds remains high at 92.1%, whereas it is lower for cumin
seeds at 75%.
We attribute this to the potential excitation of resonances

in the coriander seed [12]. Also, the direction of electric field
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plays an important role on validation accuracy, especially
for the cumin seeds with ellipsoid structure, leading to the
dramatic difference for seed 1 and seed 3.

FIGURE 7. Sample (a) exposed and (b) covered by 2 cm wool for
investigating impact from different shape and orientation of the seeds,
where seed 1 and 3 are cumin, and seeds 2 and 4 are coriander).
Normalized spectrum amplitude of sample without seed covered by 2 cm
wool at (c) 0.3 THz, (d) 0.4 THz and (e) 0.5 THz. Normalized spectrum
amplitude of sample with four seeds covered by 2 cm wool at (f) 0.3 THz,
(g) 0.4 THz and (h) 0.5 THz.

TABLE 2. Validation accuracy for different type of seeds with 2 cm wool
thickness and normal incidence.

Seed Accuracy
S1 (cumin) 85.7%
S3 (cumin) 64.3%
S2 (coriander) 100%
S4 (coriander) 100%
S1 & S3 (cumin) 75%
S2 & S4 (coriander) 92.1%

3) Impact of tilted sample
Furthermore, we examine how the accuracy varied concern-
ing different tilted angles (±5° rotation along x-axis, see sec-
tion II) and wool thicknesses for the terahertz images ranging
from 0.2 to 0.5 THz, as summarized in Table 3. The data
are from measurements using normal reflection mode. The
CNN model demonstrated higher effectiveness in identifying
seeds in samples with 1 cm wool compared to those with
2 cm wool. When the sample is angled, we observe higher
accuracy, which could be due to the non-perfect alignment
and the non-flat surface of the ham. Another reason could
be that when positioned in an oblique way, the seeds may
havemore scattering, leading to higher contrast in the images.
Overall, the results show that the ±5° rotation along x-axis
will not reduce the accuracy.

TABLE 3. Validation accuracy for rotation along x-axis with 1 cm and
2 cm wool thickness under normal incidence.

1 cm wool 2 cm wool
No rotation 96.2% 69.2%

Vertically tilted 5 degrees 100% 80.8%
Vertically tilted -5 degrees 96.2% 92.3%

C. PERFORMANCE EVALUATION USING CONFUSION
MATRICES
To further evaluate the CNNmodel’s performance, we gener-
ate confusion matrices that show the classification accuracy
by testing the trainedmodel on the entire dataset. Fig. 8 and 10
illustrate the confusion matrices for the CNN model trained
with datasets collected through normal and 45° incidence
with 1 cm wool thickness across various frequency bands,
respectively, whereas Fig. 9 depicts the confusion matrices
for normal incidence with 2 cm wool thickness. Upon closer
examination of Fig. 8–10, we observe that the majority of
errors occur when the CNN misclassified samples without
seeds as containing seeds. This could be due to the wool and
defects on the ham surface can create same contrast as the
seeds do.Moreover, substantial improvement in classification
accuracy has been observed for all the frequency bands in
all three cases due to the larger dataset and better training,
especially for 1 cm wool under 45° incidence. Overall, 1 cm
wool under normal incidence still has the highest accuracy,
followed by 1 cm wool under 45° incidence. And 2 cm wool
under normal incidence still has the lowest accuracy. Focus-
ing on the optimal frequency band, which is 0.3–0.4 THz, for
1 cm wool, the accuracy is higher than 91% for either normal
or 45° incidence. For 2 cm wool, the accuracy is higher than
83%. These observations validate the efficacy of the chosen
frequency band in enhancing CNN’s performance in seed
identification tasks using terahertz imaging.

IV. CONCLUSION
In conclusion, terahertz imaging provides a viable option to
help preventing GSI, while human eye observation fromRGB
images can be challenging when the seeds are concealed
by thick layer of wool. Human eye observation is also in-
efficient for batch image processing. Therefore, we utilized
machine learning assisted terahertz imaging to improve the
accuracy of diagnosing GSI. Under normal incidence at 0.2–
0.5 THz, the detecting accuracies of > 95% and > 67% are
achieved when the samples are covered by 1 cm and 2 cm
wool, respectively.Whereas under 45° incidence the detecting
accuracy is > 71% when the sample is covered by 1 cm
wool. We attribute that to scattering and attenuation from the
wool, and complicated system alignment. Particularly, 0.3–
0.4 THz band is demonstrated to have better performance in
classification accuracy for identification of seeds. In terms
of the type of seed, coriander seeds have higher validation
accuracy than cumin seeds. Moreover, slightly tilted samples
will not reduce the accuracy. This work provides a feasible
method of batch processing of terahertz images with high
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FIGURE 8. Confusion matrix for Validation accuracy at (a) 0.2–0.5 THz, (b) 0.2–0.3 THz, (c) 0.3–0.4 THz and (d) 0.4–0.5 THz for samples in Fig. 2 (a) and (c)
with 1 cm wool under normal incidence.
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FIGURE 9. Confusion matrix for validation accuracy at (a) 0.2–0.5 THz, (b) 0.2–0.3 THz, (c) 0.3–0.4 THz and (d) 0.4–0.5 THz for samples in Fig. 2 (a) and (c)
with 2 cm wool under normal incidence.
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FIGURE 10. Confusion matrix for validation accuracy at (a) 0.2–0.5 THz, (b) 0.2–0.3 THz, (c) 0.3–0.4 THz and (d) 0.4–0.5 THz for samples in Fig. 2 (a) and (f)
with 1 cm wool under 45° incidence.

accuracy and efficiency, which can be integrated into the on-
field GSI detection devices.
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