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ABSTRACT Sand and dust storms significantly challenge microwave and millimeter-wave 

communications, particularly in arid and semi-arid regions. Various models have been developed to predict 

attenuation caused by these storms theoretically and empirically based on two meteorological parameters, 

namely visibility and humidity. However, these models are found unable to predict most of the attenuation 

measurements.  This study presents a hybrid Machine Learning (ML) model that predicts dust storm 

attenuation for 22 GHz terrestrial links using meteorological data. The received signal levels were 
measured for a 22 GHz link over a month in Khartoum, Sudan. The visibility, humidity, atmospheric 

pressure, temperature and wind speed were also monitored simultaneously by Automatic Weather Station 

(AWS). The proposed model incorporates XGBoost for feature selection and combines Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) layers to capture both short-term and long-term 

dependencies in meteorological data. The results demonstrate a strong correlation between meteorological 

parameters and dust storm attenuation. The model’s performance is validated against the measured data at 

22 GHz, outperforming existing empirical and theoretical models. The RMSE for the proposed model is 

0.07, while all existing theoretical and empirical models are higher than 0.25. Furthermore, the proposed 

model demonstrates significant enhancements over the available ML model for dust attenuation prediction. 

This hybrid ML approach offers a more accurate and robust solution for predicting microwave and 

millimetre wave attenuation during dust storms, enhancing the reliability of communication systems in 

affected regions. 

INDEX TERMS Dust Storm Attenuation, Microwave Propagation, Meteorological Parameters, Terrestrial 

Communication, Machine Learning, XGBoost, LSTM, GRU. 

I. INTRODUCTION 
Severe weather phenomena known as sandstorms (haboob) 

are frequently seen in dry semi-arid and nearby arid areas. 

The prevalence of sandstorms is dependent upon both 
human activity and natural climate. Dust storms are 

common in many parts of the world, such as North Africa, 

the Middle East, Southwestern North America, the 
Northwest Chain, and arid parts of India [1]. 

Dust and sand storms result from temperature and air 

pressure differences between tropical regions with warm 

climates and high-altitude regions with cold climates. 

Strong winds produced from these differences may cause 
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sand and dust particles to be lifted into the skies. The wind 
speed is directly related to the quantity of sand and dust 

particles the wind carries. Additionally, the relative 

humidity that is accompanied by the presence of abundant 

water resources and verdant vegetation along the wind's 

path rises. Dust storms are therefore complex phenomena 

involving a wide range of atmospheric elements. In recent 

studies, it has been extrapolated that Sudan and American 

dust storms often appear in the wet season, followed by 

thunderstorms. Whereas dust storms in other parts of the 

world appear frequently in the dry season [1], [2]. 
Dust storms have wide impacts on human health, 

transportation and communication systems. The risks to 
human health include respiratory and cardiovascular 

problems while transportation systems face hazardous 

driving conditions, long delays or cancellations of flights 

and infrastructure damage. Communication systems may 

suffer from severe signal attenuation which may break the 

link during the storm [3]. Recently, migration to the 5th and 

6th generations of mobile communication has provided 

high bandwidth relying on millimeter waves. Previously, 

dust storm intensity was measured by dust concentration in 

cubic meters which was difficult to measure precisely. 

Fortunately, in recent years dust storms can be measured 
with visibility reduction. Moderate dust storms are 

classified with optical visibility ranging from 1000 m to 

500 m, while a severe dust storm is when the visibility is 

less than 500 m [3][4]. 
Relative humidity has been observed to accompany sand 

and dust storms based on the currently available literature. 

The moisture content of dust's dielectric constant can be 

directly impacted by an apparent shift in relative humidity 

during a storm, which will significantly reduce the signal 

power because of modifications to the properties of the dust 

particles. Elsheikh et al. found that during a dust storm 

relative humidity increases from 20% to 70%. The dramatic 
increase in relative humidity has directly affected the dust 

particle dielectric constant and consequently degraded the 

signal significantly [3]. Moreover, Elsheikh et al have 

studied the effect of the humidity on sand and dust storm 

attenuation prediction. Humidity was observed to be higher 

during the dust storm events [3]. The available models are 

used to incorporate the effect of the humidity in the 

dielectric constant. The predicted attenuation using humid 

dielectric constant is much higher than the predicted 

attenuation using dry dust conditions. Eltahir et al. 

concluded from measurement that dust particles have 
irregular shapes [5]. A. Musa et al. have discussed the 

effect of canting angle on signal attenuation and cross-

polarization during the dust storm. Wind turbulence during 

storms also affects the orientation angle of falling dust 

particles which describes the orientation of a particle's axis 

of symmetry (or revolution). Falling dust particles in the air 

may be subjected to wind shear and turbulence, which 

could cause canting angles and oscillations. However, A. 

Musa et al. have attempted to model these effects by 

relying on approximations; the actual dust particle has an 

irregular shape, which is difficult to model [6].  In addition, 

the effect of rapid change in temperature and atmospheric 
pressure accompanied by the dust storm on signal 

attenuation has not yet been studied [7]. Shamim et al. have 

applied ML techniques using data measured over one 

month. Their machine-learning prediction model used all 

meteorological features to provide good agreement.  

Furthermore, they employed Pearson's Correlation 

Coefficient (r) to evaluate the relationship between 

meteorological parameters and microwave signal 

attenuation. Their analysis highlighted the significance of 

incorporating multiple input features to enhance the 

accuracy of predictions for microwave signal attenuation 

[8]. Dust storms in Khartoum significantly affected the 
received signal level. These slow-moving, turbulent events 

disrupted weather stations and communication links, 

though parameters generally returned to normal afterward 

[7]. Signal drops were aligned with changes in pressure, 

visibility, and temperature, while wind speed and humidity 

exhibited opposite trends. Visibility and humidity were key 

factors, with the latter altering the properties of dust 

particles. Shamim et al. [8] emphasized the importance of 

incorporating multiple meteorological features to improve 

the accuracy of microwave signal attenuation predictions. 

A recent research endeavor has explored the impact of 
sand and dust storms on electromagnetic wave propagation 

within communication networks. The results presented a 

statistical model correlating attenuation, frequency and 

visibility, utilizing NASA data dedicated to the Gulf region. 

The study compared the attenuation effects caused by 

sandstorms with those from rain and gaseous absorption, 

offering valuable insights into how various atmospheric 

conditions influence communication network performance  

[9]. 
From the available literature, prediction models can be 

classified into mathematical, empirical and machine-

learning models.  Mathematical models are based on certain 
assumptions to ease the complex computation of signal 

propagation based on Maxwell’s equations analytically or 

numerically [10], [11], [12], [13], [14]. Two empirical 

models have been developed based on long-term 

measurements. These models are the first models to 

investigate and incorporate the relative humidity into the 

attenuation prediction formula [3],[5],[14].  Despite 

significant progress in predicting microwave signal 

attenuation due to dust and sandstorms. However, many 

existing models still face limitations. Traditional empirical 

and mathematical models, often rely on simplifying 
assumptions that hinder their ability to fully capture the 

complex atmospheric interactions involved. These models 

typically struggle to account for rapid fluctuations in 

temperature, atmospheric pressure, humidity, wind speed 

and the irregular shapes of dust particles, leading to 

inaccuracies in predicting attenuation. While some 

empirical models attempt to incorporate humidity and other 

meteorological factors, they lack the dynamic adaptability 

needed for more precise predictions. 
ML model improves the prediction of micro- and 

millimeter wave attenuation by effectively capturing 
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complex relationships within meteorological data and 
signal attenuation. Its capability to process high-

dimensional data and adapt to new information enhances 

accuracy and provides valuable real-time insights, making 

it particularly suited for telecommunications applications. 

For time-series data, where data points are ordered and 

dependent on previous time steps, machine learning models 

must consider the temporal relationships between 

observations. Recurrent Neural Networks (RNNs) are 

particularly useful for such tasks. More advanced versions 

of RNNs, like LSTM and GRU networks, are designed to 

capture these dependencies by maintaining a memory of 

past data points, making them effective in sequential 
prediction tasks. 

In recent years, many studies have applied deep learning 

techniques to improve the performance of time-series 

predictions in complex domains [15][16]. Traditional 

models often struggle to capture long-term dependencies in 

sequential data. For example, early traffic prediction 

models relied on simple time-based data, such as past speed 

or congestion levels from the previous few seconds, to 

predict future traffic states [17]. However, these models 

were limited in their ability to determine which past states 

were most relevant, leading to sub optimal predictions. 
To address this limitation, Fernandes et al. [18] 

introduced combined LSTM networks for traffic flow 

forecasting, demonstrating that LSTMs can effectively 

predict traffic flow for multiple future time steps by 

addressing key model aspects such as input features and 

time frames. Haque et al. [19] demonstrated that hybrid 

models like GRU-LSTM outperform single-layer models in 

high-resolution temperature forecasting by capturing both 

short-term and long-term trends, with GRU proving 

consistently robust across diverse locations. Similarly, 

Hossain et al. [20] combined convolution neural networks 

(CNN), GRU, and fully connected neural networks for 
wind energy generation forecasting, demonstrating that 

hybrid architectures can effectively capture both short-term 

fluctuations and long-term trends. The proposed approach 

outperformed traditional models such as neural networks 

(NN), RNN, and LSTM, achieving significantly higher 

performance in short-term wind power predictions.  
These results underscore the strength of LSTM and GRU 

models in managing complex, nonlinear, and high-

dimensional data, making them powerful tools for time-

series prediction tasks across a variety of domains. 
Shamim et al.'s study presented a machine learning 

approach for predicting microwave signal attenuation 

during dust storms, achieving some success but also facing 

significant limitations [8]. However, their model relied on a 

basic regression-based method, which struggled to capture 

the temporal dependencies in meteorological data, such as 

the dynamic fluctuations in humidity and visibility over 

time. Additionally, by including all available 

meteorological features without adequate filtering, the 

model became susceptible to noise, which ultimately 

diminished its predictive accuracy. This underscores the 

need for more advanced techniques that can better handle 

complex interactions among features and temporal 
variations in the data.  

This work contributes to the enhancement of micro and 

millimeter wave attenuation prediction during dust storms 

by introducing a hybrid ensemble machine learning model. 

It integrates XGBoost for feature selection with LSTM and 

GRU layers to effectively capture temporal patterns. By 

focusing on critical meteorological variables such as 

visibility, humidity, atmospheric pressure, temperature, and 

wind speed, the model aims to provide more accurate and 

robust predictions of signal attenuation, particularly in arid 

regions often impacted by dust and sandstorms. This hybrid 

ensemble ML approach addresses the limitations of prior 
empirical and ML models, improving prediction 

performance through advanced pre-processing and adaptive 

learning techniques. As a result, it presents reliable 

attenuation predictions based on meteorological and signal 

attenuation data, further enhancing our understanding of 

microwave signal behavior in challenging atmospheric 

conditions.  

The remaining sections of this paper are organized as 

follows: Section 2 details the experimental methodology, 

including the data collection process, data pre-processing 

techniques, and the ML work flow. Section 3 presents the 
correlation analysis between meteorological parameters and 

microwave signal attenuation, followed by the ML model's 

training, validation, and test results for the proposed 

prediction. Furthermore, provides an in-depth discussion, 

comparing the proposed hybrid model's performance 

against existing models, highlighting its strengths in 

handling sequential data and feature selection. Finally, 

Section 4 concludes the study and outlines possible 

directions for future research.  
 

II.  METHODOLOGY  
This section presents the proposed methodology for 

predicting microwave signal attenuation using a hybrid 

XGBoost, LSTM and GRU model. The methodology 
begins with Data Measurement, detailing the collection of 

meteorological data and the setup of the communication 

link. Following this, we describe the process of Signal 

Attenuation Calculation, explaining how the signal loss 

during sand and dust storms is computed. The methodology 

further covers data preprocessing techniques, feature 

selection using XGBoost [21], and the architectural design 

of the model, which integrates LSTM [22]-GRU [23] layers 

for sequential learning. Additionally, we outline steps taken 

to handle missing data, normalize features, and optimize 

model performance, ensuring robust predictions under 

diverse meteorological conditions. 

A. DATA COLLECTION  
Figure 1 shows the location of the climate conditions 

measuring equipment and a microwave link in Khartoum, 

Sudan, based on the analysis of the one-year data collected 
from May 31, 2014, to June 1, 2015 [3], it was found that 

nearly one-third of the dust and sand storms occurred 

between June 1, 2014, and July 3, 2014. Consequently, only   
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Figure 1: Location map of microwave links and Automatic Weather 
Station in Khartoum 
 

the data from this specific period (June 1 to July 3, 2014) 

was utilized for training the ML model.  The microwave 

link, operated by MTN's mobile operator company, Sudan 

branch, is known as the Maygoma-Kouku link. This link 

operates at a frequency of 21.3 GHz with a path length of 

2.8 km. Both antennas are vertically polarized, with 

diameters of 0.6 meters, gains of 40.5 dBi, and a 

transmitted power of 11 dBm. The Maygoma antenna has a 
height of 17 meters, while the Kouku antenna is positioned 

at 24 meters. The link is situated about 5 km from the 

Khartoum Airport meteorological station, which is 

equipped with a Vaisala transmissometer for measuring 

visibility within a range of 10 to 10,000 meters. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2: Block diagram explaining the process of data collection 

 

 

The microwave link specifications, including RX 

frequency, antenna gain, and transmission power, are 

summarized in Table 1. 
The meteorological station also features sensors that 

measure relative humidity, atmospheric pressure, 

temperature, and wind speed. The HMP155 sensor reliably 

tracks both humidity and temperature, while the LT31 

sensor measures the visibility offering insights into fog and 

dust storm conditions. Additionally, the WMT52 sensors   

TABLE 1 
MICROWAVE LINK SPECIFICATIONS 

Parameter Unit Maygooma Koukou 

RX Frequency MHz 22488.25 21288.25 
Polarization  Vertical Vertical 
Antenna Diameter m 0.6 0.6 
Antenna Gain dBi 40.50 40.50 
Antenna Height m 17 24 
TX Power dBm 11.5 11.5 

 

monitor wind speed and direction, providing a 

comprehensive view of the environmental conditions. The 

Vaisala BAROCAP® PTB330 provides ±0.10 hPa 

accuracy across a 500–1100 hPa range, with ±0.1 hPa 

temperature dependency from -40°C to +60°C. 
The received signal level of the selected microwave link 

was analyzed to compute the attenuation in dB/km, a 

critical parameter for assessing and predicting microwave 

link performance. Figure 2 illustrates the overall data 

collection and synchronization process, combining 
meteorological parameters from the Automatic Weather 

Station and signal measurements from the terrestrial 

microwave link. Attenuation is preferred over the received 

signal level as it provides a more standardized and reliable 

measure for comparison. During clear weather conditions, 

the received signal level was observed to be -43.8 dBm, 

which was used as the reference signal level for further 

calculations. The absolute values of the received signal 

levels from the selected data were calculated and subtracted 

from the reference level to determine the total attenuation 

in dB. This total attenuation was then divided by the 

microwave link length of 2.8 km to calculate the specific 
attenuation in dB/km [3]. The collected meteorological 

data, as summarized in Table 2, shows a wide range of 

environmental conditions observed during the study. 

Optical visibility ranged from 100 to 10,000 meters, with 

an average of 8,688.04 meters and a standard deviation of 

2,461.87 meters, reflecting varying dust storm intensities. 

The temperature fluctuated between 25.1°C and 44.7°C, 

averaging 35.68°C with a standard deviation of 4.13°C. 

Relative humidity values spanned from 6% to 74%, with a 

mean of 21.57% and a standard deviation of 13.87%, 

indicating substantial variability in moisture levels. 
Atmospheric pressure ranged narrowly between 958.5 and 

967.8 Pa, averaging 963.8 Pa with a small standard 

deviation of 2.12 Pa. Wind speed varied from calm 

conditions to 35.57 knots, averaging 9.40 knots with a 4.08-

knot standard deviation. Lastly, signal attenuation due to 

dust storms ranged from 0.107 to 3.357 dB/km, with a 

mean attenuation of 0.660 dB/km and a standard deviation 

of 0.192 dB/km, highlighting significant variations in the 

impact of dust storms on signal strength. 

B. DATA PREPROCESSING 
Data pre-processing is a critical step that ensures the 

model’s robustness and improves its predictive accuracy.  
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TABLE 2 
WEATHER STATION SPECIFICATIONS 

Feature Min. Max. Mean Sd. 

Optical Visibility (m) 100 10000 8688.03 2461.87 
Temperature (C0) 25.1 44.7 35.683 4.130 
Relative Humidity (%) 6 74 21.57 13.867 
Atmospheric Pressure (Pa) 958.5 967.8 963.8 2.123 
Wind Speed (Knots) 0 35.57 9.398 4.079 
Attenuation (dB/km) 0.107 3.357 0.660 0.192 

 

The following steps were carefully applied to prepare the 

dataset: 

 

1) HANDLING OF MISSING DATA 
Missing data values in the dataset were addressed using 

linear interpolation. This technique estimates missing 

values based on adjacent data points, preserving the 

continuity and consistency of the time-series data. This 
method is essential for sequential models like LSTM and 

GRU, which rely on smooth temporal transitions for 

accurate forecasting.  By filling in gaps without introducing 

biases, the model can better learn from the full dataset, 

ensuring that no information is lost. 
Linear interpolation is based on the Straight-Line equation 

(1): 

          𝑦 + 𝑦1 =
(𝑥−𝑥1).(𝑦2−𝑦1)

(𝑥2−𝑥1)
                         (1) 

Where (x1, y1) and (x2, y2) are the known data points. x is 

the point at which you want to estimate the value of y. And 

y is the interpolated value at x. 
 

2)  NORMALIZATION 
All features were normalized using Standard Scaler as 

shown in equation  (2) to standardize the input data. This 

transformation ensures that each feature has a mean of 0 

and a standard deviation of 1, which is crucial for models 

involving gradient-based optimization. Normalization 

prevents features with larger numeric ranges (such as 

temperature or wind speed) from disproportionately 

influencing the model’s training process [24]. As a result, 

the model treats all input variables equally, allowing it to 

converge faster and perform more efficiently. One of the 

best performance  normalization is  
 Standard Scaler formula is: 

         𝑧 =
𝑥−𝜇

𝜎
                                                (2) 

Where z is the normalized value, 𝑥 is the original data 

point, 𝜇 is the mean of the data, and 𝜎 is the standard 

deviation of the data. 
The Standard Scaler formula is directly addresses the 

problem of  the features (temperature, wind speed, visibility 

humidity, pressure)  with varying numeric ranges by 
normalizing  them to a common mean and standard 

deviation. This normalization ensures that all features are 

treated equally by the model, which is essential for 
gradient-based optimization methods such as gradient 

descent. By normalizing data, models can achieve faster 

convergence, improved performance, and more stable 

training processes.  

 

3)  DATASET SPLIT 
The dataset was split into a 90% training set (35,140) and a 

10% test set (3,905), following best practices in machine 

learning for evaluating model performance. This split 

allows the model to be trained on the majority of the data 
while reserving a portion for testing, thus ensuring the 

model is evaluated on unseen data. This split is key for 

assessing the generalization capability of the model, 

providing a realistic estimate of its performance in real-

world conditions. 
 

4)  CROSS-VALIDATION 
To further ensure the robustness of the model and reduce 

the likelihood of over fitting, k-Fold Cross-Validation (CV) 

was applied [25]. This method divides the training data into 
10 folds training the model on 9 folds while validating it on 

the remaining fold. The process is repeated 10 times, each 

time with a different validation fold. The final model’s 

performance is averaged across all 10 iterations, providing 

a reliable measure of how well the model performs across 

different subsets of the data. CV significantly reduces bias 

and variance in model evaluation, ensuring that the results 

are not skewed by any particular dataset split [26], [27]. 

C. MODEL ARCHITECTURE 
The proposed model is a hybrid ensemble that combines 

XGBoost, LSTM, and GRU layers. This architecture was 

specifically chosen for its ability to manage both feature 

selection and temporal dependencies, making it highly 

effective for predicting microwave signal attenuation under 

varying meteorological conditions. As shown in Figure 3, 

the model begins with data preprocessing, where missing 
values are handled through interpolation, and the data is 

normalized to ensure consistent scaling across all features. 

The preprocessed data is then passed to the XGBoost 

algorithm, which ranks and selects the most significant 

meteorological features, such as visibility, humidity, and 

temperature. These selected features are input into a 

sequential model that consists of an LSTM layer followed 

by a GRU layer, both of which are used to capture the 

short-term and long-term temporal dependencies in the 

data. The architecture is designed for optimal efficiency 

and accuracy. Dropout layers are applied after each 

recurrent layer to prevent over fitting, and a final Dense 
layer with 100 units and the Rectified Linear Unit (ReLU) 

activation function is used for the output. The model is 

trained using the Adam optimizer with a learning rate of 

0.001, and performance metrics such as Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and Root Mean 

Squared Error (RMSE) are tracked throughout the training 

process, as shown in Table 3. 
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1)  RATIONALE BEHIND THE MODEL 
XGBoost is known for its exceptional performance in 

ranking features by importance, making it ideal for feature 

selection in complex datasets. XGBoost's ability to assess 
the contribution of each feature to the model’s predictive 

power enables the identification of the most relevant 

variables, significantly enhancing the model’s overall 

efficiency.  By leveraging XGBoost's advanced gradient 

boosting algorithms, practitioners can effectively identify 

and retain the features that have the greatest impact on the 

target variable, thereby reducing the inclusion of irrelevant 

or noisy data that could hinder model performance. This 

process of feature selection not only simplifies the model 

but also improves its interpretability, making it easier to 

understand the relationships between the selected features 
and the predictions [28][29].   

The most significant meteorological factors  which are 

visibility, humidity, temperature and wind speed are 

included in the prediction model. This method reduces 

noise by excluding irrelevant variables, leading to improved 

model performance and faster computation. Furthermore, 

XGBoost is highly efficient and scalable, handling large 

datasets with ease while providing interpretable results 

about feature significance. This efficiency is crucial when 

working with high-dimensional meteorological data, as it 

prevents over fitting and ensures the model remains 

computationally manageable. Meteorological conditions 
that influence microwave signal attenuation are dynamic 

and evolve over time, making LSTM and GRU layers ideal 

choices for capturing these temporal relationships. LSTM 

layers are particularly good at learning long-term 

dependencies, where past atmospheric conditions (such as 

prolonged humidity or temperature changes) have lasting 

effects on signal attenuation. GRU layers, while similar to 

LSTMs, offer a more computationally efficient solution by 

simplifying the internal structure, reducing the number of 

parameters while maintaining comparable 

performance.This combination of LSTM and GRU ensures 
that the model not only learns short-term variations (such as 

sudden changes in wind speed or visibility during a storm) 

but also captures longer-term trends (such as gradual shifts 

in pressure or humidity) that could impact signal strength. 
The hybrid integration of XGBoost with LSTM and GRU 

offers a theoretically advantage approach by leveraging the 

strengths of each component. XGBoost excels in feature 

selection, isolating the most significant meteorological 

variables while reducing noise and improving model 

interpretability. LSTM layers effectively capture long-term 

dependencies in sequential data, such as sustained humidity 

changes, while GRU layers handle short-term variations, 
like sudden drops in visibility or spikes in wind speed, with 

greater computational efficiency. This synergy ensures a 

robust balance between accurate feature extraction and 

temporal pattern recognition, outperforming traditional 

machine learning models and hybrid architectures like 

CNN-GRU or standalone LSTM-GRU combinations, 

particularly in handling complex dynamic atmospheric  

data [30]. 

 
 

 
 
Figure 3: Schematic Representation of the Hybrid XGBoost-LSTM-GRU 
Model Architecture for Microwave Signal Attenuation Prediction. 
 

As described in Algorithm 1, the overall model structure 

combines the strengths of feature selection and temporal 

learning to provide robust predictions of microwave signal 

attenuation. 
 

Algorithm 1: Hybrid XGBoost-LSTM-GRU for 
Signal Attenuation Prediction 

  
1. Input:  Preprocessed meteorological dataset 
2. Output: Predicted signal attenuation (dB/km) 
3. Data Preprocessing: 

(a) Handle missing data using linear interpolation. 
(b) Normalize features using Standard Scaler. 
(c) Split dataset into training (90%) and testing 

(10%) sets. 
(d) Apply 10-fold CV to the training data. 

4. Feature Selection (XGBoost): 

(a) Train XGBoost model with hyperparameters: 
• n estimators = 300 

• learning rate = 0.1 
• max depth = 10 

(b) Rank features based on importance and select 
the most relevant meteorological variables. 

5. Model Construction: 

(a) Input selected features to an LSTM layer with 
128 units. 

(b) Add a GRU layer with 128 units. 
(c) Apply Dropout (rate = 0.2) after each 

recurrent layer. 
(d) Add a Dense layer with 100 units (ReLU 

activation) for output. 
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6. Model Training: 

(a) Train the model using the Adam optimizer with 
learning rate = 0.001. 

(b) Use MSE as the loss function. 
(c) Track MAE and RMSE during training. 

7. Model Evaluation: 

(a) Evaluate the model on validation and test sets 
using MAE, RMSE, and R² metrics. 

(b) Generate training and validation loss/error 
plots across epochs. 

8. Output: Predicted signal attenuation (dB/km) for the 
test set. 

 

2)  EXPERIMENTAL SETUP 
The experiment setup involves the utilization of Keras 

(version 2.14.0)  [31] and TensorFlow (version 2.14.0) [32] 

(version 2.14.0), both of which are integrated into the 

Visual Studio Code (VSCode) environment. This 

configuration facilitates a streamlined development process, 

allowing for efficient model building and training. Keras 

[31] serves as a high-level API for constructing neural 

networks, leveraging Tensor Flow as its backend to 

perform the heavy lifting of computations. By maintaining 

these specific versions, the experiment aims to ensure 
compatibility and leverage the latest features and 

improvements offered by these frameworks, thereby 

enhancing the overall performance and reliability of the ML 

models being developed. All data preprocessing stages, 

model training, hyper parameter tuning, and model 

evaluation were performed using this platform. Hyper 

parameters were selected using a grid search approach, 

testing various combinations of learning rates, batch sizes, 

and activation functions to identify the optimal 

configuration for the model. The results of this search 

informed the final parameters used for training, ensuring a 
balance between performance and computational 

efficiency.  
To identify the most relevant features, XGBoost was 

used for feature selection. The top-ranked meteorological 

features were then fed into a sequential model, which 

integrated LSTM and GRU layers for capturing temporal 

dependencies in the data. This hybrid model architecture 

was designed to capture both short-term variations (such as 

sudden drops in visibility or spikes in humidity during dust 

storms) and longer-term weather trends. The model was 

trained for 100 epochs, with key performance metrics such 

as loss MSE, MAE, and RMSE tracked at each epoch [33]. 
Hyper parameter tuning was conducted using a random grid 

search to optimize the model [34], focusing on minimizing 

the loss function. 
The performance of the model was evaluated using several 

regression metrics, which provided a detailed 

understanding of how well the model predicted microwave 

signal attenuation under varying meteorological conditions.  

These metrics included: 
Mean Absolute Error (MAE): This metric measures the 

average magnitude of the errors in the predictions, 

providing a straightforward interpretation of how close the  

TABLE 3 
COMMON SPECIFICATIONS 

Category Name Value 

CV Fold size 10 
Shuffle True 
Random state 1 

XGBoost Layer # of estimators 100 
Learning rate 0.1 
Maximum depth 10 
Subsample 0.8 
Column sample by tree 0.8 

LSTM Layer Units 128 
Activation function tanh 

GRU Layer Units 128 
Activation function tanh 

Dense Layer Dense units 100 
 Activation function ReLU 
Model Parameters Dropout rate 0.2 

Batch size 48 
Epochs 100 
Learning rate 0.001 

 

predicted values are to the actual values as shown in 

equation (3). 

      MAE= 
1

𝑛𝑇
∑ |𝑝𝑖 − 𝑎𝑖|
𝑛𝑇
𝑖=1                                    (3) 

Mean Squared Error (MSE): MSE is used as the primary 
loss function for the model. It calculates the average 

squared difference between predicted and actual values, 

penalizing larger errors more heavily as shown in equation 

(4). 

MSE =
1

𝑛𝑇
∑ (𝑝𝑖 − 𝑎𝑖)

2𝑛𝑇
𝑖=1                                       (4) 

Root Mean Squared Error (RMSE): The square root of the 

MSE, RMSE is useful as it provides an error metric that is 

on the same scale as the original target variable (signal 

attenuation). This metric is particularly useful when we 

want to evaluate the model’s prediction errors in a more 

interpretable way as shown in equation (5). 
 

RMSE =√
1

𝑛𝑇
∑ (𝑝𝑖 − 𝑎𝑖)2
𝑛𝑇
𝑖=1                                  (5) 

Coefficient of Determination (R²): This metric measures the 

proportion of variance in the target variable that is 

explained by the model. A higher R2 value indicates that the 

model has captured a larger portion of the variance in the 

data as shown in equation(6). 

𝑅2 = 1 −
∑ (𝑎𝑖−𝑝𝑖)

2𝑛𝑇
𝑖=1

∑ (𝑎𝑖−𝑎𝑖)
2

𝑛𝑇
𝑖=1

                                                 (6) 
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where pi represents the predicted value, ai represents the 
actual value and, nT number of training samples. 
 
III.   RESULTS AND ANALYSIS  
In this section, we analyzed the performance of the 

proposed hybrid XGBoost-LSTM-GRU model in 

predicting microwave signal attenuation caused by adverse 

atmospheric conditions such as dust and sandstorms. The 

evaluation process involved 10-fold CV to ensure the 

model generalized well across the dataset and minimized 
overfitting. Tables 4, 5 and 6 provides an overview of the 

model's performance metrics across all 10 folds, including 

MAE, MSE, RMSE, and R² for the training, validation, and 

testing sets. The Training MAE values across the folds 

consistently remained at 0.020, indicating that the model 

learned the underlying patterns of the data without 

significant over fitting. The Training RMSE values ranged 

from 0.030 to 0.032, with a high average R² of 0.983, 

indicating that the model captured a large proportion of the 

variance in the training data. Validation results showed 

MAE values between 0.029 and 0.032, demonstrating that 

the model was able to generalize well to unseen validation 
data. The Validation RMSE values ranged from 0.056 to 

0.087, with Validation R² scores between 0.786 and 0.904, 

indicating strong predictive performance even in the 

validation phase. In the Testing phase, the MAE values 

ranged from 0.030 to 0.031, while the RMSE values ranged 

between 0.065 and 0.076. The Test R² scores, which 

averaged 0.860, further confirmed that the model 

consistently minimized prediction errors and performed 

well on unseen test data. The model was trained for 100 

epochs with a batch size of 48 using the Adam optimizer. 

As shown in the training metrics, the training loss rapidly 
decreased during the first 10 epochs and gradually 

stabilized around 0.001, while the validation loss converged 

around 0.005. The consistent alignment between training 

and validation losses indicates that the model effectively 

learned the data patterns without over fitting. The MAE and 

RMSE values steadily declined across both the training and 

validation sets, with final MAE values around 0.031 for 

validation, demonstrating that the model's predictions 

closely matched actual values. Similarly, the RMSE values 

for the training set converged to 0.031, and for the 

validation set to 0.070, confirming that the model was well-

optimized and generalized effectively to unseen data. The 
results confirm that the proposed model is suitable for 

predicting microwave signal attenuation under varying 

atmospheric conditions. 
The average training and validation results of the model 

for MAE, MSE, and RMSE are shown in Figure 4 (a), (b), 

and (c), respectively. To further validate the proposed 

model, the Root Mean Square Error (RMSE) of the 

previous empirical and mathematical predictions was 

assessed using the ITU-R P.311-14 method [14]. The 

results were then compared with those of the proposed 

model for 22 GHz millimeter-wave links, as presented in 
Table 8. The comparison of performance metrics  

 

TABLE 4 TRAINING RESULTS  

No of Fold MSE MAE RMSE R2 

1 0.001 0.020 0.032 0.984 

2 0.001 0.020 0.032 0.983 

3 0.001 0.020 0.030 0.983 

4 0.001 0.020 0.031 0.983 

5 0,.001 0.020 0.030 0.983 

6 0.001 0.020 0.031 0.983 

7 0.001 0.020 0.031 0.983 

8 0.001 0.020 0.031 0.984 

9 0.001 0.020 0.031 0.983 

10 0.001 0.020 0.031 0.984 

Mean 0.001 0.020 0.031 0.983 

 

TABLE 5 VALIDATION RESULTS  

NO of Fold MSE MAE RMSE R2 

1 0.003 0.029 0.056 0.904 

2 0.004 0.031 0.064 0.898 

3 0.007 0.032 0.085 0.841 

4 0.004 0.031 0.063 0.892 

5 0.005 0.032 0.072 0.860 

6 0.004 0.031 0.064 0.894 

7 0.006 0.032 0.079 0.846 

8 0.008 0.032 0.087 0.786 

9 0.005 0.031 0.067 0.866 

10 0.005 0.031 0.073 0.846 

Mean 0.005 0.031 0.071 0.863 

 
underscores the advantages of the proposed model over 

existing empirical and mathematical methods. Previous 

studies, such as those by Goldhirsh et al. [32]. and Ahmed 

et al. [10], reported high RMSE values exceeding 2, 

indicating substantial prediction errors. In contrast, the 

proposed model achieved an RMSE of 0.070, 

demonstrating significantly greater accuracy. Although 

models like those by Eltahir et al. [14]. accuracy. Although 

models like those by Eltahir et al. [14]. and Elfatih et al. [3] 

had lower RMSE values (0.22 and 0.26), they lacked 

comprehensive evaluation metrics. Additionally, the 
proposed model's R² value of 0.860 further validates its 

strong predictive capability, highlighting its effectiveness in 

forecasting microwave signal attenuation during dust storm   
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TABLE 6   TEST RESULTS  

No of Fold MSE MAE RMSE R2 

1 0.005 0.030 0.068 0.867 

2 0.005 0.031 0.069 0.861 

3 0.006 0.031 0.076 0.833 

4 0.005 0.031 0.070 0.857 

5 0.004 0.031 0.065 0.877 

6 0.005 0.031 0.070 0.859 

7 0.005 0.031 0.068 0.868` 

8 0.005 0.031 0.068 0.866 

9 0.005 0.031 0.068 0.865 

10 0.005 0.030 0.072 0.849 

Mean 0.005 0.031 0.070 0.860 

 

 Additionally, in the ablation study, the proposed model 

demonstrated strong performance across various metrics 

compared to the only available ML model for predicting 

attenuation during dust storms at 22 GHz, as shown in 

Table 7. The comparison of performance metrics between 

Shamim et al.'s model and the proposed hybrid model 
reveals notable improvements in predictive accuracy. 
 

 

(a) MAE Model 

 
(b) RMSE Model 

 
 (c) MSE Model 

Figure 4: Performance Metrics (MAEW,RMSEand MSE) of the model 

 
 The proposed model achieved a training MAE of 0.001, an 

RMSE of 0.031, and an R² of 0.983, significantly 

surpassing Shamim et al. [8] results, which included an 
MAE of 0.0285, an RMSE of 0.0751, and an R² of 0.847. 

During the validation phase, the proposed model also 

performed well, recording a MAE of 0.005 and an RMSE 

of 0.071, while Shamim et al. had a MAE of 0.0277 and an 

RMSE of 0.0725. Although test metrics for Shamim et al. 

[8] were not available, the proposed model continued to 

demonstrate its effectiveness with a MAE of 0.005 and an 

RMSE of 0.070. 
Overall, the proposed model demonstrates good and 

consistent performance, underscoring its value in predicting 

micro and millimeter wave signal attenuation during dust 

storms.   These results further highlight the efficacy of the 
proposed hybrid model, particularly its ability to capture 

complex, time-dependent meteorological factors impacting 

signal attenuation. 

Advanced feature selection (XGBoost) and temporal 

modeling (LSTM-GRU) contribute to the model’s good 

performance over traditional methods. Moreover, 

incorporating ensemble learning methods enhances the 

model's adaptability and ensures better generalization to 

new, unseen data.  
The developed hybrid XGBoost-LSTM-GRU model in this 

study significantly improves predictions of micro- and 
millimeter wave signal attenuation during dust and 

sandstorms. By using XGBoost for feature selection, it 

effectively isolates key meteorological variables like 

visibility, temperature, wind speed, and humidity, thereby 

reducing noise in high-dimensional datasets. This targeted 

approach surpasses the feature identification methods 

employed in previous ML model-based studies [8], which 

often lack advanced techniques like stepwise elimination. 

The model's integration of LSTM and GRU layers captures 

both long-term dependencies and short-term variations of 

meteorological parameters and their impacts on signal 

attenuation, enabling it to adapt to rapidly changing 
conditions during dust storms. 

 
TABLE 7 
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PERFORMANCE COMPARISON AND ABLATION STUDY OF 

MACHINE LEARNING MODELS 

Training Performance Metric 

Model MAE MSE RMSE R2 

Shamim et al. [8] 0.029 0.006  0.075 0.847 
XGBoost 0.078 0.013 0.113 0.661 

LSTM 0.070 0.012 0.108 0.748 

GRU 0.072 0.012 0.111 0.731 

XGBoost + LSTM 0.030 0.002 0.046 0.975 

XGBoost + GRU 0.031 0.002 0.047 0.977 

Proposed Model 0.001 0.020 0.031 0.983 

Validation Performance Metric 

Model MAE MSE RMSE R2 

Shamim et al. [8] 0.028 0.005 0.073 0.852 

XGBoost 0.081 0.015 0.122 0.601 

LSTM 0.064 0.011 0.104 0.708 

GRU 0.065 0.012 0.108 0.681 

XGBoost + LSTM 0.034 0.006 0.074 0.853 

XGBoost + GRU 0.034 0.005 0.072 0.859 

Proposed Model 0.005 0.031 0.071 0.863 

Test Performance Metric 

Model MAE MSE RMSE R2 

Shamim et al. [8] NA NA NA NA 

XGBoost 0.077 0.013 0.116 0.612 

LSTM 0.062 0.009 0.097 0.730 

GRU 0.063 0.010 0.099 0.720 

XGBoost + LSTM 0.032 0.004 0.071 0.856 

XGBoost + GRU 0.033 0.005 0.072 0.856 

Proposed Model 0.005 0.031 0.070 0.860 

 

 
TABLE 8 

COMPARISON OF RMSE  AMONG EMPIRICAL, MATHEMATICAL, 

AND PROPOSED MODELS  

Model RMSE 

Goldhirsh et al. [14],[35] 5.99 

Ahmed et al. [14],[10] 5.82 

Zain et al. [14],[36] 4.41 

Sharif et al. [14],[12] 4.49 

Eltahir et al. [14] 0.22 

Elfatih et al. [14],[8] 0.17 

 

Proposed Model 0.07 

 

Unlike traditional theoretical and empirical models that 

struggle with the physical complex characteristics of dust 

storms, this hybrid approach leverages machine learning's 

strengths to enhance predictive performance across diverse 

atmospheric conditions. Overall, the proposed model offers 
a robust framework for accurately modeling signal behavior 

during extreme weather events, paving the way for future 

research in this area. However this approach requires a 

large number of real time measurement data for the region 
where the model needs to be utilized. Data availability 

could be a challenge for accurate prediction. 

 

IV CONCLUSION  

Various models have been developed to predict attenuation 

caused by sand and dust storms theoretically and 

empirically based on two meteorological parameters, 

namely visibility and humidity. However these models are 

found unable to predict most of the attenuation 

measurements. The meteorological parameters and received 

signal strength of a 22 GHz microwave link in Khartoum, 

Sudan, were concurrently monitored over one month 

period. Variations in signal levels were analyzed in relation 

to atmospheric pressure, visibility, temperature, wind 
speed, and relative humidity. A hybrid ensemble model 

combines XGBoost for feature selection with LSTM and 

GRU layers for temporal learning was used to predict the 

dust storm attenuation. The analysis shows a strong 

correlation between meteorological parameters and dust 

storm attenuation. The model’s performance is validated 

against the measured data at 22 GHz. The RMSE for the 

proposed model is 0.07, while that for all existing 

theoretical and empirical models are varied from 0.22 to 

2.84. This hybrid machine learning approach offers a more 

accurate and robust solution for predicting microwave and 

millimeter wave attenuation during dust storms, enhancing 
the reliability of communication systems in affected 

regions. However this approach requires a large number of 

real time measurement data for the region where the model 

needs to be utilized. Data availability could be a challenge 

for accurate prediction. Future works will focus on 

expanding the dataset to include different geographic 

locations, enhancing the thereby improving the model’s 

ability to generalize to other environmental conditions. 

Additionally, more advanced temporal models, such as 

transformers, are planned to be explored to further capture 

long-term dependencies. 
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