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ABSTRACT Large Language Models (LLMs) are effective in modeling text syntactic and semantic content,
making them a strong choice to perform conversational query rewriting.While previous approaches proposed
NLP-based custom models, requiring significant engineering effort, our approach is straightforward and
conceptually simpler. Not only do we improve effectiveness over the current state-of-the-art, but we also
curate the cost and efficiency aspects. We explore the use of pre-trained LLMs fine-tuned to generate
quality user query rewrites, aiming to reduce computational costs while maintaining or improving retrieval
effectiveness. As a first contribution, we study various prompting approaches— including zero, one, and few-
shot methods — with ChatGPT (e.g., gpt-3.5-turbo). We observe an increase in the quality of rewrites
leading to improved retrieval. We then fine-tuned smaller open LLMs on the query rewriting task. Our results
demonstrate that our fine-tuned models, including the smallest with 780 million parameters, achieve better
performance during the retrieval phase than gpt-3.5-turbo. To fine-tune the selected models, we used
the QReCC dataset, which is specifically designed for query rewriting tasks. For evaluation, we used the
TREC CAsT datasets to assess the retrieval effectiveness of the rewrites of both gpt-3.5-turbo and
our fine-tuned models. Our findings show that fine-tuning LLMs on conversational query rewriting datasets
can be more effective than relying on generic instruction-tuned models or traditional query reformulation
techniques.

INDEX TERMS Conversational Search, Query Rewriting, Large Language Models, Instruction-tuned
LLMs, Fine-tuning

STATEMENTS AND DECLARATIONS
This manuscript is an extension of our Web Intelligence
and Intelligent Agent Technology 2023 contribution entitled
"Rewriting Conversational Utterances with Instructed Large
Language Models" [14]. In this extension, we build on top of
it by investigating the impact of using open-source fine-tuned
LLMs in a Conversational Query Rewriting task. Moreover,
we propose a solution that shows improved results with re-
spect to the previous work while considerably reducing its
computational impact.

I. INTRODUCTION

Conversational Query Rewriting is a main task within the
realm of Conversational Search. Conversational Search is
a machine-human interface paradigm where the user inter-
acts with a chatbot through a multi-turn, dialogue-like con-
versation. Rather than submitting queries by keywords —
as in standard search engines — the seek for information
happens by posing questions using natural language. In this
framework, the user asks multiple questions relating to the
contextual information expressed in previous interactions.
When answering a question, the conversational system needs
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to take the context of the entire conversation into account
and output a well-formed answer using natural language.
In particular, the peculiarities of conversational utterances,
including the absence of context from previous questions,
topic changes [31], [32], and inferred concepts from previ-
ous responses, affect the efficacy of traditional information
retrieval methods. The purpose of query re-writing is to ad-
dress linguistic phenomena such as ellipsis and omissions,
while maintaining useful information expressed in previous
queries [64]. Therefore, a rewriting system must grasp all
dependencies throughout the user-machine interaction and re-
formulate the user query, generating a self-explanatory query
that contains all the information necessary to retrieve themost
relevant documents for the user request. These requirements
make Large LanguageModels (LLMs) a perfect candidate for
query re-writing.

The effectiveness of LLMs in many natural language pro-
cessing (NLP) tasks is widely acknowledged; they are capable
of delivering unprecedented performance in tasks such as
summarization [19], question answering [18], [24], machine
translation [53], [67], and sentiment analysis [68], [69]. The
most famous example is ChatGPT [47], a proprietary model
from OpenAI released in 2023. ChatGPT has demonstrated
significant effectiveness in a variety of NLP tasks, such as
generating coherent and contextually appropriate text, under-
standing and responding to complex queries, and perform-
ing detailed text analysis. Its success in these areas can be
attributed to its large-scale architecture, extensive training
data, and advanced fine-tuning techniques, which enable it
to understand and generate human-like text.

Our current research builds upon the findings presented in
our previous work [14], which focuses on using Instruction-
tuned LLMs (ILLMs) to rewrite conversational queries for-
mulated by users. As a first step, we test ChatGPT on the
task of query rewriting. We use the gpt-3.5-turbo ver-
sion of ChatGPT.1 We instruct it to rewrite user queries in
a conversation by proposing a prompting approach. On the
one hand, we formulate many prompts to study their effec-
tiveness when producing rewrites; on the other hand, we try
different prompts with zero-shot and few-shot approaches,
evidencing an increase in rewriting accuracy when providing
the Instruction-tuned LLM with examples of rewritings.

In this previous work, we address the following research
questions:

RQ1: How do instruction-tuned LLMs perform in rewriting
conversational queries?

RQ2: Which prompting approach better improves conversa-
tional search results?

In this manuscript, the novel and unpublished contribution
lies in replacing ChatGPT with cheaper, in terms of resource
demands, open-source, thus increasing transparency and re-
producibility of the model, fine-tuned LLMs. In this way, we
study whether smaller, open-source models can be employed

1From now on, when referring to ChatGPT, we always refer to the
gpt-3.5-turbo model.

in a task such as Conversational Query Rewriting, and, at
the same time, study the correlation between model size and
effectiveness.
Within the aforementioned framework, we address the fol-

lowing research questions:

RQ3: Can a small, open-source LLM fine-tuned on the spe-
cific rewriting task perform as well as an optimally
prompted instruction-tuned LLM?

RQ4: Which model in the above scenario provides the best
efficiency-effectiveness trade-off?

Our goal is to improve the rewritings while decreasing the
computational costs by fine-tuning open-source pre-trained
LLMs. Fine-tuning allows for an in-depth specialization of
models for the specific task. Moreover, using open LLMs
over closed, proprietary ones offers several advantages for
users and stakeholders in general. First, open models provide
greater transparency, allowing users to study how the models
make decisions by providing access to the whole model,
which can improve trust and help to comply with regula-
tory standards. Additionally, open-source LLMs are highly
customizable, providing the flexibility to fine-tune them for
specific tasks or domains, unlike proprietary models that may
limit modifications. They also offer users more control over
their AI infrastructure and reduce long-term costs. Addition-
ally, the open-source community often provides faster in-
novation cycles, with continuous updates and improvements
driven by a broad base of contributors. Finally, open LLMs
offer more flexible deployment options, whether on-premise
or in the cloud, allowing to optimize security, privacy, and
performance.
For our experiments, we select a dataset that represents the

task we wish to perform and use it to teach the models to
do the same. We vary sizes and architectures for LLMs and
fine-tune them to rewrite conversational queries, evaluating
them on the conversational datasets provided by TREC [8].
We obtain quality rewrites, with results for custom metrics
that exceed state-of-the-art similar works [34] [61] [52]. At
the same time, we apply state-of-the-art techniques such as
quantization [10], not only to fine-tune models but also to
observe the decrease in performance vs. the gain in terms of
computational resources.
Finally, we study how different models can reach different

points in the efficiency-effectiveness space. We observe that
the highest contribution is reached by bigger models but,
in terms of average inference time vs. quality of rewriting,
we observe that the optimal trade-off can be achieved using
smaller models based on T5 [39]. Furthermore, we study
the contribution of the models throughout the conversation,
observing that the highest contribution of the models is given
for the last queries of the conversation.
To summarize, our contributions are as follows.

• We study the capabilities of Instruction-tuned LLMs in
rewriting conversational queries by designing different
prompting strategies and exploiting the capability of
retaining contextual information to rewrite user queries.
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• After establishing the capabilities of ILLMs to rewrite
queries, we fine-tune several state-of-the-art LLMs us-
ing a dataset (QReCC [4]) specifically created for query
rewriting, among other tasks, showing the impact of the
size of the selected models on both rewrite quality and
inference time.

• Finally, we test all models, both the ILLM and the
fine-tuned ones when used in a conversational retrieval
pipeline. To assess the improvements, we use the TREC
CAsT datasets, which were specifically devised to study
the retrieval effectiveness of conversational search sys-
tems. We show that by using ILLMs we increased pre-
cision up to 31.7% with respect to the state-of-the-art
(e.g., ConvGQR [34]). Moreover, we achieve even better
metric values when evaluating the fine-tuned models.
We show an increase up to 10.58% for NDCG@3 with
respect to the ILLM results.

The paper is structured as follows. Section II introduces
the methodology used throughout the research. Section III
describes the experimental evaluation adopted for our experi-
ments. Sections IV and V present the results obtained during
the two experimental phases. Finally, Section VI provides an
overview of the state of the art, while Section VIII concludes
the work and outlines the future steps of the research.

II. METHODOLOGY
We now overview our methodology. First, we define the
problem, namely Conversational Query Rewriting. We then
evaluate the rewriting accuracy of Instruction-tuned LLMs,
i.e., models trained to take prompts as input and produce
rewritten conversational queries. We then select several spe-
cific models with different sizes and pretraining, fine-tune
them, and evaluate gains. In Table 1, we report the notation
used throughout the paper.

TABLE 1. Notation.

Symbol Definition

U Amulti-turn conversation composed of a sequence of
utterances asked by a user to a conversational assis-
tant.

Θ An Instruction-tuned LLM we use for utterance
rewriting also referred to as Assistant.

Φ A pretrained or fine-tuned LLM that we use to rewrite
utterances.

ui The current original utterance at turn i in U .
ûi The current utterance rewritten by Θ or Φ.
u1, . . . , ui−1 The previous original utterances in U .
û1, . . . , ûi−1 The previous utterances in U rewritten by Θ or Φ.
ū1, . . . , ūi−1 The previous manually-rewritten utterances in U .
r̂1, . . . , r̂i−1 Responses to the previous utterances generated byΘ.
C The Context which is composed of the alternation be-

tween u1, . . . , ui−1 and û1, . . . , ûi−1, or even adding
r̂1, . . . , r̂i−1. An example can be seen in Figure 1.

E The Example comprises original utterances u1, . . . ,
ui−1 and their corresponding manually rewritten ut-
terances ū1, . . . , ūi−1.

s The scope that explains our goal to the rewriting LLM
Θ, also referred to as System.

p The actual Prompt that, given ui, specifies the instruc-
tion to Θ, namely, to rewrite the query.

A. INSTRUCTION-TUNED LLMS
We assess the rewriting capabilities of an Instruction-tuned
LLM, investigating the impact of different prompts and in-
structions on the effectiveness of a two-stage conversational
search pipeline.
A typical rewriting request consists of the following:

Θ(s, E , C, p, ui) = ûi, (1)

where s represents the scope, i.e., the general task instruc-
tions of how we want the system to behave, E is a different
conversation example from the current one, C is the context of
ui, and p is the prompt accompanying ui, which explicitly in-
structsΘ detailing the request for rewriting by adding specific
desired characteristics, for example, ‘‘concise’’, ‘‘verbose’’,
and ‘‘self-explanatory’’.

System 
Input

Rewrite the given sentence to 
be self-explanatory.

What is the definition of lung 
cancer?

Assistant

Assistant

Assistant

Assistant

System 
Answer

How do you know when your 
garage door opener is going 

bad?

How do you know when your 
garage door opener is going 

bad?

Now it stopped working. Why?

Now my garage door opener 
stopped working. Why?

What is throat cancer?

What is the definition of 
throat cancer?

Can it be treated?

Rewrite the given sentence to 
be self-explanatory.Tell me 

about lung cancer.

Can throat cancer be treated?

User

User

User

User

User

System Input
In a multi-turn dialog system, rewrite the given 
sentence to be self-explanatory following the 

pattern of the previous interactions.

What is the definition of throat cancer?

Assistant

Assistant

Assistant

Assistant

System Answer

How do you know when your garage door 
opener is going bad?

How do you know when your garage door 
opener is going bad?

Now it stopped working. Why?

Now my garage door opener stopped working. 
Why?

How much does it cost for someone to fix 
it?

How much does it cost for someone to 
repair a garage door opener?

How about replacing it instead?

In a multi-turn dialog system, rewrite the 
given sentence to be self-explanatory 
following the pattern of the previous 
interactions.What is throat cancer?

How much does it cost to replace a garage 
door opener?

User

User

User

User

User

Scope

Example

User: original 

utterance

Assistant: 
manually 

rewritten one

Context

User: original 

utterance

Assistant:


Automatically 
rewritten 
utterance

User 
Instruction

Prompt and 
current 

utterance ui

Rewritten 
utterance ûi  

FIGURE 1. Main elements of an utterance rewriting request. The Scope
indicates the task that the model should perform. The Example is the
artificial part of the interaction where the user part is the query to
rewrite, and the assistant part is the query rewritten by a human. The
Context is composed of the previous queries rewritten by our model. The
last section represents the current prompt and the output of the system.

In Figure 1, we present a visual example of a typical
rewriting request. We can see how the first block represents
the system, the second the example, and the third the context
of the current conversation, while the last component contains
the prompt and current question, followed by the answer
(rewritten utterance) provided by the assistant.
Finally, in Figure 2, we show the experimental pipeline

used to test the capabilities of Instruction-tuned LLMs to
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rewrite conversational utterances. We provide the ILLM with
different prompts and with the conversations extracted from
the evaluation set and ask the model to rewrite them to per-
form an evaluation phase.

Instruction-tuned LLMs

Prompts

Rewrites

Evaluation

ILLM Evaluation Dataset

FIGURE 2. Experimental pipeline of the Instruction-tuned LLMs. The
utterances are extracted from the evaluation dataset (TREC CAsT) and
provided to the Instruction-tuned LLM with a prompt to produce rewrites.
Finally, the evaluation phase consists of the retrieval and reranking
phases.

B. PROMPTING CHATGPT
A typical request submitted through the ChatGPT API2 con-
tains the elements detailed in Eq. 1, namely, scope, example,
context, prompt, and current utterance. For all prompts, the
example E consists of an exemplary conversation, chosen
randomly from one of the TREC CAsT datasets, not used for
the evaluation, and not related to U , where the user inputs are
the original utterances, and the assistant inputs are instead the
same utterances rewritten manually. Furthermore, the context
C consists of the previous utterances of U , where the user in-
puts are the original utterances u1, . . . , ui−1, and the assistant
inputs are instead the same utterances rewritten by the model,
û1, . . . , ûi−1.

C. FINE-TUNING LLMS FOR QUERY REWRITING
After establishing the quality of the rewritings provided by
gpt-3.5-turbo, we observe the rewriting capabilities of
LLMs when fine-tuning them. A typical model for query
rewriting consists of the following:

Φ(C , ui) = ûi (2)

Given only the context, which can also be empty in cases
of first utterances in the conversation flow, and the current
user query, we desire a model that can generate a rewritten
and more complete version of the same request. To learn this
model, we perform a fine-tuning phase.

Given a fine-tuning dataset D = {U1, . . . ,Un}, where
each conversation Uj is composed of the original interactions
between the user and the system u1, . . . , ui−1, the current

2https://platform.openai.com/docs/api-reference

utterance that we wish to rewrite ui, and the rewritten version
of each utterance û1, . . . , ûi, we organize these data to create
an input to fine-tune the model. To do so, we introduce three
special tokens itoken, qtoken, and atoken dilimiting the previous
utterances u1, . . . , ui−1, the current utterance ui, and the
rewrite ûi, respectively.

We are now able to build the input x and the expected output
yt to fine-tune any type of LLM as follows:

xi = itoken + u1, . . . , ui−1 + qtoken + ui + qtoken (3)

yt = ûi (4)

In this way, after selecting a model to fine-tune Φ, we pro-
vide it with both x = {x1, . . . , xn} and yt = {yt1, . . . , ytn},
for it to learn how to rewrite conversational utterances by
calculating the distance between the generated output yi and
the target one yti. The objective is the following:

Φ(x,yt) = Φ̂, (5)

where Φ̂ is the model fine-tuned to rewrite conversational
utterances, that is, Φ̂(xi) = ûi.

To do so, we use PyTorch and the Transformers Python
libraries. We create models Φ̂1,...,k , specifically trained to
rewrite conversational utterances without prompts. In Figure
3, we show the fine-tuning pipeline of our experiments. From
the chosen dataset, we extract the context, the current utter-
ance ui, and the rewritten version ûi that we provide to the
model to learn how to rewrite questions. Similarly, from the
evaluation dataset, we extract the conversational utterances,
rewrite them with the fine-tuned model, and evaluate them to
assess the model’s rewriting capabilities.

In practice, when using a tokenizer, we select three special
tokens from the Falcon Tokenizer (i.e. »INTRODUCTION«
as itoken, »QUESTION« as qtoken, and »ANSWER« as atoken)
and add them to the tokenizers of each selected model. At
the same time, we organize the input data by selecting only
the original previous questions u1, . . . , ui−1 and using them
as the context.

Motivating this choice is the ability to rely only on the
conversational data provided by the user. This means that
providing more input data (e.g., the answers) to the models
may result in better rewrites, but our goal is to study the
generative capabilities of the models when called in a low-
information setting. This is also done to compare the results
with those obtained using gpt-3.5-turbo, for which we
did not provide further information such as the rewritten
queries or even the answers.

Unlike the Instruction-tuned LLMs approach, here we de-
fine a method that does not rely on prompting to generate
rewrites. This means avoiding the dependence of the different
ways of formulating prompts and providing us with a more
sound and less fluctuating way of performing rewritings.
Similarly, relying on open-source models allows them to run
on private machines and also to further modify and study
the models to increase their capabilities. At the same time,
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Fine-Tuning LLMs

PLLM

Fine-tuned LLM

Rewrites

Evaluation

Fine-tuning Dataset

Evaluation Dataset

FIGURE 3. Experimental pipeline of the fine-tuning phase. The training
data are extracted from the fine-tuning dataset (QReCC) and provided to
the pre-trained LLM with a rewriting target to learn. After training the
model, we produce the rewrites of the utterances from the evaluation
dataset (TREC CAsT). Finally, we evaluate them by performing two steps:
the retrieval and reranking phases.

as we will discuss thoroughly in Section V, we manage to
significantly reduce the computational resources required to
generate valuable utterance rewrites.

III. EXPERIMENTAL EVALUATION
In this section, we describe in detail the datasets used in the
evaluation and the fine-tuning phases. We then describe the
models selected for the fine-tuning part of the experiments
and the post-processing phase. Finally, we describe the two-
stage retrieval phase we employ to evaluate the quality of the
rewrites.

A. CONVERSATIONAL DATASETS
Our experiments are based on two different sets of data sets.
On the one hand, we use the TREC Conversational Assistant
Track (CAsT) 2019 and 20203 datasets for the evaluation
phase of both the Instruction-tuned LLM and the fine-tuned
ones. On the other hand, we use the QReCC dataset for the
fine-tuning phase of the models.

a: Evaluation Dataset
For the evaluation phase of both the Instruction-tuned LLMs
and the Fine-tuned LLMswe use two datasets from the TREC
Conversational Assistance Track, the 2019 and 2020 versions.
The CAsT 2019 [9] dataset consists of 20 human-assessed test
conversations, while CAsT 2020 [7] includes 25 conversa-
tions, with an average of 10 turns per conversation. The CAsT
2019 and 2020 datasets include relevance judgments at the
passage level. Conversations are provided with original and

3Conversational Assistant Track, https://www.treccast.ai/

manually-rewritten utterances. The manually-rewritten utter-
ances are the same conversational utterances as the original
ones, where human assessors resolve missing keywords or
references to previous topics. Relevance judgments have a
three-point graded scale and refer to passages of the TREC
CAR (TREC Complex Answer Retrieval), the MS-MARCO
(MAchine Reading COmprehension) and the WaPo (TREC
Washington Post Corpus) collections for CAsT 2019 and
2020 for a total of 38,636,520 passage.
In these datasets, questions within a conversation are char-

acterized by anaphora and ellipses. They imply a large part of
the context and miss explicit references to the current topic.
Table 2 reports some examples of utterances from the CAsT
2019 dataset. We can see that manually-rewritten utterances
are concise and rephrase the original utterance by adding the
missing tokens to make it self-explanatory. On the other hand,
depending on the prompt, automatically-rewritten utterances
tend to be more verbose although well-formed natural lan-
guage questions.

b: Training Dataset
QReCC, or Question Rewriting in Conversational Context,
is a dataset designed to answer open-domain questions. It
is made up of 14,000 conversations, which include 81,000
question-answer pairs.
The dataset is derived from the questions found in TREC

CAsT, QuAC, and Google Natural Questions. While the first
two are multi-turn conversation datasets, the latter is not.
QReCC aims to provide a benchmark for end-to-end conver-
sational question answering. This includes question rewriting,
passage retrieval, and reading comprehension. In the dataset,
each query is rewritten by resolving references and other
linguistic phenomena, resulting in a context-independent ver-
sion of the original context-dependent question. Each of the
queries is also annotated with an answer and a link to the
web page that provided the answer. Each conversation in the
dataset has a uniqueConversation_no, Turn_no uniquewithin
a conversation, the original Question, Context, Rewrite, and
Answer with Answer_URL.
It is important to note that the data coming from TREC

CAsT was excluded from the QReCC data set to avoid the
possibility of injecting biases inside the fine-tunedmodels. To
address the equation 5 defined in Section II, we select QReCC
as fine-tuning dataset D. We then create an ad hoc version
of QRECC to carry out our experiment on different models,
deploying a unique way of organizing the training data and
the necessary tools. In Figure 4, we show how the fine-
tuning pipeline works following the methodology explained
in Subsection II-C.
For reproducibility reasons, we published the QReCC

dataset organized as described on the HuggingFace page4.
Similarly, all fine-tuned models are publicly available on
HuggingFace 5.

4https://huggingface.co/datasets/giuid/qrecc_raw_context
5https://huggingface.co/giuid
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TABLE 2. Example of conversation taken from the CAsT 2019 evaluation dataset. The ‘‘qid’’ column identifies the conversational turn, the first number
refers to the conversation, and the second to the dialogical turn. The ‘‘Raw utterance’’ column reports the original utterance, the ‘‘Manually-rewritten
utterance’’ column reports the human assessor rewritings, and the ‘‘Automatically-rewritten utterance’’ column reports an example of rewriting generated
by ChatGPT with our proposed prompt P5.

qid Raw utterance Manually-rewritten utterance Automatically-rewritten utterance

31_1 What is throat cancer? What is throat cancer? What is throat cancer?
31_2 Is it treatable? Is throat cancer treatable? Is throat cancer treatable?
31_3 Tell me about lung cancer. Tell me about lung cancer. Tell me about throat cancer.
31_4 What are its symptoms? What are lung cancer’s symptoms? What are the symptoms of throat cancer?
31_5 Can it spread to the throat? Can lung cancer spread to the throat? Can throat cancer spread to other areas of the

throat?
31_6 What causes throat cancer? What causes throat cancer? What causes throat cancer to spread to other

areas of the throat?
31_7 What is the first sign of it? What is the first sign of throat cancer? What are the early signs of throat cancer?
31_8 Is it the same as esophageal cancer? Is throat cancer the same as esophageal can-

cer?
Is throat cancer the same as esophageal can-
cer?

31_9 What’s the difference in their symptoms? What’s the difference in throat cancer and
esophageal cancer’s symptoms?

What are the differences in the symptoms of
esophageal cancer and throat cancer?

Training 
Inference

PLLM

Fine-tuned 
LLM

INTRODUCTION: 

“What is Tarawa?

QUESTION: 

“What was significant about that battle?”

INTRODUCTION: 

“How do you know when your garage door 
opener is going bad?

Now it stopped working, Why?”



QUESTION: 

“How much does it cost for someone to fix it?”

ANSWER: 

“How much does it cost for someone 
to repair a garage door opener?”

Target

Input

Inference

ANSWER: 

“What was significant about the Battle 
of Tarawa?”

FIGURE 4. Fine-tuning pipeline. We provide the input, constituted by the
previous utterances, the utterance to rewrite, and the target, i.e., the
rewritten expected outcome. After the fine-tuning phase, we obtain a new
fine-tuned model to which we provide the previous utterances and the
current one from the evaluation dataset to produce the rewrites.

B. FINETUNING LLMS
To fine-tune several large language models (LLMs) on the
QReCC dataset, we use PyTorch and the HuggingFace Trans-
formers library. The QReCC dataset contains conversational
questions and answers from various domains and is suitable
for teaching LLMs to handle conversational context and topic
shifts. We include the previous questions of the same conver-
sation in the input to provide additional context for the LLM.

1) The models
The models we fine-tune are Mistral-7B, Falcon-7B, Llama-
7B, 13B, Flan T5 large and XL. These models have differ-
ent architectures, sizes, and pretraining objectives. The first
model we consider, one of the few available when we started
this research, is Falcon-7B. As said above, we select the

special tokens that we use for all the models from the Falcon
tokenizer. For all models, we use the Adam optimizer with a
learning rate of 5e-06 and a batch size of 32. We run the fine-
tuning for 10 epochs and evaluate the models on the QReCC
validation set to find the best model. We now overview the
selected models and their main characteristics.
All the models listed below are available in the Hugging-

Face repository.

• Llama-2 is a collection of large languagemodels (LLMs)
that vary in size, with the largest having up to 70 billion
parameters. These models are available both pre-trained
and fine-tuned, with the fine-tuned versions optimized
specifically for dialogue use cases. For our experiments,
we tested the pretrained versions with different settings:
7 and 13 billion parameters.

• Falcon-7B is a decoder-only language model developed
by the Technology Innovation Institute, with 7 billion
parameters. Its architecture is based on the GPT-3 paper,
but it includes unique features such as rotary positional
embeddings, FlashAttention, and multiquery for effi-
cient inference. Falcon-7B is available under the Apache
2.0 license, which allows unrestricted commercial use.

• Mistral-7B is a language model created by Mistral AI
that features 7.3 billion parameters. It was trained on
the Leonardo supercomputer and incorporates advanced
techniques like Grouped-query attention and Sliding
Window Attention for efficient inference. These meth-
ods enable the model to efficiently manage larger se-
quences and respond to multiple queries at once. In
terms of performance, Mistral-7B is designed to surpass
certain benchmarks set by Meta’s Llama models.

• FLAN-T5, T5, short for Text-to-Text Transfer Trans-
former, is a model that uses a unique text-to-text ap-
proach. Instead of designing specific architectures for
each task, T5 handles every task as a text generation
problem. This includes tasks such as translation, ques-
tion answering, and classification.
The architecture of T5 is an encoder-decoder framework.
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FLAN-T5 is an advanced version of the original T5
model, fine-tuned for a range of tasks. The FLAN-T5
variants include small, base, large, XL, and XXL, each
differing in size. For our experiments, we tested the large
and XL configurations of the model.

In Table 3, we report the size of the models in terms of
parameters, the type of model, and the size calculated in terms
of times the models fit in Llama-2 13B.

TABLE 3. Description of models. The column Type refers to the type of
model, while the Comparison refers to the times the size of the model fits
into the Llama-2 13B one.

Model Parameters Type Comparison

Flan T5 - large 780M Seq2Seq 16.7×
Flan T5 xl 3B Seq2Seq 4.3×
Falcon 7B CausalLM 1.9×
Mistral 7B CausalLM 1.9×
Llama-2 7B CausalLM 1.9×
Llama-2 13B CausalLM 1×

C. POSTPROCESSING
Generativemodels have a generation ofmaximumnew tokens
hyperparameter that we set at 64. Setting this parameter,
though, does not ensure clean rewrites, and can result in
verbose responses that lead to irrelevant responses in the
retrieval phase.

To address this issue, we first observe the kind of utterances
in the evaluation datasets and decide to eliminate all the
generated text that appears after the second full stop or after
the first question mark. In fact, in many cases the question
comes after a statement (e.g., Now my garage door opener
stopped working. Why?) or the user request is composed
of two statements (e.g. No, not information about Burger
King’s acquisition. I want to know how to open a Burger King
franchise.)

In the post-processing phase, we use regular expressions
to remove all alien elements relative to the input and the extra
generated text.

D. BASELINES
We assess the retrieval effectiveness of original, manually-
rewritten, and automatically-rewritten utterances and con-
sider the following rewriting methods and baselines:

• Original utterances: raw utterances provided by TREC
CAsT.

• Manual utterances: manually-rewritten utterances by
human annotators provided by TREC CAsT.

• QuReTeC [52]: utterances are rewritten with a BiLSTM
sequence to sequencemodel trained for query resolution.

• CQR self-learn cv [62]: utterances are generated in
two steps, first with a GPT-2 model trained with self-
supervised learning to generate contextual utterances
containing few information presented in previous ut-
terances. The second step is performed with a GPT-2
model fine-tuned on manual rewrites via five-fold cross-
validation.

• CQR rule-based cv [62]: utterances are generated in two
steps, first with a rule-based approach that deals with
omissions and coreference and successively rewritten
with a GPT-2 model fine-tuned on manual rewrites via
five-fold cross-validation.

• Prompt E [30]: although the results by Mao et al. are
achieved on a different generative model, i.e., GPT-3,
we use their prompt in our experimental framework to
compare its retrieval performance with ours.

• ConvGQR [34]: as they show in their research, they test
their rewrites on CAsT 2019 and 2020 using a dense
retrieval method, namely ANCE. Given the public un-
availability of their rewrites, we replicate their method
on our generations and then compare with the results
shown on their article.

E. TWO-STAGE RETRIEVAL
To assess and contrast the various utterance rewrites, we index
the TREC CAsT collections by eliminating stopwords and
implementing Porter’s English stemmer. We employ PyTer-
rier [28] to construct the information retrieval pipeline, which
is divided into two phases:

• The initial phase carries out document retrieval on the
indexed collection using the DPH weighting model [3],
with the raw, manually, and automatically-rewritten ut-
terances;

• The subsequent phase conducts reranking of the top-
1000 candidates retrieved by the first phase using the
MonoT5 model [38] that is accessible in PyTerrier6.

We measure the retrieval effectiveness of the first stage and
of the second stage using the following metrics: Mean Re-
ciprocal Rank (MRR), Precision@1 (P@1), Normalized Dis-
counted Cumulative Gain@3 (NDCG@3), and Recall@500
(R@500). MRR and NDCG@3 are standard metrics used for
evaluation purposes in the TREC CAsT framework, while the
others are included to provide a more comprehensive evalu-
ation of the retrieval capabilities of the first-stage (R@500)
and the reranking capabilities of the second-stage (P@1).

IV. RESULTS: PROMPTING INSTRUCTION-TUNED LLMS
We now present the experimental results on CAsT 2019 and
2020 datasets achieved by prompting gpt-3.5-turbo to
evaluate the different rewriting strategies, comparing them
with the baselines.

A. FIRST-STAGE RETRIEVAL
Table 4 shows the outcomes of document retrieval using
the DPH weighting model [3]. These outcomes relate to the
first retrieval stage for both the CAsT 2019 and CAsT 2020
datasets. The performance of our methods and the baselines
vary between the results obtained for the original utterances
and those that have been manually rewritten.
For CAsT 2019, P5 is the best-performing prompt in terms

of MRR while P1 is the best-performing prompt for Preci-

6https://github.com/terrierteam/pyterrier_t5
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TABLE 4. First-stage retrieval results in terms of MRR, P@1, NDCG@3 and R@500 on CAsT 2019 and CAsT 2020 datasets. In bold, we report the best results
achieved for each metric, except Manual. We mark statistically-significant performance gain/loss, calculated with the two-paired t-test (p-value < 0.05)
with Bonferroni correction, of our methods with respect to the QuReTeC and CQR self-learn cv baselines with the symbol † for the first, and ∗ for the latter.

Prompt CAsT 2019 CAsT 2020

MRR P@1 NDCG@3 R@500 MRR P@1 NDCG@3 R@500

Manual 0.675∗ 0.549 0.400∗ 0.737∗ 0.622† 0.505† 0.328† 0.668†
Original 0.333∗ 0.2254∗ 0.162∗ 0.382∗ 0.218† 0.159† 0.100† 0.253†

P1 0.633 0.526 0.366 0.645 0.535† 0.423† 0.251 0.571
P2 0.589 0.462 0.292 0.578∗ 0.484 0.375 0.241 0.549
P3 0.613 0.509 0.336 0.604† 0.458 0.315 0.215 0.501
P4 0.622 0.512 0.345 0.631 0.430 0.332 0.211 0.496
P5 0.636 0.515 0.333 0.650 0.478 0.389 0.227 0.513

E 0.584 0.480 0.309 0.577† 0.452 0.356 0.218 0.503

QuReTec 0.625 0.491 0.349 0.670 0.440 0.322 0.215 0.516
CQR self-learn cv 0.592 0.468 0.334 0.662 - - - -
CQR rule-based cv 0.563 0.416 0.311 0.657 - - - -

sion@1 and NDCG@3. For R@500. the QuReTec baseline
is the best-performing method. When conducting the sta-
tistical significance evaluation using a two-paired t-test (p-
value <0.05) with the Bonferroni correction [45], the results
obtained by our prompts are not statistically different from
the state-of-the-art baselines, except for R@500 for P2, P3,
and E.

Better results are obtained when rewriting the utterances
of the CAsT 2020 evaluation dataset. The best-performing
rewriting method is based on P1, where all metrics show
significant gains over the QuReTec baseline. For P@1 and
MRR, the improvement achieved by P1 is statistically sig-
nificant compared to the QuReTec baseline, with a 21.6%
gain in MRR and 31.7% in P@1. NDCG@3 and R@500
increase by 17.1% and 10.6%, respectively. We remind the
reader that P1 also takes into account the generated answers
to the previously rewritten questions to produce the current
rewriting. In fact, it is important to note that, unlike CAsT
2019 where most relevant concepts could be found in the
previous utterances, for CAsT 2020, some missing relevant
concepts that complete the context, can be found only in the
responses and not in the utterance history. Results show that
by generating the answers to the user requests and instructing
the model to use them in the rewriting phase, we achieve
better results.

B. SECOND-STAGE RETRIEVAL
Table 5 shows the end-to-end results achieved with CAsT
2019 and 2020 when performing document re-ranking using
the MonoT5 model in the second-stage retrieval pipeline.
We hypothesize that because our rewriting techniques pro-
duce verbose and well-formed utterance rewritings, it would
be advantageous to use a LLM-based model such as T5,
so as to effectively utilize the information added by the
gpt-3.5-turbo model. We can observe that the perfor-
mance achieved by the generated rewritings surpasses the
results obtained by the CQR and QuReTec competitors for
prompts such as P1, P5 for CAsT 2019, and for all prompts

for CAsT 2020. The best-performing method for CAsT 2019
is P5, with anMRR of 0.8119 (3.3% increase), P@1 of 0.7283
(5.9% increase), NDCG@3 of 0.5343 that is slightly higher
than the one provided by QuRETec, i.e., 0.5330. In line with
the first stage, also in the second-stage retrieval, the results
are better than the QuReTec baseline, except for R@500.
although not statistically significant. When considering the
CAsT 2020 evaluation dataset, our rewriting methods show
considerable improvements after reranking. In this case, we
have a clear winner, i.e., P1, for which all metrics improve
over QuReTec in a statistically-significant way. The MRR
increases by 25.2%, the P@1 by 31.7%, the NDCG@3 by
27.0%, and the R@500 by 11.5%. Also, for P2, we have
a statistically-significant improvement of 22.17% in terms
of NDCG@3. Even in the second stage of retrieval, we
achieve results as good as—or better than—state-of-the-art
competitors, confirming that instructed LLMs are effective in
rewriting utterances in a multi-turn conversational setting.

C. ANSWERING OUR RESEARCH QUESTIONS
RQ1. We affirm that using an Instruction-tuned LLM to
rewrite utterances helps the effectiveness of the retrieval sys-
tem. For the CAsT 2020 dataset, we obtain significant im-
provements over the QuReTeC baseline, while for the CAsT
2019 we achieve the same results, and in some cases, we
outperform QuReTeC and the two CQR competitors.
The results achieved also show that, although the LLMwas

not fine-tuned explicitly for utterance rewriting, it provides
competitive results compared to the state-of-the-art. This con-
firms the ability of these models to perform a variety of
tasks via few-shot learning, thus lowering the effort needed
for targeting novel tasks. In fact, custom-made models for
utterance rewriting in conversational search, i.e., QuReTec,
reach worse results on CAsT 2020 than an Instruction-tuned
LLM with well-designed prompts. We explain these results
as a consequence of the capability of an LLM to deal with
different datasets and domains, keeping a rewriting quality
higher than other systems trained on limited data, and thus,
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TABLE 5. Second-stage retrieval results in terms of MRR, P@1, NDCG@3 and R@500 on CAsT 2019 and CAsT 2020 datasets. In bold, we report the best
results achieved for each metric, except Manual. We mark statistically-significant performance gain/loss, calculated with the paired t-test (p-value
< 0.05) with Bonferroni correction, of our corresponding methods with respect to the QuReTeC and CQR self-learn cv baselines with the symbol † for the
first, ∗ for the latter.

Prompt CAsT 2019 CAsT 2020

MRR P@1 NDCG@3 R@500 MRR P@1 NDCG@3 R@500

Manual 0.885∗† 0.827∗† 0.605∗† 0.772∗† 0.816† 0.732† 0.538† 0.736†
Original 0.464∗† 0.399∗† 0.279∗† 0.406∗† 0.3301† 0.221† 0.181† 0.283†

P1 0.791 0.694 0.519 0.697 0.725† 0.639† 0.439† 0.629†
P2 0.744 0.636 0.483† 0.635† 0.676 0.596 0.422† 0.609
P3 0.738 0.665 0.487 0.642† 0.602 0.514 0.354 0.560
P4 0.758 0.653 0.516 0.671 0.609 0.524 0.360 0.547
P5 0.812 0.728 0.534 0.706 0.654 0.572 0.405 0.565

E 0.686 0.595 0.451 0.616† 0.616 0.548 0.386 0.557

QuReTec [52] 0.786 0.688 0.533 0.711 0.579 0.486 0.345 0.564
CQR self-learn cv [62] 0.778 0.705 0.529 0.694 - - - -
CQR rule-based cv [62] 0.763 0.682 0.511 0.685 - - - -

characterized by a lower generalization power.

RQ2. For what concerns the best way of prompting the LLM,
the best results are obtained with P1 for CAsT 2020 and P1
and P5 for CAsT 2019. While for some of the prompts we
clearly explicit the scope of the rewriting (e.g. ’’[...]for a re-
trieval system[...]’’ in P2), in both P1 and P5 this information
is not explicit, suggesting that this kind of instruction is not
useful to obtain better rewritings.

Moreover, in both cases, there is a clear indication of how to
exploit examples and context from the previous interactions.
The difference is that P1 explicitly asks the model to also
add previously generated answers to the context and use all
the information for generating the rewriting ûi. This proved
particularly effective in the case of CAsT 2020. This could
also be the reasonwhyQuReTec underperforms as, by design,
it only focuses on the previous utterance and does not inte-
grate the content of the answers for generating the rewriting.
Therefore, after establishing the best-performing prompts and
observing that they both make use of the context, we can con-
clude that providing examples can have a significant impact
on the model’s capabilities in performing the chosen task.

V. RESULTS: FINE-TUNING LLMS

We discuss the results obtained by the different fine-tuned
models. We test all the models listed in III-B, and after
establishing the best performing one, Llama-2-13B, we test it
by lowering the number of bits for the weight representation
to 8 and 4, respectively. Before delving into the experimental
results, we reemphasize that the primary goal of this research
is to establish the quality of fine-tuned models when rewrit-
ing conversational queries, and more importantly, to assess
whether there is a direct correlation between the model size
and the quality of results. In this way, we want to study
whether we need such big models or if we could obtain
acceptable results while using much smaller models.

A. FIRST-STAGE RETRIEVAL

Per the results discussed in Section IV, we performed two
stages of evaluation, the first is done by employing PyTerrier
as a retrieval suite, using the DPH weighting model. As a first
step, we generate the rewriting for each utterance of CAsT
2019 and 2020.
In Table 6, we report the retrieval results of the rewriting

generated with the different models. As for the Instruction-
tuned LLMs, we consider MRR, P@1, NDCG@3, and
R@500. We observe that the best-performing model for
CAsT 2019 is Llama-2-13B, with results close to those estab-
lished by manually rewritten utterances and not significantly
different from them. It should be noted that Llama-2-13B ex-
ceeds the results obtained by ChatGPT in the best configura-
tions with an increment of 3.29% for MMR, 2.21% for P@1,
4.37% for NDCG@3 and 9.91% for R@500. Similarly, we
observe the results obtained by both Flan T5 configurations.
The Flan T5-XL is the second best model, obtaining similar or
better results than the one obtained with gpt-3.5-turbo,
with an increment of 9.9% for R@500. It is also interesting to
note that using an 8-bit quantized version of the same Llama-
2-13Bmodel provides good quality results while reducing the
model size by four times.
For what concerns CAsT 2020, as observed before in the

literature, the retrieval results are lower when compared with
themanually rewritten utterances. In this case, we can observe
that the results obtained by Prompt 1 with gpt-3.5-turbo
are the best when considering MRR and P@1, while Llama-
2-13B obtains the best results when considering NDCG@3
and R@500with an increment of 2.1% and 0.8% respectively.
In this case, it is worth noting that the results obtained with
Llama-2-13B are comparable, if not better than the one ob-
tained with gpt-3.5-turbo.
When analyzing the results for both CAsT 2019 and

CAsT 2020 for the other models, we can observe that Flan
T5-Large obtains remarkable results if taking into account
its size (780 millions parameters) as it manages to exceed
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gpt-3.5-turbo results for NDCG@3 and R@500. When
considering Mistral-7B and Falcon-7B, our results are sig-
nificantly lower than the chosen comparison. This may be
due to the different kinds of data on which the models were
originally trained.

B. SECOND-STAGE RETRIEVAL
When analyzing the metrics obtained with the second-stage
retrieval reported in Table 7, i.e., a reranking phase performed
with T5-Mono, we observe similar results. Regarding CAsT
2019, Llama-2-13B is the best-performing model when con-
sidering MMR, P@1, and NDCG@3, obtaining results that
are comparable with those obtained with the manually rewrit-
ten utterances. Compared with the best ChatGPT prompt
results, Llama-2-13B surpassed it for all metrics, with an
increase of 7.35% in MRR, 9.67% for P@1, 10.58% for
NDCG@3 and 5. 04% for R@500.

When considering R@500, the best-performing model is
Flan T5-XL with an increment of 5.1% compared to Prompt
5, the top-performing configuration of gpt-3.5-turbo
for this metric.

When considering CAsT 2020, we notice better results
than the first-stage retrieval. If we consider P@1, we obtain
results that are statistically comparable with those obtained by
the Manual baseline for Llama-2-7B and Llama-2-13B, and
Prompt 1 with ChatGPT. For MRR, NDCG@3, and R@500,
the results are lower than the ones given by the manually
rewritten utterances but higher than the QuReTeC baseline
and higher than the ones obtained by the best-performing
ChatGPT prompt (Prompt 1). Llama-2-13B increases P@1
of 3.03 % and NDCG@3 of 5.22%.

Regarding the first stage, the results obtained by Falcon-7B
and Mistral-7B are significantly lower than the baselines for
CAsT 2019 and comparable when considering CAsT 2020.

The strong performance of Llama-2 models also on CAsT
2020 suggests that they generalize well across different
datasets. Their ability to maintain high precision indicates
that the models effectively capture the intent behind user
queries, even in challenging datasets where manually rewrit-
ten utterances typically perform better. This capability seems
to increase with the model size; in fact, the biggest model,
i.e., Llama-2-13B, is the one that is best suited to rewrite the
queries where it is harder to track back the context.

C. COMPARISON WITH THE STATE-OF-THE-ART
To compare our results with those obtained by ConvGQR [34]
(see Subsection III-D) we replicate their evaluation process
using ANCE to perform a retrieval phase with the rewrites
generated with our models. In Table 8, we report the results
obtained.

As we can observe, in line with the results obtained with
the other approaches, we have higher results when evaluating
CAsT 2019. In this case, we observe that we surpass the
results obtained with the manually rewritten utterances. More
specifically, Flan T5-XL obtains better results for P@1 (+
1.81%) and NDCG@3 (+1.82) when the first utterance of

each conversation is kept unchanged. Llama-2-13B, on the
other hand, manages to obtain better results than the Manual
baseline for every metric, i.e. +0.42 % for MRR, +1.81 % for
P@1, +2.69 % for NDCG@3 and +0.58 % for R@500. Also,
when comparing with ConvGQR, our best model, Llama2-
13B, obtains an increase of + 4.96% in terms of MRR and
+ 9.22% for NDCG@3 for CAsT 2019. When considering
CAsT 2020, the same model obtains an increase of 34.60%
for MRR and 10.30% for NDGC@3. When observing the re-
sults obtained for CAsT 2020, the best-performingmodels are
Llama-13-B on the one hand and gpt-3.5-turbo on the
other hand. In line with the results obtained when reranking
and with the literature examples, the results are lower than
those obtained with the manual rewrite but not statistically
different. It is worth noting that for both metrics used to
evaluate ConvGQR, MRR, and NDCG@3, we obtain higher
results than the ones reported in their study for both CAsT
2019 and 2020. Unfortunately, due to the inaccessibility of
their rewrites, we couldn’t test the statistical significance with
respect to their results.

D. EFFICIENCY STUDIES
We demonstrated that open-source LLMs deliver equivalent
or superior performance compared to corporate models such
as gpt-3.5-turbo. Among the several advantages pro-
vided by replacing ChatGPT with an open-source model —
privacy, democratizing scientific research — we can consis-
tently speed up the process of query rewriting. We further
delve into efficiency analysis by studying the different execu-
tion times entailed by different open-source LLMs. Now we
discuss the quality of the rewriting and retrieval performances
with respect to the size of the models and the inference time.
Table 9 reports the results of our experimental evaluation.

We report the average time to rewrite a query for each model,
considering different batch sizes. Recall that the batch size is
the number of instances, queries in this case, provided to the
model simultaneously. Increasing the batch size is a common
approach to speed up both the training and the inference of
neural models since a larger batch size allows for increased
resource utilization on the GPU, thus reducing the average
inference latency. The experiments were performed on an
A100 NVIDIA GPU equipped with 80 GB of RAM. Queries
from the TREC 2019 collection were used for this experimen-
tal step. We perform a warm-up step to avoid any overhead
given byGPU initialization.We employ thepytorch library
and the torch.cuda.event7, which allows us to isolate
the time spent on inference on the GPU, without taking into
account any data transfer costs.
As expected, Table 9 shows the positive impact of larger

batch sizes on the average query inference time. Smaller mod-
els tend to benefit more from the simultaneous processing
of several instances compared to large ones. As an example,
increasing the batch size from 1 to 128 ensures a 16× speedup
with Flan-t5-Large, while only 8× on Mistral-7b. As the

7https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
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TABLE 6. First-stage retrieval results in terms of MRR, P@1, NDCG@3 and R@500 on the data sets CAsT 2019 and CAsT 2020. In bold, we report the best
results achieved for each metric, except Manual. We mark statistically significant performance gain/loss, calculated with the two-paired t-test (p-value
< 0.05) with Bonferroni correction, of our methods with respect to the Manual and QuReTeC baselines with the symbols † for the first, ∗ for the latter. In
the column First, we report whether the first utterance of each conversation was kept unchanged(Orig) or was rewritten by the model(Rewr).

CAsT 2019 CAsT 2020

Model MRR P@1 NDCG@3 R@500 MRR P@1 NDCG@3 R@500

Original 0.333†∗ 0.225†∗ 0.162†∗ 0.382†∗ 0.218†∗ 0.159†∗ 0.100†∗ 0.253†∗

Manual 0.675 0.549 0.400 0.737∗ 0.622∗ 0.505∗ 0.328∗ 0.668∗

Falcon-7B 0.483†∗ 0.347†∗ 0.258†∗ 0.562†∗ 0.410† 0.312† 0.200† 0.492†

Flan T5-Large 0.609† 0.474 0.345† 0.694† 0.504† 0.404† 0.248† 0.515†

Flan T5-XL 0.633 0.497 0.363 0.708 0.481† 0.380† 0.234† 0.527†

Llama-2-7B 0.602 0.480 0.343 0.660† 0.481† 0.385† 0.225† 0.554†

Llama-2-13B 0.657 0.538 0.382 0.714 0.516† 0.409 0.257† 0.575†

Llama-2-13B 4bit 0.608 0.474 0.344 0.693† 0.506† 0.389† 0.236† 0.543†

Llama-2-13B 8bit 0.628 0.503 0.357 0.697† 0.482† 0.370† 0.237† 0.557†

Mistral-7B 0.358†∗ 0.243†∗ 0.150†∗ 0.378†∗ 0.365† 0.269† 0.151†∗ 0.399†∗

Prompt 1 0.633 0.526 0.366 0.645† 0.535∗ 0.423 0.251† 0.571†

Prompt 5 0.636 0.514 0.332† 0.650† 0.477† 0.389 0.227† 0.513†

QuReTeC 0.625 0.491 0.349 0.670† 0.440† 0.322† 0.214† 0.516†

CQR rule based cv 0.563† 0.416† 0.311† 0.657† - - - -
CQR self learn cv 0.592† 0.468 0.334† 0.662† - - - -

TABLE 7. Second-stage retrieval results in terms of MRR, P@1, NDCG@3 and R@500 on CAsT 2019 and CAsT 2020 datasets. In bold, we report the best
results achieved for each metric, except Manual. We mark statistically significant performance gain/loss, calculated with the two-paired t-test (p-value
< 0.05) with Bonferroni correction, of our methods with respect to the Manual and QuReTeC baselines with the symbols † for the first, ∗ for the latter. In
the column First, we report whether the first utterance of each conversation was kept unchanged(Orig) or was rewritten by the model(Rewr).

CAsT 2019 CAsT 2020

Model MRR P@1 NDCG@3 R@500 MRR P@1 NDCG@3 R@500

Original 0.466†∗ 0.399†∗ 0.281†∗ 0.408†∗ 0.331†∗ 0.274†∗ 0.181†∗ 0.283†∗

Manual 0.884∗ 0.821∗ 0.599∗ 0.773∗ 0.814∗ 0.721∗ 0.534∗ 0.736∗

Falcon-7B 0.637†∗ 0.549†∗ 0.398†∗ 0.592†∗ 0.580† 0.505† 0.337† 0.544†

Flan T5-Large 0.823 0.740 0.552 0.730† 0.683†∗ 0.596†∗ 0.416†∗ 0.583†

Flan T5-XL 0.841 0.757 0.576 0.742 0.692†∗ 0.606†∗ 0.426†∗ 0.591†

Llama-2-7B 0.788† 0.711 0.515† 0.698† 0.728†∗ 0.654∗ 0.447†∗ 0.623†

Llama-2-13B 0.863 0.786 0.590 0.742 0.722†∗ 0.644∗ 0.458†∗ 0.638†∗

Llama-2-13B 4bit 0.815 0.723 0.539 0.726† 0.686†∗ 0.587† 0.419†∗ 0.607†

Llama-2-13B 8bit 0.832 0.728 0.554 0.736† 0.689†∗ 0.596† 0.419†∗ 0.617†

Mistral-7B 0.575†∗ 0.480†∗ 0.344†∗ 0.440†∗ 0.539† 0.447† 0.306† 0.471†∗

Prompt 1 0.788† 0.688† 0.514† 0.699† 0.727∗ 0.635∗ 0.436†∗ 0.630†

Prompt 5 0.804† 0.717† 0.534 0.706† 0.651† 0.567† 0.399† 0.566†

QuReTeC 0.795† 0.705† 0.531† 0.713† 0.579† 0.481† 0.338† 0.566†

CQR rule based cv 0.761† 0.676† 0.512† 0.688† - - - -
CQR self learn cv 0.779† 0.705† 0.535† 0.696† - - - -

model gets bigger, the performances plateau with a smaller
value of the batch size, e.g., Llama-2-7b does not benefit
from increasing the batch size from 16 to 32. Moreover,
large models can produce an Out-Of-Memory exception if
the batch size is too big, given the fact that the combination
of the model parameters and the input and activation tensor
surpasses the memory capability of the device.

Energy Consumption. Finally, we analyze the energy con-
sumption associated with using larger models, particularly
focusing on the energy required for the query re-writing
step. In particular, we consider the total energy employed
to re-write the 173 queries from the TREC Conversational
Assistant Track 2019. We measure GPU energy using the

Zeus library [60] and present our results in Figure 5. For each
model, we calculate total energy consumption while adjusting
the batch size. As for execution times (Table 9 ), we observe
significant differences across models. Unsurprisingly, the ar-
chitectures that are more time-efficient also tend to be more
energy-efficient. The plot also shows that energy efficiency
improves with increased batch size; since we account for the
entire memory consumption to re-write the queries, larger
batch sizes help reduce the number of inference runs required.
We observe that using Flan-T5-large instead of Llama-2-13B
allows saving up to 20× the amount of total energy, highlight-
ing the importance of a careful selection of re-writing system
according to the quality requirements.
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TABLE 8. Retrieval results in terms of MRR, P@1, NDCG@3 and R@500 on CAsT 2019 and CAsT 2020 datasets using ANCE. In bold, we report the best
results achieved for each metric. We mark statistically significant performance gain/loss, calculated with the two-paired t-test (p-value < 0.05) with
Bonferroni correction, of our methods with respect to the Manual and QuReTeC baselines with the symbols † for the first, ∗ for the latter. The underlined
results relative to ConvGQR are taken directly from the paper [34]. In the column First, we report whether the first utterance of each conversation was
kept unchanged(Orig) or was rewritten by the model(Rewr).

CAsT 2019 CAsT 2020

Model MRR P@1 NDCG@3 R@500 MRR P@1 NDCG@3 R@500

Original 0.420†∗ 0.364†∗ 0.247†∗ 0.228†∗ 0.290†∗ 0.240†∗ 0.150†∗ 0.189†∗

Manual 0.740 0.642 0.462 0.463∗ 0.724∗ 0.625∗ 0.422∗ 0.534∗

Falcon-7B 0.691 0.595 0.424 0.439 0.561† 0.462† 0.323† 0.450†∗

Flan T5-Large 0.706 0.613 0.444 0.434 0.583† 0.500† 0.327† 0.447†

Flan T5-XL 0.735 0.653 0.470 0.446 0.586† 0.495† 0.332† 0.449†

Llama-2-7B 0.686 0.590 0.415 0.443 0.584† 0.495† 0.325† 0.472†∗

Llama-2-13B 0.743 0.653 0.474 0.466∗ 0.626† 0.529 0.365∗ 0.482†∗

Llama-2-13B 4bit 0.721 0.624 0.453 0.461 0.619† 0.524 0.333† 0.479†∗

Llama-2-13B 8bit 0.714 0.619 0.456 0.458 0.599† 0.490† 0.339† 0.470†∗

Mistral-7B 0.541†∗ 0.445† 0.324†∗ 0.368† 0.444† 0.346† 0.230† 0.394†

Prompt 1 0.690 0.595 0.430 0.467∗ 0.633 0.524 0.354 0.488∗

Prompt 5 0.665 0.567 0.431 0.441 0.599† 0.524 0.336† 0.422†

QuReTeC 0.692 0.590 0.429 0.420† 0.528† 0.452† 0.287† 0.386†

CQR rule based cv 0.665 0.567 0.409 0.403† - - - -

Flan-T5-Large Flan-T5-XL Mistral-7B Llama-2-7B Falcon-7B Llama-2-13B
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FIGURE 5. Total energy consumed by different models to rewrite the 173
queries from the TREC Conversational Assistant Track 2019, with different
batch sizes.

E. ABLATION STUDY
We evaluate the impact of query rewriting in different con-
versation turns, and we also analyze the average inference
time of the models. As we can see in figures 6 and 7, the
contribution of the two top models, Flan T5-XL and Llama-
2-13B, is quite stable throughout the conversation, showing
a peak around the eighth turn for the CAsT 2019 and the
seventh for CAsT 2020. For the last one, we can observe the
maximum on the 11th turn of the conversation. Still, as we
can observe from the image, it is not very indicative since the
number of conversations that reach the 11th turn is really low,
hence the "unobservable" standard deviation in the figure.

The results shown in the figures also confirm the difficulty
encountered when dealing with CAsT 2020 with respect to
2019. In fact, the quality of the generated rewritings decreases
with respect to the first turn. This is in line with the nature of
the dataset, in which much of the necessary information for a
good rewrite is available in the answer passage.

Finally, in Table 9, we show the average inference time for
all the models while varying the batch size. As we can ob-

FIGURE 6. Performances of the best-performing models for NDCG@3
after performing the reranking phase for CAsT 2019 throughout the
conversational turns. The shaded part represents the standard deviation.

FIGURE 7. Performances of the best-performing models for NDCG@3
after performing the reranking phase for CAsT 2020 throughout the
conversational turns. The shaded part represents the standard deviation.

serve, both T5-based models require a much shorter inference
time than the others. For example, we can see that Flan T5-

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3529741

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



XL is, on average, 4.85× faster than Llama-2-7B, while Flan
T5-large is 6.24× faster. This shows us that even though not
being the best performing models when considering rewrites,
both the models based on T5 have a computational cost, both
in terms of space and inference time, that is considerably
lower than the other models. This suggests that these kinds
of models may be further explored and also that it may be
possible to achieve even higher results when upscaling the
size of such built models.

TABLE 9. Comparison of Average Inference Time at various batch sizes
among different large language models.

Batch size 1 2 4 8 16 32 64 128
Model

Flan T5-large 284 177 139 83 48 33 22 16
Flan T5-XL 305 240 152 93 61 46 34 33
Llama-2-7B 1524 1072 598 399 272 217 241 -
Mistral-7B 1610 1178 654 421 284 219 217 209
Falcon-7B 2066 1237 716 466 283 203 187 181
Llama-2-13b 2793 1594 952 708 483 429 - -

F. REWRITING EXAMPLES
We exemplify rewrites produced by the models that are par-
ticularly relevant to the current research. Given the fact that
the scope of this research is not to generate a well-formed
answer to the user query but to study the impact of LLMs
on the retrieval phase, we do not study features such as
fluency and human readability of the query. Nevertheless, it
is important to observe whether the models accurately rewrite
some incomplete queries.

For instance, when asked to rewrite the second turn of a
conversation about bees (the previous question was "What
are some interesting facts about bees?"), the models provided
interesting results. The raw utterance "Why doesn’t it spoil?",
was referring to the answer provided by the system but none
of the models had the answer. Interestingly, three models,
i.e., Flan-T5 XL, Llama-2-13B, and Falcon-7B, rewrite the
sentence as "Why doesn’t honey spoil?", making explicit ref-
erence to honey, with LLama-2-7B adding also some generic
question to the query, i.e., "Where does honey come from
and why doesn’t it spoil?". Among the other models, two got
the wrong reference (hive and beewax respectively), while
Mistral-7B inserted part of the answer ("Why doesn’t honey
spoil when bees produce a substance that inhibits the growth
of harmful microorganisms in the hive and on bee pollen,
helping to ensure the bees’ survival during times of bacterial
attack and disease within the colony.").
Similarly, when rewriting the second query of a conversa-

tion, with the first being "Which is the biggest commercial
plane?", it is interesting to note how all themodels rewrote the
second query, i.e., "What are its operational costs?". In fact,
some of the models (Flan-T5 large, LLama-2-13B 4bit, Mis-
tral and LLama-2-7B) resolved the anaphora by indicating
the Boeing 747 as the biggest plane and resulting in rewrites
such as "What are the 747’s operational costs?" with some

of them adding more details about the request (i.e., in terms
of fuel, labour and maintenance). All other models interpret
the biggest commercial plane as the Airbus A380, resulting
in rewrites such as "What are the operational costs of the
Airbus A380?". In this case, it is interesting to notice how
the parametric memory of the models might be beneficial
in rewriting the queries by resolving some references in a
more accurate way. The term parametric memory refers to
the capability of LLMs to behave as a knowledge base and
to store information from training data in their own weights
without the need to draw on external data [42].
Overall, while manually observing the generated data, we

can affirm that all of the models are able to resolve anaphoras
and ellipses proficiently, particularly when the reference is
explicit in the previous conversational queries. Furthermore,
the fact that, in both cases shown here, the models used
internal knowledge to rewrite the query would suggest that
some investigation in this sense should be made. In fact, if
we manage to extract factual knowledge from the model pro-
ficiently, we could further increase the system’s capabilities.

G. ANSWERING OUR RESEARCH QUESTIONS
a: RQ3
We confirm that it is possible to increase the quality of
rewriting using fine-tuned LLMs compared to the use of
Instruction-Tuned LLMs. We show that using fine-tuned
models, we obtain better results than the one obtained by
ChatGPT with a few-shot approach, particularly when con-
sidering LLama-2-13B and Flan T5-XL both for CAsT 2019
and 2020. Moreover, we manage to reduce by many times the
size of the rewriting models, achieving better results. At the
same time, with our approach, we manage to achieve higher
results than those obtained by state-of-the-art techniques such
as ConvGQR. This confirms the utility of using a fine-tuning
approach to focus the models on a particular task, in our case,
conversation query rewriting. This leaves us with the scien-
tific need to further explore such an approach to understand
LLMs capabilities better and to achieve even better results
while reducing the model size.

b: RQ4
What are the threshold of performance gain and compu-
tational costs when using such big models? Our analysis
discloses the potential for effective query rewriting using
significantly smaller models compared to proprietary LLMs.
As shown in the previous sections, ourmethodology consider-
ably reduces the computational requirements needed for this
task, making it feasible on devices beyond high-performance
servers. As an example, although our experimental evaluation
exclusively utilizes NVIDIA A100 GPUs, models like Flan-
T5-Large can easily be employed on consumer-grade GPUs
or even on multithreaded CPUs. This allows for personaliza-
tion of the query rewriting system based on user preferences
and historical data without encountering privacy concerns.
The custom model can be deployed and updated on the target
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edge device, learning from user preferences without posing
potential privacy risks.

VI. RELATED WORK
Wenow overview the prior contributions, partitioning our dis-
cussion into conversational search and LLM-focused efforts.

a: Conversational search
The process of query rewriting plays a pivotal role in con-
temporary web search, as it helps accurately capture user
information requirements and boosts retrieval efficiency [17].
This issue is also prevalent in conversational search, where
utterances, akin to queries, can often be ambiguous or poorly
structured.

The goal of conversational utterance rewriting is to trans-
form a brief request within a conversational context into
a comprehensive, context-independent query that addresses
anaphoras, ellipses, and other linguistic phenomena [31],
[57]. These methods strive to pinpoint terms that were men-
tioned earlier in the conversation to beneficially expand the
current utterance [2], [32], [43], [52]. In this regard, Alianne-
jadi et al. put forth a unique neural utterance relevance model
based on BERT that helps identify utterances pertinent to a
given turn [2]. Voskarides et al. [52] treat query rewriting
for conversational search as a binary term classification task
and present QuReTeC, a Bi-LSTM model that picks out the
valuable terms in context to enrich the query.

Other strategies to rewrite utterances leverage a fine-tuned
neural model [16], [46], [49], [62], [62] to address corefer-
ence and omissions in conversational query rewriting.

In subsequent work, [50] contrast original user questions
and human-rewritten questions with questions automatically
rewritten by sequence generation models based on GPT-2
and QuReTeC. The authors also demonstrate that simply
appending the terms predicted by QuReTeC to the questions
rewritten by a sequence-generation model improves the state-
of-the-art ranking performance. Mo et al. [34], recently re-
leased ConvGQR that combines query rewriting and query
expansion, achieving good retrieval results.

Azzopardi et al. [5] propose a conceptual framework for
conversational search and recommendation systems, outlin-
ing various actions, intents, and critical decision points that
arise during conversations. Their objective is to explicitly
define these components to facilitate the formalization of re-
search, development, and evaluation of conversational search
agents. Fu et al. [13] investigate stopping strategies in con-
versational search systems, focusing on when users decide to
end their interactions. They adapt traditional stopping rules
from IR to the sequential, interactive nature of conversations.
Meng et al. [33] and Faggioli et al. [11] investigate query
performance prediction for conversational search and beyond,
addressing limitations in prior work. The first evaluate tra-
ditional QPP methods in conversational settings, identifying
performance gaps with context-dependent queries and in-
troduce a perplexity-based framework that leverages query
rewriting quality, enhancing prediction accuracy. The latter

focus on proposing innovative geometric embedding-based
QPP metrics for dense conversational search.
Frieder et al. [12] exploit the semantic relatedness of re-

trieved documents within conversations to create a cache
of documents for reducing the latency of responses of the
conversational agent. The results show the effectiveness and
efficiency of the document embeddings cache in the context
of conversational dense retrieval.
In other studies, numerous papers utilize pre-trained lan-

guage models to represent queries and documents in the same
dense latent vector space and then employ the inner product to
calculate the relevance score of a document to a given query.
In the realm of conversational search, the representation of
a query can be computed in two distinct ways. In one sce-
nario, a standalone contextual query understanding module
restructures the user query into a rewritten query, leveraging
the context history [15], and then a query embedding is
computed, for example, using sentence embedding models
such as ANCE [56] or STAR [65]. Alternatively, the learned
representation function is trained to accept as input the query
along with its context history and to generate a query embed-
ding that is more akin to the manual query embeddings [63].
In both scenarios, dense retrieval methods are employed

to compute the query-document similarity by deploying effi-
cient nearest neighbor techniques over specialized indexes,
like those provided by the FAISS toolkit [20]. Tran et al.
[48] created a conversational model using a reinforcement
learning approach exploiting the conversational context to
generate good quality responses to the user requests. Recent
advancements have seen the introduction ofmodels like DPR-
CT and ColBERT-QA which enhance retrieval effectiveness
by combining dense retrieval techniques with query-aware
attention mechanisms [21], [66]. Mao et al. [29] recently
introduced ChatRetriever, a new model trained by using con-
trastive learning to represent conversational sessions in a
dense way, showing promising results.

b: Large Language Models
LLMs based on transformer architectures, such as GPT are
trained on extensive text data corpora to understand and
generate natural language [1], [51]. The pre-trained models
produced with unsupervised training [6] can be conveniently
fine-tuned for various tasks in a supervised setting. Instruct-
GPT, based on GPT-3, has been fine-tuned using human feed-
back to enhance its ability to follow user intentions [37]. Bidi-
rectional and Auto-Regressive Transformer (BART) combine
the strengths of two established models, that is, BERT and
GPT-2, and are trained using a denoising autoencoder ap-
proach to comprehend the structure and semantics of the text,
as well as generate fluent and coherent text [22].
Another Instruction-tuned LLM model of the GPT fam-

ily is ChatGPT8, which is specifically designed for conver-
sational applications [25]. Instruction-tuned LLMs such as
ChatGPT are easily adaptable to new tasks and domains, mak-

8https://chat.openai.com/
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ing them extremely useful in various tasks. Wei et al. [55]
introduce ChatIE, a framework that uses ChatGPT to per-
form zero-shot Information Extraction tasks via multi-turn
question-answering and assert that their method can achieve
remarkable results and outperform some full-shot models
across three IE tasks. Recently, Mo et al. [35] introduce
ConvSDG, a framework to address the challenge of data
scarcity in training conversational dense retrieval systems.
Their system generates data at both the dialogue level and
query level, supporting unsupervised and semi-supervised
settings. Similarly to our scope, Wang et al. [54] provide
an in-depth investigation into user response simulation for
conversational search, addressing limitations in current user
simulators. They show that a smaller finetuned T5 model
outperforms existing simulators and large language models
(LLMs), such as GPT-4, in generating user-like responses to
clarifying questions. Multiple papers, such as [41], [44], [59]
offer extensive reviews about the state of the art of Large
LanguageModels, with applications in different areas such as
the medical one and a specific focus on the GPT architecture.

According to [47], ChatGPT can achieve comparable or
superior results to supervised methods for information re-
trieval relevance ranking when given domain-specific guide-
lines. These models, along with other LLMs, have shown
remarkable performance in variousNLP tasks, and havemany
applications in different fields, such as medicine, finance,
and more. With appropriate instructions, these models can
handle a wide range of tasks, making them useful tools for
researchers and developers.

Similarly to our first work, [58] used Instruction-tuned
models to perform query rewriting and then distillate a T5 for
query rewriting. Recent innovations have led to the develop-
ment of specialized models like Gorilla, which is designed to
generate domain-specific responses by incorporating factual
knowledge from structured databases, thereby improving the
factual accuracy and relevance of the generated content [23].

We use ChatGPT as the Instruction-tuned LLM in our ex-
periments to rewrite the user queries. Furthermore, we exploit
finetuning to produce small models to automatically rewrite
user requests. We build up on the various available techniques
and approaches to create straightforward models that do not
require any further development and that manage to reduce
the computational costs required to perform such a task. In
this flourishing area, our contribution try to establish a sound
way to refine LanguageModels while giving prior importance
to usability while maintaining good output quality.

VII. DISCUSSION
Our results demonstrate that fine-tuned LLMs, particularly
Llama-2-13B, can achieve retrieval performance comparable
to or better than ChatGPT (gpt-3.5-turbo) on the TREC
CAsT 2019 and 2020 datasets. Specifically, Llama-2-13B
outperforms ChatGPT in first-stage retrieval on all evaluation
metrics for CAsT 2019 and achieves comparable results for
CAsT 2020. In particular, the quantized versions of Llama-2-
13B (8-bit and 4-bit) and smaller models of the Flan family

also deliver competitive performance while significantly re-
ducing model size.
In particular, compared to state-of-the-art approaches such

as ConvGQR [36], our fine-tuned models achieve superior
performance on both the CAsT 2019 and the CAsT 2020
datasets. During their experiments, they also used a version
of T5 [39] to perform query rewriting and query expansion.
Similarly, QuReTeC and CQR used two models, bert-base-
uncased and GPT-2, to enhance the user’s queries. While the
first expands the queries by selecting appropriate terms, the
second rewrites the whole query with a model that is approx-
imately twice the size of Flan-T5 large (1.5B parameters vs
780M). This suggests that a good fine-tuning process can no-
tably impact the model’s performance. Overall, our approach,
while straightforward and conceptually simpler, manages to
improve the performances with respect to the previous work
taken under consideration. Moreover, we firmly believe that
the performance could be further improved by testing new
ways of fine-tuning and model selection during the rewriting
phase.
Our findings align with previous research emphasizing the

potential of fine-tuning smaller models for specific tasks. Liu
et al. [26] demonstrated that task-specific fine-tuning sub-
stantially improves model performance in natural language
understanding tasks. Similarly, [27] showed that fine-tuned
transformer models outperform larger, more general models
in information retrieval contexts. The success of Flan T5
models, particularly Flan T5-XL, further supports the idea
that smaller models can be effectively fine-tuned for query
rewriting tasks. Despite being approximately 4.3× smaller
than Llama-2 13B, Flan T5-XL achieved retrieval results
comparable to or better than those of ChatGPT. This ob-
servation is consistent with the findings of [40], who high-
lighted the versatility of the T5 model across various natural
language processing tasks when fine-tuned. Our efficiency
studies revealed that smaller models like Flan T5-Large and
Flan T5-XL not only reduce computational resources but
also significantly decrease inference times. This is crucial
for practical applications where computational efficiency and
scalability are important considerations. This suggests that
fine-tuning LLMs on conversational query rewriting datasets
like QReCC can be more effective than relying on generic
instruction-tuned models or traditional query reformulation
techniques.

VIII. CONCLUSIONS
This study addresses the critical task of Conversational Query
Rewriting in the context of AI development. We investigated
how to rewrite conversational search queries by taking advan-
tage of the generative power of Instruction-Tuned LLMs. To
do so, we selected gpt-3.5-turbo, and devised the most
proficient way to prompt it to obtain valuable rewritings by
testing zero, one, and few-shots approaches. To evaluate such
rewrites, we selected the datasets CAsT 2019 and 2020 that
were specifically built to evaluate conversational systems.
We showed that rewrites produced in such a way manage to
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overcome results obtained by state-of-the-art tools such as
QuReTeC and CQR.

After establishing the rewriting capabilities of ChatGPT,
we wanted to understand whether it may be beneficial to fine-
tune LLMs specifically for the Conversational Query Rewrit-
ing task. To do so, we selected a few open-source LLMs such
as LLama-2 7B and 13B, Falcon-7B, Mistral-7B, and Flan T5
in the large and XL versions. We selected the QReCC dataset
as the training set for the fine-tuning phase. After performing
a fine-tuning phase for each of the models, we produced
rewrites for the CAsT 2019 and 2020 datasets. The first
achievement of this research was to establish that such mod-
els, specifically fine-tuned for conversational query rewriting,
can overcome the results obtained by gpt-3.5-turbo.
The last goal of this effort was to understand which models

are the most proficient when addressing this task and espe-
cially whether and how the retrieval phase is impacted by
the size of the models. In this sense, we observed that the
best-performing model is LLama-2 in its 13B configuration,
which overcomes the results obtained with ChatGPT. When
replicating the experiments of a state-of-the-art approach such
as ConvGQR, we managed to obtain better results for both
datasets. However, the most interesting results we obtained
are relative to both the Flan T5 models and the quantized
versions of Llama-2-13B. In fact, even if they obtain lower
results than the ones achieved by LLama-2 13B, they still
achieve remarkable results with a significant gain in the com-
putational power required to perform rewriting. In particular,
Flan T5, large and XL, require a much shorter time when
running the inference phase and a smaller amount of memory
to be loaded. Unlike Flan T5 models, the quantized Llama-
2-13B versions are only loaded with a 4-8 bit configuration,
meaning that the training phase required the resources to train
the full version of Llama-2-13B.

A. IMPLICATIONS
The ability to use smaller, fine-tuned models for conversa-
tional query rewriting has significant implications for the
field of information retrieval. It enables the deployment of
efficient and scalable retrieval systems without compromis-
ing performance. This is particularly important in real-world
applications where computational resources may be limited.

Moreover, our approach supports the democratization of
AI technologies by making high-performing models more
accessible. Organizations and researchers with limited re-
sources can leverage fine-tuned, smaller models to achieve
state-of-the-art performance without the need for extensive
computational infrastructure.

B. LIMITATIONS AND FUTURE WORK
While our study presents promising results, there are limita-
tions that should be addressed in future work. One limitation
is the reliance on specific datasets like QReCC for fine-
tuning. Expanding the fine-tuning process to include a more
diverse range of conversational datasets could further enhance
model generalizability. In this respect, it could be useful to

automatically generate data using bigger LLMs. In this way,
we could distill the rewriting capabilities and knowledge
contained in the LLM and pass it through a smaller one.
Additionally, although quantized models show competitive
performance, there remains a performance gap compared to
their full-precision counterparts. Future research could ex-
plore advanced quantization techniques or other model com-
pression methods to bridge this gap. Understanding the trade-
offs between model size, performance, and computational
efficiency is also an important area for further investigation.
Exploring early exit strategies and other efficiency optimiza-
tion techniques could lead to evenmore practical and efficient
conversational query rewriting systems. Finally, we plan on
studying the impact of the model over the utterance in order
to adapt themodel to use with respect to the query. In this way,
we want to further reduce energy consumption while further
increasing the performance.
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