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ABSTRACT Respiratory frequency and volume are essential physiological signals for diagnosing and 

managing respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Wearable 

devices have emerged as a transformative tool for continuous, non-invasive respiratory monitoring and data 

portals, providing massive real-time data critical for both clinical and home settings. This state-of-the-art 

review delves into the advancements and applications of wearable respiratory monitoring devices, 

specifically focusing on inertial measurement units (IMUs), piezoresistive sensors, and optical fiber sensors. 

Detailed analyses of sensor designs, sensing methods, and clinical applications are presented, highlighting 

key studies such as the development of low-cost IMU devices for breathing frequency monitoring and the 

integration of piezoresistive sensors for real-time respiratory rate detection. This review identifies major 

challenges, including power efficiency, ergonomic design, data accuracy, and data privacy concerns, and also 

introduces innovative solutions proposed in recent research. Future research directions are suggested to 

address these challenges and further enhance the capabilities and reliability of wearable respiratory 

monitoring devices. This review underscores the potential of wearable technology to improve patient 

outcomes and resource cost burdens through early diagnosis and data creation towards continuous health 

monitoring and artificial intelligence applications. 

INDEX TERMS Wearable respiratory monitoring; Inertial measurement units (IMUs); Piezoresistive sensors; Optical fiber 

sensors; Chronic obstructive pulmonary disease (COPD); Non-invasive monitoring; real-time health monitoring; Respiratory 

frequency detection; Continuous health monitoring; Sensor technology in healthcare. 

 INTRODUCTION 

Chronic Respiratory diseases (CRDs) are among the most 

prevalent noncommunicable diseases globally, impacting 

over 545 million people as of 2017 [1]. The most common 

CRDs are asthma, chronic obstructive pulmonary disease 

(COPD), occupational lung diseases, and pulmonary 

hypertension. According to World Health Organization, 

CRDs account for 4.1 million deaths annually, comprising 

approximately 10% of all noncommunicable disease 

fatalities. Within England, the National Health Service (NHS) 

has reported chronic respiratory disease as the most 

significant cause of death. As such, CRDs impose a 

substantial economic burden globally [2]. In particular, 

asthma and COPD cost the NHS an estimated £3 billion and 

£1.9 billion each year, respectively, demonstrating the 

overwhelming financial strain these conditions place on the 

medical system [3, 4]. Given this burden, steps must be taken 

to utilize technology and new discoveries to improve 

prevention, treatment, monitoring, and chronic management 

of these conditions [5]. 

Traditionally, the diagnosis and treatment of respiratory 

diseases involves invasive and time-intensive methods, such 

as spirometry, plethysmography, pneumography and 

capnography [6]. There are many situations in which the 

sudden-onset, location, and urgency of respiratory distress 

may not allow for the use of such costly and prolonged 

methods [7]. As such, it may be critical to use other more 

accessible and cost-effective methods to assess a patients’ 

physical and respiratory health. Respiratory rate (RR) may 

be one such metric to facilitate understanding health 

conditions quickly and even predict the onset of serious 

clinical events [8, 9]. RR may also serve as a metric to predict 

the onset of serious clinical events including risk assessment 
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for cardiopulmonary arrest and post-acute myocardial 

infarction [10-12]. Some have even shown that RR is the 

most optimal index compared to other vital measurements to 

identify high-risk patient groups [13]. 

As medicine evolves towards a more preventative 

healthcare framework, there is a growing emphasis on 

continuous health monitoring and assessment beyond the 

hospital walls. The delivery of healthcare screening, 

diagnosis, and monitoring from home is particularly relevant 

in an aging population with a greater rate of chronic medical 

conditions. 

Wearable devices play a crucial role in meeting the 

demand for this non-clinical, continuous health monitoring 

and show significant potential in healthcare [14-16]. The 

rapid advancement of wearable technology, fueled by the 

simultaneous advancements in artificial intelligence (AI) and 

large language models (LLMs), has led to a diverse array of 

commercially available devices capable of health monitoring. 

These devices enable patients to continuously monitor their 

RR, heart rate (HR), apnea conditions, and more from the 

comfort of their homes. Such innovations not only bring 

significant convenience to daily life but also profoundly 

impact the current healthcare landscape [17, 18].  Moreover, 

with the advancement of Internet of Things (IoT) technology, 

wearable devices can establish a comprehensive loop of data 

collection, analysis, feedback, and response. This integrated 

system facilitates the development of a more intelligent and 

user-friendly health monitoring and management framework, 

ultimately enhancing users’ health outcomes and quality of 

life [19-22]. It is worth mentioning that in the study of 

Mohsen et al., they proposed a new IoT wearable sensor node 

which was powered by solar energy. In addition, the 

experiment has proved that the system can continuously 

monitor the user's important vital signs for a long time, 

offering a novel solution to the battery life challenges 

commonly faced by wearable devices and demonstrating the 

application potential of clean energy in health monitoring 

[23, 24]. 

CDRs offer a uniquely rich application for wearable 

technology which can monitor the respiratory function of 

patients from home [25]. The portability and comfort of 

today’s wearable devices allow for the easy collection of 

large amounts of human physiological signals in a non-

invasive way. This capability is further enhanced by 

advancements in sensor miniaturization technology, 

allowing for the production of increasingly smaller, 

ergonomic, convenient, and more efficient devices [26]. 

While numerous advancements have been made in the 

collection of respiratory data from home in a short amount 

of time, there are many barriers to overcome including 

battery life, material allergy, Bluetooth compatibility, 

usability, and data privacy.  

A thorough background is presented on the development, 

testing, and analysis of respiratory wearable devices. 

Ultimately, a foundation is provided for the growth of future 

respiratory wearable device development. Such devices have 

the potential to reduce burden on the primary care system, 

facilitate health monitoring for patients in remote settings, 

and improve access to pulmonary screening.   

II. WEARABLE DEVICES BASED ON IMU SENSOR 

An inertial measurement unit (IMU) is an electronic device 

which typically comprises sensors like accelerometer, 

gyroscope and sometimes maybe contain a magnetometer. 

Magnetometer measures the strength of magnetic field and 

direction in the surrounding environment. Its working 

principle involves detecting the effect of magnetic field on a 

magnetically sensitive material within the device, which then 

generates an electrical signal proportional to both the 

strength and direction of the magnetic field. Accelerometer 

measures the object’s changes in acceleration and is 

commonly based on Micro-Electro-Mechanical Systems 

(MEMS) technology. The working principle of an 

accelerometer mainly relies on the displacement of a mass 

under the influence of external forces, which is then 

converted into an electrical signal corresponds to the 

acceleration. The gyroscope measures the object’s changes 

in angular velocity and orientation, and operates based on the 

Coriolis effect. When the sensor rotates, the vibrating mass 

experiences a deflection, which is subsequently transformed 

into an electrical signal corresponding to the angular velocity. 

Given its compact size and affordability, IMUs are widely 

used in wearable devices [27]. In the past decade, 

advancements in electronic sensor technology have 

significantly improved IMU accuracy. As a result, IMU’s are 

now employed in the clinical setting to measure physical 

signals, vital signs, and assist in patient recovery [28-30]. 
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FIGURE 1. (A) Equipment Components, and the sensor‘s placement. Each sensor communicates via Bluetooth and connects with a personal 

computer[31]. (B) The appearance information of the patch wearing device [32]. (C) Placement of two sensor nodes [33]. (Node 1 in black placed on 

abdomen, node 2 in red placed on thorax) (D) Shape and placement of each sensor [34]. (E) Positions of each sensor and an example of testing Z-axis 

acceleration records from one volunteer [35]. (F) Conceptual flow and components of the wearable device [36]. 

 

One such application of an IMU device is the Magnetic, 

Angular Rate, and Gravity (MARG) system which was used 

by Cesareo et al. to measure the movement signal of breathing. 

[31] The device consisted of three sensor units and one 

receiving unit that communicated via Bluetooth to a personal 

computer, as shown in the figure 1 (A). Data from each sensor 

were transmitted to a PC via Bluetooth and then analyzed via 

MATLAB. Data were then resynchronized, smoothed with a 

five-order moving average filter, and filtered with a 0.05-2 Hz 

band-pass filter and an IIR Butterworth filter. Among the four 

components of each obtained quaternion, the one containing 

the most significant breathing information was selected for 

identifying each breath in a semi-automatic way. These data 

were then compared with Optoelectronic Plethysmography 

(OEP) to assess accuracy. The experiment result showed 

strong correlation values (R² > 0.88) and low percentage errors 

(<5%) for all time-based parameters. This work was, however, 

limited by small sample size and measurement exclusively 

under static conditions. Therefore, results may not be 

generalizable to real-world, dynamic settings. 

Wang et al. [32] designed a patch consisting of a 3-axis 

accelerometer, gyroscope, and an electrocardiogram sensor 

(Figure 1B), which could be used for real-time and long term 

monitoring. Device use was monitored using a RR acquisition 

algorithm which served to recognize, denoise, and reconstruct 

respiration signals under a dynamic state. This is achieved by 

use of a Kalman filter followed by the use of a Variance 

Characterization Series (VCS) to segment the signal to 

distinguish the deviant slices and locate the abnormal 

variations. The device was tested on 7 patients and compared 

with other similar devices, showing that the new algorithm had 

higher accuracy and robustness (MAE=0.11) than other 

similar devices. Therefore, the patch sensor wearable device 

could be used for the long-term monitoring in daily life. 

Similarly, Elfaramawy et al. [33] proposed a real-time, low-

power wireless wearable measurement system for the 

detection and monitoring of cough and breath patterns. The 

monitoring system had two different types of acquisition 

nodes, a base station, and a PC host (Figure 1C). Acquisition 

node 1 was located on the chest and was equipped with a 

microphone and an IMU sensor. Node 2 was located on the 

abdomen and was equipped with an IMU sensor only. The 

data obtained by the two sensors was transmitted to the base 

station through the wireless module and then processed by 

MATLAB. Firstly, a 3-second window was used to calculate 

the average displacement angle and remove body movement 

artifact. The data was then filtered by a 20th order low-pass 

FIR with a cut-off frequency of 2 Hz. The high-frequency 

components, associated with artifact, were eliminated by 

decimating the ventral cavity angle to 5 Hz. The baseline drift 

was eliminated with a first-order high-pass filter of 0.01 Hz. 

For cough detection, all data below a predetermined threshold 

coefficient was set to zero to eliminate the noise floor to detect 

cough. Although this wearable system had low power 

consumption, the 100 mAh lithium-ion battery was not 

enough to meet the needs of the device for extended 

monitoring sessions. In addition, this equipment could be 
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affected by environmental noise, causing inaccurate 

measurement.  

Existing monitoring systems are generally effective at 

monitoring RR under static conditions but struggle to 

accurately monitor RR during dynamic conditions due to 

motion artifacts. Angelucci & Aliverti [34] proposed a 

wearable device system based on an inertial sensor, which can 

estimate the breathing rate under static and dynamic 

conditions at the same time. Their device was composed of 

three inertial sensors which were placed on the chest, abdomen 

and back (Figure 1D) which were used to detect chest wall 

vibrations associated with breathing. The data was transmitted 

to the smart device through the ANT communication protocol 

and processed. Principal component analysis was used to find 

the component with the largest variance as the respiratory 

signal. To smooth and denoise the signal, a third order 

Savitzky-Golay FIR filter was used. After processing, the 

maximum and minimum values of the signal were detected to 

determine the respiratory frequency.  The study was conducted 

on 20 healthy volunteers, and this small sample size may not 

be representing the general population, especially those with 

health conditions. Expansion of the research experience and 

sample size and further validation is required prior to 

applicability in practical healthcare environments. 

There is a large body of research showing that IMUs can 

accurately record mechanical signals caused by chest wall 

vibrations and respiratory movements, but there is little 

research on the optimal anatomical placement of IMUs. To 

address this, Romano et al. [35] used inertial measurement 

units (IMU) to monitor the heart and lung signals at five 

different locations of the chest to determine the best 

monitoring location. The size of the IMU sensor was 

36x30x22 mm (Figure 1 (E)). MATLAB was used to pre-

process the data obtained by the IMU sensor. Each axis of 

the five IMU sensors was filtered by a continuous wavelet 

transform for band-pass filtering. Then, the Hilbert envelope 

was applied to the signals in the range of 10-40 Hz. 

Successively, a Butterworth band-pass filter was applied to 

filter the signal between 0.7-3 Hz to emphasize AO events.  

To determine the optimal position for the IMU sensor, 

Welch's overlapped segment averaging estimator was used 

to obtain the power spectral density (PSD) of the five signals 

in the frequency domain. Then normalizing the five PSDs 

and selecting the highest spectrum to evaluate the signal 

quality at each position and direction. Wearable respiratory 

monitoring holds potential as a valuable tool for tracking 

breathing patterns in individuals with obstructive sleep apnea 

(OSA), a condition characterized by the collapse of the upper 

airway or cessation of central respiratory drive during sleep. 

Wearable devices could play a pivotal role in the monitoring 

and even diagnosis of OSA given that 80-90% of patients are 

affected but remain undiagnosed. [37, 38] To address this 

gap,  Hayano et al. [39] developed an IMU-integrated 

smartwatch to detect breathing patterns during sleep 

associated with OSA. Their algorithm was successful in both 

identify OSA events and grading their severity.  Further 

testing should be completed in a more diverse cohort of 

patients with varying age, body habitus, comorbidities, and 

degrees of OSA.  

To address the impact of non-breathing motion on inertial 

sensors, Zabihi et al. [36] developed and tested novel data 

fusion technology for wearable multi-sensing patches. 

(Figure 1F). The device consisted of an accelerometer to 

detect diaphragm movement associated with breathing and a 

flexion sensor to detect muscle stretch. IMU sensor data was 

then used to remove respiration-related artifacts from flexion 

sensor data, thus enabling accurate respiration detection 

during body movement. When tested in healthy volunteers 

(n=6, 3 men, 3 women) in the supine, right lateral, and left 

lateral positions, the device performed with an accuracy and 

reliability comparable to gold-standard spirometry methods.  

III. WEARABLE DEVICES BASED ON PIEZORESISTIVE 
SENSOR 

The piezoresistive sensor is composed of elastic components, 

compensation resistors, cables, and shells. The sensor 

functions by producing a resistance value which changes 

with the pressure exerted by the outside word. The high 

accuracy, fast response, low price and long service life of 

piezoresistive sensors make it an optimal mechanism for 

medical monitoring including HR, RR, and other 

physiological conditions [40-42]. 
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Figure 2. (A) Wearing method and show that two volunteers wearing the device around chest [43]. (B) 3D printed prototype of the device and the flow 

chart for mobile application [44]. (C) Schematic diagram of the structural device and physical information diagram of the device [45]. (D) Structural 

diagram of experimental equipment [46]. (E) Illustration of the sensing device monitoring physiological signals of individual’s body [47]. 

 

Chu et al. [48] proposed a compact and user-friendly 

wearable piezoresistive sensor to monitor breathing rate and 

volume of those with chronic respiratory diseases. The 

device was tested on participants under both resting and 

exercising conditions, demonstrating its capability to 

accurately measure breathing volume and rate in stationary 

conditions and ambulatory conditions. 

Similarly, Vanegas et al. [43] developed a wearable 

system comprised of piezoresistive sensors encapsulated in a 

3D printed case to monitor breathing rate. The system was 

tested on 21 participants in different modes and the wearing 

method showed in the figure 2 (A). The sensing system used 

a sampling frequency of 50 Hz to obtain test data and 

transmitted the data via Bluetooth to ultimately be processed 

offline using MATLAB. First, a 0.5 Hz low-pass filter was 

applied to eliminate high-frequency noise to smooth the 

signal. In order to protect the sensor from external 

interference or interference signals caused by the tester’s 

own movement during the test, linear fitting was performed 

on each signal to eliminate these interference factors. To 

obtain respiratory frequency from these voltage signals, the 

authors proposed two algorithms. One algorithm was based 

on the time difference between consecutive zero-crossings, 

using the average time difference between pairs of zero-

crossings to calculate RR. The other one was based on 

continuing the number of crosses by zero. And then 

calculated the RR by obtaining the number of zero crossings 

within window time. Their respiratory measurement system 

showed low errors at different breathing rates, verifying the 

reliability and effectiveness of the wearable system in 

practical applications. In addition, it provides open design 

and data resources to promote further research in this field. 

Flexible piezoresistive sensors have also been used to 

monitor RR and peak respiratory flow rate, demonstrating the 

feasibility and development potential of this device in the 

monitoring and management of chronic respiratory diseases 

(Figure 2B). [44] The experiment used Knudson's standard 

calculation equation to obtain the expected peak flow rate that 

was 616 L/min, and divided it into three areas: green, yellow, 

and red. The green area was 80%-100% of the expected peak 

flow, indicating that the tester is healthy. The yellow area and 

red area were 50%-80% and 0-50% of the expected flow value 

respectively. The yellow area warned of some dangerous 

situations, and the yellow area indicated that the tester had a 

health emergency or was suffering from a serious disease. The 

experimental demonstrated the potential of this device in 

health monitoring and telemedicine, offering a viable solution 

for treating and managing chronic lung diseases. 

Additionally, microelectromechanical system-based 

pressure sensors, a specific type of piezoresistive sensor, was 

used to simultaneously measure RR and pulse fluctuations. 

[45] This study utilized eyeglasses with a pressure sensor 
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integrated into the nose pads to measure RR and HR through 

nasal vibrations caused by people breathing and the pulse of 

the angular arteries as shown in the figure 2 (C). This novel 

technology was able to consistently detect movement 

associated with a breath. Specifically, the vibration 

frequency range caused by breathing movement was 

approximately 100-400 Hz. As such, the respiratory signal 

could be extracted by using a 100 Hz high-pass filter. Tests 

on the volunteers, the effectiveness of the device in 

measuring pulse waves and RR was verified, providing an 

effective solution for the simultaneous monitoring of 

multiple vital signs.  

It is also possible to accurately detect RR under sedentary 

and ambulatory conditions using a polymer piezoresistive 

airflow sensor. [46] The sensor showed excellent sensitivity 

and detection range in experiments. To verify the accuracy 

of the results, the authors compared the results with the 

experiments using a laser doppler vibrometer and found that 

they were highly consistent. This research paves the way for 

subsequent highly sensitive all-polymer sensors for use in 

the medical field. 

Research on flexible wearable sensors has since received 

widespread attention and significant developed. Building 

upon prior achievements, Li et al. [47] developed a multi-

modal piezoresistive sensor using cotton fiber as the basic 

material and polypyrrole (PPy), a polymer with good 

electrical conductivity, as the conductive material. This 

sensor was designed for both sound detection and respiratory 

monitoring. Preliminary testing included movement tracking 

on a variety of body parts which demonstrated excellence in 

monitoring weak physiological signals of the human body. 

Further investigation revealed that the sensor can not only 

monitor static breathing but also dynamic breathing. As a 

multi-mode piezoresistive sensor, the CA@PPy sensor 

provided a new development idea for multi-functional 

integrated sensors. 

This work was further expanded by Y. Li et al. [49] 

through the development of a degradable and breathable 

high-performance interdigital piezoresistive sensor. The 

sensing material of this device was comprised of reduced 

graphene oxide, silk fiber, and carbon cloth. In experimental 

tests, it has shown excellent characteristics of high sensitivity, 

wide response range, fast response, and fast recovery. The 

author also conducted a series of experiments, placing the 

sensor on different body positions of the human body such 

as the wrist and throat to detect its function (Figure 2E). The 

experimental results showed that the sensor can effectively 

detect weak physiological signals of the human body, 

demonstrating that piezoresistive sensors have great 

prospects for use in wearable sensing monitoring devices. 

IV. WEARABLE DEVICES BASED ON OPTICAL FIBERS 

Optical fiber sensors detect changes in physical signals 

(chemical or biological parameters) through variations in 

light transmitted through optical fibers. They can transmit 

signals over long distances without causing obvious signal 

attenuation or loss. Due to their small size, light weight, low 

power consumption, and easy installation, these sensors are 

now widely used in the medical field. Additionally, their 

wide response range and fast response capability make them 

suitable for dynamic measurement and real-time monitoring. 

[50-52] Therefore, optical fiber sensors hold significant 

promise and practical value for long-term monitoring 

projects. 

Specifically, fiber Bragg gratings, a type of optical sensor, 

are a key component to non-invasive measurement of human 

physiological parameters using wearable devices. [53-56] 

Compared to traditional electrical sensors, fiber Bragg 

gratings are not subject to electromagnetic interference and 

are not easily corroded. Additionally, as a wavelength-

modulated optical fiber sensor, they modulates the fiber 

Bragg wavelength through external physical parameters to 

obtain sensing information. [57] Therefore, unlike traditional 

fiber optical sensors, the accuracy of fiber Bragg grating 

sensors is unaffected by light source intensity and is less 

affected by environmental conditions. 
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Figure 3. (I) Components of the sensing equipment and illustration of the scene layout [52]. (II) Experimental setup and the appearance of the device 

[58]. (III) Appearance display of the respiratory device and A volunteer’s test process demonstration [59]. (IV) The schematic diagram of the mattress 

structure [60]. (V) Schematic diagram of the device and the wearing method [61]. 

 

Fiber Bragg grating sensors have been used for the detection 

of RR. [62] In order to ensure the sensitivity of the fiber 

grating to changes in relative humidity, the sensing element 

was made of hygroscopic coating material. The study 

conducted experimental tests on six healthy volunteers to 

evaluate the feasibility of the device for monitoring. The 

testers followed the requirement of 10 s of apnea followed 

by 30 s of slow breathing, normal breathing, and fast 

breathing respectively. The obtained data were then 

processed through MATLAB. The signal was first 

segmented and then filtered through a third-order 

Butterworth low-pass filter. The cut-off frequency for the 

data collected by slow breathing and normal breathing is 2 

Hz, and the cut-off frequency of the data signal collected by 

fast breathing is 5 Hz. All signals were then normalized, and 

finally the normalized signals were peak monitored using a 

custom algorithm developed by Massaroni et al. [63] The 

final experimental results showed that the device can 

monitor slow breathing and normal breathing very well but 

has a larger error in monitoring fast breathing. 

Additionally, a lightweight wearable system composed of 

4 flexible sensing modules based on FBG technology was 

used to monitor respiratory function in patients with 

hemiplegia. [52] The wearable system uniquely used a 

modular anchoring system so that it could adapt to any 

human body habitus or positioning. The device system 

overlay as shown in the figure 3 (I). The feasibility of the 

device was evaluated by monitoring normal breathing and 

rapid breathing in 7 hemiplegic patients demonstrated great 

performance (error < 6%) in monitoring RR. 

Building upon this work, Issatayeva et al. [58] developed 

an optical fiber-based smart textile product for real time RR 

detection. From the figure 3 (II), it showed that the system 

used two elastic bands arrayed with 5 fiber optic grating 

sensors on the chest and abdomen to monitor the RR. 

Experiments conducted on volunteers (n=2) under resting 

and dynamic conditions utilized a specific algorithm to 

reconstruct breathing patterns. When compared with the 

commercial VibSensor app, the results showed high 

accuracy in monitoring respiratory movements. This 

research advances wearable textile technology for 

continuous monitoring of biophysiological signals and 

personalized health management. 

Traditional sensing devices based on sensitive materials 

face significant challenges in maintaining repeatability and 

consistency. W. Bao et al. [59] proposed a new type of 

ultrafast response compact optical fiber humidity sensor that 

did not require the cooperation of other sensitive components 

to monitor human breathing. The sensor was tested on a 

volunteer across four breathing modes: normal breathing, 

deep breathing, fast breathing, and random breathing showed 

in the figure 3 (III) above. The device was found to achieve 

high-precision breathing monitoring with the ability to self-

compensate for temperature and system power. The 

eccentric fiber Bragg grating humidity sensor exhibited 

superior reliability, long-term stability, high sensitivity, fast 

response, and excellent robustness, indicating its significant 
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potential for wearable devices in monitoring respiratory 

physiological signals. 

Further application of optical fiber sensors includes the 

use of a stretchable polymer fiber with a sandwich-like 

structure embedded into mattresses to monitor RR and HR 

during sleep [60]. The new polymer fiber integrates a 

silicone tube filled with polydimethylsiloxane and two 

commercially available polymethylmethacrylate optical 

fibers. The mattress is made of 5 different layers of materials 

with the fiber optic sensor located between the latex layer 

and the PVC layer of the mattress. The middle layer of the 

mattress has bulges or depressions at specific locations to 

increase the sensitivity of the mattress to external pressure. 

To evaluate the feasibility of its sleep monitoring mattress, 

the author conducted an experimental test on 10 volunteers, 

allowing them to collect data in different sleeping positions 

at a sampling frequency of 200 Hz. The collected data were 

processed through a Butterworth filter to extract respiratory 

signals and heartbeat signals. Experimental results showed 

that the maximum absolute errors of respiration and 

heartbeat are less than once per minute and twice per minute, 

and the maximum relative errors are 4.1% and 1.6% 

respectively, which verified the stability and reliability of the 

device for continuous monitoring.  

Lastly, Min Shao et al. [61] proposed a single-mode 

seven-core optical fiber wearable sensor with a gourd-like 

structure to monitor human breathing in real time. Seven-

core optical fiber (SCF) is composed of a central core and 6 

peripheral cores. SCF enhanced the correlation between 

environment and interference cause its multi-core structure 

supports multiple supermodel distributions. This breath 

detection system works on the principle of a change in the 

intensity of light interference caused by a change in the 

movement of the abdomen during breathing. The optical 

signal was converted to an electrical signal, and the resulting 

electrical signal was amplified and filtered by a Field 

Programmable Gate Array. Finally, the respiratory signals 

were collected by computer processing. To test the accuracy 

and suitability of the wearable device, 11 volunteers were 

tested for respiratory monitoring. The results of the 

experiment showed that the sensing device had good 

mechanical properties, and strong stability without the drift 

of signal baseline in the respiratory movement in different 

states of the test. In addition, the sensing device could be 

flexibly worn on the upper body of the wearer to achieve 

long-term effective monitoring of human respiration. 

V. CHALLENGES AND FUTURE PERSPECTIVES 

As wearable devices and communication technologies 

advance, wearable devices have significantly improved; 

however, several challenges remain:  

A. Power efficiency 

As wearable devices become smaller and more portable, space 

for batteries is reduced. Consequently, modern wearable 

devices use small-sized batteries, leading to decreased battery 

capacity and shorter usage time. To achieve long-term use, it 

is essential to balance the power consumption of each module. 

Therefore, selecting sensors and central processors that meet 

low power consumption requirements is crucial. 

B. Design and materials 

The monitoring and management of certain diseases require 

patients to wear equipment for extended periods. Therefore, 

the design of such equipment must adhere to ergonomic 

principles to prevent discomfort or pressure injury from 

prolonged use. Additionally, the selection of materials is 

crucial to ensure safety and avoid skin allergies or irritation. 

Extended wear can also lead to material abrasion; for instance, 

continuous pressure on smart textiles can damage the device 

and compromise data accuracy. Thus, it is essential to explore 

composite materials that possess high wear resistance, 

plasticity, and self-recovery capabilities. The journey to 

enhance the comfort of wearable devices remains a 

challenging endeavour. 

C. Data accuracy 

The usability and application of wearable device data is 

currently limited in integrity by the presence of motion 

artifacts and incorrect usage. Such erroneous datapoints 

ultimately impact the accuracy of the diagnostic output. 

Therefore, more robust algorithms must be generated to 

mitigate external environmental interference to enable the 

collection of more robust and accurate data for diagnostic 

interpretation. 

D. Data privacy and security issues 

With the increasing prevalence of the Internet of Things (IoT) 

and the overall digitization of the world, individuals' privacy 

is at greater risk. Wearable medical devices serve as essential 

tools for collecting human health data; however, their broader 

applications and uses are limited by challenges in ensuring 

data privacy. Wearable devices collect sensitive data about 

individuals' health assessments and treatments. This data is 

often used within business blockchains. Based on users' 

private data, relevant product recommendations or targeted 

advertisements are pushed to individuals. Furthermore, a more 

significant threat is the potential exposure of location 

information and home addresses. If such information is hacked 

or screened by larger power-brokers or governing entities, it 

can pose substantial risks to personal safety, property security, 

or even eligibility for future healthcare or financial services, 

via social credit systems. [64] Therefore, ensuring the privacy 

and security of user data is a critical challenge requiring 

focused resources, guardrails, and policy and engineering 

constraints. 

In general, wearable devices have brought convenience and 

data opportunities to people's lives in the medical and health 

field. In the future, the data provided by wearable devices may 

open doors to greater social benefits and improvements in 

quality of life, but may also carry risk. 
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VI. CONCLUSION 

Currently, numerous wearable device technologies are 

employed for remote and continuous monitoring of 

physiological signals of populations, aiding medical 

professionals in enhancing healthcare quality and fostering 

the advancement of novel intelligent, interconnected, and 

health-conscious medical systems. This article provides a 

comprehensive review of relevant sensing devices, focusing 

predominantly on the developmental prospects and 

significance of wearable devices in monitoring human 

respiratory signals. The discussion delves into devices 

utilizing IMU sensors, piezoresistive sensors, and optical 

fiber sensors, addressing the latest research advancements. 

Furthermore, persisting shortcomings are examined in 

current wearable devices designed for monitoring respiratory 

signals, while also offering insights into future developments. 

As communication and sensing technologies progress, 

wearable respiratory sensing device research enters a 

promising phase, holding significant potential for future 

medical monitoring and diagnosis, potentially augmented by 

data informing artificial intelligence pathways and 

algorithms. Anticipated developments suggest the 

integration of more sophisticated sensing equipment into 

daily life, revolutionizing the existing medical infrastructure 

to make healthy living more preventive, convenient, and 

automated. 
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Table I. Comparison of hardware facilities and service life of sensing equipment. 

Reference Energy storage Wireless technology Lifetime (Hours) Power consumption  

[23] 

Super capacitors 

which have 50 F 

total capacitance 

and a 5.4 V 

voltage rate 

BLE 2.4 GHz 100 m 46 2.13 mW 

[31] 

Lithium polymer 

rechargeable 

battery (3.7V, 

220 mAh) 

BLE 8-9 25 mA 

[32] N/A Bluetooth module N/A N/A 

[33] 

Miniature 100-

mA lithium-ion 

battery 

Wi-Fi 6 12-16.2 mA 

[34] 

These papers do not mention the above data parameters 
[35] 

[36] 

[39] 

[43] 

Lithium battery 

(3.17 V, 150 

mAh) 

Bluetooth module 3.83 N/A 

[44] N/A Wi-Fi N/A N/A 

[45] N/A N/A N/A N/A 

[61] N/A N/A N/A N/A 
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Table II.  Respiratory monitoring of wearable devices based on Inertial Measurement Unit. 

Author Year Sensor 
Number and 

size 

Sample 

frequency 
Sample size Application 

Cesaero et 

al. 
2017 

Inertial 

measurement unit 

3/ 43mm x 

28mm x 

22mm 

N/A 9 testers 
Breathing frequency 

monitoring 

Wang et al. 2018 

Accelerator, 

gyroscope, 

electrocardiogram 

sensor, temperature 

sensor 

Around 4cm 

in width and 

11 cm in 

length 

N/A 
7 testers （5 men, 2 

women) 
Respiratory rate, heart rate 

Elfarmawy 

et al. 
2019 

Inertial 

measurement unit, 

microphone, 

wireless patch 

sensor 

26.67mm x 

66.53mm 
10 kHz N/A 

Wireless respiratory 

monitoring, 

Coughing detection 

Angelucci 

& Aliveti 
2023 

Inertial 

measurement unit 
3 N/A 

20 healthy subjects 

(9 men, 11 women) 
Respiratory monitoring 

Romano et 

al. 
2023 

Inertial 

measurement unit 

36mm x 

30mm x 

22mm 

800 Hz and 

internally 

resampled at 

120 Hz 

15 healthy 

volunteers 

Cardiorespiratory 

monitoring 

Hayano et 

al. 
2024 

Inertial 

measurement unit, 
N/A 32 Hz 122 testers Apnea detection 

Zabihi et 

al. 
2024 

Accelerometer, 

resistive pressure 

sensor 

N/A N/A 
6 young adults (3 

men, 3 women) 
Breathing monitoring 

 

Table III. Respiratory monitoring of wearable devices based on piezoresistive sensor. 

Author Year Sensor 
Number and 

size 

Sample 

frequency 
Sample size Application 

Chu et al. 2019 Strain sensor 21mm x 

10mm x 5mm 

N/A 8 volunteers Respiratory rate, 

respiratory volume 

Vanegas et 

al. 

2020 Force-sensitive 

resistor 

73mm x 

45mm x 

37mm 

50 Hz 21 testers (15 men, 

16 women) 
Respiratory rate 

Saha et al. 2020 Piezoresistive 

sensor 

Dimension of 

length is 

15cm; inner 

diameter is 2.5 

cm  

1 kHz 2 testers COPD, asthma, and other 

respiratory detection and 

monitoring 

Nguyen et 

al. 

2019 Pressure sensor 0.5mm x 1mm 

x 4cm 

N/A 1 tester Measurement of pulse 

wave and respiratory rate 

Moshizi et 

al. 

2021 Polymeric 

piezoresistive 

airflow sensor 

7.5mm x 5mm 

x 2mm 

N/A 5 healthy subjects Respiratory patterns 

monitoring 

J. Li et al. 2023 Piezoresistive 

sensor 

N/A N/A N/A Sound detection, 

respiratory monitoring 

Y. Li et al. 2024 Piezoresistive 

sensor 

N/A N/A N/A Human physiological 

signals monitoring 
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Table IV.  Respiratory monitoring of wearable devices based on optical fiber sensor. 

Author Year Sensor 
Number and 

size 

Sample 

frequency 
Sample size Application 

Presti et al. 2022 Fiber Bragg grating 

sensor 

N/A 100 Hz 6 healthy volunteers 

(3 males, 3 females) 
Respiratory frequency 

Zaltieri et 

al. 

2022 Fiber Bragg grating 

sensor 

N/A 60 Hz 7 hemiplegic 

patients 
Respiratory monitoring 

Issatayeva 

et al. 

2020 Fiber Bragg grating 

sensor 

10 FBG 

sensors/5mm 

3000 Hz 2 testers (1 male, 1 

female) 

Breathing rate 

W. Bao et 

al. 

2021 Eccentric fiber 

Bragg grating 

N/A N/A N/A Breath monitoring 

L. Li et al. 2024 Stretchable polymer 

optical fiber 

N/A 200 Hz 10 volunteers Heart rate, respiratory rate 

M. Shao et 

al. 

2024 Seven-core fiber N/A N/A 11 volunteers (7 

males, 4 females) 
Respiratory monitoring 

Presti et al. 2022 Fiber Bragg grating 

sensor 

N/A 100 Hz 6 healthy volunteers 

(3 males, 3 females) 

Respiratory frequency 
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