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ABSTRACT Surface electromyography (EMG) is widely used for predicting kinematics of intended finger 

movements in applications including teleoperation. Generally, ‘black-box’ models with high complexity such 

as neural networks (NN) were used to improve prediction accuracy, which may not reproduce other important 

movement characteristics such as smoothness or kinematic similarity. The goal of this study is to develop a 

novel EMG-based approach that models impact of finger intersegmental dynamics to reproduce ‘physiologic’ 

characteristics of coordinated finger movements. Performance of the proposed dynamic model was compared 

with a polynomial model with the same level of complexity (no dynamics considered) and NN models, based 

on (A) simulation data from four musculoskeletal systems with varying parameters; and (B) experimental 

data from 10 subjects performing finger movements with four distinct coordination patterns. Performance of 

the proposed dynamic model in predicting simulated movements was significantly better than the polynomial 

model with the same level of complexity (18 parameters). In predicting experimental data, performance of 

the dynamic model was significantly better than that of the NN model of lower complexity (480 parameters), 

and similar to that of the NN model of higher complexity (2976 parameters). Furthermore, movement quality 

produced by the dynamic model, quantified by jerk (smoothness) and kinematic similarity, and its 

computational efficiency were significantly better than other models. The proposed technique, which captures 

the impact of musculoskeletal dynamics in a compact form, can accurately reproduce physiologic finger 

movements with a higher computational efficiency than existing models, thus could serve as a robust tool for 

teleoperation. 

INDEX TERMS Surface electromyography, joint kinematics, finger, movement prediction, 

musculoskeletal modeling, biomechanics, teleoperation  

I. INTRODUCTION 

Surface electromyography (EMG) has been used in a wide 

range of applications of human-machine interface, 

including teleoperation [1-3], prosthesis control [4,5], and 

rehabilitation [6,7]. Pattern recognition techniques are 

commonly employed for the purpose of controlling 

powered orthoses or prostheses, which allow users to 

execute different tasks by classifying ‘patterns’ of the 

features extracted from multiple EMG channels [8,9]. 

Conversely, in the field of teleoperation, EMG signals were 

typically processed for continuous estimation of 

kinetic/kinematic information, such as joint angles or 

forces, which are then used for an ‘online’ control of robots 

to achieve a given task goal, such as the end-effector 

position control [10,11]. 

For decoding intended finger movements from the EMG 

signals, both approaches have different advantages and 

limitations. Pattern recognition or classification models 
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[8,9,12-19] can discern and predict user intents to perform 

different hand gestures or movements, allowing an intuitive 

prosthesis control of manipulative actions. However, since 

these models typically regard each movement/task as a 

single, fixed (isometric) ‘class’ to be recognized, little 

information regarding its kinematics during each task, such 

as spatiotemporal coordination of multiple joints, can be 

extracted or monitored. It is thus difficult to implement 

‘online’ adjustment of device control during task 

performance. In contrast, models developed for continuous 

kinematic estimation [20-28] can compute finger joint 

angles from the EMG signals during movements, allowing 

more precise ‘position’ control of multi-joint robotic hands. 

However, most models were implemented to predict 

relatively simple movements, such as cyclic finger 

movements (i.e., concurrent extension/flexion of all joints 

[22,23]) or grasping movements of objects with different 

sizes/shapes [25-27]. It is thus unclear whether these 

models can predict more complex movement patterns of the 

fingers used in manipulative actions, which typically 

require different coordination patterns of distal (i.e., distal 

and proximal interphalangeal; DIP and PIP) and proximal 

(i.e., metacarpophalangeal; MCP) joints [29,30]. 

More importantly, as the current EMG-based models are 

mostly ‘data-driven’ in nature, which are built to minimize 

prediction errors in joint angles, it is unclear whether these 

models can also replicate/reproduce other physiologic 

characteristics of human movements. For instance, 

movements of the distal (DIP/PIP) and proximal (MCP) 

finger joints are constrained by biomechanical [31,32] or 

neural [29,33] couplings, which result in coordinated 

movements with specific angular velocity profiles [34]. 

Spatiotemporal characteristics of human movements are 

also regulated by smoothness constraints, typically 

achieved by minimizing the 3rd time-derivative of 

displacement (‘jerk’) [34], and providing smooth 

trajectories as target movements is important to achieve 

stable grasping and manipulation by robotic hands [35].  

Additionally, kinematic characteristics such as velocity 

profiles are important to replicate in certain human-

machine interaction applications such as teleoperation [36] 

or robotic surgery [37]. Such kinematic characteristics of 

the model-produced movements, however, have not been 

examined. While some models have considered muscle 

excitation-activation dynamics (e.g., Hill-type actuator) 

[38,39], they did not consider the dynamic impact of 

inertial and viscous/damping components as the joint 

angles were modeled as linear combinations of the 

computed muscle forces.  

In addition, while “black-box” models such as artificial 

neural networks (typically used in kinematic prediction 

[20-28]) may accurately predict joint angles, the model 

structure is very complex, which makes it difficult to 

interpret the resulting models, or to discern importance of 

different ‘predictors’ (model inputs – in our case, EMG 

signals) and to explain how they are related to the outcome 

[38]. This limits the use of these models as a possible 

diagnostic tool, as the identified model parameters are 

difficult to interpret due to their complexity [40,41]. Few 

current models consider/incorporate finger musculoskeletal 

dynamics, which not only may help reproduce coordinated 

multijoint finger movements with a lower level of model 

complexity but also can capture or characterize different 

neuromechanical characteristics underlying variability in 

finger coordination patterns across subjects [42]. 

In this study, we developed a novel EMG-based approach 

to reproducing kinematics of various finger movements in 

order to address aforementioned limitations. As intended for 

teleoperation applications, we recorded and utilized both 

intrinsic and extrinsic hand muscle activation profiles. The 

proposed model computed the single- and double-time-

integrals of the muscle activation profiles to account for 

dynamic impacts of passive impedance (stiffness/damping) 

and inertia on intersegmental dynamics, then incorporated 

them in movement prediction; we previously showed that 

passive impedance properties significantly affect multijoint 

finger movement patterns using in vivo electrical stimulation 

tests [43]. Performance of the newly-developed model was 

examined in predicting finger movements in manipulative 

actions, for which four elemental finger movements with 

distinct interjoint coordination patterns were performed by 

ten neurologically-intact subjects. Model performance 

(error) and kinematic characteristics of the model-prediction 

(smoothness and correlation with displacement and velocity 

profiles) were compared with those obtained by long short-

term memory (LSTM) neural network models similar to the 

black-box models used in previous studies [25,26].  

We hypothesized that the level of prediction accuracy 

achieved by the proposed model and the neural network 

(LSTM) models would be similar, despite the lower 

complexity of the proposed model.  We also expected that 

more natural, physiologic movements will be achieved by 

the proposed model, which would be quantified by the 

correlation coefficients between the measured and model-

predicted movements (similarity) and their maximum jerk 

values (i.e., smoothness).  

 
II. METHODS 

In this section, we first described the details of the structures 

of the proposed dynamic model (model 1) and other models 

(models 2 and 3A/3B), which were employed to provide a 

point of comparison (section II. A). We then provided details 

of the model validation processes, performed using the 

simulated (section II. B) and experimental (section II. C) data. 

A. MODEL DEVELOPMENT 

1) DYNAMIC MODEL (MODEL 1) 

The proposed model was constructed from the dynamic 

equations governing segmental motions. Considering a 

segment controlled by n muscles, the equation is written as: 
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𝐼𝜃̈ = −𝑏𝜃̇ − 𝑘𝜃 + 𝑟1(𝜃)𝑓1 + ⋯ + 𝑟𝑛(𝜃)𝑓𝑛                  (1) 

where 𝐼 is the mass moment of inertia, 𝑏 the passive 

damping, 𝑘 the passive stiffness, 𝑓1 ⋯𝑓𝑛 the muscle forces, 

and 𝑟1(𝜃)⋯ 𝑟𝑛(𝜃) their moment arms (𝑛: number of 

muscles/EMG channels). This equation was used to model 

the impact of different segment parameters on the muscle 

force-movement relationship. First, to model a dominant 

impact of passive stiffness (such as in slow movements) on 

intersegmental dynamics, assuming that the moment arms do 

not change significantly along the movements, the equation 

(1) can be simplified to estimate joint angle 𝜃̂1:  

𝑘𝜃1 ≈ 𝑟1𝑓1(𝑡) ⋯ + 𝑟𝑛𝑓𝑛(𝑡)

→  𝜃1 =
1

𝑘
[𝑟1𝑓1(𝑡) ⋯ + 𝑟𝑛𝑓𝑛(𝑡)] = ∑

𝑟𝑖

𝑘
𝑓𝑖(𝑡)

𝑛

𝑖=1

             (2) 

During fast movements, for smaller body segments such as 

fingers, the impact of passive damping 𝑏 would be 

significantly larger compared to that of other terms (i.e., inertia 

or stiffness), resulting in 𝜃2: 

𝑏𝜃̇2 ≈ 𝑟1𝑓1 ⋯ + 𝑟𝑛𝑓𝑛   →   𝜃2 = ∑ ∫
𝑟𝑖

𝑏
𝑓𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

𝑛

𝑖=1
       (3) 

In case that the inertial impact is dominant in generating 

dexterous finger movements that are relatively slow but 

require abrupt speed changes (𝜃3):   

𝐼𝜃̈3 ≈ 𝑟1𝑓1 ⋯ + 𝑟𝑛𝑓𝑛   →   𝜃3 = ∑ ∬
𝑟𝑖

𝐼
𝑓𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

𝑛

𝑖=1
       (4) 

Now, approximating joint movements as a weighted sum of 

stiffness, damping, and inertia terms: 

𝜃 ≈ 𝑐1𝜃1 + 𝑐2𝜃2 + 𝑐3𝜃3

= ∑
𝑐1𝑟𝑖

𝑘
𝑓𝑖(𝑡)

𝑛

𝑖=1
+ ∑

𝑐2𝑟𝑖

𝑏
∫ 𝑓𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

𝑛

𝑖=1

+ ∑
𝑐3𝑟𝑖

𝐼
∬ 𝑓𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

𝑛

𝑖=1

            (5) 

Here, the weights (𝑐1 , 𝑐2, 𝑐3) describes the relative 

contribution of the stiffness, damping, and inertia terms to the 

movement dynamics, which would differ across the 

movement types. Now converting the equation using muscle 

activation (obtained from the EMG channel i; i = 1, ..., n) 𝑢𝑖(𝑡): 

𝜃 = ∑ 𝛼𝑖𝑢𝑖(𝑡)
𝑛

𝑖=1
+ ∑ 𝛽𝑖 ∫ 𝜔(𝑡 − 𝜏)𝑢𝑖(𝜏)𝑑𝜏

𝑡

𝑡0

𝑛

𝑖=1

+ ∑ 𝛾𝑖 ∬ 𝜔(𝑡 − 𝜏)𝑢𝑖(𝜏)𝑑𝜏
𝑡

𝑡0

𝑛

𝑖=1

        (6) 

where 𝜔(𝑡 − 𝜏) = 𝑒−𝑐(𝑡−𝜏) denotes an exponential window 

function describing temporal discount of muscle force [44]. 

Here c value was selected as 1. Using this model, the joint 

angle can be approximated by a linear combination of three 

basis functions: muscle activation profiles 𝑢𝑖(𝑡) and their 

weighted integral and double-integral terms (∫ 𝜔(𝑡 −
𝑡

𝑡0
𝜏)𝑢𝑖(𝜏)𝑑𝜏, ∬ 𝜔(𝑡 − 𝜏)𝑢𝑖(𝜏)𝑑𝜏

𝑡

𝑡0
) (Fig. 1A). 

In order to estimate the model parameter vector 𝐩k =
{𝛼1

𝑘 , … , 𝛼𝑛
𝑘, 𝛽1

𝑘, … , 𝛽𝑛
𝑘, 𝛾1

𝑘, … , 𝛾𝑛
𝑘} (3𝑛 × 1) for each of the 

three joint angles (𝛉𝐤; k = 1: DIP or distal interphalangeal 

joint, 2: PIP or proximal interphalangeal joint, 3: MCP or 

metacarpophalangeal joint), the EMG data are first 

processed to calculate the activation profile (𝑼𝑁𝑡×𝑛) and the 

weighted single- and double-integral profiles (𝑼𝑰𝑁𝑡×𝑛, 

𝑼𝑰𝑰𝑁𝑡×𝑛). Then the model parameter 𝐩k for each joint angle 

𝛉𝐤 can be estimated by a least-square method: 

𝛉𝐤 = 𝐗 ∙ 𝐩𝐤 →  𝐩𝐤 = (𝐗−1 ∙ 𝐗)−1 ∙ 𝐗−1𝛉𝐤                       (7) 

Here, 𝐗 = [𝑼𝑁𝑡×𝑛 𝑼𝑰𝑁𝑡×𝑛 𝑼𝑰𝑰𝑁𝑡×𝑛]  (𝑁𝑡: number of time 

points; 𝑛: number of EMG channels) 

• 𝑼𝑁𝑡×𝑛 = [𝒖1 … 𝒖𝑛], where 𝒖𝑖 = [𝑢𝑖(𝑡0) … 𝑢𝑖(𝑡𝑓)]
𝑇
 

• 𝑼𝑰𝑁𝑡×𝑛 = [𝒖𝒊1 … 𝒖𝒊𝑛], where 𝒖𝒊𝑖 = [∫ 𝜔(𝑡 −
𝑡0

0

𝜏)𝑢1(𝜏)𝑑𝜏 … ∫ 𝜔(𝑡 − 𝜏)𝑢𝑛(𝜏)𝑑𝜏
𝑡𝑓

0
]

𝑇
 

• 𝑼𝑰𝑰𝑁𝑡×𝑛 = [𝒖𝒊𝒊1 … 𝒖𝒊𝒊𝑛], where 𝒖𝒊𝑖 = [∬ 𝜔(𝑡 −
𝑡

𝑡0

𝜏)𝑢1(𝜏)𝑑𝜏 … ∬ 𝜔(𝑡 − 𝜏)𝑢𝑛(𝜏)𝑑𝜏
𝑡

𝑡0
]

𝑇
, and 

• 𝛉𝐤 = [𝜃𝑘(𝑡0) … 𝜃𝑘(𝑡𝑓) ]𝑇  

To provide a point of comparison, two types of different 

models (models 2 and 3) were also developed and tested, as 

described below. The second model (model 2) was an 

alternative mathematical model, which is not based on 

musculoskeletal dynamics but matches the complexity of the 

model 1 (i.e., number of model parameters: 18). The third 

type of models (model 3A and 3B) use long short-term 

memory (LSTM) neural networks that are commonly used in 

the EMG-based joint angle estimation [26,27,45,46]. 
2) POLYNOMIAL MODEL (MODEL 2) 

The second model estimated joint angle as a weighted sum 

of muscle activation and their power terms (i.e., squared and 

square-root), which was designed to contain the same 

number of parameters (n=18) with the model 1. This was to 

ensure that the achieved accuracy by these models (1A/1B) 

was not simply due to their increased complexity (i.e., larger 

number of parameters) (Fig. 1B). 

𝜃 = ∑ 𝛼𝑖𝑢𝑖(𝑡)
𝑛

𝑖=1
+ ∑ 𝛽𝑖𝑢𝑖(𝑡)2

𝑛

𝑖=1
+ ∑ 𝛾𝑖𝑢𝑖(𝑡)

1
2

𝑛

𝑖=1
       (8) 

The basis functions used in this model (square and square-

root) were determined by comparing accuracy of different 

polynomial basis functions, i.e., 𝑢𝑖(𝑡)1/2 , 𝑢𝑖(𝑡)2, 
𝑢𝑖(𝑡)3 , 𝑢𝑖(𝑡)4, where we found that including higher-order 

terms (i.e., 3rd or higher) generally affect the accuracy 

negatively. The model parameters were then estimated by a 

FIGURE 1. Three types of models used in this study: A. Dynamic model (Model 
1); B. Polynomial model (Model 2); C. Long Short-Term Memory (LSTM) neural 
network model (Model 3A/3B).  
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least-square method (similar to the dynamic model), as 

shown in the Eq. (7)  

3) LSTM NEURAL NETWORK MODELS (MODEL 3A/3B) 

The third type of models were developed using long short-

term memory (LSTM) neural networks, commonly used in the 

EMG-based kinematic estimation models [26,27,42,43] (Fig. 

1C). LSTM neural network models with two different levels 

of complexity were built to provide a point of comparison. The 

first model (model 3A) consists of two layers with eight 

hidden units (low-complexity), which include 480 parameters. 

The second model (model 3B) has 6 layers with 24 hidden 

units (high-complexity), resulting 2976 model parameters. For 

the network training, Adam optimization algorithm [47] was 

used, where the maximum number of epochs was set to 200 

with the minimum batch size of 50. The initial learning rate 

was set to 0.01, and the dropout probability to 0.5. 

B. MODEL VALIDATION: SIMULATION 

First, performance of the dynamic model (model 1) and the 

polynomial model (model 2) was compared using a dataset 

generated by a simulation testbed (two-muscle system). The 

goal was to test efficacy of the model components proposed 

here (i.e., integral components of the model 1) in predicting 

dynamic relationships between the movement data and the 

EMG data recorded from the muscles. The simulated 

movement data contained sequential flexion and extension 

movements of a single joint, controlled by the agonist and 

antagonist muscles.  

1) SIMULATION TESTBED: TWO-MUSCLE SYSTEM 

A simulation model for a musculoskeletal system that consists 

of two muscles (agonist and antagonist) and a single joint was 

built in the MATLAB environment (MathWorks Inc., Natick, 

MA). This model produced movement data of sequential 

flexion and extension of the joint from a given anthropometric 

data (mass, joint impedance, etc.; see below) and muscle 

activation pattern. For the muscle activation, and 

corresponding EMG signals of the two muscles were also 

generated. The equation of motion of the segment controlled 

by two muscles is shown as below:   

𝐼𝜃̈ = −𝑏𝜃̇ − 𝑘𝜃 + 𝑟1𝑓1 + 𝑟2𝑓2                                 (9) 

where 𝜃 is the joint angle, 𝐼 the mass moment of inertia, 𝑏 

the passive damping, 𝑘 the passive stiffness, 𝑓1 and 𝑓2 the 

agonist and antagonist muscle forces, respectively, and 𝑟1 

and 𝑟2 the moment arms of the corresponding muscles. As 

described below (‘Simulation’ section), four sets of the 

anthropometric parameters were used to perform the 

simulation. 

2) SIMULATION 

Anthropometric parameters of the systems (mass moment of 

inertia, passive stiffness/damping) were selected to reflect 

typical finger segments [48,49], similar to those used in our 

previous study [43]. Four sets of different parameter values 

were used (Table 1) to simulate the movements of different 

musculoskeletal systems; system 1 adopted parameter values 

similar to those reported in the literature for the finger 

segments [43,48,49] while other systems (systems 2 – 4) 

represented systems with a 50% increase in joint damping 

(system 2), with a 50% decrease in joint stiffness (system 3), 

or with both changes (system 4). 

Sequential flexion and extension movements (duration = 

4 seconds) were produced by activating the agonist muscle 

at t1i = 1 (sec), then activating the antagonist muscle at t2i = 

3 (sec). The activation profile 𝑢(𝑡) for each muscle was 

simulated by a hyperbolic tangent function, using the rise 

time of approximately 0.5 (sec). A random noise was added 

to the signal, simulating the measurement noise, assuming a 

10% signal-to-noise ratio.  

Finally, the EMG data 𝑒(𝑡) for each muscle activation was 

simulated by taking the muscle force-to-EMG conversion 

dynamics [50-52], in which ζ value, the parameter that 

defines exponential curvature of the relationship between the 

EMG 𝑒(𝑡) and muscle force 𝑢(𝑡), was set to 0.01. 

𝑒𝑖(𝑡) = 100
𝑒−𝜁𝑢𝑖(𝑡) − 1

𝑒−100𝜁 − 1
       (𝑖 = 1,2)                         (10) 

3) DATA ANALYSIS 

For each of the four systems with given anthropometric 

parameters (System 1 – System 4; Table 1), the system 

output (i.e., joint angular profile) was simulated from the 

EMG data computed from the given muscle activation 

pattern (Eq. 10). Then, the two models were used to 

reconstruct the joint angular profile from the muscle 

activation profiles. A root-mean-square error (RMSE) 

between the target and reconstructed movement profiles was 

computed as a measure of model accuracy, and a correlation 

coefficient (R-value) between the movement profiles as a 

measure of kinematic similarity [53]. 

C. MODEL VALIDATION: EXPERIMENT 

Finally, performance of the developed models was evaluated 

against the experimental dataset obtained from healthy 

subjects who performed four types of finger movements. 

1) SUBJECTS 

Ten neurologically intact subjects (age: 31±5yrs) were 

recruited for the study. The experimental protocol was 

approved by the Institutional Review Boards at the Catholic 

University of America and the MedStar Health Research 

Institute, and informed consent was obtained from all subjects. 

2) INSTRUMENTATION 

To record muscle activity, six pairs of disposable, self-

adhesive silver/silver chloride surface electrodes were used 

TABLE I 
ANTHROPOMETRIC DATA USED IN SIMULATION 

System I (kg · m/s2) b (N · rad/s) k (N · rad) r1 (m) r2 (m) 

1 

4×10-4 

8×10-3 0.40 

15×10-3 12×10-3 
2 12×10-3 0.40 

3 8×10-3 0.27 

4 12×10-3 0.27 
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to record electromyography (EMG) data from the extrinsic 

and intrinsic hand muscles (Fig. 2A/2B). Two pairs of 

electrodes were placed on forearm to record the extensor 

digitorum communis (EDC) and the flexor digitorum 

superficialis (FDS) activity, and four pairs of electrodes were 

placed on the dorsal and palmar aspect of the hand, which 

were intended to record activities of the intrinsic muscles that 

include the first dorsal interosseous (FDI), the second dorsal 

interosseous (SDI), the lumbrical (LUM), and the first 

palmar interosseous (FPI). 

Once the electrodes were placed, the palm and the forearm 

were covered by self-adhesive wraps (Coban self-adhesive 

wrap, 3M company, MN, USA). Reflective markers to 

record finger movements were then placed on the dorsum of 

the hand, i.e., on fingertip, distal/proximal interphalangeal 

and metacarpophalangeal joints, and carpometacarpal joint 

of the index and middle fingers [54] (Fig. 2C). An 8-camera 

motion capture system (Optitrak Prime 13; NatrualPoint, 

Inc., OR, USA) was used to record marker movements at a 

sampling frequency of 100Hz. 

3) PROTOCOL 

Once the electrodes and reflective markers were placed, 

subjects created maximum activations, for the normalization 

purpose, by performing the following movements: finger 

extension (EDC), finger flexion with the DIP joint extended 

(FDS), and index finger abduction (FDI).   

Subjects performed four types of movements: Movement 1 

- finger extension (IP and MCP extension); Movement 2 - 

finger flexion (IP and MCP flexion); Movement 3 - intrinsic 

plus (IP extension and MCP flexion); and Movement 4 - 

intrinsic minus (IP flexion and MCP extension) (Fig. 2D), 

which were performed at 2 different movement speeds (slow: 

2-second duration, fast: 1-second duration). These four 

movements are elemental movements of the finger, which are 

employed in generating functional hand movements [55,56]. 

Intrinsic plus and minus movements are typically produced by 

activating exclusively the intrinsic muscles or the extrinsic 

flexor muscles, respectively [57].  

Subjects rested their arm on a table, with their forearm in 

neutral position. A visual interface (LabView, National 

Instrument Corp., TX, USA) guided subjects to perform the 

target movement by providing information regarding timing 

of the movement. Five trials per each movement type and 

speed (total number of trials = 40) were recorded, and the order 

was randomized across subjects. 

4) DATA ANALYSIS 

Each of the three joint angles (DIP, PIP, and MCP) of the 

index finger was computed from the marker trajectories 

using a cosine law, then the initial angle was subtracted to 

obtain the change in joint angle measure. The EMG data was 

rectified, low-pass filtered (5Hz) to obtain the muscle 

activation profiles. 

To evaluate performance of each model, the leave-one-out 

cross-validation method was used; given each trial (test 

dataset), the remaining four sets of the EMG and angle data 

(training dataset) were used to build the four models (Model 

1, 2, 3A, and 3B), which were tested against the test dataset. 

Their performance was evaluated by a. Error; b. Similarity; 

c. Smoothness; d. Robustness; e. Computational cost. 

a. Error: The prediction error was computed from the root-

mean-squared error (RMSE) between the experimental 

data (joint angles) and their estimates from the EMG data 

by each model.  

b. Similarity: The kinematic similarity between the 

experimental and model-produced movements was also 

computed. The coefficients of correlation (R) between 

the experimental and model-produced angular 

displacement and velocity profiles were estimated to 

quantify the similarity in the angular displacements and 

velocity kinematics.   

c. Smoothness: The smoothness of the model-produced 

movements was evaluated by their maximum jerk values 

(i.e., 3rd time-derivative of the joint angles).  

d. Model robustness: Between-trial variability in the model 

parameters was quantified by the Euclidean/Frobenius 

norm of the parameters across trials. 

e. Computational cost: The computational time for each 

model computation was also recorded using the internal 

timer of MATLAB (tic/toc). A desktop computer with 

Intel® Core i7-1165G7 at 2.80GHz, with the internal 

memory (RAM) of 16GB was used for all simulation.  

III. RESULTS 

A. MODEL VALIDATION: SIMULATION 

The model prediction results with the simulated flexion-

extension movements indicated that the dynamic model 

(model 1), incorporating the single- and double-integral 

terms, reproduced more accurate prediction of the simulated 

angular profiles across all 4 systems (System 1 – 4) than the 

 
FIGURE 2. Experimental setup: A,B. EMG electrode placement; C. Marker 
placement; D. Target postures of the movements performed by subjects: 
extension (Movement 1) and flexion (Movement 2) of all joints, intrinsic plus (IP 
extension + MCP flexion; Movement 3), intrinsic minus (IP flexion + MCP 
extension; Movement 4). (IP: interphalangeal, MCP: metacarpophalangeal) 
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polynomial model (model 2), as indicated by their RMSE 

values (Table II). The error magnitudes generally increased 

when the passive damping increased or when the passive 

stiffness decreased (Fig. 3). In particular, model 2 could not 

accurately predict the timing of the movement, as the timing 

of the predicted movement initiation generally precede that 

of the actual movement.  

B. MODEL VALIDATION: EXPERIMENT 

1) ACCURACY 

Across all target movements, performance of the dynamic 

model (model 1) and the neural network model with high 

complexity (model 3B) was superior to the other models, as 

their prediction error values (RMSE) were significantly 

smaller than the other models (models 2 and 3A) for most of 

the movements (Fig. 4), which is also demonstrated in the 

representative case (Fig. 5).  

2) PHYSIOLOGICAL MOVEMENT CHARACTERISTICS 

Physiological characteristics of movements produced by 

model 1, evaluated by smoothness and kinematic similarity, 

were the closest to the experimental data when compared to 

all other models. 

a. Maximum jerk (smoothness): The average maximum jerk 

values were the smallest for the dynamic model (model 

1), while significantly larger jerk values were observed in 

the movements produced by the neural network models 

(model 3A/3B) (Fig. 6A). As shown in the representative 

case (Fig. 4), while models 1 and 2 produced relatively 

‘smooth’ movements, the neural network models (model 

3A/3B) often produced movements in which abrupt 

changes in the joint angle are observed. Such changes 

were typically amplified in time-derivatives (such as 

velocity, acceleration, and jerk) (see Fig. 5B), resulting in 

significantly larger average maximum jerk values (Fig. 

6A).   

b. Coefficient of correlation (kinematic similarity): 

The similarity of the predicted angular displacements to 

the actual movements, as quantified by the correlation 

coefficients (r-values), was the highest for the dynamic 

model (model 1) and the lowest for the polynomial model 

(model 2) (Fig. 6B). The between-model difference in the 

similarity was even greater for the angular velocity; the 

angular velocity profiles of the movements produced by 

model 1 showed the highest similarity to the measured 

velocity profiles compared to the other models (Fig. 6C), 

which can also be observed in the representative case 

shown (Fig. 5B). Note that the velocity profiles produced 

by all other models (models 2, 3A, and 3B) showed very 

weak correlation with the experimental data, as indicated 

by their small r-values (mean r-values < 0.2). 

3) PARAMETER VARIABILITY 

Variability in the model parameter values across trials was 

relatively low for the dynamic model (model 1: 

COV=0.8±0.5) and the polynomial model (model 2: 

COV=1.0±0.7), but the between-trial variability was 

significantly higher for the neural network models (models 

3A: COV=1.4±0.2, model 3B: COV=1.4±0.1; all p-values < 

0.001 when models 1 or 2 were compared to models 3A or 

3B). 

4) COMPUTATIONAL COST 

The computational cost was significantly greater for the 

neural network models, as their total computation time per 

trial (model 3A: 99.2±19.2seconds, model 3B: 120.5±7.1 

TABLE II 
PREDICTION ERROR (RMSE) AND SIMILARITY IN ANGULAR DISPLACEMENT 

PROFILE (R-VALUE) FOR SIMULATION RESULTS 

Measure Model 
System 

1 2 3 4 

RMSE 

(degrees) 

1 0.25 0.20 0.36 0.56 

2 2.15 2.69 4.38 4.94 

R-value 
1 1.00 1.00 1.00 1.00 

2 0.98 0.98 0.97 0.96 

 
 

 
FIGURE 3. Simulation results comparing model performance: (a) Muscle force 
profiles used in simulation and their single- and double-integral profiles; (b1-b4) 
Simulated movements with four different sets of passive stiffness/damping 
values (System 1 – 4, as shown in Table I) and predicted movements by the 
two models (model 1 and 2) from the EMG profiles. The dynamic model (model 
1) reproduced the movements more accurately across different parameter 
values, while accuracy of the polynomial model (model 2) degraded as the 
biomechanical properties of the model changed. Note that the simulated 
movements exhibited similar timing with the muscle activation integral profiles 
(A), especially when the magnitude of the passive damping is relatively greater 
than other parameters (i.e., System 4). 
 

 
FIGURE 4. Prediction accuracy (error) of the four models during experimental 
validation. Overall, the dynamic model (model 1) and the high-complexity neural 
network model (model 3B) performed better than the other models. 
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seconds) were considerably longer than those of the other 

two models (model 1: 0.7±0.1seconds, model 2: 0.7±0.1 

seconds; all p-values < 0.001 when either models 1 or 2 were 

compared to models 3A or 3B).    

IV. DISCUSSION 

We demonstrate that the proposed dynamic model was 

capable of reproducing different functional hand movements 

from surface EMG data. In particular, this model was able to 

produce physiologic movements that exhibited high 

similarity to the angular displacement/velocity profiles of the 

measured (target) finger movements, with greater 

computational efficiency. 

Our results emphasized the importance of using adequate 

basis functions for the EMG-based movement prediction; the 

proposed dynamic model (model 1) employed single- and 

double-integrals as basis functions, which can capture 

biomechanical impacts of the multisegmental dynamics 

(passive impedance). We observed that the single- and 

double-integrals of the muscle activation generally showed 

higher similarity to the measured finger movement profiles 

than the muscle activation profiles themselves. In particular, 

similar temporal characteristics were observed between the 

integral and the measured joint angles profiles (see Fig. 4), 

while the temporal profiles of the muscle activation 

generally do not match those of joint angle; note that the 

duration of the joint angle change (i.e., rise time) was often 

longer than that of muscle activation increase. Previous 

studies [43,54] demonstrated significant contribution of 

viscous torque (produced by passive damping) to finger 

movement production, which could explain the temporal 

delay between the muscle activation and the joint angle 

displacement. As the proposed dynamic model (model 1) 

utilized basis functions (i.e., activation integrals) that mimic 

dynamic behaviors of biomechanical components such as 

passive damping, it was able to achieve a comparable 

prediction accuracy with a significantly lower model 

complexity (i.e., fewer model parameters). 

Furthermore, the proposed model has advantages over 

other models due to the ‘physiologic’ nature of its predicted 

movements, as quantified by the two kinematic parameters 

(i.e., smoothness and kinematic similarity) in this study. 

Note that previous EMG-based models developed for joint 

angle prediction [20-28,45,46] typically did not examine 

such movement qualities. In teleoperation, a reference 

movement trajectory should be ‘smooth’ to ensure proper 

manipulator control, such as maintaining stability in 

grasping/manipulation of the robotic hands [58]. Jerky finger 

movements could decrease grip stability, as seen in 

neurological disorders (e.g., Parkinson’s disease; [59]). 

When these models are used for orthosis control (e.g., 

rehabilitation training), smooth and natural movements 

should also be used as a reference (target movement) to

 
FIGURE 5. A representative case of model performance comparison (Subject 2) across four movement patterns (A-D). In general, the dynamic model (model 1; 
blue) and the neural net (NN) model with high complexity (model 3B; purple) predicted the angle profiles better than the parametric model (model 2; yellow). But 
the dynamic model (model 1) produced smoother and more physiologic movements than the NN model (model 3B); in particular, several cusps (sharp turns; red 
arrows) were observed in the movements produced by the NN model (model 3B), which resulted in even greater spikes in their derivatives (black arrows). 
 

 
FIGURE 6. Movement characteristics of model-produced movements, averaged 
for all 4 movement types. A: Smoothness; B,C: Correlation between the 
experimental and predicted angular displacement (B) and velocity (C) profiles. 
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control hand orthosis as it would minimize the risks for 

injury during operation. The proposed dynamic model was 

also able to produce smooth movements with physiologic 

velocity profiles (i.e., highest similarity to the measured 

angular velocity profile), which is also important in hand-

arm movement coordination [60,61]. Note that movement 

smoothness is also important in other possible human-robot 

interaction applications such as gesture recognition [62,63]. 

Finally, the proposed dynamic model also presents 

additional advantages over the other models due to its 

robustness and computational efficiency. The performance 

(i.e., RMSE) of the dynamic model were less sensitive to the 

trial chosen in the leave-one-out validation process, 

indicating it was less sensitive to the variabilities in the input 

data (i.e., less reliant on which trials are used for training). 

Also, the model may potentially serve as a diagnostic tool, 

as each model parameter defines the contribution of different 

biomechanical components (i.e., damping, stiffness, inertia) 

to finger movements. Finally, the proposed model presents 

unique advantage in the computational efficiency. The 

computational cost of the dynamic model (model 1) was 

almost negligible (computation time for each movement < 1 

second) with a conventional desktop computer, compared to 

the computational time for the neural network models 

(models 3A and 3B) that was considerably higher (> 90 

seconds).  

Some limitations of the study are to be acknowledged. 

Activity of some deep hand muscles, such as the flexor 

digitorum profundus (FDP), were not measured by surface 

electrodes, which limit the amount of information required 

for movement prediction. However, previous study showed 

that the activities of two extrinsic flexor muscles (FDP and 

FDS) during functional task are highly correlated [64], thus 

some degree of information regarding FDP activities could 

have been deduced from the FDS activation pattern recorded 

in the study. The theoretical model used in our simulation 

(section III.A.) did not include complex nonlinear dynamics 

of other factors such as passive tendon stiffness or tendon 

force distribution within finger extensor mechanism [65] that 

affects finger movement production, which may explain the 

observed high similarity between movements (i.e., R-values 

≈ 1). Our previous in vivo study [43], however, showed that 

theoretical models considering passive impedance, such as 

one described in (1), can reproduce multi-joint finger 

movements rather accurately, if produced at self-selected 

speed. Note that significant differences in performance 

between the models were captured by the absolute difference 

and/or error, i.e., RMSE measures, which showed that the 

proposed dynamic model can compute spatiotemporal 

patterns of multi-joint finger movements more accurately. 

We also recorded and used the intrinsic muscle activities, 

which are not available for amputees, making its applications 

limited to those involving non-amputees such as 

teleoperation. We also limited the scope of our model to the 

prediction of the index finger movements; prediction of 

multi-finger movements, however, can be performed in the 

future studies by adding more channels/electrodes recording 

other intrinsic muscles. However, recording of intrinsic 

muscle during orthosis control could be difficult (due to 

physical interference). Thus, pros and cons of using intrinsic 

hand muscles should be carefully considered.  

V. CONCLUSION 

In this study, we developed a novel dynamic model that can 

reproduce various functional hand movements from surface 

EMG data. The proposed model predicted finger movements 

with a level of accuracy comparable to that of complex 

neural network models. More importantly, the proposed 

model produced physiologic movements that exhibited high 

similarity to the angular displacement/velocity profiles of the 

measured finger movements, with greater computational 

efficiency. The proposed modeling approach thus provides a 

robust and computationally-efficient tool for human-

machine interaction applications such as real-time 

prosthesis/orthosis control or teleoperation.  
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