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ABSTRACT Knowledge Graphs (KGs) are data structures that enable the integration of heterogeneous data
sources and supporting both knowledge representation and formal reasoning. In this paper, we introduce
TrustKG, a KG-based framework designed to enhance the interpretability and reliability of hybrid Al
systems in healthcare. Positioned within the context of lung cancer, TrustKG supports link prediction,
which uncovers hidden relationships within medical data, and counterfactual prediction, which explores
alternative scenarios to understand causal factors. These tasks are addressed through two specialized hybrid
Al systems, VISE and HealthCareAl, which combine symbolic reasoning with inductive learning over KGs
to provide interpretable Al solutions for clinical decision-making. Leveraging KGs to represent biomedical
properties and relationships, and augmenting them with learned patterns through symbolic reasoning, our
hybrid approach produces models that are both accurate and transparent. This interpretability is particularly
important in medical applications, where trust and reliability in Al-driven predictions are paramount.

Our empirical analysis demonstrates the effectiveness of VISE and HealthCareAl in improving the
predictive accuracy and clarity of model outputs. By addressing challenges in link prediction—such as
discovering previously unknown connections between medical entities—and in counterfactual prediction,
TrustKG, with VISE and HealthCareAl, underscores the potential of integrating KGs with symbolic Al
to create trustworthy, interpretable Al systems in healthcare. This paper contributes to the advancement of
semantic Al, offering a pathway for robust and reliable Al solutions in clinical settings.

INDEX TERMS Counterfactual Prediction, Inductive Learning, Knowledge Graphs, Link Prediction,
Symbolic Learning

I. INTRODUCTION

Knowledge graphs (KGs) provide a robust framework for
integrating data and metadata from diverse sources [1]]. By
bridging disparate data silos and creating an integrated view,
KGs enable powerful insights in complex domains that re-
quire comprehensive data analysis, such as healthcare. In
lung cancer, for instance, diagnosis and treatment decisions
are intricate, with oncologists needing to consider numerous
factors—including tumor type, stage, and genomic mark-
ers [2]—to develop patient-specific treatment plans. These
factors guide crucial decisions regarding therapies, dosages,
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and treatment cycles, which are tailored to individual patient
responses and comorbidities [3]], [4]. The primary clinical
objectives in lung cancer management include: i) Maximizing
survival and quality of life, ii) Minimizing side effects, and
iii) Preventing relapse and disease progression [5].

While oncologists rely on their expertise and established
guidelines, the variability in patient cases often makes it
difficult to determine optimal treatment strategies through
intuition alone. Predictive models could assist in areas such as
diagnosis, treatment planning, and relapse prevention [2]]—[4],
[6]]. However, traditional models frequently lack interpretabil-
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FIGURE 1: AI Models in Medicine. Figures (a) and (b) illustrate clinical objectives for LC treatment and the limitations in
transparency of traditional AI models. Hybrid Al integrating symbolic reasoning with inductive learning over KGs presents
a promising approach to overcoming these challenges, combining interpretability and adaptability to offer clinicians deeper

tailored to specific patient needs (Figure (c)).

ity and domain-specific insights, which are crucial in lung
cancer management where precision and transparency are es-
sential. Figures [Taand [TB]illustrate the clinical objectives for
lung cancer treatment and the limitations in the transparency
of traditional AI models in the healthcare domain.

To address these challenges, leveraging medical semantics
can significantly enhance both the accuracy and interpretabil-
ity of predictive models [7]. In particular, understanding re-
lapse risks and exploring personalized treatments are essen-
tial for effective patient care in lung cancer [8]]. These tasks
can be approached through:

e Relapse Risk Prediction through Valid Link Prediction:
Identifying latent connections between patient features
(e.g., biomarkers) and relapse events helps to antici-
pate risk factors that may not be obvious in traditional
datasets. This supports oncologists in preemptively ad-
justing treatment plans to mitigate relapse risks.

Personalized Treatment through Counterfactual Predic-
tion: Counterfactual reasoning allows the exploration of
alternative treatment scenarios by simulating potential
outcomes. This “what-if’ analysis aids in identifying
suitable treatment adjustments for individual patients,
balancing relapse prevention and quality of life.

KGs capture complex clinical relationships, enabling valu-
able insights into tasks such as relapse prediction and coun-
terfactual prediction, thereby contributing to improved pa-
tient care. Hybrid Al systems that integrate symbolic rea-
soning with inductive learning over KGs offer a promising
approach to these challenges. By combining the interpretabil-
ity of symbolic methods with the adaptability of inductive
learning, hybrid Al can deliver deeper, more actionable in-
sights tailored to specific patient needs (Figure[Ic). This paper
presents a methodology for integrating knowledge graphs
(KGs) with inductive learning, which facilitates the devel-
opment of interpretable, context-aware artificial intelligence
(AI) in the healthcare domain.

2

A. OUR PROPOSED SOLUTION: TRUSTKG

We propose TrustKG to address these clinical tasks and de-
liver reliable, interpretable results to clinical users. TrustKG
is a KG-based framework that supports semantic data man-
agement and KG analytics to promote interpretability in Al-
driven healthcare. TrustKG facilitates tasks across data in-
gestion, processing, and integration, incorporating seman-
tic alignment, named entity recognition, and entity link-
ing/disambiguation. It includes tools for KG creation, valida-
tion, and exploration, enabling the representation of complex
biomedical data with ontologies and logical reasoning, as well
as validation through shape schemas. TrustKG’s analytics
capabilities leverage both symbolic and numerical learning
techniques for predictive modeling, including valid link pre-
diction, counterfactual prediction, and causal analysis.

Specifically, the hybrid Al systems VISE and Health-
CareAl are integrated within TrustKG, combining symbolic
reasoning with inductive learning over KGs to address the
problems of valid link prediction and counterfactual pre-
diction, respectively. VISE uncovers latent relationships in
the data to assess relapse risks, while HealthCareAl uses
counterfactual reasoning to explore personalized treatment
options. Together, these systems enhance transparency and
reliability in clinical decision-making by integrating inter-
pretability with predictive precision. TrustKG also empha-
sizes human-centered communication by providing a natural
language interface and referencing scientific publications to
support its recommendations, empowering clinicians to make
informed, evidence-based decisions.

B. CONTRIBUTIONS AND STRUCTURE

Building on our previous work on VISE [9]] and Health-
CareAl [10], this paper makes the following novel contribu-
tions:
o The development of TrustKG, an interoperable and inter-
pretable knowledge graph (KG) ecosystem tailored for
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the medical domain.

o The problems of Valid Link Prediction and Counterfac-
tual Prediction.

o The specification of VISE and HealthCareAl, as hy-
brid Al systems, which address these problems using
symbolic reasoning combined with inductive learning to
improve prediction accuracy in lung cancer.

o Empirical evaluation of VISE and HealthCareAl on
KGs created from a lung cancer dataset, demonstrates
the impact of semantics on predictive performance.

The paper is structured as follows: Section [lI] reviews
related work, while Section [[Tl] describes the main features
implemented in TrustKG. Section |IV|defines the problem of
valid link prediction and presents VISE, along with the results
of an experimental evaluation of its performance. Similarly,
Section[V]introduces the problem of counterfactual prediction
and positions HealthCareAl as a hybrid Al system that lever-
ages semantics to effectively solve this task. Finally, Section
provides concluding insights and future directions.

Il. RELATED WORK

A. KGS IN MEDICINE

In the field of medicine, Knowledge Graphs (KGs) have been
widely employed to address challenges in semantic data in-
tegration through approaches like knowledge extraction [[11]]
and exploration [[12]. Chandak et al. [13]] introduce PrimeKG,
a KG that unifies clinical concepts from diverse medical
sources, encompassing 17,080 diseases with alignments to
biological processes, experimental drugs, and protein alter-
ations. PrimeKG enables forecasting of drug-disease inter-
actions and treatment recommendations. Sakor et al. [14]
present Knowledge4COVID-19, a framework for construct-
ing healthcare KGs using rule-based entity linking and ma-
chine learning. This KG facilitates tasks such as drug-drug in-
teraction prediction, treatment recommendations for COVID-
19, and treatment impact visualization. Knowledge4COVID-
19 showcases the potential of structured clinical knowl-
edge extraction from unstructured data. In oncology, Fotis
et al. [11] propose DE4LungCancer, a health data ecosystem
leveraging controlled vocabularies and ontologies to repre-
sent lung cancer patients’ medical histories. The ecosystem
uses the RML mapping engine [|15]] for KG creation from di-
verse data sources, and SHACL technologies for data quality
validation. Trav-SHACL [16]], an efficient SHACL validation
engine, assesses entities (e.g., patients) against specific medi-
cal protocols. Ristoski et al. [[17]] explore KG-based data link-
ing and integration, supporting effective data discovery and
knowledge exploration. Rivas et al. [[18]] propose an inductive
learning approach using graph neural networks to detect drug-
drug and drug-target interactions, predicting molecular prop-
erties and potential treatments. Callahan et al. [[19] introduce
an open-source KG ecosystem for life sciences, presenting a
methodology to construct large-scale KGs with components
for data pre-processing, KG construction, and analytics. In
lung cancer research, Calvo et al. [20] develop the TTR KG,
which integrates knowledge on non-small cell lung cancer,
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including data from 12,351 patients with attributes such as
smoking habits and mortality rates. The TTR KG provides
analytical insights and supports survival rate predictions.
Empirical evaluation of VISE and HealthCareAI on KGs
created from a lung cancer dataset, demonstrating the impact
of semantic integration on predictive performance.

B. Al MODELS IN MEDICINE

Recent advancements in Al have brought personalized health-
care systems closer to reality. Janik et al. [21]] propose a
personalized care model for lung cancer patients to estimate
relapse probability, comparing the accuracy of traditional Al
models (78%) with graph machine learning models (68%)
for relapse prediction. Pan et al. [22] investigate the effec-
tiveness of Al models, such as Support Vector Machine and
Random Forest, in predicting relapse for acute lymphoblastic
leukemia patients. Similarly, Yang et al. [23] explore how
machine learning techniques, including decision trees and
deep neural networks, can analyze the influence of clinical
status and demographics on the survivability of early-stage
cancer patients. Additional studies [24]], [25] examine AI
techniques for predicting lung cancer mutations from tabular
and image data, highlighting the impact of attributes like pre-
scribed treatments on predictive accuracy. One study closely
related to ours explores the use of machine learning models,
particularly random forests [26]], in personalized healthcare.
Vyas et al. [27]] model patient-level and patient-episode health
records, developing ensemble-based predictive models for
dementia prognosis and personalized treatment recommenda-
tions, with interpretability provided by LIME [28]. This ap-
proach helps oncologists forecast and recommend treatments,
enhancing decision-making in clinical settings. While these
Al models show promise for predictive tasks in medicine and
oncology, they often lack interpretability and do not fully
leverage domain-specific knowledge, which limits their re-
liability in clinical settings. Integrating semantic information
through KGs offers a pathway to address these limitations,
enhancing interpretability and enabling Al systems to provide
more context-aware insights for personalized patient care.

C. EXPLAINABLE Al IN MEDICINE

As Al adoption in medicine grows, a key challenge per-
sists: many models function as black boxes, making their
decision processes opaque and difficult to interpret. Under-
standing the rationale behind Al predictions is essential for
trust and reliability, especially in healthcare. Suh et al. [29]
highlight the communication gap between Al practitioners
and medical experts, showing that accuracy metrics alone are
insufficient for building understanding among subject mat-
ter experts. Instead, models must be explicitly interpretable
to provide meaningful insights. To address this need, Li et
al. [30]] identify distinct user personas in Knowledge Graph
(KG) applications—KG Builder, KG Analyst, and KG Con-
sumer—each with unique requirements for interpretability.
Similarly, Purohit et al. [31]] propose the DIGGER pipeline,
which extracts logical rules from lung cancer treatment data to
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reveal patterns, flag protocol deviations, and complete miss-
ing relationships within KGs, providing clinicians with trans-
parent, explainable insights. Neuro-symbolic Al approaches
have furthered explainability by combining symbolic and
numerical methods. For instance, Rivas et al. [32] predict
therapy efficacy using a hybrid learning approach, while
Chudasama et al. [33]], [34] introduce InterpretME, a KG-
based framework that traces and explains predictive model
outcomes with LIME and SHAP [35]]. In the SemDesLC
framework [36]], Semantic Web technologies are leveraged to
make lung cancer relapse predictions interpretable, bridging
gaps between medical insights and Al predictions. Despite
these advancements, limitations remain. Current models of-
ten lack domain-specific semantics, restricting their ability
to capture the complex medical context needed for clinical
decision-making. Many systems also struggle to integrate
heterogeneous data effectively, limiting the interpretability of
complex relationships. These challenges highlight the need
for frameworks like TrustKG, which integrates symbolic rea-
soning with inductive learning over KGs, enabling seman-
tically enriched, context-aware insights that support clinical
decisions in complex healthcare scenarios.

D. Al MODELS FOR CAUSAL REASONING

Advanced predictive models have been widely used in
medicine for diagnosis support, prognosis, and personal-
ized treatment recommendations [37]—[39]]. However, while
these models provide valuable predictions, they often lack
interpretability and trustworthiness—key elements in clinical
decision-making where understanding the "why" and "what
if" behind recommendations is crucial [40]], [41]. Causal
models, which address these questions, require assumptions
about dependencies among clinical variables, such as the
Stable Unit Treatment Value Assumption (SUTVA) and the
Ignorability Assumption [42]]. To enhance causal analysis,
Salimi et al. [43] developed CaRL, a framework for causal
reasoning over relational databases, while Huang et al. pro-
posed CareKG and CauseKG to model causal relationships
and estimate causal effects in KGs [44], [45]]. However, these
models fall short in handling counterfactual prediction ("what
if" scenarios), which requires comprehensive causal graphs
(CGs) to capture all relationships. Techniques like structural
causal models (SCMs) and causal Bayesian networks (CBNs)
allow counterfactual predictions when a CG is available, but
CG construction is challenging and often relies on domain
experts or data-driven methods like the Peter-Clark (PC) al-
gorithm and Greedy Equivalence Search (GES) [46]]. Despite
recent advances, generating complete causal graphs from data
remains theoretically unattainable [40]. Emerging methods
using large language models for causal discovery still lack
integration of clinical semantics, which could improve CG
accuracy. Additionally, Barbra et al. [47] explore KG embed-
dings for counterfactual prediction without a CG, but their
real-world effectiveness is yet to be established. Moreover,
existing causal models in healthcare lack comprehensive se-
mantic integration, limiting their interpretability. We address

4

these gaps by integrating semantic reasoning with KGs, en-
abling richer causal insights and reliable counterfactual pre-
dictions tailored for complex clinical decision-making.

IIl. KGS AND Al MODELS IN MEDICINE

The application of Al in medicine, particularly in complex
fields like oncology, requires systems that not only provide
accurate predictions but also meet high standards of inter-
pretability, reliability, and personalization. KGs offer a pow-
erful approach for integrating heterogeneous medical data and
encoding biomedical knowledge, making them ideal for use
in hybrid Al systems. This section discusses the essential
requirements for Al in medical applications, the structure and
capabilities of TrustKG—a hybrid Al framework based on
KGs—and introduces two key predictive tasks, valid link pre-
diction and counterfactual prediction, relevant to improving
decision-making in lung cancer treatment.

A. REQUIREMENTS FOR Al IN MEDICINE

The implementation of effective Al models to address predic-
tive problems in medicine requires the satisfaction of several
key requirements [3[], [|36]], [48]]:

o Interpretability: Oncologists need to understand the ra-
tionale behind Al-driven recommendations. This is cru-
cial for validating model suggestions and making adjust-
ments based on individual patient needs [49].

o Reliability: An Al model should provide consistent, ac-
curate predictions, reducing the risk of erroneous rec-
ommendations that could negatively impact patient out-
comes [50].

o Context-Aware Reasoning: Al models must incorporate
medical knowledge, such as relationships between pa-
tient characteristics, tumor markers, and treatment out-
comes. This knowledge enables Al systems to make
decisions that align with clinical guidelines and patient-
specific factors [S1]].

e Personalization: Effective Al models must be able to
personalize treatment recommendations and account for
patient-specific factors, such as genetic mutations, med-
ical history, and potential comorbidities [3].

o Adaptability: Al systems should adapt to new medical
knowledge and evolving treatment protocols. This re-
quires a flexible framework capable of integrating up-
dated data and knowledge sources over time [52].

Meeting these requirements is challenging with traditional

machine learning approaches, as they often lack the necessary
transparency and domain-specific knowledge [53]. To ad-
dress these limitations, by combing semantics inferred from
symbolic reasoning and integrity constraint validation with
inductive learning over KGs.

B. TRUSTKG: A HYBRID Al FRAMEWORK FOR MEDICAL
KNOWLEDGE GRAPHS

In the medical domain, the complexity of patient data re-
quires Al systems that can integrate diverse, domain-specific
knowledge while maintaining interpretability, reliability, and
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conceptual modeling, data ingestion, processing, and integration across heterogeneous data sources, utilizing techniques like semantic
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data. The Knowledge Graph Management layer focuses on

creating, validating, and exploring KGs, with tools for reasoning, shape validation, and federated processing to ensure the integrity and usability
of the graph structure. These capabilities are essential for structuring complex biomedical knowledge accurately, providing a foundation for

reliable Al-driven insights in clinical applications.
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clinical users to interpret Al-driven recommendations. Thus, enabling TrustKG to offer interpretable and actionable insights, bridging the gap
between complex data analytics and real-world clinical decision-making, and demonstrating the practical value of semantic Al in healthcare.

FIGURE 2: TrustKG Framework: This architecture allows TrustKG to deliver accurate, interpretable, and clinically relevant

insights, supporting evidence-based decision-making in complex medic
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FIGURE 3: Human-Machine Communication in TrustKG. (a) InterpretME Interface: The interface displays mined Horn
rules (e.g., treatment recommendations based on cancer stage and mutation type) with their corresponding confidence scores
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and decision-making. Additionally, links to ORKG explanations provide further insights into the derived rules. (b) ORKG Ask
Interface: The ORKG Ask system retrieves relevant scientific publications and presents query results (e.g., chemotherapy
treatment outcomes) along with concise summaries, insights, and links to full articles. This enables oncologists to access
evidence-based findings directly connected to the mined rules, supporting informed decision-making.

adaptability. Knowledge Graphs (KGs) are particularly suited
to this challenge. A KG is a directed, edge-labeled graph
that can be represented as KG = (V,E,L) [54], where V
represents nodes (e.g., entities like patients, treatments, or
biomarkers), L denotes edge labels (e.g., relationships such
as "has_symptom" or "treated_with"), and E is the set of
edges connecting nodes based on these relationships. KGs
enable the representation of medical knowledge, capturing
complex interrelationships essential for accurate and context-
aware Al-driven insights. To meet the requirements of in-
terpretability, reliability, context-aware reasoning, personal-
ization, and adaptability in clinical applications, we propose
TrustKG, a hybrid Al framework that leverages KGs to sup-
port advanced predictive tasks in healthcare. TrustKG inte-
grates symbolic reasoning with inductive learning, to provide
clinically relevant insights. As illustrated in TrustKG is or-
ganized into four core layers—Semantic Data Management,
Knowledge Graph Management, Knowledge Graph Analyt-
ics, and Human-Machine Communication (Figures @ and
[2b)—that together address challenges of medical data integra-
tion, knowledge management, interpretation, and usability.

Semantic Data Management facilitates the ingestion, pro-
cessing, and integration of diverse data sources, including
scientific literature, clinical guidelines, and patient records.
This layer achieves data harmonization through semantic
alignment, named entity recognition, and entity linking, creat-
ing a unified and interoperable schema that captures complex
biomedical knowledge within an integrated data system. This
structured approach enables the mapping of data sources to
unified schemas or biomedical ontologies (e.g., the Unified

6

Medical Language System - UMLﬂH), while clinical proto-
cols and guidelines are encoded as shape constraints. It is of
paramount importance that domain-specific representations
are employed to guarantee that the outputs produced by
TrustKG are both interpretable and contextually relevant.

Knowledge Graph Management supports the creation, vali-
dation, and exploration of KGs, enabling reasoning and mate-
rialization. It uses shape schemas to validate the KG, ensuring
the consistency and reliability of represented entities and re-
lationships, and offering clinicians trustworthy insights. Fed-
erated query processing allows seamless exploration across
multiple datasets, enhancing the system’s adaptability and
usability in healthcare environments.

Knowledge Graph Analytics combines symbolic and nu-
merical learning to enable predictive modeling. Symbolic
learning identifies patterns within the graph, while numerical
learning supports tasks such as valid link prediction and
causal analysis. These capabilities directly address the need
for context-aware reasoning by drawing insights from estab-
lished medical knowledge and real-world data. In lung cancer
treatment, for example, these analytics support tasks such as
assessing risk of relapse and exploring treatment scenarios. In
addition, various techniques will be implemented to generate
benchmarks of synthetic KGs (i.e., fully and partially syn-
thetic KGs [55]]) for the empirical studies of TrustKG tools.

Human-Machine Communication provides a natural lan-
guage interface and links insights to scientific publications,
enhancing interpretability and trust. This layer ensures that
clinicians receive recommendations in accessible language,
allowing them to validate insights against existing literature

I Accessed on November 14th, 2024: https://www.nlm.nih.gov/research/|
umls/quickstart.html
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and make informed decisions. By presenting results transpar-
ently, TrustKG fosters clinician confidence in the AI’s output.
Additionally, TrustKG leverages frameworks such as Inter-
pretME [33]], a KG-driven system that enables fine-grained
representation of the main characteristics of trained machine
learning models, ensuring that clinicians and researchers can
better understand model behaviors and predictions. TrustKG
also integrates tools like ORKG Ask [56]], a hybrid Al sys-
tem that supported on vector search, large language models,
and KGs allows for the scholarly search and exploration. In
TrustKG, ORKG Ask provides advanced query and explo-
ration capabilities, facilitating access to relevant scientific
knowledge and enhancing clinicians’ ability to interpret Al-
driven insights in a broader research landscape.

C. PREDICTION PROBLEMS IN TRUSTKG
TrustKG addresses two core prediction tasks critical in on-
cology: Valid Link Prediction and Counterfactual Prediction.
These tasks are of great importance for the implementation
of personalized treatment strategies and the anticipation of
patient outcomes in complex scenarios.
Valid Link Prediction: This task involves assessing the like-
lihood that a given KG link is accurate. In lung cancer,
this can mean predicting the probability of relapse based on
biomarkers and other patient-specific factors. Accurate link
prediction enables early intervention and improved prognosis
by identifying at-risk patients. In the context of lung cancer,
Valid Link Prediction is illustrated by assessing whether a
prescribed treatment, such as immunotherapy, is valid for a
specific patient profile. The example in Figure [4a] shows a
patient with attributes including age, gender, smoking habits,
and cancer stage. The predictive model evaluates if the pa-
tient’s drug treatment aligns with medical protocols, such
as whether Nivolumab is recommended for patients without
EGFR-positive mutations. By anticipating the efficacy of this
treatment link, TrustKG facilitates the delivery of optimal
care, promoting early intervention and enhanced outcomes.
Counterfactual Prediction: Counterfactual reasoning predicts
outcomes under hypothetical scenarios, providing a "what-
if" analysis. In lung cancer, counterfactual predictions help
evaluate how changes in lifestyle factors, like smoking ces-
sation, might influence disease progression. This capability
is essential for personalized treatment planning and preven-
tive care. Counterfactual Prediction enables "what-if" anal-
yses by predicting outcomes under hypothetical scenarios.
In the example shown in Figure @b the model examines
how changes in lifestyle factors, such as smoking habits,
might influence a biomarker status related to lung cancer. For
instance, it assesses if switching from a current smoker to a
non-smoker could affect the ALK mutation status. This anal-
ysis supports clinicians in evaluating the potential benefits
of lifestyle changes, aiding more in personalized treatment
planning, emergency response planning, and preventive care
by providing a deeper understanding of patient-specific risks.
TrustKG integrates two specialized hybrid Al systems
within: VISE for valid link prediction and HealthCareAlI for
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counterfactual prediction. Using design patterns and struc-
tured implementation frameworks, both systems combine
symbolic reasoning with inductive learning over KGs. VISE
supports relapse risk assessment by uncovering latent connec-
tions, while HealthCareAl enables practitioners to explore
alternative treatment scenarios tailored to individual needs.
Together, VISE and HealthCareAl illustrate the potential
of TrustKG to improve decision-making in healthcare by
providing interpretable and personalized insights that support
both immediate and preventive medical actions.

IV. PREDICTING VALID LINKS OVER KGS

This section defines the problem of valid link prediction and
presents VISE. The boxology of design patterns proposed by
Van Bekkum et al. [57] is utilized to specify the main compo-
nents of VISE. Further, the impact of considering semantics
encoded in integrity constraints is empirically evaluated, and
the experimental results are reported. We start summarizing
basic concepts like shapes, shapes schemas, inductive learn-
ing, Partial Completeness Assumption heuristic and score,
and Design Patterns.

Shapes and Shapes Schemas. Shapes represent sets of con-
ditions that nodes or edges must satisfy to ensure data consis-
tency and integrity in KGs. A shape, denoted as ¢, can include
basic conditions like truth values, membership tests, Boolean
conditions, conjunctions, negations, or cardinality constraints
on edges. Shapes schemas, denoted as ¥ = (p, S, ), or-
ganize these shapes into a framework consisting of a set
of shapes (), labels (S) for identification, and a mapping
function () linking labels to shapes. Evaluation of a shape
determines whether a node or edge satisfies the defined con-
straints, yielding a binary result (O or 1). A KG satisfies a
shapes schema if all nodes targeted by the schema validate
their respective shapes. This structured approach provides a
foundation for encoding and enforcing constraints in KGs.
Inductive Learning Over KGs. Inductive learning in
Knowledge Graphs (KGs) derives general patterns from spe-
cific data to make predictions about unseen facts [54]. It
employs methods such as Knowledge Graph Embeddings,
which map KGs to low-dimensional vector spaces to cap-
ture relationships numerically, and Symbolic Learning, which
identifies logical rules (e.g., Horn clauses) denoted as R for
symbolic reasoning. To address the incompleteness nature of
KGs, the Partial Completeness Assumption (PCA) heuristic
integrates observed positive edges (ET) with heuristic-based
negative edges (hE~). These hE~ edges represent plausi-
ble but unobserved relationships entailed from the logical
structure of rules. The PCA Confidence Score, PCA(R) =
% measures arule’s reliability by balancing its support
based on edges entailed from R, against the union of observed
(E™) and entailed edges (hE ™).

Boxology of Design Patterns. Van Bekkum et al. [57] in-
troduced modular design patterns, known as "boxology," to
describe hybrid neuro-symbolic systems using elementary
design patterns. These patterns visually represent system
components, with inputs/outputs as grey rectangles, processes
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FIGURE 4: Prediction Tasks in TrustKG. (a) Valid Link Prediction: An example illustrating the identification of a link between
patient attributes and treatment protocols. The model deduces whether the prescribed treatment aligns with clinical guidelines,
indicating if it is valid for a patient with specific characteristics (e.g., age, gender, and genetic mutations). (b) Counterfactual
Prediction: An example of counterfactual reasoning applied to evaluate how a hypothetical scenario (e.g., change in smoking
habits) might impact the patient’s biomarker profile, supporting personalized treatment decisions and preventive care.

as blue rounded rectangles, models as yellow hexagons, and
actors as green triangles. Key patterns for generating models
include: Training, where data or symbols are used to create a
model; Transformation, where data or symbols are converted
into new forms without creating a model; and Inference for
Symbols, where a model deduces symbols from data or sym-
bols. They are applied to the proposed solutions for predicting

valid links and counterfactual prediction (section V).

A. PROBLEM STATEMENT

Given a directed edge-labeled graph KG=(V, E, L) where each
node v € V represents an entity and each p € L represents a
unique relation between entities, the task of link prediction
focuses on completing an incomplete triple (s, p, 7). Specifi-
cally, this involves identifying the most plausible entity o’ €
V that completes the triple (s, p, 0), such that both s and o’
validate a given shape schema ¥ = (¢, S, \). Using a scoring
function 6(s,p, 0’), which quantifies the plausibility of the
triple, the optimization problem is defined as:

AsEpAeE

o' = argminf(s, p,
ecV

The goal is to infer the most plausible entities o’ by leveraging
positive edges E™, generating heuristic-based negative edges
hE~, and ensuring that the resulting triples satisfy the shape
schema 3, i.e., (s,p,0") = .

B. PROPOSED SOLUTION

We propose VISE to solve the problem of Valid Link Pre-
diction. VISE follows the hybrid design pattern as illus-
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trated in[Figure 3] strategically combining numerical learning
with symbolic learning and constraints validation methods.

illustrates Symbolic learning component which
is applied to the input KG, resulting in the generation of
logical rules and PCA heuristic-based edges. For instance,
a logical rule, relapseProgression(?a, Progression), drug(?a,
Nivolumab) = biomarker(?a, EGFR_Negative) stating that
if a patient has prescribed nivolumab in the progression is
more likely to have EGFR Negative mutation. The learned
heuristic-based edges serve as prior knowledge, improving
numerical learning approaches such as KGE models com-
bined with constraints validation and KG transformation.
During the process of symbolic learning, VISE utilizes ex-
tracted Horn rules in conjunction with PCA Confidence to
deduce heuristic-based negative edges. The mined rules are
subsequently utilized to generate predictions regarding the
missing relationships in the input KG. These predictions are
based on logical inference, which is used to calculate the
entailment of the mined rules. SPARQL queries are employed
to infer the entailment of mined horn rules and generate
heuristic-based negative edges (hE™) which represent the
deduced knowledge based on the observed explicit patterns.

The predictions generated by the symbolic learning system in
conjunction with the input KG are then fed to the KG Valida-
tion and Transformation component, where the
predicted links are evaluated to determine whether they vali-
date or invalidate the SHACL constraints. Here, the validation
framework is defined by >~ = (¢, S, A), a symbolic compo-
nent to ensure the quality of the predicted hE~ edges. For
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[5d), demonstrates the use of symbolic rules from the Symbolic Learning component and Constraint Validation and KG
Transformation component in combination with Numerical Learning (i.e., KGE models) to enhance the predictive performance.

instance, a SHACL constraint is to check if a patient mutated
with EGFR is not recommended Afatinib drug. Furthermore,
the generated validation report is utilized to transform or
rewrite the KG with categorical representation to contain the
symbolic knowledge resulting from the constraints validation.
The transformed KG is then provided as input to the numer-
ical learning models, i.e., KG embedding models, during the
training phase (Figure 5¢)). This is achieved by processing
the data into a low-dimensional vector space. The process
of numerical learning is capable of predicting missing links,
thereby completing the KGs by deducing links that validate
the constraints at a higher rank and with a greater probability
of accuracy (Figure 5d). Categorical representation of KGs
before giving as input to the numerical learning component
transforms the KGs to contain negated facts, allowing the
KGE model to learn all the representations, enhancing the
performance of the models and empowering KG comple-
tion. Several studies demonstrated the need for negated facts
in KGs to boost the performance of KGE models. VISE
employs a two-fold rewriting process. Firstly, it evaluates
the links predicted by symbolic learning using constraints.
Second, depending upon the validation report of the pre-
dicted link. If the patient in the lung cancer KG invalidates
the constraint, the links that resemble the patient charac-
teristics in the KG are added with negation, i.e., negated
facts. Furthermore, each component builds upon the previous
one, creating a fully-fledged hybrid framework, VISE, that
encompasses enrichment, validation, and transformation of
deduced knowledge based on observed explicit patterns to
infer meaningful predictions.

illustrates each of the VISE components. During
Symbolic Learning (a), where mining rules are generated. In
this case, a rule suggests that patients receiving Nivolumab
for stage IIIA lung cancer as part of immunotherapy are
more likely to exhibit certain biomarkers, such as EGFR
Negative. In the KG Validation and Transformation step (b),
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TABLE 1: Benchmark Statistics represents triple counts
along with counts of entities, relations, and existing known-
true-and-false facts.

Synthetic Lung Cancer (SLC) KG
#triples 20581 | #known-true 200
#entities 383 #known-false 170

#relations 43

SHACL constraints are applied to validate predicted links.
For instance, a constraint checks whether patients with an
EGFR mutation are recommended against Nivolumab. The
rules and constraints are used to transform the initial KG
into an enriched KG’ with both positive and heuristic-based
negative edges. The Learning KG Embeddings step (c) trains
a KG embedding model on the transformed KG’, capturing
both validated and negated relationships in a low-dimensional
representation. Finally, in the Link Prediction phase (d), the
embeddings are used to deduce new plausible links, such
as predicting the likelihood of a patient having relapse pro-
gression based on existing patterns. This pipeline shows how
VISE combines symbolic rules, constraints validation, and
numerical learning to enhance prediction accuracy in KGs.

C. EXPERIMENTAL STUDY

We assess the effectiveness of VISE for the valid link predic-
tion (VLP) task using a synthetic Lung Cancer (SLC) KG.
The VLP task aims to predict relationships, such as deter-
mining whether a patient with lung cancer is in relapse (e.g.,
(PatientID, hasRelapse, ?)). The study addresses three main
research questions: RQ1) How does KG transformation using
symbolic rules and integrity constraints affect VLP accuracy?
RQ2) How do KG size and edge variety (true/false) influence
VLP performance? RQ3) How does VLP compare with clas-
sification tasks implemented using Al models learned from
relational data?

Benchmark. We evaluate VISE on a synthetic Lung Cancer
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FIGURE 6: Valid Link Prediction Example. Figure demonstrates VISE, starting from symbolic learning to the link prediction
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facts. ¢) KG’ as an input to learn embedding representation. d) Uses KGE models to predict new relationships.

KG (SLC KG) created from the KGs reported by [2]].
summarizes the statistics of the SLC KG, which contains
anonymized characteristics of patients diagnosed with lung
cancer. These records include medical history and character-
istics such as smoking status (e.g., non-smoker), cancer stage
(e.g., stage 1V), demographics, cancer mutation types (e.g.,
PD-L1I positive), proposed treatments (e.g., afatinib), relapse
status (e.g., relapse or no relapse), and treatment types (e.g.,
chemotherapy). The prediction problem focuses on determin-
ing the Relapse status of a lung cancer patient, categorized as
either Relapse or No Relapse. SHACL constraints are used
as medical protocols to specify when certain drugs should
be prescribed based on a patient’s mutations. For example,
a protocol might state: "If a patient is mutated with EGFR
positive, they should not take Nivolumab". The SLC KG is
enriched with a schema containing four SHACL constraints.

Baselines. We assess and contrast four baselines. Baseline 1
comprises assessing the state-of-the-art KGE models for the
KG completion task. Baseline 2 shows the impact of trans-
formed KG with KGE models. Baseline 3 uses the hybrid
approach, SPaRKLE [58]], which improves the performance
of KGE models by utilizing symbolic learning approaches.
SPaRKLE approach is combined with patient outcomes that
meet the medical protocols in Baseline 4. VISE integrates
the fusion of SPaRKLE with the transformed KG including
validation and violation results to enhance the performance
of KGE models. The current VISE implementation employs
various state-of-the-art KGE models from the PyKEEN [59]
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framework, which includes translation and rotational mod-
els such as TransE [60], TransD [61], TransH [62]], and
RotatE [63]. Translation-distance space models, including
TransE, TransD, and TransH, translate the head entity’s ge-
ometric embedding space with a given relation closer to the
tail entity. A model for learning embeddings in Euclidean and
hyperplane space, RotatE, has received attention for learning
symmetric-and-asymmetric properties, and relationship types
such as 1:1, 1:N, and M:N.

Additionally, we compare the predictive capabilities of a
traditional ML i.e., Random Forests and Decision Trees [26]
with KGE models in the tasks of predicting the relapse of
a lung cancer patient. To assess these models, we utilize
a hybrid framework, InterpretME [64], which encompasses
the training of ML models and provides human-and-machine
understandable interpretability of the ML models’ outcomes.
We consider three configurations- Without, Undersampling,
and Oversampling. Without corresponds to the baseline set-
ting where ML models are trained using the original, un-
modified target class distribution, i.e., no sampling strategy
is applied. In Undersampling, the strategy corresponds to the
data is balanced by reducing samples from majority classes to
match the number of samples in minority classes. Conversely,
oversampling corresponds to achieving balance by increasing
the number of samples in minority classes to match the count
of majority classes. The traditional ML models are assessed
in terms of Precision (P), Recall (R), and F1-score (F1).

Implementation. VISE is implemented in a virtual machine
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on Google Colab with 40 GiB VRAM and 1 GPU NVIDIA
A100-SMX4, with CUDA version 12.2 (Driver 535.104.05)
using Python 3.10. The VISE implementation code, the
benchmark SLC KG, and the trained KGE models are openly
accessible in our GitHub repository [} demonstrates
the hybrid design pattern, integrating inductive learning with
symbolic learning techniques. Symbolic learning includes
logical horn rules (R) and SHACL constraints (¢). Symbolic
learning is performed over the input KG, resulting in rules,
heuristic-based edges, and SHACL validation. Thus, the in-
ferred heuristic edges with validation results are utilized as
implicit knowledge to enhance inductive learning, i.e., KGE
models. The predictions generated from the symbolic rules
and constraints materialized in the input KG and fed as input
to inductive learning. The benchmark KGs are divided into
80-20 train-test splits. The model’s efficacy in the LP problem
is evaluated using metrics such as Hits @K and MRR proposed
by Akrami et al. [[65]]. Both metrics have values between 0 and
1, and higher conveys better. To avoid overfitting, the default
settings for the training KGE models include a learning rate
of le~ !, and Adam as the regularization optimizer with a
negative sampling strategy. VISE relies on [16] and [58]
for symbolic learning methods. Furthermore, our approach
is model-agnostic and compatible with other symbolic and
inductive learning approaches. We employ InterpretME [33]],
[34], [36] to execute the traditional ML models such as
Decision Trees (DT) and Random Forest (RF). InterpretME
as a pipeline offers data integration, curation, and hyper-
parameter optimization essential for training the ML mod-
els. Moreover, in comparison to KG embeddings, the train-
test split ratio is the same for traditional ML models. The
predictive pipeline utilizes cross-validation (CV) [66] k-folds
stratified shuffle split strategy, i.e., 5-folds. The performance
of the predictive models is evaluated in terms of metrics such
as Precision (P), Recall(R), and F1-score (F1). Recall depicts
the proportion of counts of correctly predicted patients in the
RelapseProgression (RelProg) class to the total patient count
with the target class Relapse in the benchmark. Precision is
the ratio of accurately predicted patients in the RelapsePro-
gression class to those projected to have class Relapse. The
same evaluation parameters are used to categorize lung cancer
patients as having NoRelapseProgression (No_RelProg).

D. IMPACT OF SYMBOLIC RULES AND CONSTRAINTS ON
VALID LINK PREDICTION

We report the effectiveness of VISE, focusing on KGE
models- TransE, TransD, TransH, and RotatE in the context of
lung cancer relapse prediction problems. showcases
the comparison between baselines and VISE for link predic-
tion. The analysis revealed a robust performance compared
to baselines. KGE models are trained over the LC KG, i.e.,
positive edges E™, to predict missing links. The evaluation
report presented in is obtained using the optimized
hyperparameters provided by the PyKEEN pipeline. The im-

Zhttps://github.com/SDM-TIB/VISE
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pact of positive and negated facts is assessed with Hits@1,
Hits@3, Hits@5, Hits@ 10, and MRR in valid link prediction.
TransE, a basic translation model, emerged as performing
worst in all baselines with benchmarks respectively. Never-
theless, highlighting the limitations of TransE in modeling
1:N relationships leads to poor performance, particularly in
predicting the correct tail at the topmost position. TransH
model results support the claim in [62], that it outperforms
TransE and TransD models. In SLC KG, TransH performance
contributes to promising results in capturing complex geo-
metric relationships with Hits@1 score values ranging from
0.622 to 0.868. TransD, which uses relation-specific projec-
tions to translate the embedding space, yields slightly lower
values than TransH and TransE. However, RotatE indicates
the best performance in all the testbeds except in Baseline
2. In Baseline 1 and VISE, the values of Hits@1 range
from 0.696 to 0.887. We can observe that the evaluation
of benchmark KG in different experimental testbeds, VISE
outperforms compared to the other baseline approaches. The
experimental evaluation comprises 20 testbeds per baseline,
amounting to a total of 100 testbeds. In summary, the results
of the evaluation demonstrate the effectiveness of TransH and
RotatE for knowledge graph completion in the context of lung
cancer relapse prediction.

However, the rationale behind the KGE models may be
difficult to understand. The experimental results demonstrate
the need for explanations and assistance to understand KGE
model behavior. VISE shows improved KGE model per-
formance and provides two types of post hoc explanation
for the prediction problem. In VISE, KGE models showed
marginally better performance compared to Baseline 1. The
heuristic-based negative edges (hE ~) generated by symbolic
learning demonstrate the effectiveness of enhancing the per-
formance of VISE. The addition of ZE~ edges to KG has
been deemed a sufficient rationale, as evidenced by the im-
proved performance of the KGE model in terms of Hits@K
and MRR. For example, [Table 3] displays examples of mined
Horn rules that were chosen based on the SHACL constraints,
i.e., clinical guidelines used to infer the hE~ edges. Further,
the removal of these edges from KG resulted in a notable
decline in performance, which can be attributed to the ne-
cessity of these facts in the prediction performance thereby
answering RQ[I).

The Horn rules are mined using AMIE [67] over SLC KG;
they are selected based on biomarkers, medications, and ther-
apies, and ranked according to the PCA confidence score. The
effectiveness of VISE is evaluated in terms of the impact of
validating constraints for the missing link being predicted by
the symbolic learning technique. The heuristic-based negative
edges (hE™) are predicted using the Partial Completeness
Assumption (PCA) heuristics from the input KG. The PCA
Confidence of a Horn rule, which indicates the amount of
incompleteness in a KG, is employed to infer new links and
predictions. These predictions are validated by applying the
SHACL constraints to determine the validity of the inferred
links. The results demonstrated in[Table Jlindicate the amount
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TABLE 2: KG Evaluation. Empirical evaluation of KGE models on SLC KG. Hits@1, Hits@3, Hits@5, Hits@ 10 and MRR
are reported. Four baselines and VISE (in light green color) indicate the impact of considering semantics in prediction tasks.
The values in bold convey better results and the values in underlined correspond to the best results among the baselines.

Results for Synthetic Lung Cancer KG

Approaches | g His@l  Hits@3  Hits@5  Hits@10 MRR
TransE _ 0.000 0.560 0.795 0943 0324

Baseline1 | TransD  0.002 0551 0.690 0872 0310
TransH  0.622 0.864 0.943 0983 0756

RotatE  0.696 0.933 0.969 0987  0.820

TransE _ 0.000 0713 0.840 0.931 0.376

Baseline 2 TransD  0.008 0.694 0.824 0935 0379
TransH  0.882 0.969 0.997 1000 0.929

RotatE  0.864 0.987 0.995 1000 0924

TransE _ 0.000 0519 0.747 0923 0310

Baseline3 | TransD 0011 0551 0716 0884 0322
TransH 0596 0.876 0.925 0977  0.740

RotatE  0.714 0.941 0.969 099  0.829

TransE __ 0.000 0.536 0.735 0.931 0311

Bascline4 | TransD 0002 0551 0.733 0870 0318
TransH  0.542 0.849 0.908 0974  0.702

RotatE  0.700 0.945 0.972 0992 0818

TransE __ 0.000 0.760 0.878 0948 0.388

VISE TransD 0013 0.684 0.762 0884  0.368
TransH  0.868 0.980 0.994 1000 0924

RotatE  0.887 0.986 0.996 0998  0.936

TABLE 3: Relational Tables Evaluation. Table displays a
decision tree (DT) generated classification report for Relapse-
Progression (RelProg) and No RelapseProgression (NoRel-
Prog), including Precision (P), Recall (R), and F1-score (F1).

DT Without Undersampling | Oversampling
Classes P R FI|P R FlI|P R FI
RelProg 0.83 0.99 0.90{0.66 0.66 0.66[0.64 0.61 0.62

No_RelProg|0.57 0.04 0.09[0.64 0.65 0.65|0.64 0.66 0.65

TABLE 4: Relational Tables Evaluation. Table displays
a random forest (RF) generated classification report for
RelapseProgression (RelProg) and No RelapseProgression
(NoRelProg), including Precision (P), Recall (R), and F1-
score (F1).

RF Without Undersampling | Oversampling
Classes P R FI| P R FI| P R Fl
RelProg [0.82 1 0.90{0.68 0.71 0.70]0.67 0.71 0.69

No_RelProg|0.00 0.00 0.00{0.70 0.67 0.68|0.70 0.65 0.67

of valid and invalid predictions produced by the symbolic
learning techniques. shows examples of the symbolic
rules, for example, stage (?a, IV), treatment (?a,
Immunotherapy) = drug(?a, Nivolumab) stating
that if a stage IV lung cancer patient received Immunother-
apy treatment then it is more likely that the patient receives
Nivolumab is with the PCA Confidence score of 0.83. As
mentioned before, the heuristics-based negative edges (hE™)
or predictions are validated using SHACL constraints, and
shows the number of valid (#v) and invalid (#in)
links for each of the SLC KG used as a benchmark in VISE.
Consequently, the impact of symbolic rules and constraints
utilized to explain the KGE models is demonstrated, thereby
enabling an answer to be provided to the RQ2]

E. TRADITIONAL ML VERSUS KGE MODELS

Experimental evaluation of traditional ML models and KG
embeddings reveals explicit complex patterns of performance
and predictive capabilities. We aim to evaluate the research
question (RQJ) in this study. Tables [3] and [4] show the clas-
sification outcomes for Decision Trees and Random Forests
in three configurations - Without, Undersampling, and Over-
sampling. In traditional ML, shows Decision Trees
(DT) performed best with a precision of 0.83 and a promis-
ing recall of 0.99 (F1 score: 0.90) for relapse progression
prediction under standard settings, while[Table 4] shows Ran-
dom Forests (RF) showed comparable precision (0.82) and
perfect recall (1.00) for similar cases. RF also struggled with
no-relapse progression predictions, suggesting limitations in
handling class imbalance distributions.

In KG, embedding models evaluated through VISE and
multiple baselines showed different performance
patterns, with RotatE emerging as a consistently strong
performer, achieving impressive metrics (Hits@1: 0.887,
Hits@3: 0.986, Hits@5: 0.996, Hits@10: 0.998, MRR: 0.936
under VISE). The overlap analysis of correctly predicted
links in reveals an intriguing complementarity be-
tween different inductive learning approaches, with RotatE
showing the strongest alignment with decision trees (83.6%
overlap, 219 shared predictions), suggesting its ability to
capture both traditional feature-based patterns and complex
relationships. TransE and RotatE showed substantial predic-
tion alignment (72.5%, 190 shared predictions), indicating
RotatE’s ability to preserve translational relationships while
adding rotational modeling power. The lower overlap be-
tween TransE and TransD (54.2%, 142 predictions) indicates
that these models capture disparate relationships in SLC KG.

VISE enhances performance across most KGE models, par-
ticularly benefiting TransH and RotatE, with TransH achiev-
ing perfect Hits@10 scores and strong MRR (0.924). These
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TABLE 5: Exemplary Mined Horn Rules.

Exemplary Mined
Horn Rules

Natural Language Statements ORke PCA‘ (g

ASK | Conf. | #v ] #in

drug(?a, Nivolumab)<=
stage(?a, IV)
treatment(?a, Immunotherapy)

IF a Lung Cancer patient is in cancer stage IV
and receives treatment type as immunotherapy
THEN a patient could receive Nivolumab drug

Ask 1 083 50 40

biomarker(?a, EGFR Negative)<=
relapseProgression(?a, Progression)
drug(?a, Pembrolizumab)

IF a Lung Cancer patient is in progression
and receives Pembrolizumab drug
THEN a patient has EGFR Negative mutation

Ask 2 0.97 0 10

drug(?a, Nivolumab)<=
treatment(?a, Immunotherapy),
treatment(?a, Intravenous Chemotherapy)

IF a Lung Cancer patient receives treatment type
such as immunotherapy and
Intravenous Chemotherapy

THEN a patient could receive Nivolumab drug

Ask 3 0.72 130 100

biomarker(?a, EGFR Negative)<
biomarker(?a, ALK Negative),
treatment(?a, Radiotherapy to Bone)

IF a Lung Cancer patient has ALK Negative and
receives treatment type as Radiotherapy to Bone
THEN a patient has EGFR Negative mutation

Ask 4 092 20 20

IEEE Access

Overlap of Correct Predictions Across Models

== DT
p— =1 RF

\ TransE
/ N TransD

RotatE

FIGURE 7: Overlap Analysis. Different models for several
predictions; the analysis includes: Decision Trees (DT), Ran-
dom Forest (RF), TransE, TransD, TransH.

patterns suggest that while individual models excel in spe-
cific aspects, they offer complementary strengths: traditional
ML models provide interpretable predictions for straightfor-
ward cases, while KGE models, especially RotatE, excel at
capturing complex relationships in the KG structure. The
varying overlaps despite strong individual performances in-
dicate that different models capture distinct aspects of the
underlying relationships, supporting the potential value of
ensemble approaches. TransH and RotatE’s superior perfor-
mance under VISE, combined with RotatE’s strong overlaps
with other models, suggests these approaches might serve
as robust foundations for predictive models that require both
relationship modeling capability and traditional feature-based
prediction power.

F. DISCUSSION AND LESSONS LEARNED

The observed results indicate that existing KG embedding
(KGE) models are significantly influenced by how factual
statements are represented in KGs, with performance im-
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provements observed when valid and invalid links are ex-
plicitly defined according to domain-specific integrity con-
straints. This evidence supports that the hybrid approach
implemented in VISE effectively leverages the semantics
of integrity constraints and mined rules to improve the pre-
dictive accuracy of KGE models, providing a more precise
solution to the valid link prediction problem. Additionally,
as described in[subsection III-A] TrustKG facilitates human-
machine communication by translating mined rules into natu-
ral language and retrieving relevant publications from ORKG
ASK. presents examples of mined rules, natural
language explanations, and related scientific papers. These
results also highlight the role of the hybrid methods in VISE
in improving the interpretability of its results.

V. COUNTERFACTUAL PREDICTION

This section defines the problem of counterfactual and
presents HealthCareAl. The boxology of design patterns
proposed by Van Bekkum et al. [[57] is also used to specify
the main components of HealthCareAl. We start presenting
basic concepts like causal analysis, causal relationships, and
causal models.

Causal Analysis. Causal analysis in KGs examines the ef-
fects of interventions or treatments on outcomes. An entity
in the KG, known as a unit, undergoes an intervention repre-
sented by do(T = t), where T is the treatment variable and
t is a specific treatment value. It distinguishes between ob-
served (factual) outcomes and hypothetical (counterfactual)
outcomes under alternative treatment scenarios, enabling rea-
soning about cause-and-effect relationships in KG.

Causal Relationships. Causal relationships in KGs are rep-
resented using several models: i) Causal Graphs (CGs): Di-
rected acyclic graphs (DAGs) that depict direct causal rela-
tionships between variables. In a causal graph G = (X, E°),
a directed edge (X;,X;) € E°) indicates that X; has a causal
influence on X;. ii) Causal Bayesian Networks (CBNs): Ex-
tending causal graphs, CBNs encode probabilistic relation-
ships and intervention effects among variables. The joint
probability distribution P(X) over X can be factored based on
the graph structure. When an intervention do(T = ¢) occurs,
the interventional distribution P,(X) computed adjusting the
influence of other variables on 7'.
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Causal Models. Causal models in KGs map treatments and
contexts to outcomes, predicting how interventions affect
specific entities. For a KG KG = (V,E,L), key concepts
include: 1) A target class C, representing the type of entities
(e.g., patients) being analyzed. ii) A treatment property pr
and an outcome property py associated with class C. iii) Con-
textual properties PZ*, representing additional factors related
to C that may influence the outcome.

For an entity e of class C, the treatment is defined by (e, pr, 7)
and the outcome by (e, py,y). The context consists of all the
triples involving properties in PZ*. A causal model ¥ maps a
treatment and its context to an outcome as V((s, pr,t), Ecy ) =
(s,py,y), where E., contains the contextual information for
s. The unit dataset Dgg(C) aggregates entities, treatments,
outcomes, and contexts of type C, enabling causal effect
estimation across similar units.

A. PROBLEM STATEMENT

Given a Knowledge Graph KG = (V, L, E), a target class
C with its properties P¢, including treatment pr, outcome
Py, and contextual properties PZ**, the goal of counterfactual
prediction is to determine the outcome for hypothetical treat-
ments. Let V;, = {o | (s,pr,0) € E} represent possible
treatment values. For a unit e of type C, we consider a
hypothetical treatment (e, pr,t') where ' € V, but (e, pr,t’)
¢ E. The objective is to find an optimal causal model 9* for
predicting the outcome py under this hypothetical treatment.
This optimal model ¥* is selected from the space of all
possible causal models © to maximize a utility functionf (., .)
that measures the accuracy of the counterfactual prediction:

9" = argmax f (¥((e, pr, 1), p(e, PE)))
JeO

f(.,.) evaluates how accurately a causal model +} predicts the
counterfactual outcome based on the treatment and context.

B. PROPOSED SOLUTION

HealthCareAl solves the problem of counterfactual predic-
tion by performing three main tasks: a) Symbolic reason-
ing; b) Causal model learning; c¢) Counterfactual prediction
(shown in Figure[8)). Symbolic Reasoning The input (Fig.[8}a)
includes a knowledge graph KG = (V,E, L), a set of Horn
rules R over the properties in L, a target class C € V, and
treatment and outcome properties pr and py in L. The set
R consists of logical rules, such as those defined in RDF'S
[68] or OWL [69]]. The transformation of KG is guided by
a semantic model and an axiomatic system that states the
meaning of symbols in KG. Query processing and symbolic
learning are performed over KG, applying the logical rules
in R to generate an enriched KG’ that includes deduced facts
and domain knowledge [45]]. Domain knowledge includes:
i) Metadata for the target class C and its properties Pc C
L (e.g., rdfs:label, rdfs:domain) [70]. ii) A set of
additional Horn rules R’, mined through symbolic learning,
which meet certain criteria, such as a minimum confidence
and PCA confidence score [58|]. These mined Horn rules,
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which may imply causal relationships, form part of the do-
main knowledge derived from KG’. This knowledge is used
to construct a prompt for a large language model (LLM) [71]]
to query causal relationships between the properties in Pc.
Additionally, KG’ is used to create a unit dataset Dgg: (C),
which supports further causal model learning.

Causal Model Learning (Fig.[8}b) component infers a CG (for
the causal model 1J) over the properties Pc using a hybrid
approach. It takes as input the unit dataset Dkg (C) and the
LLM prompt from the previous component, and generates a
casual model ¥ for counterfactual prediction. To do this, it
combines a data-driven statistical model and a knowledge-
driven model LLM to infer CG. The statistical model learns
a CG G; = (Pc,E;) directly from the dataset Dgg: (C).
The statistical model can be any traditional causal discov-
ery method, such as PC [[72], FCI [[72], or GES [46]. The
metadata-driven model (any LLM) takes as input an LLM
prompt and returns a CG Gy = (Pc, E3). The LLM prompt
is designed into four sections, where the role section uses
the metadata to provide the domain information of KG and
specify the functions of the LLM. The context section uses
the metadata of the target class C and properties P, including
the domain (rdfs:domain) and range (rdfs:range) of
the properties, the human-readable label (rdfs: label)and
annotation (rdfs : comment). In addition, each Horn rule in
R’ is translated into a set of association pairs (p1,p2), where
p1 and ps are the predicates in the head and body of a Horn
rule, respectively, as potential causal relationship candidates;
the objective section specifies the task of identifying causal
relationships between properties in P¢; the instruction section
formats the output of causal relations. The final output of this
component is a CG G = (P¢,E°) s.t. E€ = Eo U {(c,e) €
E1|(Pc,E2U{(c,e)}) is a DAG}. In other words, it includes
all causal relations in E5 (by LLM) and those in E; that do
not introduce any directed circle in G. The causal model ¥ is
trained based on G and Dk (C).

Counterfactual Prediction (see Fig.[8}¢) predicts counterfac-
tuals from units. Given a causal model ¥, a hypothetical treat-
ment (e, pr,t’) and context ¢(e, PE*) of a unit e, it predicts
the counterfactual on property py of e. As a proof of concept,
we use CBN as the causal model V. Let ¥ : (G, P;) be the
CBN based on the CG G trained on the dataset Dgg: (C).
The counterfactual py of e under a hypothetical treatment
(e,pr,t’) ¢ E is predicted as (e,py,y’) s.t. Pu(y'|x) >
max({Py(y]x) }yevy ). where Vy = {y|(3e € V)[(¢/,py.y) €
E]} contains all unique values of py, and P;(y|c) = %
is an interventional distribution (see the definition of tBNs)
derived from the CBN model ¥.

To illustrate, consider a lung cancer patient, Eva (depicted
on the right side of Fig. [8}a), a non-smoking female with a
positive ALK biomarker result. The objective is to predict
her biomarker result under the counterfactual scenario where
she is a smoker (shown in Fig. [§}c). As a result of symbolic
reasoning, HealthCareAl extracts domain knowledge from
KG, including two parts: (1) metadata stored within KG, and
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FIGURE 8: HealthCareAl framework (a) Symbolic Reasoning: A semantic model deduces an enriched knowledge graph
KG' and domain knowledge (metadata and Horn rules) from the input KG, Horn rules R, target class C, and properties py and
py- (b) Causal Model Learning: A causal model ¥ is trained by integrating a statistical model (inferring causal graph G; from
Dk (C)) and an LLM (producing causal graph G5 from prompts). The combined graph G ensures acyclicity and supports
causal inference. (¢) Counterfactual Prediction: Using 1, hypothetical treatments (e, pr,t’), and contextual information
o(e, PE), counterfactual outcomes py are predicted, providing interpretable explanations. The framework integrates symbolic
and statistical learning for accurate and interpretable counterfactual reasoning.

(2) Horn rules mined from an enriched KG' that incorporates
implicit facts inferred from KG using a formal system. During
the causal model learning phase (see Fig. [8}b), an LLM
utilizes the domain knowledge to deduce causal relationships
between the properties of the target class—in this case, the
NSCLCPatient. In addition, a statistical model directly
learns causal relationships from KG'. The inferred relation-
ships are integrated into a single causal graph G using the
method specified in the causal model learning component.
Subsequently, the causal model ¢ is learned using the data
from KG' and G. Finally, the causal model ¢ receives the
contextual properties of Eva and a hypothetical treatment
(i.e., (Eva, hasSmokingHabit, Smoker)) and infers the
counterfactual biomarker result of Eva if she were a smoker.

C. EXPERIMENTAL STUDY

We evaluate the effectiveness of HealthCareAl in causal
discovery and counterfactual prediction tasks over a synthetic
LC KGs with different sizes; these benchmarks are generated
from the LC KG reported by Calvo et al. [2]. The study is
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FamilyDegree
FamilyCancer

FamilyGender
SomkerType

Biomarker

FIGURE 9: Expert Designed Causal Graph G* built over the
properties in synthetic Lung Cancer KGs

guided by the following research questions:

RQ4 How does the neuro-symbolic system improve the dis-
covery of causal relations as defined by the expert causal
graph?

RQS5 How does the neuro-symbolic system influence the
accuracy and effectiveness of counterfactual predictions?
Benchmarks. The synthetic KGs include the following
properties: Biomarker that is either ALK or EGFR and
other biomarkers, Age that is categorized as Young (<
50 years) or Old (> 50 years), Gender that is Male
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TABLE 6: Benchmarks of synthetic KGs for counterfactual
prediction. #CF represents the number of ground truth coun-
terfactuals (triples).

KG KGo | KGsi | KGiok
#triples 16180 | 40180 80180
#entities 2055 5055 10055
#relations 17 17 17
#CF 2000 5000 10000

or Female, SmokerType that is Non-Smoker or Smoker,
FamilyCancer which is OnlyMajor if a patient’s fam-
ily antecedents have only these cancers: Breast, Lung,
Colorectal, Head and neck, Uterus/cervical, Esophagogas-
tric, Prostate, otherwise hasMinor, FamilyGender that is
Women if all family antecedents are women, Men if all of them
are men, otherwise WomenorMen, and FamilyDegree that
indicates the degree of relationship of family antecedents to
the patient (i.e., first, second, or third degree). We train an
Additive Noise Model (ANM) [73]] using the expert-designed
CG G* (see Figure[9), using the LC KG [2]. Using this trained
ANM model (assumed to be able to capture the causal mech-
anism implied in the dataset), we generate synthetic KGs
with various number of patients N € {2k, 5k, 10k }. Specif-
ically, Age, Gender, FamilyGender, FamilyCancer
and FamilyDegree are simulated from uniform distribu-
tions; while SmokerType, and Biomarker are simulated
using logistic functions:

Y =1/(1+exp(—(a+B-X'"+N(0,6%)) (1)

where Y is the synthetic variable; X' = Pag~(Y) include
the parent nodes of Y in the CG G* (see [Figure 9). The «
and 3 are learned from the LC KG using a logistic regres-
sion. A noise term A/(0,0.12) is applied to simulate other
potential unobserved factors. Additionally, each synthetic KG
includes the metadata of the LC KG. To evaluate the perfor-
mance of counterfactual prediction, we generate the ground
truth counterfactuals on Biomarker under intervention on
SmokerType for each patient using the trained ANM. Given
a synthetic KG = (V,E,L), a patient e € V whose treat-
ment is (e,pr,t) € E. Let Y=1 denote that Biomarker
(py) is ALK or EGFR, otherwise (Y=0) is other biomarkers,
and T=t denotes the treatments on SmokeType (pr) which
are Non-Smoker (t=1) and Smoker (t=0). The counterfactual
Biomarker of a patient (unit) e is generated using the
Function |1| with input of X’ = x’ following the assignment
X{,.. ., X[ = x{,...,x st. (Vi € [1,k])[(e,X],x]) € §]
where k = |X'| is the variable number of X’ and S is a set
of triples ¢(e, PE) U {(e,pr,t")} s.t. (e,pr,t') ¢ E. Table
@ presents the statistics of the synthetic LC KGs, denoted as
KGQk, KG5k, and KGlOk-

Baselines. We compare HealthCareAlI with other baselines,
including Baselinel: methods using only statistical models
(such as PC, FIC, and GES) for causal discovery, Baseline2:
Methods that use only LLM to query the causal relationships
without (wo) consider domain knowledge (DK), Baseline3:
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Methods that uses LLM to query the causal relationships with
(w) consider the domain knowledge, Baseline4: the method
using the expert-designed CG G* (in Fig.[9) to learn the causal
model 9.

Metrics. For the causal discovery task, we evaluate an in-
ferred CG G against the expert-designed CG G* (in Fig. [9),
using the Jaccard Index [74], Precision, Recall, and F1-score
[75]] to measure the proportion of shared causal relationships
between G and G*. For the counterfactual prediction task,
we evaluate the predicted counterfactuals against the ground
truth. Given a list of predicted counterfactuals Y<F by a
CBN and the ground truth counterfactuals Y7, we calculate
the Pearson correlation coefficient [76] (PCC): PCC(IA/CF,
Y = %, where cov(+) and o represent covariance
and standard deviation. Higher values indicate better perfor-
mance.

Implementation. We implement the set of logical rules R (see
Fig. [B}a) as an empty set, since each patient in a synthetic
KG has completed properties. The Horn rules R, as a part
of the domain knowledge, are mined from the synthetic KGs
using the AMIE [67]]. We implement the LLM by the GPT-
4 [77]. As proof of concept, we use CBNs as the causal
model ¥ (see Fig.[8}b) for all methods. CBNs of all methods
are implemented using pgmpy Python package [78]]. The
reproduction code and synthetic datasets are available hereﬂ
where the LLM prompts used by Baseline2, Baseline3, and
HealthCareAl are presented.

D. IMPACT ON CAUSAL DISCOVERY

We report the results on causal discovery task in Table
(for synthetic Lung Cancer KG with N = 2k, denoted as
KGay), Table [§] (for N = 5k, denoted as KGs;), and Table
E] (for N = 10k, KGs;). In general, all methods have bet-
ter precision performance but relatively weaker recall. This
means that they are able to correctly uncover some causal
relationships in CG designed by experts G* (see Figure [9),
but the inferred causal edges are not complete. Among, all
methods, the HealthCareAlI, which combines Baseline3 and
PC method, outperforms other methods in all synthetic KGs
with different settings of N. The data-driven methods, i.e.,
methods of Baselinel, have similar performance compared
with the metadata-driven methods (Baseline2 and Baseline3)
in small KG (with N = 2k); their performance is improved in
larger KGs with N € {5k, 10k}. The PC and FCI have exact
the same performance across all KGs. This may be explained
that both are based on the conditional independence test and
there are no hidden confounders in our simulation where FCI
is more suitable. Even the metrics of PC (or FCI) are the
same in KGs; and KGigg, while the inferred CGs in both
situations are not exactly the same. Among all methods in
Baselinel, the GES performs the worst. For metadata-driven
methods, i.e., Baseline2 and Baseline3, the performance is
stable in all settings of N, because these methods do not
depend on data. The results of Baseline3 is constantly better

3https://github.com/SDM-TIB/HealthCare AT
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TABLE 7: Comparison of Causal Discovery Performance of Different Approaches Against the Expert Causal Graph. w and wo
denote respectively "with" and "without", and DK denotes "domain knowledge".

Approaches Results (%) for KGo;

Model Jaccard Index Precision Recall F1-Score

PC 62.5 100.0 62.5 76.9

Baseline 1 FCI 62.5 100.0 62.5 76.9

GES 375 100.0 37.5 54.5

Baseline 2 GPT4 wo DK 40.0 66.7 50.0 57.1

Baseline 3 GPT4 w DK 62.5 100.0 62.5 76.9

Baseline 2 + PC 60.0 75.0 75.0 75.0

HealthCareAl | g, oline 3 + PC 87.5 100.0 87.5 933

TABLE 8: Comparison of Causal Discovery Performance of Different Approaches Against the Expert Causal Graph. w and wo
denote respectively "with" and "without", and DK denotes "domain knowledge".

Results (%) for KGs

Approaches Model Jaccard Index Precision Recall F1-Score
PC 75.0 100.0 75.0 85.7
Baseline 1 FCI 75.0 100.0 75.0 85.7
GES 62.5 100.0 62.5 76.9
Baseline 2 GPT4 wo DK 40.0 66.7 50.0 57.1
Baseline 3 GPT4 w DK 62.5 100.0 62.5 76.9
Baseline 2 + PC 70.0 77.8 87.5 82.4
HealthCareAl | g, oline 3 + PC 87.5 100.0 87.5 93.3

TABLE 9: Comparison of Causal Discovery Performance of Different Approaches Against the Expert Causal Graph. w and wo
denote respectively "with" and "without", and DK denotes "domain knowledge".

Results (%) for KG1 o

Approaches Model Jaccard Index Precision Recall F1-Score

PC 750 100.0 75.0 857

Baseline 1 FCI 75.0 100.0 75.0 85.7
GES 625 100.0 625 76.9

Baseline 2 GPT4wo DK 30.0 6.7 30.0 571
Baseline 3 GPT4d wDK 5235 100.0 525 769
Baseline 2 + PC 70.0 778 875 824
HealthCareAl | g iiine 3+ PC 100.0 100.0 100.0 100.0

than Baseline2 which demonstrates the usefulness of domain
knowledge (DK) in causal discovery. The performance of
data-driven methods (Baselinel) improves as the data size N
increases, but peaks at 5k and 10k. In addition, learning the
CG from (observational) data alone may be theoretically im-
possible [40]]. As a complement, the metadata- or knowledge-
driven methods (such as Baseline3) can infer some causal
relationships that cannot revealed by Baselinel methods, this
explains why HealthCareAl can achieve the best perfor-
mance in all synthetic KGs. These results answer the research
question RQ4 that the neurosymbolic systems enriched with
semantics can improve the performance of traditional data-
driven methods by using knowledge deduced from KGs.

E. IMPACT ON COUNTERFACTUAL PREDICTION

Based on the CGs estimated from the previous step (subsec-
tion [V, we learn CBNs (causal model 9J) from the dataset
Dk (C) over the synthetic LC KGs using the Maximum
Likelihood Estimation Method [[79]. The evaluation results
of different methods on counterfactual prediction in various
synthetic LC KGs with N € {2k, 5k, 10k} are reported,
respectively, in Table [I0] Table [IT} and Table [I2] The PCC
metrics for the CBN by each method are presented as the
mean (+ standard deviation), using 5-fold cross-validation on
all patients and their counterfactuals. The results indicate that
PC and FCI of Baselinel outperform others in scenarios with
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smaller datasets (i.e., KGoy). In contrast, the CBN trained
based on the Expert CG G* exhibits the lowest performance,
which may be explained by the overfitting issue [80]. This is
likely due to the complex structure of the Expert CG, which
requires a large dataset to learn the conditional probability
tables of the CBN. Conversely, the simpler structures of the
CGs deduced by the PC and FCI methods allow for effective
learning with small datasets. In the scenario of large datasets
(i.e., N > 5k), the Expert CBN outperforms all CBNs trained
based on CGs by other methods. Although enlarging the
dataset generally enhances the generalization capability of
CBN:s, it is notable that the performance of all CBNs slightly
declines as N increases from 5k to 10k. The CBNs by the
metadata-driven methods, i.e., the Baseline2 and Baseline3
perform the worst across all synthetic KGs. This result under-
scores the limitations of CGs estimated without considering
the underlying data, emphasizing the crucial role of data-
driven causal graph estimation for robust counterfactual rea-
soning. By incorporating the causal relationships estimated
by the data-driven methods, e.g., PC, the CBN produced by
HealthCareAl achieves competitive performance across all
settings of N, compared to the CBN based on the Expert
CG. The results address the research question RQS, confirm-
ing that HealthCareAl outperforms the other baselines and
exhibits a good counterfactual predicting performance with
respect to Baselined4, i.e., the one based on the Expert CBN.
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TABLE 10: Comparison of Counterfactual Prediction using Causal Models based on Different Causal Graphs produced by
different Approaches at N = 2k. Baseline4 use the expert-designed CG G*. w and wo denote respectively "with" and "without",

and DK denotes "domain knowledge".

Results (%) for KGo

Approaches Model Pearson Correlation
PC 95.0 (+2.5)
Baseline 1 FCI 95.0 (+2.5)
GES 89.9 (£1.6)
Baseline 2 GPT4 wo DK 89.9 (£1.6)
Baseline 3 GPT4 w DK 87.0 (£1.8)
Baseline 4 Expert causal graph 81.4 (£2.9)
Baseline 2 + PC 93.9 (£2.7)
HealthCareAl | g, line 3+ PC 81.4 (£2.9)

TABLE 11: Comparison of Counterfactual Prediction using Causal Models based on Different Causal Graphs produced by
different Approaches at N = 5k. Baseline4 use the expert-designed CG G*. w and wo denote respectively "with" and "without",

and DK denotes "domain knowledge".

Results (%) for KGs;

Approaches Model Pearson Correlation
PC 95.9 (£0.8)
Baseline 1 FCI 95.9 (£0.8)
GES 95.9 (£0.8)
Baseline 2 GPT4 wo DK 90.7 (£1.6)
Baseline 3 GPT4 w DK 90.1 (£1.3)
Baseline 4 Expert causal graph 96.4 (+0.7)
Baseline 2 + PC 96.4 (+0.7)
HealthCareAl | B ine 3+ PC 96.4 (+0.7)

TABLE 12: Comparison of Counterfactual Prediction using Causal Models based on Different Causal Graphs produced by
different Approaches at N = 10k. Baseline4 use the expert-designed CG G*. w and wo denote respectively "with" and "without",

and DK denotes "domain knowledge".

Results (%) for KG1 ok

Approaches Model Pearson Correlation
PC 95.1 (£0.8)
Baseline 1 FCI 95.1 (£0.8)
GES 95.1 (4+0.8)
Baseline 2 GPT4 wo DK 90.0 (£0.9)
Baseline 3 GPT4 w DK 89.5 (£0.6)
Baseline 4 Expert causal graph 95.9 (40.6)
Baseline 2 + PC 95.1 (£0.8)
HealthCareAl | g, line 3 + PC 95.9 (£0.6)

F. DISCUSSION AND LESSONS LEARNED

These results show the benefits of integrating semantics and
domain-specific knowledge into the causal learning pipelines.
By leveraging metadata and mined rules from KGs, Health-
CareAl improves both the accuracy and interpretability of
causal models. Semantic information enables a more struc-
tured representation of causal relationships, which not only
enhances predictive capabilities but also aligns more closely
with human reasoning processes. This hybrid approach also
underscores the importance of using enriched domain knowl-
edge to learn accurate causal graphs, supporting detailed
counterfactual predictions. Finally, these findings suggest that
the explicit representation of semantics within causal mod-
els contributes to better decision-making and will facilitate
human-machine communication by making results more in-
terpretable and contextually grounded.

VI. CONCLUSIONS AND FUTURE WORK

This work has demonstrated the potential of integrating se-
mantics within hybrid Al systems to enhance predictive ca-
pabilities, contextual understanding, and interpretability in
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medical applications, particularly for lung cancer. Our pro-
posed framework, TrustKG, along with the hybrid Al systems
VISE and HealthCareAl, leverages KGs and symbolic rea-
soning to address critical tasks such as valid link prediction
and counterfactual prediction. The results show that semantic
integration improves predictive accuracy, as evidenced by the
enhanced Hits@1 and MRR scores achieved by VISE, and
supports more accurate causal discovery, with HealthCareAl
outperforming baselines on metrics like the Jaccard Index and
F1-Score. Additionally, the use of counterfactual reasoning in
HealthCareAl achieves Pearson Correlation scores close to
expert-derived benchmarks, illustrating the effectiveness of
integrating domain-specific knowledge. These findings high-
light the role of semantic knowledge in advancing Al systems
for healthcare by providing more transparent solutions that
align with clinical needs.

Our future directions include:

Evolving Data Management: One key area is enhancing
semantic data management to model evolving and non-
monotonic knowledge. This includes handling changes in
medical guidelines, emerging treatments, and patient-specific

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3529133

IEEE Access

Chudasama et al.: Towards Interpretable Hybrid Al: Integrating Knowledge Graphs and Symbolic Reasoning in Medicine

factors over time. Improved models for representing these
dynamic knowledge can support Al systems that remain
adaptable in clinical practice.

Reducing Computational Costs: While effective, our ap-
proach increases execution costs. Future work should focus
on optimizing the computational efficiency of these models,
potentially through more efficient embedding methods or
streamlined symbolic reasoning processes.

Principled vs. Integrated Neuro-Symbolic Systems: There is
a need to explore both principled and integrated approaches
to neuro-symbolic Al. Principled systems maintain a clear
separation between symbolic and neural components, while
integrated systems combine these elements more fluidly. Re-
search into the advantages and limitations of each approach
can inform the development of hybrid Al systems that best
meet clinical needs.

Enhancing Usability through Better Visualization and User
Interfaces: Usability remains a critical challenge in deploy-
ing KG-based Al systems in clinical settings. Enhanced vi-
sualization techniques, as well as intuitive interfaces, can
improve user experience and help clinicians interpret Al-
generated recommendations more effectively. Additionally,
understanding user needs, as highlighted by recent research,
will guide the development of tools that align with clinical
workflows and support decision-making processes. These fu-
ture directions aim to refine the interpretability, usability, and
efficiency of hybrid Al systems in healthcare, making them
more practical in real-world applications. The integration of
semantics within Al holds substantial promise, not only for
advancing predictive accuracy but also for fostering trustwor-
thy and human-centered Al solutions in medicine.
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