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ABSTRACT X-ray image enhancement can aid a physician’s diagnosis by improving lesion visibility. This
study proposes a chest X-ray image enhancement framework for enhancing lesion visibility while preserving
image features. Our framework assesses the background signals, whereas conventional methods focus on the
visibility of the global image. The proposed method predicts the image processing parameters that enhance
the lesion signals via the inference neural network. The framework consists of an X-ray image enhancer and
an enhanced model predictor for reference. The enhancer regressively estimates the processing parameters
for enhancing the lesions using the inference network and processes the input X-ray image. As the inference
network requires training, themodel predictor computes the reference parameters that maximize the visibility
of the lesions within a tolerable loss of fidelity using image pairs—with and without lesions. We created a
synthesized dataset, with and without lesions, from healthy chest and phantom lesion X-ray images. The
experiments show that after the proposed method was trained on 2000 images, it improved lesion visibility
with an acceptable fidelity loss. We also performed pairwise comparisons and confirmed that trade-offs
between fidelity loss and visibility gain were attained. A technique for improving lesion visibility while
maintaining the fidelity of X-ray images was developed. This method enabled the enhancement of specific
signals in the background. Various image processing methods that require parameters could be incorporated
into this framework for many different applications.

INDEX TERMS Chest X-Ray, Human Perception, X-Ray Image Enhancement,

I. INTRODUCTION

Chest X-Ray (CXR) images are commonly used to diagnose
respiratory disease [1]–[3]. X-ray imaging offers advantages
in terms of cost, accessibility, and sensing speed compared
with CT or MRI. These images are well-suited to providing
an overview of the lungs and to evaluating lung conditions.
However, the lesion signal may be buried in the image be-
cause bones, muscle tissue, and blood vessels are all being
observed [4].

In medical practice, it is common for physicians, rather
than computers, to make the final diagnosis. The recent
development of deep learning technology produced many
methods for enhancing radiographs [5]–[8]. Although the
supervised machine learning approaches automatically detect
the presence and locations of lesions in diagnostics [9]–[17],
particularly in CXR images [14]–[17], these methods require
extensive training on annotated data. It is also difficult to per-

form a diagnosis with perfect accuracy due to large variations
in the images, which depend on the patient’s physique and
the shooting conditions. As complete automatic detection is
impractical, doctors must make a final diagnosis from the
visual cues in the image.

X-ray enhancement preserves image features and con-
tributes to the diagnosis by improving lesion visibility. Sev-
eral image enhancement techniques have been discussed in
image processing research, including contrast adjustment,
histogram optimization, noise reduction [18], [19], and super-
resolution [20], [21]. Methods that automatically adjust pa-
rameters for image filters are also applicable to X-ray im-
ages. However, image filters are not designed to enhance
only certain regions, i.e., lesions [22]–[24]. If an image filter
emphasizes visual features other than the lesion, the signal
to be observed may become buried. Moreover, some filters
may hide features per the given parameter. Put differently,
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by enhancing the visual features of the lesion, we help the
physician greatly during the diagnostic process.

This study proposes a technique for improving the human
visibility of lesions using a deep learning framework using a
prediction model. Although it is difficult to know the lesion’s
position in advance, learning its spatial distribution, shape,
and frequency characteristics should be possible. In addition,
a human visibility prediction model enables us to recog-
nize regions that match these characteristics. The proposed
method also requires the preservation of image features based
on the fidelity metric to prevent missed lesions.

The contributions of this paper are as follows:
• Proposal of a learning-based X-ray image processing

framework for improving visibility while maintaining
fidelity.

• Presentation and evaluation of X-ray imaging algorithms
by visibility using simulated data and lesion models.

• Implementation of differentiable human perception-
based visibility and image fidelity evaluation modules.

The visibility prediction model originally aimed for Image
Quality Assessment (IQA) to detect noises perceived by hu-
man visual systems in image processing, such as compres-
sion. The proposed method considers lesions as noise and es-
timates their visibility by comparing images with and without
lesions. However, capturing such pairs of X-ray imageswould
be impossible. Therefore, we used composite X-ray images of
lesion phantoms and healthy lungs to train our model.

The remainder of this manuscript is as follows: Section II
provides an overview of the related work. We explain the
visibility-based X-ray image enhancer and the reference
model predictor in Section III and IV, respectively. The ex-
perimental results are presented in Section V. Section VI dis-
cusses the results, and we conclude the study in Section VII.

II. RELATED WORK
This section briefly reviews general image enhancement
methods, as well as those specific to medicine, and discusses
the positions of the proposed methods.

A. GENERAL IMAGE ENHANCEMENT
General image enhancement has been studied extensively.
Various methods have been proposed, including intensity-
based, retinex-based, frequency-based, and learning-based
methods.

1) Intensity-based method
Intensity-based methods adjust the image contrast based on
pixel intensity, using techniques like histogram equalization
(HE) [25]–[29] and intensity conversion [30]–[32]. HE re-
arranges the pixel values using the cumulative distribution
function so that the output of the intensity histogram becomes
equalized. Intensity conversion, including tone mapping, is
another option for enhancing images. These methods define
mapping functions that assign output intensity values to the
input. The most commonly available functions are the gamma
function and logarithmic function [33].

2) Retinex-based methods
The retinex theorem [34] models the way humans perceive
colors or illuminations. The observed optical information is
divided into a reflection component, which is derived from
the scene objects, and an illumination component. The image
is sharpened by separating and enhancing these components.
The retinex method separates reflections using a Gaussian
kernel for a single size [35], multiple sizes [36], or multiple
channels [37] and applies a contrast enhancement filter to the
reflections. This theorem has also been integrated into Deep
Neural Network-based methods [38].

3) Frequency-based methods
Frequency-based methods include image processing in
the frequency-domain and frequency-based decomposition.
Frequency-domain methods use the Fourier transform to cre-
ate an image and then apply a homomorphic filter to empha-
size high-frequency components. They then use the inverse
Fourier transform to reconstruct the image [39]. Image de-
composition methods decompose and reconstruct images by
filtering low-frequency components [40] or by emphasizing
high-frequency components such as edges. For example, bi-
lateral filter [41], guided filter [42], and weighted least square
filter [43] are popular image decomposition methods.

4) Learning-based methods
Many learning-based methods have been proposed in recent
years. These supervised methods must train on a dataset
that includes before-and-after enhancement [44]–[46]. The
expected input images are generated by downsampling, de-
grading, or adding noise to achieve super-resolution, edge
enhancement, and noise reduction. The Generative Adver-
sarial Network (GAN) is an effective framework for image
enhancement. Some supervised approaches use data pairs
and employ GANs in their loss functions [47], [48]. How-
ever, GAN-based unsupervised approaches do not require the
preparation of image pairs. A generator provides an enhanced
image from the input, and the discriminator uses reference
images to determine whether the image is in the desired
domain [49]–[51].

B. X-RAY IMAGE ENHANCEMENT
Based on the abovementioned studies related to general im-
age enhancement methods, we describe methods for X-ray
imaging.

1) Retinex-based method
The retinexmethod is effective for X-ray image enhancement.
Chen and Zou [52] used the two-scale retinex method for
bright and dark regions in CXR images. YangDay and Zhang
[53] proposed a single-scale retinex method with segmenta-
tion and weighting schemes to prevent noise amplification
and the over-enhancement of artifacts.
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2) Decomposition method
Some methods improve X-ray image visibility by decom-
posing the features of both the target and nontarget features.
Huang and Nguyen [54] introduced a technique for improv-
ing X-ray images by attenuating their tissue components. A
method known as ATACE [24] decomposes the tissue com-
ponents and details to enhance image contrast. The bone sup-
pression method [55], [56] is another approach for improving
the visibility of the region of interest. It removes the bone
structure from the original X-ray image. Madmad et al. [57]
proposed a CNN approach to decomposing X-ray images into
base and fine structures using a synthetic dataset.

3) Frequency-based method and other methods
Frequency-based methods are popular in X-ray image en-
hancement. Xiao et al. [39] combined homomorphic filtering
methods and noise reduction for X-ray image enhancement.
Kim et al. [58] proposed a CNN-based tone mapping method
that involved generating a detailed reference layer through X-
ray image synthesis.Madmad andVleeschouwer [27] empha-
sized texture and shape components by utilizing a bilateral HE
operator. Anand et al. [59] trained a CNNmodule using high-
contrast images obtained from a contrast-limited adaptive HE
(CLAHE) algorithm.

Other X-ray image enhancement techniques include de-
noising [18], [19], [60], and super-resolution [20], [21]. Some
studies have explored the application of image enhancement
methods as a preprocessing step in lesion detection [7], [8],
[61].

C. POSITION OF THE PROPOSED METHOD
Our method is a framework for evaluating and enhancing
the visibility of specific regions in the input X-ray image,
whereas conventional methods evaluate the whole image. We
use a method that quantifies the visibility, based on human vi-
sual perception (HVP), of the difference between two images.
This method also maintains visual features, including tissues
and bones, to prevent misses. Like some image enhancement
methods, it requires tuning of the parameters; however, these
are intuitive parameters that determine image fidelity.

III. VISIBILITY-BASED X-RAY IMAGE ENHANCER
The proposed method uses X-ray images as input, estimates
the parameters that improve lesion visibility, and outputs im-
ages processed according to these parameters. Fig. 1 shows an
outline of the proposed framework. The image enhancer com-
prises an image processing module and a parameter predictor
network module, as shown in the figure. This section explains
each image processing module and the estimation network.
The following Section IV covers the process of estimating the
chosen parameters to train the predictor network.

We assume that the input X-ray image displays only the
lung region, which we extracted to eliminate the differences
between the imaging environments and between individual
physical dimensions as much as possible, using the segmen-
tation labels supplied with the dataset.

A. IMAGE PROCESSING MODULE
Although various algorithms can be used for the image
processing module, our proposed framework uses an al-
gorithm that combines high degrees of freedom intensity
adjustment and frequency adjustment. Intensity adjustment
employs tone curve correction represented by Radial Basis
Functions (RBFs), whereas frequency adjustment employs
image reconstruction using Laplacian image sequences.

1) Intensity adjustment
The intensity adjustment defines a tone curve η̂ = C(η) for
the input pixel intensity value η of an input image I and the
corresponding output intensity value η̂ of the output image
Î. Assuming that ϕi is the ith RBF and that wi and ci are the
weight and center of ϕi, respectively, we define the tone curve
as follows:

C(η) =
Nrbf∑
i=1

wiϕi(|η − ci|), (1)

where Nrbf denotes the number of RBFs. In this experiment,
we set Nrbf = 4; wi and ci are the parameters to be optimized.
Note that the input pixel intensity values are normalized by
the maximum intensity value in the dataset. The diagram on
the left in Fig. 2 shows a tone curve defined by an RBF.
We adopt amultiple harmonic spline function for the RBFs:

ϕi(x) =

{
x i (i = 1, 3, ...)

x i ln x (i = 2, 4, ...)
(2)

By changing the valueswi and ci of ϕi, we canmodify the tone
curve as shown in the image in the upper right of Fig. 11. In
other words, we seek the values of wi and ci that achieve the
optimal intensity change for the input.

2) Per-frequency contrast adjustment
The contrast adjustment uses a Laplacian pyramid [62], which
decomposes the image into individual frequency components
derived from the Gaussian pyramid. We enhance or attenuate
the frequency components by multiplying the coefficient pa-
rameters for the Laplacian images during the reconstruction
process.

Let G1 be the input image (I → G1) and let {Gj}(j =
1, 2, ...,Ngn) be the Gaussian pyramid of the input. Ngn is
the number of pyramid levels, and we set Ngn = 5 for the
experiment. In addition, let {Lj} be the Laplacian pyramid
consisting of Ngn − 1 images. We generate Lj by subtracting
from the Gaussian image Gj the image upscaled by one level
above, Gj+1:

Lj = Gj − U(Gj+1), (3)

where U(G) indicates the image up-sampling operation of G
by nearest interpolation.

Per-frequency contrast adjustment multiplies the coeffi-
cient parameterµj againstLj when the image is reconstructed,
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Input CXR image
Enhanced CXR imageX-ray image enhancement

Image processing
module

Inference network
Image processing

parameter

FIGURE 1. X-ray image enhancer estimates the parameters that the image processing module will use to enhance the original CXR image while preserving
its features.

Intensity adjustment using the RBF Frequency adjustment using the Laplacian pyramid

Image processing parameter

Input image Output image

i-th RBF

weight of RBF

center of RBF

coefficient of i-th 
Laplacian image

number of RBFs

number of 
pyramid levels

FIGURE 2. Image processing module. The pixel brightness of the input image is converted by the RBF. Next, the converted image is decomposed into a
Laplacian pyramid and then reconstructed by multiplication of the frequency components by coefficients.

Low-frequency 
enhancement

High-frequency 
enhancement

FIGURE 3. Examples of frequency adjustment processing

and this adjustment either enhances or attenuates the corre-
sponding frequency component, as follows:

Ĝj = µjLj + U(Gj+1). (4)

Here, µj is the parameter to be estimated. We obtain the
desired image Ĝ1 by reconstructing from the top to the bottom
levels of the pyramid. The right middle image in Fig. 2 shows
the frequency adjustment process. Adjusting µj for each level
of the Laplacian image allows us to enhance or suppress
specific frequency components. Fig. 3 presents examples that

demonstrate this frequency adjustment.

B. PREDICTOR NETWORK

The estimator is a deep learning model that takes X-ray im-
ages as input and regressively estimates the image processing
parameters, p = {w1, ...,wNrbf

, c1, ..., cNrbf
, µ1, ..., µNgn−1},

that improve lesion visibility while maintaining fidelity with
the original image. The training process requires both the
X-ray images and the corresponding reference parameters,
p̂ = {ŵ1, ..., ŵNrbf

, ĉ1, ..., ĉNrbf
, µ̂1, ..., µ̂Ngn−1

} (see details
in Section IV), for image processing, as shown in Fig. 4.
We use the Swin-Transformer V2 model [63] as the network
architecture.
We calculate the losses for the intensity adjustment lint

and frequency adjustment lfreq separately during the training
process. The total loss is the summation of these losses, where
each have equal weight:

ltotal = lint + lfreq. (5)

1) Intensity adjustment

We calculate the loss for the intensity adjustment by taking
the differences in the estimated and reference tone curves:
C(η) and Ĉ(η) =

∑Nrbf

i=1 ŵiϕi(|η − ĉi|). The parameters for
the RBF functions w and c derive the tone curves. The loss
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Input CXR image

Reference Enhance model prediction

Image processing
module

Visibility and Fidelity
assessment

Image processing
module

Image processing
parameter

X-ray image enhancement

Inference network

Image processing
parameter

Reference for training
Input CXR image
(without lesion)

FIGURE 4. Inference network is trained using reference parameters computed with image pairs that have and do not have lesions.

between the curves is calculated as shown below:

lint =
1

Ns

Ns−1∑
i=0

(C(ηi)− Ĉ(ηi))2, (6)

where Ns is the number of samplings. We determine the
sampling range and intervals by dividing the range equally
between the minimum and maximum intensity values in the
lung region. We set Ns = 12 for the experiment.

2) Frequency adjustment
In the case of the frequency adjustment parameters, we simply
take the mean squared error between the estimated parameter
µj and the reference parameter µ̂j:

lfreq =
1

Ngn − 1

Ngn−1∑
j=1

(µj − µ̂j)
2. (7)

IV. REFERENCE ENHANCED MODEL PREDICTOR
We need the image processing reference parameters p̂ for the
corresponding input image to train the model. The parameters
must improve the visibility of the lesion region while main-
taining a certain degree of image fidelity to prevent missed
information in the X-ray image. If we evaluate the output
image with only visibility, the features that provide clues
about the lesion may disappear.

A. PROCEDURES
Because we use a visibility predictor model for IQA, which
requires a different image (the difference between two im-
ages), we need a pair of images with and without lesions.
However, obtaining X-ray images without lesions that were
taken in the same poses and shooting environment as were
thosewith lesions is almost impossible. Therefore, we applied
image augmentation to X-ray images of healthy lungs and
lesion phantoms.We explain the details of the image augmen-
tation in Section V-A.

Fig. 5 shows the workflow for the reference parameter
prediction.We estimate the reference parameters by repeating
the following steps until convergence is reached:
1) First, we apply image processing with the parameter

set p to an input without lesions, I, and an image with
lesions, I+, and we obtain the outputs, Î and Î+.

2) Next, we calculate the visibility gain gvis of the lesions
before and after image filtering by taking the differ-
ences between I and I+ and between Î and Î+.

3) We also calculate fidelity losses by comparing the input
images with lesions before and after filtering, I+ and
Î+.

4) We update the parameters p to increase the gain in
visibility while maintaining the loss in fidelity to a
certain level by network backpropagation.

As the image processing module in Step 1 is explained in Sec-
tion III-A, the following sections describe other components
(visibility assessment, fidelity assessment, and optimization).

B. VISIBILITY ASSESSMENT
Although there are several approaches to visibility predic-
tion, we employed High-Dynamic Range Visible Difference
Predictor (HDR-VDP) [64]. The monitors that were used to
display the X-ray images had HDR functionality and were
compatible with the Grayscale Standard Display Function
(GSDF) and were able to show detailed intensity differences.
HDR-VDP considers the characteristics of themonitor and al-
lows conversion from image pixel values to display luminance
with consideration for HVP. Moreover, HDR-VDP is model-
based andmore versatile than are learning-based IQAmodels,
which require training on large datasets. Fig. 6 (d) shows
an example of the visibility map of the lesions estimated by
HDR-VDP.
The visibility predictor Ω takes two images, a reference

Ir and a test It, and calculates the predicted visibility map
Vt from the difference between the images: Vt = Ω(Ir, It).
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Image processing

Image processing
parameter Visibility assessment

Fidelity assessment

Optimization

Normal CXR Lesion blended CXR

Processed Normal 
CXR

Processed blended 
CXR

Visibility gain 

Fidelity loss 

FIGURE 5. Reference parameter prediction. The visibility assessment evaluates, before and after processing, the lesion visibility for each pair of images,
which includes images with and without lesions. Fidelity assessment requires blended CXR images before and after processing.

Let V+ be the predicted visibility map obtained from images
with and without lesions before image processing: V+ =
Ω(I, I+). Let V̂+ be the predicted visibility map after image
processing: V̂+ = Ω(Î, Î+). We define visibility gain as an
indicator of how much the visibility of the lesion area has
improved from the image processing. We derive the visibility
gain gvis by computing the ratio of the total of the pixel values
of V+ to that of V̂+, as follows:

gvis =
sum(V̂+)

sum(V+)
, (8)

where sum() is a function that sums the values of the pixels
in the image. The optimization process maximizes gvis and
obtains the image processing parameters.

C. FIDELITY ASSESSMENT
To evaluate the image fidelity between I+ and Î+, we pro-
pose a method that combines the correlation loss using the
correlation between images in the Laplacian pyramid [65]
with the contrast loss, which indicates the loss of features
between images [66]. The former evaluates the correlation
of the edge components in the image, whereas the latter
detects the loss in contrast based on HVP. If we impose only
tolerance limits using correlation loss, we would not be able
to guarantee the preservation of image features. However,
because image feature preservation is paramount to diagnosis,
we use contrast loss simultaneously to prevent the loss of
features. In this section, we briefly explain these losses and
the optimization method.

1) Correlation loss
The correlation loss lcor between I+ and Î+ is derived from
the covariance and standard deviation of the image pixels

at each level of the Laplacian pyramid. Let {Lj} and {L̂j}
be the Laplacian pyramids for I+ and Î+, respectively. Let
c(L, L̂, x) be the covariance around pixel x in two Laplacian
images, L and L̂, at the jth level, and let s(L, x) be the
standard deviation around x in L:

c(L, L̂, x) = Σx

(
(L(x)− L(x))(L̂(x)− L̂(x))

)
, (9)

s(L, x) =
√

Σx

(
(L(x)− L(x)

)2

, (10)

where L(x) is a weighted average according to the distance
from x calculated using a Gaussian kernel. In our experiment,
we set the Gaussian kernel size and standard deviation to
15 pixels and 6 pixels, respectively. Next, we calculate the
image correlation f (L, L̂) by summing the covariance values
over the entire image and normalizing it by dividing it by
the summation of the products of the standard deviations, as
follows:

f (L, L̂) = Σxc(L, L̂, x)
Σx(s(L, x)s(L̂, x))

. (11)

Then, we obtain the correlation loss lcor by taking the
average of the correlation losses of the Laplacian pyramid
images: (1− f (Lj, L̂j)) up to Nng − 1 level.

lcor =
1

Nng − 1

Nng−1∑
j=1

(1− f (Lj, L̂j)) (12)

2) Contrast loss
The contrast loss is one of the indicators in the dynamic range-
independent IQA [66], and it increases when the features that
are visible in the reference image are not visible in the test
image(Fig. 6 (e)). The dynamic range-independent IQA [66]
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is a metric for distortion of the test image relative to that of
the original image based on HVS. This IQA includes three
metrics: visible feature loss, invisible feature amplification,
and contrast polarity reversal, where the visible feature loss
is used as the contrast loss. We omit the explanation for the
calculation of contrast loss here; see the details in the original
study [66].

Let M be the contrast loss map [66] calculated from I+

and Î+:M = Gamma(I+, Î+). The loss lcnt is obtained by
averaging the pixel values of the obtained map as follows.

lcnt =
1

Nimg
Σx∈MM(x). (13)

where Nimg is the size of the M image.

D. OPTIMIZATION
The optimal image processing parameter p̂ should maximize
the visibility gain gvis while maintaining the fidelity losses,
which consists of lcor and lcnt, below their chosen threshold
values. This is a constrained minimization problem, which is
defined as follows:

p̂ = arg min
p

exp (−gvis) (14)

s.t. lcor < τcor ∧ lcnt < τcnt,

where τcor and τcnt are threshold values for lcor and lcnt,
respectively. We determined the values experimentally, and
the users may determine them as they like. We introduce the
constraints as penalty terms during the optimization process;
Eq. 14 is rewritten as follows:

p̂ = arg min
p

(exp (−gvis) + σ1Λ(lcor − τcor)
2

+σ2Λ(lcnt − τcnt)
2), (15)

where σ1 and σ2 are the weights of the penalty terms, which
are gradually increased during optimization, and Λ(x) is the
ReLU function.

Λ(x) =

{
x x > 0

0 x ≤ 0
, (16)

V. EXPERIMENTS
This section describes the image augmentation approach and
the implementation of the datasets used in the experiments.
This is followed by the experimental results.

A. DATASET
1) Procedure for the generation of training images
We describe here the procedures for generating a set of X-ray
images with and without lesions. The inputs used to generate
an image set are an X-ray image of the lungs with no lesions,
a segmentation image of the lungs, and an X-ray images of
lesions only. For the lung X-ray and segmentation images,
we used the Shenzhen CXR Dataset [67], [68]. We imaged

the phantoms that imitated COVID-19 lesions with an X-ray
device, as shown in Fig. 7.
We randomly selected a point in the segmented regions of a

lung image. The selected point had to be such that the overlaid
lesion did not go beyond the boundaries of the lung region;
we narrowed the region using amorphological transformation
according to the size of the lesion. Then, we overlaid the
lesion’s image onto the lung’s image.
After we overlaid the lesions, the imagewas a square cutout

of the lung region. First, we fitted a minimum bounding
box to cover all the lung regions. The bounding box size
was then scaled up by 20% to include entire lung regions.
Next, we cropped the squared region, which circumscribed
the bounding box. Finally, we resized the cropped image to
the input size for the network (1024× 1024 pixels).

2) Overlaying lesion images
Because the dose during radiography, the sensitivity of the flat
panel display, and the thickness of the body are unknown, we
need to estimate them to adjust the intensities of the lung and
lesion images. We assume that the attenuation coefficients of
the body and the lesion are known, whereas the attenuation in
the air is small enough to be ignored. Fig. 8 shows an overview
of the overlaid lesion images.
We assume that the pixel value I(x) at pixel x in an X-

ray image I is a linear transformation of the incident X-ray
intensity I(x):

I(x) = αI(x) + β. (17)

According to the Beer-Lambert Law, the emitted X-ray with
intensity I0 attenuates while passing through an object with an
attenuation coefficient λ and a transmission distance δx along
the ray incoming toward pixel x:

I(x) = I0 exp (−λδx). (18)

We substitute Eq. 18 into Eq. 17 and obtain the following
equation:

I(x) = α̂ exp (−λδx) + β (19)

α̂ = αI0. (20)

As α and I0 are not separable, we estimate α̂ as their product.
Given a lung image Io with unknown coefficients αo and βo
and unknown body thicknesses δo,x, as well as a lesion image
Il with αl , βl , and δl,x, we derive the following equations:

Io(x) = α̂o exp (−λoδo,x) + βo (21)

Il(x) = α̂l exp (−λlδl,x) + βl . (22)

After (α̂o, βo) and (α̂l , βl) are obtained, δo,x and δl,x can
be calculated from these equations to obtain the pixel value
I+(x) of the overlay image I+, as in the following equation:

I+(x) = α̂o exp (−λoδo,x − λlδl,x) + βo. (23)

Here, we assume that at least the ranges of δo,x and δl,x
are known as (δo,min, δo,max) and (δl,min, δl,max). Because we
can observe the maximum and minimum intensity values
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(a) (b) (c) (d) (e) (f)

FIGURE 6. Example of a visibility map and fidelity loss map of (a) an original CXR image, (b) a CXR image with lesions after processing, (c) a CXR image
without lesions after processing, (d) a visibility map between (b) and (c), (e) correlation loss of (a) and (b), (f) the contrast loss of (a) and (b)

FIGURE 7. Lesion phantom models and an X-ray image overlaid on the
CXR image

Random
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FIGURE 8. Overview of lesion images overlaid onto healthy CXR images

of the lung regions and the lesion regions in the images
as (ηo,min, ηo,max) and (ηl,min, ηl,max), we obtain (α̂o, βo) and

(α̂l , βl) by solving the following simultaneous equations:

ηo,min = α̂o exp (−λoδo,min) + βo, (24)

ηo,max = α̂o exp (−λoδo,max) + βo, (25)

ηl,min = α̂l exp (−λlδl,min) + βl , (26)

ηl,max = α̂l exp (−λlδl,max) + βl . (27)

We set the experimental values of the attenuation coefficients
to λo = 0.07 and λl = 0.09. We assume that δo,max ranges
randomly from 24 to 32 cm considering the thickness of the
human body; the random thickness values make it possible
to synthesize images in different ratios and to augment the
data during training to prevent overfitting to the training data.
δo,min was set to 10 cm, assuming it corresponded to the
thickness of the body without lungs. We measured the lesion
phantoms and obtained the maximum transmission distances
δl,max from 3.3 to 8.0 cm, and we set δl,min to 0 cm outside the
lesion.

B. IMPLEMENTATION
1) Reference enhanced model predictor
We implemented the model predictor by LibTorch described
in Section IV, which allowed the framework to perform back-
propagation. We used the Adam optimizer [69] for optimiza-
tion, and we set the convergence criteria so that the minimum
loss did not update a specified number of times. We also set
the threshold values to τcor = 0.005 and τcnt = 0. The initial
parameters of p should not change the input images after they
are processed; we set w1 = 1 and set the other parameters
for the intensity adjustment to 0, and all the parameters for
frequency adjustment to 1. That is, when Nrbf = 4 and
Ngn = 5, w1 = 1, wi(=2,3,4) = 0, ci(=1,2,3,4) = 0, and
µj(=1,2,3,4) = 1.
The visibility gain and contrast loss evaluation assumes

the use of medical monitors, which apply the GSDF for
brightness correction. Assuming the CXR image is viewed in
a dark room, we set themaximum luminance of themonitor to
400cd/m2 and ambient light to zero. We also set the number
of pixels per degree of visual angle to 26.54.

2) Inference model training
We implemented the framework described in Section III-B
with PyTorch. We chose the base size network of the Swin
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Original Ours Reference model HE CLAHE BCET Gamma

FIGURE 9. Comparison of the image processing results using each method. Each image is cropped for visualization.

Transformer V2 [63]. The network inputs were the blended
and lung segmentation images included in the dataset. The
loss function is shown in Eq. 5. We used 2,000 images to
train the inference model and 50 images for validation.

C. COMPARATIVE EVALUATION
First, we evaluated the proposed method using visibility gain
gvis, correlation loss lcor, and contrast loss lcnt as metrics.
The comparative methods wereHE (histogram equalization),
CLAHE [25], the Balance Contrast Enhancement Technique
(BCET ) [70], and Gamma correction [8]. HE flattens the
histogram of the overall image brightness. CLAHE flattens
the histogram in small batches and suppresses the saturation
that can occur with HE. BCET performs a quadratic transfor-
mation so that the image brightness is adjusted to the target
maximum, minimum, and median values. Gamma corrects
the brightness by multiplying it by a gamma value.

We applied HE and BCET to only the lung regions. We
calculated the image fidelity losses in only the lung regions.
Table 1 shows the mean and variance of the parameters for
each method.

Table 2 shows the significance of the proposed method
compared with that of the other methods by presenting the
results of a one-tailed Wilcoxon signed-rank test [71]. The
Wilcoxon signed-rank test was employed because there was
no normality in the distribution of any term. The "o" indicates
that the proposed method recorded significantly better values,

and the "x" indicates that it recorded inferior values. Note
that significant differences exist for all comparisons at the 5%
level of significance.

The proposed method achieves larger visibility gains than
do the BCET, Gamma, and CLAHE correction with a reason-
ably small correlation loss. Although HE achieves larger vis-
ibility gains, it also has larger image correlation and contrast
losses. Our results show a trend toward a greater contrast loss
than the Reference model; however, the loss is not as large as
that of HE. The reference results estimated by the reference
enhanced parameter estimation module show that the results
exceed the target threshold (τcor = 5×10−3). This is because
the constrained optimization is being solved in a penalized
manner, which is as expected.

Fig. 9 shows examples of processed images. The images
show that the proposed method improves contrast while pre-
serving the features in the image inside of the lungs. Although
HE improves the contrast inside the lungs, some regions
exhibit a loss of features caused by the crushed blacks in
the dark areas between the ribs. CLAHE excels at enhancing
regions that have low contrast; however, because it adjusts
the contrast locally, the correlation in the image may become
disrupted, which makes it difficult to discern lesions. We did
not observe a significant increase in visibility for the BCET
or Gamma correction.
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TABLE 1. Mean and standard deviation of the metrics for each method.

Visibility gain gvis ↑ Contrast Loss (×10−3) lcnt ↓ Correlation Loss (×10−3) lcor ↓
Ours 2.96± 3.30 1.02± 1.43 4.00± 0.92

Reference 4.18± 3.31 0.16± 0.13 5.90± 0.36
HE 13.82± 36.28 7.65± 2.64 23.80± 5.54

CLAHE 2.20± 1.27 0.23± 0.22 22.02± 2.19
BCET 1.60± 0.55 0.00± 0.00 0.85± 1.10
Gamma 1.34± 0.49 0.02± 0.12 2.14± 0.74

TABLE 2. Significance for the comparison between our method and the comparison methods. The p values were less than 0.05 in all comparisons, and
significant differences existed in all comparisons at the 5% level of significance.

Visibility gain Contrast Loss Correlation Loss
Significance p value Significance p value Significance p value

HE x < 0.001 o < 0.001 o < 0.001
CLAHE o 0.012 x < 0.001 o < 0.001
BCET o < 0.001 x < 0.001 x < 0.001
Gamma o < 0.001 x < 0.001 x < 0.001

D. SUBJECTIVE EVALUATION

We conducted paired comparisons alongside BCET, CLAHE,
and HE to further evaluate the proposed method. This exper-
iment assessed two key criteria: the lesion’s visibility and the
image fidelity. The visibility assessment required participants
to select from a pair of displayed images the image that
demonstrated superior visibility of the lesion. For the fidelity
assessment, participants were requested to select the image
that better preserved the features of the original image. We
used 30 CXR images and we conducted comparisons with
six pairs of methods. Each participant had to give an answer
a total of 180 times for each task. Table 3 provides a compre-
hensive outline of the instructions for each task. Before the
study, we provided an example of missing features and hallu-
cinations that were fabricated manually in Task 2 to standard-
ize the decision criteria as much as possible (Fig. 10). This
study was approved by the University-Wide Ethics Review
Committee of The University of Tokyo. The review number
was 22-450. In addition, we obtained informed consent from
the subjects.

This study utilized two vertically positioned monitors in a
low-lit setting. The upper monitor displayed a single refer-
ence CXR image, whereas the lower monitor displayed two
images that were to be compared. The reference image in the
upper monitor showed a highlighted lesion for the visibility
assessment task, with dashed lines encapsulating the lung
regions for the fidelity assessment task. The lower monitor
used in the study was "MediCrysta" developed by IO-DATA.
Participants were instructed not to bring their faces close to
the monitor while completing the designated tasks.

Table 4 shows the measures computed using the Thurstone
method [72]. Thirteen participants participated in the visibil-
ity assessment task, and the fidelity assessment task involved
eight participants. On comparing the results with those shown
in Table 1, it is clear that although CLAHE demonstrates
superior performance in relation to HDR-VDP, this trend is
also seen with HDR-VDP with other techniques. Similar to
what we see in Table 2, Table 5 reveals that the proposed

method aims to enhance visibility, even at the cost of some
reduction in image fidelity.
Table 5 shows the significance of the proposed method

compared with the other methods by performing a one-tailed
Wilcoxon signed-rank test [71] using the scores obtained
using the Thurstone method. An "o" indicates that the pro-
posedmethod recorded significantly better values, and the "x"
indicates that it recorded inferior values. Note that significant
differences exist for all comparisons at the 5% level of signif-
icance.

VI. DISCUSSION
The objective of this study was to propose a framework
that offered an estimation of image processing parameters
intended to enhance lesion visibility while preserving the
inherent characteristics of the original image. The experi-
mental results demonstrate a successful application of the
proposed method for estimating image processing parameters
to enhance visibility in comparison with BCET and Gamma.
Furthermore, Ours exhibits a lower degree of contrast and
correlation loss in the original image than does HE, as well
as less feature degradation in image correlation than does
CLAHE.
Table 1 demonstrates that, under a specific correlation loss

(set to τcor = 0.005), the proposed method surpasses BCET
and Gamma in terms of visibility improvement. However, it
should be noted that the proposed method exhibits a larger
contrast loss than do CLAHE, BCET, or Gamma, which re-
sulted in noticeable visual impairment in the subject exper-
iments. HE grachieves a contrast enhancement that signifi-
cantly improves visibility in certain images. Nonetheless, HE
may introduce a wide range of variance, which may cause the
lesion signal to remain unenhanced against the background in
certain images.
In comparing Ours and Reference, we see that Ours has

visibility improvement and lower correlation loss. This obser-
vation suggests that the inference network inOurs learned the
average features of the input images, whereas the reference
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TABLE 3. Directions for the tasks

Direction of each task

Visibility Assessment
Of the two images displayed on the lower monitor, select the one you
think is easier to see the lesion in the annotated area

Fidelity Assessment

Of the two images on the lower monitor, select the one preserves the
features of the upper reference image. Please evaluate by only the
preservation of the feature, not by its visibility. Please evaluate
only in the lung regions (Inside the dashed line).

FIGURE 10. Example of feature loss and hallucination with the fidelity assessment task instruction.

TABLE 4. Scores for the Thurstone test

method Visibility score ↑ Fidelity score ↑
Ours 0.209±0.072 0.455±0.061
HE 0.527±0.087 0.275±0.054

CLAHE 0.606±0.112 0.189±0.049
BCET 0.158±0.066 0.581±0.057

TABLE 5. Significance comparison between our method and comparative methods in the subject experiments. The p values were less than 0.05 for all
comparisons and significant differences existed for all comparisons at the 5% level of significance.

Visibility Fidelity
Significance p value Significance p value

HE x < 0.001 o < 0.001
CLAHE x < 0.001 o < 0.001
BCET o < 0.001 x < 0.001

enhanced model predictor estimated the optimal parameters
for images with distinct characteristics.

The contrast loss for Ours is larger than that of the Ref-
erence and the other comparative methods aside from HE.
The use of RBF in the proposed method introduces a delicate
balance between enhancing the contrast and feature loss due
to saturation. In other words, the expansion of the brightness
range to the maximum possible enhances contrast and im-
proves visibility; however, if this range is exceeded, features
are sacrificed due to saturation.

In addition to comparing each method, the subject exper-
iment aims to assess the validity of the quantitative eval-
uation through HDR-VDP. When the tables are compared,
we can observe that HDR-VDP and the subject experiments
produced similar results, except in the visibility evaluation of
CLAHE. The subject experiment evaluated contrast loss and
correlation loss simultaneously for the fidelity assessment. In
the HDR-VDP evaluator, the fidelity comparison between the
proposed method and CLAHE revealed that CLAHE outper-
formed in terms of low contrast loss, whereas the proposed

method exhibited superiority in terms of low correlation loss.
In the subject experiments, the correlation loss for CLAHE is
believed to be more pronounced as a fidelity loss.

The comparison between the subject experiment and the
HDR-VDP reveals a significant disparity in the visibility
results for CLAHE. The quantitative assessment conducted
using HDR-VDP demonstrated that the proposed method
exhibited significantly higher visibility than did CLAHE, at
a 5% level of significance. Conversely, the results obtained
from the subject experiment indicated that CLAHE showed
greater visibility of the lesion. It is likely that the HDR-VDP
evaluated the lower visibility of the lesion in CLAHE, influ-
enced by the change in brightness that appeared due to local
contrast enhancement. However, considering that the subject
experiment included annotations of the lesion’s location, it is
plausible that the difference in contrast between the lesion and
the surrounding area contributed to the lesion’s visibility as a
signal stimulus.
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LIMITATION
One of the limitations of the proposed method is the de-
crease in performance observed for Ours in comparison with
Reference. The RBF curve and µ parameters output by the
reference enhanced model predictor using the training images
as input are illustrated on the left side of Fig. 11. Meanwhile,
the parameters inferred by the image enhancer using the
validation images are presented on the right side of Fig. 11.
It is evident that the network in the image enhancer does not
adequately learn the characteristic RBF curves, as observed
on the Reference side. Although the network grasps the gen-
eral trend of the frequency parameters and contributes to the
sharpening of contours, it has limited impact on the parameter
estimation for each image.

To address these problems, a learning method that effi-
ciently captures the characteristics of each image should be
developed, and an image processing method that enables
the network to easily learn the relationship between image
features and output parameters should be used. We used RBF
because of its high degree of freedom in tone correction.
However, we discovered that estimating RBF curves to en-
hance contrast without causing saturation was challenging.
We believe that employing a constrained approach to prevent
saturation could enable the estimation of a more effective
filter while avoiding black crush.

VII. CONCLUSION
In this study, we proposed a learning-based framework for
X-ray image processing that was designed to enhance lesion
visibility while preserving image fidelity. To support this, we
introduced simulation data and a methodology for evaluating
X-ray imaging algorithms based on lesion visibility and mod-
els. Furthermore, we implemented differentiable modules for
visibility and fidelity evaluation of visibility and fidelity,
while leveraging human perception as a guiding principle.
These contributions aim to advance the quality and reliability
of X-ray imaging.

We used contrast adjustment and frequency adjustment as
image processing techniques; however, various image pro-
cessing methods that require parameter adjustment can be in-
corporated into this framework. One issue is that reference pa-
rameter estimation and inferential training must be repeated
when the display environment changes. The display calibra-
tion must be performed for each environment, which could be
a problem in practical applications. Moreover, because there
is a difference between the reference and inference results,
improving accuracy is a problem to be addressed in the future.
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