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ABSTRACT Whilst Deep Neural Networks (DNNs) have been developing swiftly, most of the research has 

been focused on videos based on RGB frames. RGB data has been traditionally optimised for human vision 

and is a highly re-elaborated and interpolated version of the collected raw data. In fact, the sensor collects the 

light intensity value per pixel, but an RGB frame contains 3 values, for red, green, and blue colour channels. 

This conversion to RGB requires computational resource, time, power, and increases by a factor of three the 

amount of output data. This work investigates DNN based detection using (for training and evaluation) Bayer 

frames, generated from a benchmarking automotive dataset (i.e. KITTI dataset). A Deep Neural Network 

(DNN) is deployed in an unmodified form, and also modified to accept only single channel frames, such as 

Bayer frames. Eleven different re-trained versions of the DNN are produced, and cross-evaluated across 

different data formats. The results demonstrate that the selected DNN has the same accuracy when evaluating 

RGB or Bayer data, without significant degradation in the perception (the variation of the Average Precision 

is <1%). Moreover, the colour filter array position and the colour correction matrix do not seem to contribute 

significantly to the DNN performance. This work demonstrates that Bayer data can be used for object 

detection in automotive without significant perception performance loss, allowing for more efficient sensing-

perception systems. 

INDEX TERMS Bayer Data, Object Detection, Perception Sensors, Assisted and Automated Driving, 

Intelligent Vehicles. 

I. INTRODUCTION 

With the advancement of computer hardware technology, 

deep learning-based artificial intelligence technologies are 

in rapid development, and are used in a wide range of 

applications, including assisted and automated driving 

(AAD) functions [1]. The Society of Automotive Engineers 

(SAE) J3016 standard defines six levels of driving 

automation (L0-L5) [2].  As functions on vehicles reach 

higher levels of automation (L3-L5), the ability to sense 

and make decisions based on the external environment 

becomes an increasingly essential capability. As a 

foundation for path planning, behavioural decisions, and 

motion control, environmental perception is a key research 

topic in academia and industry [3]. The detection of traffic 

actors such as vehicles and pedestrians, and the 

implementation of real-time vehicle perception of the road 

conditions are important for the prevention of common 

types of traffic accident [4-5]. 

Deep neural network (DNN) methods are well established 

techniques for detecting and classifying objects, and there is a 

rapidly growing body of work related to their use for detection 

of road stakeholders [6]. The R-CNN and YOLO series are the 

most commonly used DNNs for object detection tasks, but 

there is a trade-off between detection accuracy and detection 

speed [7]. Until recently, most of the DNNs have been based 

(i.e. trained and tested) on frames with three colour channels, 

RGB (red, green, blue). In automotive, the RGB inputs to 

DNNs are the frames produced by HDR video cameras, and in 

turn they are a processed version of the captured raw sensor 

data. The term “raw” is often misused in literature to define 
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data that are captured and post-processed by the sensor, i.e. 

unrectified images with RGB colours per pixel [8-9]. In 

reality, the raw data corresponds to a value of light intensity 

collected per pixel through the sensor colour filter array (CFA) 

used in the sensor, as shown in Fig. 1. Traditionally the CFA 

has been in the format of a R-G-G-B 2x2 repeated pixel matrix 

and optimised for human vision [10]. The conversion into 

RGB colour channels, through the colour pipeline and ISP 

(image signal processing) in the sensor, has been historically 

created to produce frames looking pleasant and realistic to 

human viewers. However, this processing and manipulation 

might be not needed for machine learning and DNN-based 

perception, and this paper aims to explore if raw or Bayer data 

(i.e. one intensity value per pixel or one intensity value and the 

specific colour of the filter on the pixel) can be used for 

perception without degrading DNN performance. Moreover, 

the use of raw data will reduce, roughly by a factor of three, 

the size of the data to be transmitted into the processing 

algorithms (only one value per pixel instead of three), and will 

decrease the processing on chip [11]. Recent work in different 

fields has been focusing on raw image camera consumption, 

e.g. [12-16], and it is further discussed in Sec.II. 

The ISP pipeline includes different manipulations of the 

raw data, including noise reduction, black level and white 

balance correction, colour balancing, gamma correction, dead 

pixels concealment, etc. Two general and similar diagrams for 

ISP processing are shown in Fig. 2. There are several different 

ways of implementing an ISP and they are outside the scope 

of this paper. This paper will focus on the contribution of two 

key steps in the colour pipeline, the demosaicing process and 

the colour correction matrix. The raw values captured by the 

camera are measured based on the light incoming from the real 

world in the specific position of the sensor pixel matrix (one 

intensity value per pixel). The demosaicing process then 

consumes these raw Bayer values to interpolate colour values 

for the three channels, each channel retaining the same 

resolution as the sensor pixel matrix. This process is 

implemented by interpolating the values of neighbouring 

pixels in the raw matrix, and different algorithms can be 

applied. The colour correction matrix is used to balance the 

gains per colour channel to ensure that the colour rendering of 

the frames is realistic (for the human viewer). The importance 

of the demosaicing process is further discussed by Chang et al. 

[18], where the authors discuss the importance to use raw data 

when considering downstream tasks, namely super-resolution. 

A. CONTRIBUTIONS 

This paper builds on the considerable and recent work on 

raw camera data proposing the following innovations. 

• Given the scarcity of raw datasets [14, 16], this work 

proposes different ways of ‘inverting’ RGB datasets into 

‘Bayer’ datasets. This step can be key for generating big 

Bayer datasets from existing datasets for the re-training 

of state of the art (SOTA) DNN models. 

 
Fig. 1. A frame from the Oxford Robocar dataset [17]. Top is the raw frame 
from the dataset, bottom is the same frame after ISP processing and 

conversion in 3 colour channels.   

  

 
Fig. 2. a) Some fundamental processing steps in a generic colour pipeline in 
an imaging sensor, and b) the ISP blocks considered in [37]. In both cases, 

the output is a 3 colour channel frame with the same resolution of the input 

Bayer data.  
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• Considering the combination of raw data with 

downstream tasks [15, 16, 18], for the first time, the re-

created Bayer datasets are used to re-train and test a 

commonly used DNN based object detector. 

• On the contrary of most of the existing work, hereby it is 

proposed an elegant a fair comparison between DNN 

performance when the DNN is using Bayer data versus 

‘traditional’ RGB/grayscale frames. 

Overall in alignment with recent work [12, 16, 18], the 

results show that it is possible to use single colour channel 

‘Bayer’ data and to achieve detection performance 

comparable to the performance with traditional RBG data. 

This demonstration enables to reduce the needed processing 

on the sensor chip, and to transmit less camera data (minimally 

conditioned) to the vehicle processing unit(s), helping to 

address the previously presented data conundrum [11, 19]. 

II. RELATED WORK 

This paper builds on the recent work on raw camera data 

(Sec.II.A) and on unfolding the relationship between DNN 

performance and ISP (Sec.II.B). The proposed experiments 

aim at understanding if commonly used DNN architectures 

(Sec.II.C)  can be easily re-used (e.g. just by transfer learning) 

with Bayer frames, or a paradigm shift is needed in Bayer-

based DNNs. 

A. USE OF RAW DATA IN MACHINE LEARNING 

An increasing amount of research has been conducted in the 

use of raw data, especially fields involving machine learning. 

Dong et al. have included the use of raw data for pretraining 

of video to text tasks [12]. Pan et al.  presented a denoising 

network which predicts the noise in a real-world image at the 

raw level [13]. Song et al. have employed raw image to 

identify reflections in images using a DNN (CR3Net), 

allowing for the removal of reflections in images [14]. 

Specifically to automotive, overexposure of images is a 

concern and can create hazards. Fu et al. have designed a 

method using a Channel-Guidance Network (CGNet) to 

correct over exposure in raw images [15]. This work 

demonstrated that applying correction to raw data is beneficial 

to perception performance. In addition, the developed CGNet 

for the raw image performed better than existing methods 

when inferring on raw images, showing the importance of 

developing specific networks for raw [15]. Xu et al. have 

presented a novel HDR dataset in raw [16]. From this dataset, 

they have applied different ISP processes and tested the object 

detection accuracy using YOLOX, demonstrating that ISP 

impacts the accuracy of detection. 

B. OBJECT DETECTION METHODS 

Some of the most important targets in traffic scenes are 

vehicles, pedestrians, and cyclists [20]. There are many studies 

regarding detection of these objects, and they can be broadly 

divided into three categories, discussed below: traditional 

detection methods, traditional machine learning methods, and 

deep neural network methods. These studies have used RGB 

frames, but recent work has also started to look into Bayer 

frames, as reviewed in sec. II.C. 

1) Traditional detection methods 

These handcrafted object recognition methods, often based 

on regression, are difficult to apply to a wide range of real-

world situations. Accurate results are difficult to obtain when 

weather conditions change, objects are obstructed or too dark, 

etc. Furthermore, different targets require different classifiers 

to be developed and real-time detection is impossible [21-25]. 

2) Traditional machine learning detection methods 

Traditional machine learning detection algorithms for 

vehicles generally propose new vehicle-specific features or 

use other environmental information as an auxiliary detection 

method. Laopracha et al. [26] employed V-HOG features in 

combination with SVM kernel functions to detect vehicles, 

ensuring both accuracy and speed of the overall algorithm. 

Based on histograms of oriented gradients, Cao et al. 

developed a vehicle detection system based on the AdaBoost 

classifier, which can basically meet the requirements of real-

time vehicle detection [27]. Similarly, pedestrian detection 

algorithms have been dominated by the introduction of new 

features, or multi-feature fusion methods. Bastian et al. 

presented the second-order aggregate channel features 

(SOACF) in pedestrian detection [28]. Based on a Random 

Forest ensemble, Marin et al. propose a method to combine 

multiple local experts in order to accurately detect pedestrians 

[29]. Takarli et al. proposed detecting pedestrians using a 

combination of global and local features [30].  

However, the traditional detection methods based on 

artificially-designed features to train the classifier do not work 

well on vehicles in a variety of complex real-world conditions, 

such as low light, rainy days, motion blur, different positions 

of the vehicle in the frame, and variations of the environment. 

For these reasons, they are not suitable for applications in 

automated vehicles or advanced driving assistance system. 

3) Deep neural network-based detection methods 

There are three main categories for object detection neural 

networks, namely: one-stage, two-stage and transformers. 

One-stage networks such as YOLO and SSD have predefined 

overlapping regions of the frame to detect and classify objects 

inside each region. A filtering process is performed to remove 

regions that are overlapping on one single object [31-32]. On 

the other hand, two-stage networks, such as RCNN and Fast-

RCNN, contain a pipeline to perform both the region proposal 

and classification of the regions [33-34]. Comparatively, One- 

stage networks are generally faster, but will have lower 

accuracy compared to two-stage networks. Finally, vision 

transformers such as BERT or DETR, divide the frames into 

patches and then search for relationship between pixels, 

however they require a considerable amount of training data 

[35-36].  

In order to ensure accurate detection, many automotive 

algorithms have been based on two-stage detection model, 

with Fast R-CNN and Faster R-CNN being the most used. 
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Nguyen has proposed an improved Faster-RCNN vehicle 

detection algorithm to address the problems of large-scale 

variation and mutual occlusion in vehicle detection, with a 4% 

performance improvement compared to Faster-RCNN [37].  

Rui et al. have developed the Feature Pyramid Network 

(PRN), based on the Faster R-CNN, for pedestrian detection 

[38]. Zhang et al. have employed Faster R-CNN to implement 

pedestrian detection based on infrared images [39].  

However, on-board object detection requires pressing real-

time performance, and consequently, more and more one one-

stage models have been investigated for automotive 

applications. Since the first version of YOLO proposed by 

Redmon et al., there have been many refinements and 

improvements made, spanning several versions [31]. 

YOLOv3 is the most recent variant proposed by the original 

author [40]. YOLOv4 continues from the base framework 

from YOLOv3, incorporating optimisation and improvement 

methods such as mosaic data augmentation, mish activation 

function and dropblock [41]. YOLOv4 has shown to have an 

improvement in performance of 10% in average precision and 

12% in speed (frames per second) compared to YOLOv3 in 

MS COCO dataset (test-dev 2017) [41]. Jamiya and Rani have 

addressed the difficulty of balancing the speed and accuracy 

of current vehicle detection algorithms by enhancing 

YOLOv3 and incorporating the concept of Spatial Pyramid 

Pooling [42]. The proposed YOLO-SPP detection algorithm 

has shown good real-time performance, allowing timely 

responses in vehicle’s warning systems. Moreover, Chao et al. 

have achieved an enhancement of detection of overlapped 

targets using the SSD algorithm and adding a rejection term to 

the DNN loss function [43]. There are further variants of 

YOLO from various groups, building on the spirit of the 

YOLO network, increasing performance in speed and 

accuracy by tweaking the architectures and incorporating new 

features [44-45]. 

C. CAMERA COLOUR PIPELINE AND DNNs 

Some researchers have also started to investigate the possible 

impact of the quality/type of input data on the DNN 

performance. 

Liu et al. examined the effect of camera parameters on the 

neural network and experimentally demonstrated that there 

was little difference between the detection of vehicles with 

monochrome and RGB frames when using Mask R-CNN as 

the detection algorithm [46]. Some groups have investigated 

the effects of ISP-processed frames on DNN detection, but the 

core of the work is not focused on automotive specific datasets 

and tasks. Hansen et al. have ‘inverted’ an ISP pipeline, 

considering a few building blocks of a generic ISP, as shown 

in Fig. 2b [47]. However, the Authors acknowledge that ISP is 

not invertible and therefore their inversion might add or 

modify the information contained in the original frames in 

unexpected ways. The ISP-processed frames perform better 

than the ‘inverted’ raw frames, according to the DNN used, 

however it is not clear how the 3 channel input network is 

adapted to use the ‘raw’ data. Hansen et al. also present an 

ablation study based on the ISP blocks considered in their ISP 

model, stating that each block contributes to a performance 

enhancement for the DNN, except for the denoising. The Tone 

Mapping is reported as the block most beneficial to the 

accuracy of detection. The Authors also re-converted the 

‘inverted’ raw into ‘simulated’ RGB frames, and in this case 

DNN performance are still lower than on the original dataset 

[47]. This result highlights the need of investigating more the 

‘inversion’ process before considering the achieved results 

reliable and generalisable. Lubana et al. propose a simplified 

version of ISP by selecting some arbitrary blocks in the colour 

pipeline and evaluating the detection of processed frames on a 

trained deep neural network [48]. The results of their proposed 

algorithm show that frame detection after their proposed 

algorithm is better than on raw frames. However, the raw 

dataset used is very small (i.e. 225 frames) and the DNN input 

architecture and training is not fully described. The full 

architecture is not described either in the recent paper by 

Cahill et al., but interestingly they use one-stage and two-stage 

object detector to evaluate different types of Bayer data, 

focusing on gamma-correction [49]. However, the work only 

compares results of the DNN trained and tested on the same 

type of data, and the choice of gamma-correction is not fully 

convincing as a key step in the ISP pipeline [47]. Finally, 

recent work has investigated also end-to-end DNN methods to 

substitute the ISP pipeline, traditionally optimised for human 

vision, showing that for example these methods can 

outperform traditional ISP pipeline in the case of low light 

conditions and for machine learning applications [50-51]. 

 
Fig. 3. Flow diagram showing the methodology followed for the presented 

experiments. 11 different variants of the dataset have been created and then 

used as training or testing data using YOLOv4 DNN. 
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These works demonstrate once more that image processing 

has been traditionally optimised for human vision, and better 

looking frames do not necessarily produce the best results in 

the case of machine learning application.  

III. METHODOLOGY 

As previously stated, the processing introduced in cameras 

to convert a single value channel ‘frame’ into three colour 

channels has been created for human vision. This work 

investigates if Bayer information can be used for object 

detection without degrading the detection performance with 

respect to traditional RGB frames. The following subsections 

explain the steps of our methodology, Fig. 3, and particularly 

our methods to convert an existing automotive dataset into 

Bayer frames, allowing the ground truth bounding box 

information to be retained. 

A. DATASET 

TABLE I 

CONVERSION PROCESSES FOR CREATING THE DIFFERENT VERSIONS OF THE DATASET, WHERE SUBSCRIPTS INDICATE PIXEL POSITION IN AN ORIGINAL 2X2 

BLOCK,  BOLD LINES ARE USED TO CONTOUR EACH PIXEL (WITH ONE OR THREE INTENSITY VALUES), DOTTED LINE SPLIT COLOUR CHANNELS OF ONE 

PIXEL. CFA STANDS FOR COLOUR FILTER ARRAY, GAV REPRESENTS THE AVERAGE OF THE G1,2 AND G2,1 GREEN PIXELS 

Format  

Number 
Format Colour filter array Comments 

1 Original RGB 

R1,1 G1,1 B1,1 R1,2 G1,2 B1,2 

R2,1 G2,1 B2,1 R2,2 G2,2 B2,2 

 

Original non modified KITTI frames, with three colour 

channels (3 colour values per each pixel) 

2 Grayscale 

Gray1,1 Gray1,2 

Gray2,1 Gray2,2 

 

This format is derived from the original dataset by applying a 

grayscale algorithm, resulting in a single colour channel 

3 Gray Bayer 

R1,1 G1,2 

G2,1 B2,2 

 

This format is composed by selecting only one colour channel 

(i.e. only one intensity) per pixel from 1) assuming an RGGB 

CFA, resulting in a single colour channel 

4 Bayer 0-filled 

R1,1 0 0 0 G1,2 0 

0 G2,1 0 0 0 B2,2 

 

This format is composed by keeping an intensity value in a pixel 

for each channel only if it corresponds to the correct colour and 

position based on a RGGB CFA. Other pixels values are set to 0, 

resulting in three colour channels  

4b 
Bayer 0-filled 

 (GRBG) 

0 G1,1 0 R1,2 0 0 

0 0 B2,1 0 G2,2 0 

 

This format is a variant of 4, assuming GRBG CFA and resulting 

in three colour channels 

4c 
Bayer 0-filled 

(GBRG) 

0 G1,1 0 0 0 B1,2 

R2,1 0 0 0 G2,2 0 

 

This format is a minor variant of 4, with a GBRG CFA and 

resulting in three colour channels 

4d 
Bayer 0-filled 

(BGGR) 

0 0 B1,1 0 G1,2 0 

0 G2,1 0 R2,2 0 0 

 

This format is a minor variant of 4, with a BGGR CFA and 

resulting in three colour channels 

5 
Bayer colour-

filled 

R1,1 Gav B2,2 R1,1 G1,2 B2,2 

R1,1 G2,1 B2,2 R1,1 Gav B2,2 

 

This format is composed by keeping an intensity value in a pixel 

for each channel only if it corresponds to the right colour and 

right position based on a RGGB CFA. For each 2x2 block, in the 

red and blue channels, the selected value is replicated in the 

other pixels. For the green channel, an average of the two green 

values is used to fill the 2 empty green values. Three colour 

channels 
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Most commonly used automotive datasets generally provide 

three colour channel frames captured from automotive 

cameras. A recently released dataset by Oxford University, the 

RobotCar dataset, contains unrectified, 8-bit single colour 

channel Bayer frames, top frame in Fig. 1 [17]. However, this 

dataset does not provide labelled data. To the aim of this work, 

an automotive benchmarking dataset, the KITTI dataset, was 

chosen for the experiments and converted into Bayer 

frames [8]. The different methods to convert the dataset into 

Bayer are explained in Sec. III. B. In total, 8 three-channel 

datasets were generated (i.e. based on two different methods 

and four variants from colour correction matrix and colour 

filter array alignment), and 3 single-channel datasets. 

B. CONVERSION OF DATASET 

The selected KITTI dataset provides post-processed frames 

which have been through the used camera image signal 

processing (ISP) and frame rectification. ISP processing is not 

fully reversible and the specific ISP pipeline has not been 

released. In the work by Hansen et al., the Authors have tried 

to revert the ISP pipeline starting from RGB frames, and then 

apply again the ISP process to create ‘simulated’ RGB frames 

[47]. However these ‘simulated’ frames had different 

performance with respect to the original RGB. In the hereby 

presented work, to avoid further modifications to the pre-

processed data, we have created our Bayer datasets using as 

much as possible the values stored in the frames of the original 

KITTI dataset (from now on named ‘Original RGB’ dataset). 

We have also investigated and validated this approach by 

investigating the placement of the colour filter array (the CFA 

configuration is not known a priori). The different formats of 

the generated Bayer datasets are listed in Table I and described 

below. 

In Table I, there are two single channel formats consisting 

of grayscale and Gray Bayer. The produced Gray Bayer 

dataset, format 3, uses the colour channel value based on the 

colour filter for each pixel, similar to how in cameras the CFA 

creates one intensity value in each pixel. Format 2 dataset, 

grayscale, was created using a grayscaling algorithm which 

interpolates using the RGB values for every pixel and is used 

to act as a comparison against the generated Gray Bayer. In 

the case of single channel inputs we needed to modify 

YOLOv4, as explained in Sec. III.D.  

To allow a comparison of Bayer performance against RGB 

frames, three-colour channel Bayer frames were created to use 

the neural network without modification. These three-colour 

channel Bayer frame formats are designed to not modify the 

information content in the frames. Format 4, Bayer 0-Filled, 

contains the same values as format 3, Gray Bayer, but split into 

the correct colour channels with the remaining pixels being 

filled with zero value. Although the information has not 

changed, the introduction of the zeros might have an 

implication on the neural network detection (due to the zero 

patterns in the three colour channels). Hence, a second three 

channel Bayer frame format dataset, Bayer Colour-Filled 

(format 5), was also generated. In this format, the pixel 

channels without values are instead filled with the 

corresponding pixel value of that channel in the 2x2 matrix, 

except green where it is filled with an average of the two 

values in the 2x2 matrix. Fig. 4 shows a detail from a frame of 

the KITTI dataset to visually compare a frame generated with 

formats 3 to 5 and used in the presented experiments. As 

human consumers, the original frame (top left) is the most 

pleasant frame, without ‘abrupt’ changes and with ‘clear’ 

details.  

Moreover, the CFA placement is considered in this work. 

The alignment of the CFA for the KITTI dataset is not known. 

This work tests the different possible alignments of the CFA 

(i.e. RGGB, GRBG, GBRG, BGGR) to understand if it will 

have an effect on the evaluation of Bayer frame with the 

selected neural networks. Three additional variants of the 

Bayer 0-Filled format were created based on the other 

alignment of the CFA, see formats 4b to 4d in Table I. 

C. COLOUR CORRECTION MATRIC (CCM) 

One critical part of the ISP is to perform colour correction 

through a colour correction matrix (CCM), generating a more 

natural frame to the human visual system [47]. To investigate 

the effect of the CCM, a generic CCM, eq. 1, was inversed and 

applied to the dataset based on [52], see also Fig. 5. This 

process was performed to the original RGB dataset, Bayer 0-

  

  
Fig. 4. Original detail from a KITTI frame top left, Bayer 0-Filled frame top 

right, Bayer Colour-Filled bottom left and single channel gray Bayer bottom 

right. 

   
Fig. 5. Detail from a frame from the KITTI dataset: left is the original frame, 

and right is the same frame with the CCM inverse applied to it. 
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Filled and Gray Bayer which are the two formats most 

representative of a Bayer frame generated. The inverse CCM 

was applied on the original frame before the Bayer conversion 

was performed. 

D. YOLOV4 

A one-stage network, namely a YOLOv4, is chosen for this 

work due to strict real-time requirements of the functions 

deployed for assisted and automated driving, see. Sec II. B. 

Several recent works have demonstrated that in the case of 

KITTI and automotive datasets, trends observed in one- and 

two-stage detectors are similar [49][53].  As a consequence, to 

reduce variability, our work focuses on one architecture, but 

creating 11 trained DNN versions (see below) and cross-

evaluate several datasets (i.e. original and different versions of 

one or three colour channel Bayer) per trained network. Our 

methodology can be followed and applied to any DNN 

architecture. To the best of our knowledge, this is the first 

study of this type. The input of the selected network requires 

RGB (3 channels) frames, so as a part of this work a one 

channel input version of the YOLOv4 was created, but only 

the input layer of the network was modified, see Fig. 6. Part of 

the experiments are carried out with the DNN version with one 

channel input and part with three channels input, the 

generation of input data from the original RGB data is 

described in Table I.  On the contrary, previous studies feeding 

‘Bayer’ data to DNN do not specify how the ‘Bayer’ data nor 

the DNNs were modified, so they are not fully reproducible. 

As a part of this work, the selected DNN was re-trained with 

different datasets, as described in Sec III. A-C, generating 11 

versions of the re-trained network, of which 8 three channels 

input (i.e. original RGB, 0-filled Bayer, Colour-filled Bayer, 

original RGB no CCM, 0-filled Bayer no CCM, and 0-filled 

Bayer with 3 more variations of the CFA) and 3 one channel 

input (i.e. grayscale, gray Bayer, gray Bayer no CCM). These 

re-trained networks were then used to evaluate different three 

channel or one channel datasets, depending on the specific 

experiment. All combinations between training and testing are 

reported in Tables II-IV. The initial YOLO model parameters 

were initialised with small random numbers, close to 0. The 

model parameters were updated based on category loss, 

bounding box regression loss, and target confidence loss 

through 40 training epochs for every trained network. 

E. Evaluation 

The evaluation metrics selected in this paper are based on 

mean average precision, i.e. mAP0.5 and mAP[0.5:0.95]. For 

mAP0.5, the mean average precision across the classes is 

calculated, given an intersection over unit (IoU), between the 

predicated bounding box and ground truth of 0.5. In 

mAP[0.5:0.95], the mAP is computed for each step of IoU 

between 0.5 and 0.95, with a step size of 0.05, and is then 

averaged. In the automotive field, mAP0.5 show that objects 

are identified correctly, but can have a higher degree of 

 
 

Fig. 6. YOLOv4 architecture with the input layer (highlighted with dotted 

purple box) modified to accept one channel input. 

TABLE II 

TABLE OF RESULTS FOR THE DIFFERENTLY TRAINED NETWORKS 

EVALUATED WITH THE DIFFERENT DATASETS. DATA FORMATS ARE 

EXPLAINED IN TABLE I 

Network  

Input  

Channels 

Training 

set type 

Evaluation 

set type 
mAP0.5 

mAP 

[0.5:0.95] 

YOLOv4 

with 

three 

channel 

input 

Original 

RGB  

Original 

RGB 
0.915 0.558 

Bayer 

0-Filled 
0.828 0.507 

Bayer 

Colour-

Filled 

0.895 0.534 

Bayer 

0-Filled 

Original 

RGB 
0.876 0.508 

Bayer 

0-Filled 
0.897 0.522 

Bayer 

Colour-

Filled 

0.876 0.506 

Bayer 

Colour-

Filled  

Original 

RGB 
0.912 0.552 

Bayer 

0-Filled 
0.657 0.379 

Bayer 

Colour-

Filled 

0.912 0.549 

YOLOv4 

with one 

channel 

input 

Grayscale 

Grayscale 0.907 0.541 

Gray 

Bayer 
0.903 0.542 

Gray 

Bayer 

Grayscale 0.884 0.524 

Gray 

Bayer 
0.909 0.542 
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uncertainty in the location of the object. On the other hand, 

mAP[0.5:0.95] evaluates with multiple steps of increasing IoUs, 

thus the score also considers how accurate is the location of 

the identified object in the frame, which can be key for the 

safety of assisted and automated driving functions. 

IV. RESULTS 

A total of 41 different pairings of the 11 re-trained DNNs and 

11 generated datasets have been generated, of which 33 pairs 

related to the three input DNN and 8 pairs to the one input 

DNN version. Of the three single channel re-trained networks, 

the gray Bayer was cross-evaluated with respect to the 

grayscale (generating 4 sets of results) and with respect to the 

gray Bayer with no CCM (further 4 sets of results). For the 3 

channel inputs, the Original, Bayer 0-filled and colour-filled 

were cross-evaluated (generating 9 sets of results); the 4 

different configurations of CFA were cross-evaluated 

(generating 16 sets of results); and also Original and 0-filled 

versions were cross-evaluated with respect their inversion 

using the CCM (generating 8 more sets of results). All the 

results are reported in Tables II-IV. 

A. QUALITATIVE EVALUATION 

Two adequately different frames were selected from the 

dataset to show the detection results, i.e. 000232.png and 

000400.png, they are shown side by side in Fig. 7-8, where the 

detections when the DNN are trained and tested with the same 

variant of the dataset. The selected frames are different in 

terms of visual content: Fig. 7. is not crowded but has 3 

different types of road stakeholders, including one vulnerable 

stakeholder, i.e. the bike. Fig. 8. has several vehicles of 

different sizes and with different levels of occlusion.  The 

detections and classifications with confidence scores for 

different objects are overlayed on the frames. Overall the 

detections look very similar in all the selected cases. 

B. QUANTITATIVE EVALUATION 

The main results have been split into three tables (Tables II-

IV) to identify three main aspects: comparing the detection 

performance of the DNNs trained with different types of data 

when evaluating RGB versus Bayer data; understanding the 

role of the position of the colour filter array on the results; 

analysing the role of the colour correction matrix. The top half 

of Table II shows the results in terms of the selected metrics, 

i.e. mAP0.5 and mAP[0.5:0.95], when the YOLOv4 network 

accepts a three colour channel input, and the bottom half 

presents the results of the modified YOLOv4 accepting only a 

single colour channel input. For three channel input version, 

YOLO has been re-trained with original RGB data, Bayer 0-

filled, and Bayer colour-filled and cross-evaluated across these 

formats, for the one input the network has been re-trained with 

Grayscale and Gray Bayer and cross-evaluated. The highest 

metrics values for each trained network have been highlighted 

in bold, and the best metrics across the different combinations 

show comparable performance within 5%.  

TABLE III 
EVALUATION RESULTS COMPARING DIFFERENT COLOUR FILTER ARRAY 

PLACEMENT (TABLE I) WHEN GENERATING THE BAYER 0-FILLED 

Training 

Set  

Evaluation 

Set Bayer 

0-filled 

mAP[0.5] mAP[0.5:0.95] 

Bayer 0-

filled (4) 

RGGB (4)  0.897 0.522 

GRBG (4b) 0.887 0.510 

GBRG (4c) 0.891 0.517 

BGGR (4d) 0.897 0.513 

Bayer 0-

filled 

GRBG 

(4b)  

RGGB (4)  0.894 0.521 

GRBG (4b) 0.891 0.520 

GBRG (4c) 0.889 0.529 

BGGR (4d) 0.897 0.524 

Bayer 0-

filled 

GBRG 

(4c) 

RGGB (4)  0.895 0.535 

GRBG (4b) 0.895 0.528 

GBRG (4c) 0.890 0.517 

BGGR (4d) 0.899 0.537 

Bayer 0-

filled 

BGGR 

(4d)  

RGGB (4)  0.887 0.527 

GRBG (4b) 0.886 0.531 

GBRG (4c) 0.884 0.518 

BGGR (4d) 0.893 0.524 

 

TABLE IV 

EVALUATION RESULTS COMPARING THE REMOVAL OF A PSEUDO CCM 

Training 

Set Type 

Evaluation 

Set Type 
mAP[0.5] mAP[0.5:0.95] 

Original 

RGB 

Original 

RGB 
0.915 0.558 

Original 

RGB No 

CCM 

0.912 0.555 

Original 

RGB No 

CCM 

Original 

RGB 
0.913 0.554 

Original 

RGB No 

CCM 

0.916 0.562 

Bayer 

0-Filled 

Bayer 

0-Filled 
0.897 0.522 

Bayer 

0-Filled  

No CCM 

0.877 0.511 

Bayer 

0-Filled  

No CCM 

Bayer 

0-Filled 
0.902 0.540 

Bayer 

0-Filled  

No CCM 

0.894 0.533 

Gray 

Bayer 

Gray Bayer 0.909 0.542 

Gray Bayer 

No CCM 
0.874 0.512 

Gray 

Bayer No 

CCM 

Gray Bayer 0.893 0.533 

Gray Bayer 

No CCM 
0.897 0.528 
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Table III presents the results of the DNN re-trained with the 

Bayer 0-filled considering 4 different RGB CFA placement, 

as shown in Table I (i.e. 4, 4b, 4c, 4d). The 4 generated three 

channel networks have been cross-evaluated with testing data 

generated with the 4 CFA placements too. The highest metrics 

values for each trained network have been highlighted in bold, 

and the best metrics across the different combinations show 

comparable performance within 2%, with mAP0.5 varying of 

less than 1%. 

Finally, Table IV compares the results when trying to 

remove the effect of the CCM processing from the original 

RGB data. In this case 4 different three input channel networks 

have been re-trained with the original RGB data, original RGB 

before CCM (cross-evaluating these two formats), Bayer 0-

filled and Bayer 0-filled without CCM (again cross-evaluating 

these two formats), and then 2 different one input channel 

networks have been trained with Gray Bayer and Gray Bayer 

before CCM (cross-evaluating too). The highest metrics 

values for each trained network have been highlighted in bold, 

and the best metrics across the different combinations show 

comparable performance within 2%, with mAP0.5 varying of 

less than 1%. 

V. DISCUSSION 

In terms of the qualitative results (Figs. 7-8), the detections for 

the selected pairs training-testing are extremely similar in the 

two frames, with small variations of the confidence scores. An 

interesting aspect is that even in the case of occluded vehicles 

and vulnerable road users (e.g. the cyclist), the DNN is able to 

classify them correctly for all the data formats used. Overall 

the detection of vulnerable road users and small objects in the 

frame does not seem detrimentally affected when using the 

different formats of Bayer data, and performance are very 

close to the performance of the original RGB data. 

These results are further confirmed by the values reported 

in the Tables. II-IV. In all the training-testing combinations, 

the best performance with each network trained with a 

different variant of the dataset ranged between 0.893 to 0.916 

for mAP0.5, and 0.522 to 0.568 for mAP[0.5:0.95]. These results 

suggest that when using DNN based object detectors, there are 

 
a) Original RGB 

 
b) Grayscale 

 
c) Gray Bayer 

 
d) Bayer 0-Filled 

 
e) Bayer Colour-Filled 

Fig. 7. Objects detected by the trained network overlayed onto the frame 

000232.png. The training and evaluating dataset uses the same frame 

formats 
 

 
a) Original RGB 

 
b) Grayscale 

 
c) Gray Bayer 

 
d) Bayer 0-Filled 

 
e) Bayer Colour-Filled 

Fig. 8. Objects detected by the trained network overlayed onto the frame 

000400.png. The training and evaluating dataset uses the same frame 
formats 
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minor performance variations in the ‘detection’ using different 

representation of the data. However, the accuracy of the 

bounding boxes (i.e. position and size) may suffer slightly 

more. On a high level, the different ways of representing Bayer 

information in Table II contained the same information, 

derived from the original dataset, but are arranged differently. 

Hence, the achieved values demonstrate that the DNN can 

cope with small changes in how the information is fed to the 

Network. However, it seems that the Bayer 0-filled version 

yields to the worst performance (i.e. 2% lower than the RGB-

RGB training/evaluation version), this performance decrease 

might de due to zeros patterns in the input data hindering the 

network convolution and feature extraction. The Bayer colour-

filled trained Network has a very interesting property: the 

detection performance in terms of mAP0.5 is the same when 

evaluating the Bayer colour-filled and the original RGB data 

and only 0.3% different from the RGB-RGB DNN 

performance. It means that actually the performance when 

using this format of data are indistinguishable from traditional 

RGB based DNNs, but also that hyperparameter tuning can be 

implemented for the colour-filled Bayer re-trained YOLO, 

yielding to even higher performance, further enhancing 

mAP[0.5:0.95]. These results imply that state-of-the-art networks 

can be re-used and further optimised for consumption of Bayer 

data. This aspect will enable an immediate reduction of the 

bandwidth required for camera data transmission on 

traditional vehicle communication networks, in the sense that 

camera data can be transmitted as non-processed single 

channel Bayer, and then ‘colour-filled’ to three channels in the 

DNN input stage. Moreover, recent work has mentioned that 

the use of raw frames can reduce overall sensor power 

consumption (up to 35%) and the processing time of one sixth 

of the framerate, so the use of Bayer frames in automotive can 

bring a significant optimisation when using cameras for 

assisted and automated driving functions [49]. 

For the network adapted for single channel input, using 

greyscale frame and gray Bayer frames performed extremely 

similarly. However, the grey Bayer (training and evaluation) 

DNN performed the best for both mAP[0.5] and mAP[0.5:0.95]. 
Additionally, YOLO trained and evaluated with grey Bayer 

performed very similarly to the network trained and evaluated 

with the original RGB, with a negligible decrease of 0.6% in 

mAP0.5 and of 1.6% in mAP[0.5:0.95]. These results show that 

single channel Bayer frames can be a promising direction for 

research, with possible performance gain through slimmer 

networks (smaller inputs), optimised network architectures, 

and hyperparameter tuning. 

In addition, as mentioned earlier, the exact colour filter 

array placement in the frame is not known. This issue could 

affect the conversion of the dataset, see 4 to 4d formats in 

Table I. To consider how the exact CFA placement affect the 

DNN output, we have trained and cross-evaluated YOLO with 

the four CFA datasets. The results are recorded in Table III. 

Due to the demosaicing process used to produce the RGB 

frame, every pixel channel has a dependence and relation to 

neighbouring pixels. Hence, although a different CFA pattern 

is applied, there are no major differences in pixel value 

patterns and frame features should still be recognisable. 

Therefore, the colour filter array orientation does not play a 

large role in this work. 

Finally, Table IV compares some of the best performing 

data formats with their version pre-CCM. For the original 

RBG data, CCM do not seem to play a significant role in the 

performance. This is similar for the Bayer 0-filled and the 

Gray Bayer. This outcome shows once more that the 

processing in the ISP is not really optimised for DNN 

perception, and therefore it can be removed whereas more 

effort is allocated into converting existing DNNs to use Bayer 

data and maximising their performance.   

VI. CONCLUSION 

Building on the research and automotive trend of linking raw 

data with perception tasks, this paper presents a study on the 

use and re-training of DNN based object detectors to consume 

Bayer data instead of traditional RGB data, without any 

modifications to the neural network architecture. Moreover, 

with minimal adjustments, a DNN has been also converted to 

use single channel frames, and when using the Gray Bayer 

dataset, the DNN performance have been almost identical 

(with a variation of 0.6%) to the traditional version of the 

Neural Network. The placement of CFA on sensors and the 

role of CCM have been analysed and discussed, and overall 

their effect seems marginal for the Network performance. In 

alignment with recent work, the achieved results show that 

whilst the internal processing on camera sensors has been 

optimised for human vision, most of the implemented 

processing is not really needed for DNN based perception, and 

specifically for object detection. These findings not only pave 

the way for the re-use of current DNN in order to consume 

Bayer data, but also open the possibility to develop optimised 

architectures to use Bayer. In turns these achievements can 

improve the safety of future assisted and automated driving 

functions and also their efficiency, in terms of less sensor data 

to be transmitted to the vehicle processing unit(s), less sensor 

power consumption, and reduction of latency due to ISP. 

Future work will explore different DNN architectures and 

other downstream perception tasks.  
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