

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.Doi Number

Simulation of Software Development Team
Productivity Incorporating Social and Human
Factors: A System Dynamics Model

Luz M. Restrepo-Tamayo1, Gloria P. Gasca-Hurtado1, and Johnny Valencia-Calvo2
1Universidad de Medellín, Carrera 87 No. 30-65, 50026, Medellín, Colombia
2Universidad de Aysén, Obispo Vielmo 82, Coyhaique, Aysén, Chile

Corresponding author: Johnny Valencia Calvo (email: johnny.valencia@uaysen.cl).

This work was supported by Universidad de Aysén, Chile, with funding from the Chilean National Ministry of Education's institutional strengthening projects

under Project URY21991.

ABSTRACT Managing software development work teams requires planning resources and activities to

complete projects and deliver products satisfactorily and successfully. Estimating project time is part of the

planning stage and is mainly conducted using methods based on technical factors. However, since software

development is a process involving people with high levels of interaction, it is necessary to consider non-

technical factors in project management. This paper presents a simulation model to support informed

decision-making during planning, considering that non-technical factors, specifically social and human

factors, can affect product delivery time. From a systems perspective, software development is a complex

system. Therefore, System Dynamics (SD) modeling based on the rework cycle archetype is used. The

resulting model allows for analyzing the productivity of software development teams, integrating three key

social and human factors: communication, leadership, and teamwork. The generated burndown charts are

used to demonstrate that the model constitutes a basal structure oriented to understand the productivity

behavior of work teams. By taking a systemic approach, the model introduces new ways to identify dynamic

behaviors and facilitates the prediction of possible scenarios in the evolution of tasks, which helps work teams

manage their risks. Additionally, leadership strategies in accordance with the team's status and a good

perception of communication can reduce rework and improve the ability to deliver software products on time.

To the best of our knowledge, the literature reported on approaches that holistically integrate these elements

is limited, which makes this proposal a significant contribution to the discipline.

INDEX TERMS complex systems, human factors, performance analysis, productivity, system dynamics,

software development management.

I. INTRODUCTION

Project management is a process aimed at establishing clear

objectives, assigning responsibilities, optimizing resources,

fostering communication, and monitoring progress [1].

This approach can be interpreted from a systemic

perspective since it integrates different performance

domains whose interactions and interdependencies directly

influence the achievement of the expected results. Among

these domains, planning is key because it builds the

documents (the path) toward the achievement of the

objectives; it defines the scope, estimates resources,

structures schedules, and adjusts budgets [2]. The interest

in this domain is justified by indicators such as those of the

Standish Group Report of 2020, which states that only 35%

of software development projects were successful in terms

of the estimated time and budget [3].

Because of the above, the estimation of labor effort,

duration, and costs has been a topic of interest for research

related to software development project management [4].

Various estimation methods, such as function points [5], [6],

source code sizing [7], and parametric estimation methods [8],

[9], are used to predict the required resources. These methods

help to plan, estimate, and control projects, set realistic

deadlines, and allocate resources efficiently.

However, effective estimation in software development

projects must consider both technical and non-technical

factors since the latter also influence team productivity [10].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

The inclusion of such factors in planning and estimation is

important [11] as it provides a more comprehensive view of

team performance and facilitates the identification of actions

for improvement [12]. Despite their importance, most studies

focus primarily on technical factors [7], in part due to the

inherent complexities of quantifying non-technical factors

[13], [14]. The above constitutes an obvious line of work to

provide solutions in the face of rigorous quantitative methods

that include these factors and explore how they affect

productivity and their integration into the decision-making

process through simulation [15]. This line of work is

addressed in this study, which aims to offer analysis tools for

the improvement of project management through the

strengthening of fundamental areas such as planning and

estimation.

System dynamics simulation is an effective paradigm for

analyzing complex systems due to its ability to capture non-

linear relationships, feedback loops, and behaviors that arise

from the dynamic interaction between system components,

including systems that involve social aspects [16], and is,

therefore, helpful in addressing the goal mentioned above.

Although this paradigm has been used to improve software

engineering project management [17], [18], the approach has

been predominantly technical [19], paying little attention to

the social components involved in the development process

[20].

Based on the identified gap, this study proposes an SD-

based simulation model that incorporates three social and

human factors: communication, leadership, and teamwork

[21]. Integrating these factors into software estimation in a

formal way, using appropriate measurement tools, provides a

more holistic view of the team and decreases the subjective

component represented by their inclusion. That can lead to

more realistic estimates, facilitating informed decision-

making and more efficient project management.

Considering the above, the main contribution of this work

is a simulation model designed to support decision-making in

the planning stage of software development projects. This

model analyzes team productivity from a perspective that

includes social and human factors based on the formality of

complex systems modeling. It also provides a basic

framework for understanding team productivity behavior,

considering non-technical factors, and offers a framework for

team leaders to identify and decide which social and human

factors should be intervened.

From the above description, this study answers the

following research question: What elements should be

considered when designing a dynamic model to study the

productivity of software development teams when considering

social and human factors?

After the introduction, Section 2 relates the existing

literature supporting this study. Section 3 presents the details

of the simulation model and the variables that were taken into

account. Section 4 presents the results, which are discussed

in Section 5. Finally, Section 6 presents conclusions and

future work.

II. RELATED WORK

Ensuring the success of software development projects in the

context of high information technology consumption and a

booming digital economy requires effective team

management. Although numerous studies have focused on the

importance of technical factors, recent research has

highlighted the relevance of non-technical factors in the

performance of software development teams. In this regard,

the following are some studies from the literature that address

strategies to approach the challenges of managing software

development teams.

A. SOFTWARE DEVELOPMENT PROJECT
MANAGEMENT

The software development process may follow a traditional

approach, whose sequential execution includes stages such as

requirements gathering, technical solution design, coding,

testing, debugging, delivery, and maintenance [22]. However,

this software development approach often makes it difficult to

modify requirements, which can lead to rework and customer

dissatisfaction [23]. In contrast, agile approaches offer an

alternative through short iterations of time, where each

iteration functions as a self-contained mini-project in which

requirements are refined [24]. Continuous communication

with the customer allows quick adjustments to be made

according to their needs, facilitating an agile and satisfactory

delivery of the final product [25].

Software development, under both approaches, is executed

by applying initiation, planning, execution, control, and

closure processes so it can be framed as a project [2] and,

therefore, must be managed [26]. However, software projects

are challenging to manage because they have intangible

progress; they are complex, depend on customer requirements,

and are subject to change [27]. Thus, it is relevant to consider

the definition and estimation of aspects such as cost, time,

quality, and scope of software development [25].

According to the Project Management Body of Knowledge

(2021), planning is one of the key domains in project

management. A correct implementation of planning helps to

minimize risks, optimize available resources, and increase the

probability of success in project execution. This process

includes, among other things, the estimation of required

resources, the identification of potential risks, and the

development of strategies for their management. In this

context, the objective of this study (which aims to analyze the

estimation of the duration of software development projects,

incorporating social and human factors) is justified.

Estimation is a fundamental process in software

development project management, as it allows estimating the

amount of effort, time, and resources required to complete a

project [28]. Due to the complexity, uncertainty, and

flexibility inherent in software development [27], estimation

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

can be challenging. However, it should not be left to chance

[26]. To address this challenge, several estimation methods

help during the management process [29].

Estimation methods can be classified into non-algorithmic

techniques, soft computing techniques, and algorithmic [4].

Non-algorithmic techniques are characterized as flexible and

experience-based, and among them, estimation is based on

analogy and expert judgment. Soft Computing Techniques,

which include Fuzzy logic-based estimation and Artificial

Neural Networks, provide a cost-effective solution to

problems that are difficult to model mathematically. Finally,

the Algorithmic or Parametric techniques are characterized by

being less flexible and using mathematical models; among

these, we have the Function Point Based Analysis, the

Constructive Cost Model, Putnam's SLIM model, SEER-

SEM, and the Use Case Based Estimation. The latter category

could also include models based on machine learning [30].

Due to their qualitative nature, non-technical factors can be

considered in non-algorithmic techniques and Soft Computing

Techniques; moreover, some of them have been included in

Parametric techniques. For example, the use of Case-Based

Estimation considers motivation [8], and a recent proposal for

estimation in agile approaches considers face-to-face

communication [31]. In both cases, the factors are assigned a

weight and a valuation as input data, but the need for concrete

elements to measure them is still evident.

A set of non-technical factors, called social and human

factors, are perceived as productivity influencers of software

development teams [32]. Communication [33], leadership,

and teamwork [34] are particularly important among these

factors as they help teams meet the challenges of Industry 4.0

[35]. Despite their relevance, these factors still have the

potential to be explicitly integrated into estimation processes.

B. REWORK CYCLE

Successful project execution requires a well-defined set of

tasks, which is influenced by productivity and the number of

people involved in the project. However, the quality of the

work can generate rework that may not be immediately

detected, which in turn can increase the number of tasks to be

performed. This dynamic is known as the Rework cycle, and

its structure is presented in Fig. 1 [36].

FIGURE 1. The structure of the Rework Cycle (Source: Cooper, 1993).

This cycle has been included or adapted in studies related to

project management [16]. For example, it has been used to

explore how processes are related at project and business

levels and how they affect workload variations [37]. A

reformulation allows multiple defects per task [38]. Moreover,

it has been considered to study long-range projects, such as

those related to construction [39], [40], or aerospace processes

[41], which demonstrates its versatility in different disciplines.

Particularly in software engineering, the Rework Cycle has

been used as a basis to analyze, from simulation, the

management of software development projects. This cycle has

allowed studying the influence of factors, such as the

availability of prerequisites, morale, or experience, on quality

and productivity [42]. It has been applied to research the

interaction between knowledge sharing and trust during the

requirements analysis phase [43]; it has also been used to

understand the interaction between a learning system and

defect discovery [44], to analyze the influence of schedule

pressure and overtime on productivity [17]. It has also been

used to select the best project planning alternative regarding

rework uncertainty [18]. In this sense, it is reasonable to start

from this archetype [41], [44] to include social and human

factors in the estimation of software development projects.

III. MATERIALS AND METHODS

Under systemic thinking, software development processes can

be considered complex due to the multidirectional and non-

linear interaction dynamics between developers [45].

Decisions made during the project require continuous

feedback [46], and the effect of interventions on the process

does not have linear or immediate impact [7], [47]. From a

strategic perspective, SD is the most appropriate simulation

paradigm for this study because it allows for the modeling of

the aggregate behavior of productivity at the software

development team level, transcending the individual analysis

of developers. This approach facilitates the understanding of

collective patterns and strategic decision-making, providing a

holistic view that is essential for effective software project

management.

The modeling process using SD is iterative and consists of

five steps [16]: (1) problem articulation, (2) dynamic

hypothesis formulation, (3) simulation model formulation, (4)

validation, and (5) policy design and evaluation (see Fig. 2).

This simulation process has been established as the method for

this research work.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

FIGURE 2. System Dynamics' modeling process (Based on [16]).

In Step 1, it is necessary to identify the problem, why it is a

problem, the variables to be considered, and the variables'

historical behavior [16]. In this case, the problem articulation

focuses on describing the software development process from

a dynamic and complex perspective, integrating non-technical

factors with the appropriate theoretical support. This approach

explores theories related to team dynamics and the behavior of

productivity patterns over time. One of the relevant aspects of

this step is to characterize the variables, which can be done

using a hybrid methodology that includes both a literature

review and a survey-based study [48].

The objective of Step 2 is to build a conceptual model or

dynamic hypothesis. That requires declaring variables and

defining the underlying causal relationships to condition the

system of interest's behavior using two tools: a model

boundary chart and a causal diagram [49].

The model boundary chart outlines the scope of the model

under analysis by categorizing variables as endogenous,

exogenous, or excluded [16]. Endogenous variables are those

whose behavior is determined by the relationships and

feedback within the system. Exogenous variables are those

whose behavior is determined by external factors and are not

directly affected by the system's internal dynamics. Finally,

excluded variables are those that, although they could be

relevant for analyzing the system, are omitted because (among

other reasons) they add unnecessary complexity to the model

or because the literature justifies their absence.

In a complementary manner, the causal diagram formalizes

the construction of the dynamic hypothesis using graphs,

which reflect whether the causal relationships between two

variables, A and B, are positive or negative [50]. A causal

relationship is positive (+) if increasing A increases B or

decreasing A decreases B (see Fig. 3a). A causal relationship

is negative (-) if increasing A decreases B or decreasing A

increases B (see Fig. 3b). Causal relationships that are affected

by time or information delays are represented by the || symbol.

FIGURE 3. Causal Relationships.

Feedback loops consist of two or more causal relationships

among variables in such a way that, following the causality,

one returns to the first variable. Feedback loops can also be

positive (+) or negative (-) [51]. The positive ones, also called

reinforcement loops, generate exponential growth behavior

(see Fig. 4a). Negative or balancing ones generate equilibrium

or goal-seeking behavior (see Fig. 4b). Feedback structures

generate fundamental modes of systemic behavior, also called

archetypes [52]. These structures are frequent in business

situations and are constituted by delays, reinforcement loops,

and balance loops [53].

FIGURE 4. Feedback Loops.

Step 3, corresponding to the formulation phase, involves

defining the input variables along with their respective units,

constructing the stock and flow diagram, and providing the

equations for all variables included in the diagram [50].

Specifically, the stock and flow diagram serves as an

intermediate step bridging the conceptual model and the

mathematical representation of the system's behavior [54].

The stocks represent accumulation within the system at a

given time and are altered by the inflows and outflows. Thus,

stocks are the current values of the variables that result from

the cumulative difference between inflows and outflows.

Graphically, rectangles are used for the stocks, arrows for the

inflows and outflows, valves controlling the flows, and clouds

for the sources and sinks of the flows [55], as shown in Fig. 5.

FIGURE 5. General Structure – Stock and Flow Diagram.

An SD simulation model is composed of stocks, flows, and

decision functions. Decision functions control the flow rates

between the stocks from the available system information [56]

so that the model's mathematical formulation is done through

differential equations [57].

Step 4 suggests tests related to the model's structure and

behavior [58]. The model structural tests are:

• Boundary adequacy: Assess the appropriateness of the

model boundary for the purpose at hand.

• Structure assessment: Ask whether the model is

consistent with knowledge of the real system relevant to

the purpose.

• Dimensional consistency: Ensure that variables have

correctly specified units, are consistent, and have real-

world equivalence.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

• Parameter assessment: Ensure that each constant (and

variable) has a clear, real-life meaning.

• Extreme conditions: Ensure that the model is robust to

extreme values of the input data.

• Integration error: Ensure that the results are not sensitive

to the choice of time step or integration method.

The model behavior tests are:

• Behavior reproduction: Evaluate the ability of the model

to reproduce the behavior of the system.

• Behavior anomaly: Tests for behavioral anomalies

examine the significance of relationships or

formulations by asking whether anomalous behavior

arises when the relationship is removed or modified.

• Family member: Evaluate whether the model can

generate the behavior of other instances of the same

class that the system imitates.

• Surprise behavior: Examines unexpected or anomalous

behavior.

• Sensitivity analysis: Inquire whether conclusions

change in ways that are important for their purpose

when assumptions vary within the plausible range of

uncertainty.

• System improvement: Find out if process modeling

helped change the system for the better.

Finally, in Step 5, different scenarios are built, their

sensitivity is studied, and the corresponding recommendations

are made [49].

IV. RESULTS

This research aims to present a comprehensive simulation

model of software development team productivity

incorporating social and human factors. The study addresses

the first four steps of the SD modeling process (see Fig. 2).

The first step, problem articulation, specifically the

characterization of variables, was informed by a prior study.

The subsequent steps—dynamic hypothesis formulation,

model formulation, and model testing and validation—were

fully developed within this research. Step 5, corresponding to

Policy Formulation and Evaluation, is identified as future

work, focusing on developing a simulation framework that

integrates data analysis and intervention strategies. This

section concludes by presenting simulation scenarios and

discussing the model's limitations.

A. PROBLEM ARTICULATION

This study focuses on the following social and human factors:

communication, leadership, and teamwork; this is mainly

because these factors are required explicitly by software

engineering within the Industry 4.0 context [35]. In a previous

study, the characterization of these three factors included their

definitions, their relationships with other variables, and the

methods used for their measurement. A mixed methodology,

including systematic literature mapping and a survey-based

study, was proposed and used for this purpose [48]. This

characterization allowed the identification that teamwork

promotes productivity through leadership actions empowered

through communication.

From a systemic perspective, software development can be

considered a complex system in which several factors,

including team size, influence productivity. Some studies have

shown that increasing the size of the development team tends

to reduce its productivity [59]. Teams with less than nine

members tend to display higher levels of productivity

compared to larger teams [60]. Agile methodologies, such as

Scrum, recommend teams of up to ten members [61], called

small teams [62]. These small teams are dynamic [63], [64]

and go through five stages over time [65], [66] as shown in

Fig. 6.

FIGURE 6. Stages of team development, adapted from [65], [66].

The five stages of team development are:

• Forming: The members begin to get to know each other

and define the team's objectives. Communication is

formal, and people tend to be cautious and dependent on

the group leader.

• Storming: This is a stage of conflicts and challenges.

The members question norms and roles.

Communication is open and frank, which can lead to

disagreements and tensions.

• Norming: The team begins to overcome conflicts and

define norms and processes to work efficiently.

Communication seeks to resolve conflicts and reach

consensus. There is an atmosphere of trust and comfort

in working together.

• Performing: This stage focuses on executing tasks and

achieving objectives. There is creativity, initiative, and

learning. Communication is task-oriented. Team

members leverage individual strengths and abilities.

This stage is the most productive.

• Adjourning: Occurs when the team prepares to disband.

Communication focuses on reflecting on the team's

achievements and experiences.

Some teams may go through all the stages [67], [68] or

experience setbacks and jumps among them [69]. Each stage

involves aspects related to communication among team

members and the different roles of the leader [70]. It is

advisable to adopt a mentor role if the team is in the forming

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

stage and an instructor role if it is in the storming stage. If the

team is in the norming stage, a coaching role is advisable,

while in the performing stage, it is appropriate to assume a

facilitator role.

Tuckman's theory provides insight into the development of

teams over time, highlighting the relationship between each

stage and team effectiveness. It also explains how

communication and group dynamics evolve, even in virtual

environments [71]. Team leaders and team members can use

this theory to manage the transitions and challenges that arise

at each stage [72], including through gamification [73]. To

identify the stage the team is in, the Group Development

Questionnaire (GDQ) [74] or its short version, GDQS [75],

can be used. Alternatively, a retrospective questionnaire

available in the literature can be used [76].

Teams with low levels of conflict are expected to have high

performance [77]. Under this scenario, the project progress

can be in line with the ideal progress, which can be evidenced

by a burndown chart [28], [78]. Since this graphical

representation evidences the aggregate progress of the team

[79], then the time horizon of interest is limited by the

expected duration of a work cycle.

The analysis of a burndown chart allows revealing problems

that require corrective action [79]. On the other hand, this type

of chart can evidence anti-patterns of methodologies such as

Scrum (Fig. 7), where late acceptance of work done or low

team progress may be associated with systemic problems of

both the team and the organization [80].

FIGURE 7. Patterns - burndown chart (based on [80]).

B. DYNAMIC HYPOTHESIS

Non-technical factors are intrinsically complex and rooted in

culture and social structures, so they do not undergo noticeable

changes in short periods [81]. This fact is supported by the use

of retrospective instruments to learn about the perception of

communication [82], the perception of leadership [83], and the

teamwork stage [75]. The latter instrument allows for the

estimation of the team's percentage performance according to

Tuckman's model.

In software estimation, the team's size is important due to

the influence of the experience, skills, and availability of the

members on estimating the effort required to complete a

project. Having a large team can allow work to be distributed

among more people, and potentially, this can speed up the

project's development. However, it can also introduce

complexities, such as the need for greater communication

among its members [10]. In fact, previous studies suggest that

it is not advisable to add people to a team when the project has

already started [84], [85], [86]. Thus, the size of the team is an

element that is analyzed in the estimated nominal capacity and,

therefore, is not included in this analysis. Similarly, in this

analysis, it is assumed that the estimated nominal capacity

considers the technical capacity of the people who constitute

the team.

Considering the above description, Table I presents the

endogenous, exogenous, and omitted variables that delimit

this study's understanding of software development teams'

productivity behavior.

TABLE I

MODEL BOUNDARY CHART

Type Variables

Endogenous Work to be done - Work done – Rework - Error rate –

Discrepancy - Teamwork capacity.

Exogenous Estimated nominal capacity - Ideal progress -

Perception of communication - Strategy from the
leader's role - Initial teamwork stage.

Omitted Team size - Technical capacity

When managing a software development team, the team

must remember that work capacity depends on both technical

and non-technical factors, which is relevant in the project

estimation phase. The estimation process requires calculating

the effort, time, and resources needed for its completion [28].

In this study, the estimated effort of the project is represented

through the work to be done, which should correspond to the

work completed once the work cycle has finished.

The discrepancy is the difference between the work to be

done and the ideal progress. The work to be done represents

the amount of work that is actually left to be delivered. In

contrast, the ideal progress represents the amount of work that

should be left to be delivered if no variations occur during the

work cycle. In this way, if the work to be done increases, then

the discrepancy also increases. Under this scenario, errors

arise because delays mean having less time to complete the

same number of tasks, which, in turn, increases rework and,

thereby, increases the work to be done [36].

On the other hand, if the discrepancy increases due to the

growth of the work to be done, then the team is completing

fewer tasks than it should, making it necessary to intervene in

the team. This intervention may be related to strategies from

the leader's role [70], given that leadership is defined as the

"ability to direct and coordinate the activities of other team

members, assess team effectiveness, assign tasks, develop

team knowledge, skills, and abilities, motivate team members,

plan and organize, and establish a positive atmosphere" [64].

Effective communication enables successful teamwork

[87], promotes problem-solving [64], and serves as a relevant

element for coordination between leadership and teamwork

[88]. Finally, improvements in teamwork lead to greater

productivity [83]. Consequently, improving teamwork

increases the team's work capacity and, therefore, reduces the

work to be done.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

Based on the endogenous explanation and the classification

of variables, Fig. 8 presents the causal diagram constructed in

Stella Architect®. It evidences a balancing loop called "B1:

productivity and social and human factors" and a reinforcing

loop called "R1: rework cycle."

FIGURE 8. Causal loop diagram.

C. FORMULATION

The simulation model presented in this study consists of three

sectors. The first is related to the generation of rework; the

second presents the relationship between the team's work

capacity and social and human factors. Finally, the third

presents the behavior of the error percentage. For these sectors

to adequately reflect the dynamics of the system, specific input

data are necessary, which are detailed in Table II.

TABLE II

INPUT DATA

Variable (units) Description

Estimated

nominal

capacity
(effort/time)

Amount of work that a software development

team estimates it can accomplish in each period.

Source: Project estimation.

Maturity level

(dimensionless)

Organizational capacity to systematically manage

and improve its software development processes.
Source: Certification – Historical data.

Identified

problems

(effort)

Technical difficulties identified by the work team

during the execution of assigned tasks.

Source: Report – Historical data.

Solved

problems

(effort)

Technical difficulties that the work team can

resolve before they are identified as rework

Source: Report – Historical data.

Time for

rescheduling
(time)

The time that the team takes to replan the

identified rework.
Source: Report – Historical data.

Perception of
communication

(dimensionless)

The perception that team members have regarding
communication.

Possible levels: 0 (poor perception, if the average
responses per person are between 1 and 39); 1

(good perception, if the average responses per

person are between 40 and 50).

Source: Teamwork Quality – Communication.

Variable (units) Description

Strategy from

the leader's

role
(dimensionless)

A strategy that adopts the role of the leader during

the period of interest.

Possible levels: 0 (no strategy); 1 (mentor); 2
(instructor); 3 (coach); 4 (facilitator).

Source: Types of Strategy.

 Initial

teamwork stage

(dimensionless)

The state in which the work team is according to

Tuckman's model.

Possible levels: 1 (forming); 2 (storming); 3
(norming); 4 (performing)

Source: Group Development Questionnaire Short

Within the rework cycle, there are four stocks: work to be

done, work done, rework, and error percentage. The 'work to

be done' becomes 'work done' through the 'work rate,' which

depends on the team's work capacity and the error percentage.

If that percentage is greater than 0%, the work done is less than

expected, as it generates rework that needs to be replanned.

Under these conditions, the rework must be done again,

increasing the time required to complete the project. In this

way, replanning allows for modeling the delay generated by

analyzing and rescheduling rework as new work to be done

(Fig. 9).

FIGURE 9. Sector - Rework cycle.

The initial value of the work to be done corresponds to the

effort estimated by the team to complete a milestone or a cycle

of the project. The work rate is calculated as the multiplication

of the team's work capacity and the complement of the error

percentage. The rework rate is calculated as the team's work

capacity multiplied by the error percentage, considering a time

delay of one unit of time, which represents the period needed

to identify the errors made. The rescheduling considers the

time delay associated with the team's delay in reallocating the

erroneous work. The equations corresponding to the variables

involved in the rework cycle sector are detailed in Table III.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

TABLE III

REWORK CYCLE FORMULATION

Variable

(units)
Equation

Rework

(effort)

d(Rework)

dt
= Rework rate − Rescheduling

Work done

(effort)

d(Work done)

dt
= Work rate

Work to be

done (effort)

d(Work to be done)

dt
= Rescheduling

− Work rate − Rework rate

Rework rate

(Effort/Time)

Team's work capacity × Error percentage

Work rate

(Effort/Time)

Team's work capacity × (1 - Error percentage)

Rescheduling
(Effort/Time)

Rework / Time for rescheduling

Estimating a project includes defining the time units

required to complete it [27]. Thus, in this model, the estimated

time is the result of dividing the work to be done by the

estimated nominal capacity. If it is assumed that in each

period, the amount of work dictated by the estimated nominal

capacity is done, it is possible to establish the ideal progress.

Considering these variables, the discrepancy represents the

difference between the work to be done and the ideal

execution.

A negative discrepancy indicates that the ideal performance

exceeds the work to be done, meaning that the team is

completing more tasks than estimated. There is no need for

interventions, as no delays in project completion are evident.

On the other hand, a positive discrepancy indicates that tasks

are not being executed as planned; therefore, it is necessary to

identify the cause of the delay and define a plan of action.

Variations from the ideal execution may arise because the

team is not in its most productive stage. In this way, the

performance percentage depends on the stage the team is in,

according to Tuckman's model (Fig. 8). The result of applying

the short version of the Group Development Questionnaire

[75] provides the input data for the variable referred to as the

initial stage of teamwork. If there is no historical information

about the team, it will be assumed that its initial state is

Forming.

Leadership can support the actions that guide the team

toward achieving objectives [64]. These strategies vary

according to the team's stage [70]. According to situational

leadership theory, there is no single leadership style that is

effective for all situations [89]. However, a leader must adapt

his or her style according to the maturity and competencies of

the team or individual he or she leads, as well as the specific

circumstances of the environment [90]. For this model, the

Strategy from the leader's role is input data. It is possible to

modify this strategy based on team members' perceptions of

formal leadership [83]. If the members agree with the premises

set forth in the instrument, then it is assumed that the current

strategy is well perceived.

Considering that communication is a necessary

coordination mechanism to promote team effectiveness [88],

good perception can enhance the strategy from the leader's

role. In this way, the perception of communication is input

data that can be obtained from the results of evaluating the

communication of the Teamwork Quality instrument [82],

[91].

Taking the above into account, the effect of teamwork

reflects the relationship between the initial stage of teamwork,

the strategy from the leadership role, and the perception of

communication. Since the team's performance depends on the

stage it is at, according to Tuckman's model, the team's work

capacity is the estimated nominal capacity, affected

percentage-wise by the effect of teamwork. Fig. 10 relates

social and human factors to work capacity.

FIGURE 10. Sector - Work capacity.

Table IV provides a detailed outline of the equations

governing each term involved in the work capacity sector. The

INIT() function is a built-in feature in Stella Architect®,

designed to retrieve the initial value of the variable specified

as its argument. Meanwhile, the GRAPH() function represents

a graphical relationship between the variable Performance

percentage (y-axis) and Initial teamwork stage (x-axis) based

on the data points specified in the table. Additionally, the term

TIME is an integrated variable in the simulation environment,

representing the progression of time within the dynamic

model.

TABLE IV

WORK CAPACITY FORMULATION

Variable (units) Equation

Team's work

capacity
(Effort/Time)

Estimated nominal capacity × Teamwork

effect

Ideal progress

(effort)

INIT (Work to do) -

Estimated_nominal_capacity × TIME

Performance

percentage
(Dimensionless)

GRAPH (Initial teamwork stage)

Points: (1,000, 0.400), (2,000, 0.200), (3,000,
0.700), (4,000, 0,900)

Discrepancy
(effort)

Work to be done – Ideal progress

Estimated time

(time)

INIT (Work to do) / Estimated nominal

capacity

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

The formulation of the auxiliary variable Teamwork Effect

(see Table V) depends on the level at which each of the three

social and human factors is situated according to the

descriptions presented in Table II, in which the NORMAL()

function generates a random number from a normal

distribution, where the first argument represents the mean, and

the second represents the standard deviation. If the strategy

from the leader's role is suitable according to the initial level

of teamwork, and if good communication is also perceived,

then the team will have a higher performance percentage than

if poor communication is perceived or if the strategy from the

leader's role is not the most appropriate for the level at which

the team is.

TABLE V

TEAMWORK EFFECT FORMULATION

Perception of
communication

Levels of Teamwork

and Strategy from the

leader's role

Equation

Good perception Forming – Mentor
Storming – Instructor

Norming – Coach

Performing – Facilitator

Performance
percentage × (1 +

NORMAL

(0,2;0,1))

Misunderstanding Forming – Mentor

Storming – Instructor
Norming – Coach

Performing – Facilitator

Performance

percentage × (1 +
NORMAL

(0,1;0,1))

Any other combination of levels of social and

human factors

Performance

percentage × (1 +

NORMAL
(0,05;0,1))

The percentage of rework depends on the process' maturity

characteristics [92], and it increases as the time to complete

the project runs out [93]. However, communication can reduce

misunderstandings and problems [64]. Thus, the stock and

flow diagram corresponding to the error percentage is

presented in Fig. 11.

FIGURE 11. Sector - Percentage of error.

Schedule pressure can be calculated as the ratio between the

actual completion time and the proposed completion time [94].

However, this model proposes its calculation as a function of

the work to be done. If the discrepancy is positive, the time

pressure is nonexistent because the estimated work is being

fulfilled. But if the discrepancy is negative, more tasks need to

be completed in less available time, which, in turn, increases

the error percentage.

On the other hand, the rework expressed as a percentage of

the total development effort depends on the process's maturity.

Under the framework provided by the Capability Maturity

Model Integration (CMMI), the percentage of rework

according to each of the maturity levels is presented in Table

VI [92].

TABLE VI

PERCENTAGE OF REWORK ACCORDING TO PROCESS MATURITY

Level Process maturity

Rework

(percent of total

development
effort)

Level 1 Immature ≥ 50%

Level 2 Project controlled 25% - 50%

Level 3 Defined organizational process 15% - 25%
Level 4 Management by fact 5% - 15%

Level 5 Continuous learning and improvement ≤ 5%

Approximately 79% of the companies certified in CMMI

are at level 3 [95]. However, it is important to acknowledge

the existence of companies that are considered small

organizations as they are made up of fewer than 25 people

[96]. For these companies, implementing the ISO 29110

standard is beneficial since it promotes good practices in

software development and maintenance [97]. Some studies

suggest that the implementation of the ISO 29110 standard can

reduce rework to levels comparable to those of CMMI level 3

[98]. Considering the above, the maturity level is a required

input in the model. If the company has historical data on the

percentage of rework or a CMMI certification, it can be one of

those suggested in Table II. In the absence of this information,

Level 3 will be assigned if ISO 29110 has been implemented

or Level 1 otherwise.

Finally, a strategy to mitigate errors when developing

software is to promote communication within the team [93],

which may be related to the team's ability to solve problems

[99]. In this way, the early solution of problems can be

calculated as the ratio between the identified problems and the

resolved problems. These values can be obtained from the

collaborative platforms used by software development teams

[48].

Table VII presents the formulation for the error percentage

sector. Here, the IF THEN ELSE structure represents a logical

comparison, while the RANDOM() function generates a

uniformly distributed random number between the two

specified arguments. Additionally, STOP TIME defines the

simulation's temporal duration, which can either be set to a

fixed value or depend on another variable. In this case, STOP

TIME aligns with the Estimated time.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

TABLE VII

ERROR PERCENTAGE FORMULATION

Variable (units) Equation

Error

percentage
(Dimensionless)

d(Error percentage

dt
= Structural error

+ Schedulde pressure
− Early problem solving

Schedule

pressure

(Dimensionless /
Time)

IF Discrepancy < 0 OR Work to do = 0 THEN 0

ELSE (Error percentage + (Discrepancy / INIT

(Work to be done))) / STOP TIME

Early

problem-solving
(Dimensionless /

Time)

(Solved problems / Identified problems) / STOP

TIME

Structural error
(Dimensionless /

Time)

IF Maturity level = 1 THEN 0.5 / STOP TIME
ELSE IF Maturity level = 2 THEN

RANDOM (0,25; 0,50) / STOP TIME

ELSE IF Maturity level = 3 THEN
RANDOM (0,15; 0,25) / STOP TIME

ELSE IF Maturity level = 4 THEN

RANDOM (0,05; 0,15) / STOP TIME ELSE
RANDOM (0; 0,05) / STOP TIME

Before the testing, it is important to clarify the assumptions

and limitations of the proposed model. In software estimation,

the size of the team is considered, as the experience, skills, and

availability of its members influence the effort required to

complete a project. While a larger team can better distribute

tasks and accelerate development, it also introduces greater

complexities, especially in terms of communication [10]. In

fact, previous studies suggest that adding more people to a

team after the project has started can be counterproductive

[84], [85], [86]. Therefore, the team size is analyzed within the

estimated nominal capacity, but it is not considered as an input

in the model.

Now, if the team size has been considered to determine the

estimated nominal capacity, it can be inferred that the team

leader has already identified the members. In this way, one of

the model's assumptions is that the team members have the

necessary technical skills to carry out the project. Furthermore,

the model assumes that the scope of work will remain the same

during the simulation period.

Regarding teamwork, this proposal employs the sequence

of small group stages proposed by Tuckman [62], [65] since it

is related to communication and leadership [70]. This proposal

has limitations related to the lack of rigorous quantitative

research since it was constructed based on a literature review

and observations of some work groups [100]. Furthermore,

there is a lack of analyses related to (i) the possibility of a team

being in multiple stages simultaneously, (ii) the possibility of

a team reaching the performing stage, and (iii) the factors that

influence the rate of progression from one stage to another

[101].

Despite the reported limitations in the literature regarding

Tuckman's proposal, it is recognized as a model that facilitates

the understanding of the intrinsic complexity of team

dynamics and can be used to manage it [102]. It is a widely

referenced theory in the field of human resource development

[100]. It has been used in research related to group work in

educational projects [103], [104], [105] and under agile

methodologies [106], [107], [108], which justifies its selection

for this research.

Alternatively, the Multifactor Leadership Questionnaire

(MLQ) is an instrument that allows the identification of

whether the type of leadership is transformational,

transactional, or laissez-faire, and it has been used in software

engineering [48]. However, it is a licensed instrument that

requires expertise to interpret its results, and some studies

recommend limiting its use due to validity issues [109], [110].

In this study, the model focuses on leadership perception,

allowing a more accessible analysis without the need to

identify a specific type of leadership or obtain a license for this

instrument.

D. TESTING

Assessing the simulation model is essential for identifying and

correcting errors in the early stages of the modeling process

[16]. Although this evaluation should be conducted from the

beginning, various tests must be executed, as their verification

strengthens the reliability of the model before its use [111].

The results in Table VIII indicate that the model structure

reflects the productivity behavior of software development

teams during short cycles.

TABLE VIII

MODEL STRUCTURAL TEST

Test Testing procedure and results

Boundary
adequacy

Expert pairs in SD and Software Engineering
reviewed both the causal diagram and the stock and

flow diagram. Based on this review, the naming of

some variables was adjusted, and others were
reformulated to enhance the understanding of the

model and its subsequent application.

Structure

assessment

The research team reviewed the variables and

equations to ensure that the model adequately

represents the system's knowledge, is coherent, and
is relevant to the analysis's purpose.

Dimensional
consistency

The dimensions of the variables were assigned
according to the literature on the productivity of

software development teams. During the formulation

of the model, the absence of warnings in Stella
Architect® related to the dimensions of the variables

was verified.

Parameter

assessment

Expert peers in software engineering verified that all

the variables made sense in the reality of team
management.

Extreme
conditions

Each equation was inspected, and it was verified that
the model responded appropriately to extreme values

of the input variables. The variables were modified

both individually and collectively to conduct this
test.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

Test Testing procedure and results

Integration

error

It was verified that the simulation results were

similar when changing the time delta and the

integration method.

Behavioral tests intend to verify that the model adequately

reproduces the observed behavior patterns in the real system,

under normal conditions and in stress scenarios. By comparing

the model's output with historical data and conducting

sensitivity analyses, it is possible to assess whether the

variations in the model's parameters produce coherent and

realistic responses. During this process, it is possible to

identify and correct potential discrepancies, ensuring that the

model is a reliable tool for analysis and decision-making.

Table IX relates the types of behavioral tests conducted and

the results. The model is thus appropriate.

TABLE IX

MODEL BEHAVIOR TEST

Test Testing procedure and results

Behavior

reproduction

The simulation results were compared with real data.

The resulting R2 values, exceeding 90% (Table X),

suggest that the model reproduces the behavior of
the system of interest in this study within the

assumptions defined for this research and in
accordance with the previously presented dynamic

hypothesis.

Behavior

anomaly

All the variables presented in the causal diagram

(Fig. 7) are relevant, as anomalous behaviors were

evidenced when they were removed from the model.

Family

member

Project management methodologies, commonly

associated with software development, are applicable
to a wide range of disciplines. In this regard, the

proposed simulation model can replicate the

behavior of teams that use burndown charts to
monitor their progress, regardless of the application

domain.

Surprise

behavior

The research team analyzed each of the variables

graphically and in tabular form, and no anomalous

behaviors were identified that suggested errors in the
formulation.

Sensitivity
analysis

The sensitivity analysis using Stella Architect®
allowed us to identify that changes in the parameters

affect the productivity of software development

teams within a range consistent with the real system.

System

improvement

Including non-technical factors in a specific manner

and indicating how they are measured contributes to
process improvement, particularly related to the

configuration of a team prior to project execution.

E. SIMULATION SCENARIOS

Two work teams were analyzed in parallel during a short

phase of a software development project to carry out the same

activities. Both teams estimated 100 units of effort that need

to be completed (work to be done = 100), and each team

indicated that they could deliver 20 units of effort per day

(estimated nominal capacity = 20). In this way, the time in

which the tasks associated with those units of effort should be

completed is five days (estimated time = 5). Based on

historical data, around 20% of rework is generated (maturity

level = 3), and when rework is identified, it is rescheduled to

the same day (rescheduling time = 1). Additionally, for every

ten identified problems, each team indicated that they were

capable of early resolution for 2 of them.

On the other hand, the team perceives that communication

is good, according to the responses to this variable from the

Teamwork Quality instrument (perception of communication

= 1). The leader adopted a facilitator role (strategy from the

leader's role = 4). The application of the GDQS instrument

allowed us to identify that one of the teams is at a more

advanced stage of development (initial teamwork stage = 4:

performing) while the other is at the preceding stage (initial

teamwork stage = 3: norming). Each day, the team reported

both the work completed and the rework identified, data from

which the actual work to be done was calculated. Table X

presents the burndown chart for each team, including both

simulated and real data, along with the respective coefficient

of determination.

TABLE X

SIMULATED DATA VS REAL DATA

Team
Stage

Burndown Chart

Coefficient of

determination

R2

Performing

97,97%

Norming

94,37%

Fig. 12 shows the burndown chart and the simulated rework

behavior of a team in the performing stage, maintaining the

previously presented conditions. Although rework is

generated, the positive perception of communication and the

alignment between the strategy from the leader's role and the

team's stage of development allows for the planned tasks to be

completed within the estimated time. The behavior shown in

this burndown chart is ideal, as indicated in Fig. 7.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

FIGURE 12. Burndown chart and rework – Ideal case.

From an organizational viewpoint, the team may experience

slight delays due to the maturity process being in Immature

(level 1) or Project-controlled states (level 2). Although a

rework percentage exceeding 25% is anticipated (which is

expected to lead to late project completion), being in the

performing stage, experiencing effective communication, and

having a suitable strategy could mitigate the impacts of these

delays on the project's delivery (Table XI).

TABLE XI

SIMULATIONS OF TEAMS WITH LOW MATURITY LEVELS

Maturity

level
Burndown Chart and Rework

Level 1 -

Immature

Level 2 -

Project
controlled

From the perspective of social and human factors, low

progress may be due to the team not being in the "performing"

stage, which represents the highest level of performance.

Furthermore, the leadership strategy employed may not be the

most suitable for the stage of development the team is in, or

the members perceive deficiencies in communication. Table

XII presents the work to be done, the work completed, and the

rework, simulated based on the proposed model, incorporating

social and human factors. In this analysis, the maturity level

remains at level 3, and 2 out of every ten identified problems

are resolved early; additionally, it is assumed that the team

perceives communication well. The runs correspond to each

of the stages of team development: Run 1 corresponds to

forming, run 2 to storming, run 3 to norming, and run 4 to

performing.

TABLE XII

SIMULATIONS RELATED TO LOW PROGRESS ASSOCIATED WITH SOCIAL

AND HUMAN FACTORS

Strategy

from the
leader's

role

Behavior of the stocks: work to be done, work done,
and rework

Without a

strategy

Mentor

Instructor

Coach

Facilitator

The simulations' analyses (Table XII) reveal that the

absence of a clear leadership strategy is associated with lower

team performance, especially during the storming stage (run

2). That is an aspect related to the fact that teams in the early

stages of formation face problems that take longer to resolve

[112].

These results suggest that, even in teams that reach the

performing stage, effective leadership is essential to ensure the

success of the project [113]. Furthermore, although progress

can often be slow, the team's performance tends to improve

when there is alignment between the leader's role strategy and

the stage the team is in [114]. However, this suggests that

strategies can be viewed beyond a simple classification of

good or bad, and it is preferable to evaluate them based on their

relevance, according to the team's reality.

V. DISCUSSION

Software development can be considered a complex system

because developers interact strongly with each other [45].

Throughout the execution of the project, decisions are made

based on feedback [46], and the effect of the interventions

made on the process is often non-linear [7], showing their

results gradually [47]. Furthermore, the interest in making

more strategic decisions and studying the productivity

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

behavior of the software development team rather than the

individual developers requires a high level of aggregation,

which is why SD is preferred over other paradigms, such as

Agent-Based Simulation [115] or Discrete Event Simulation

[55].

System Dynamics models in Software Engineering can

address the complexity of strategic issues in traditional

management approaches [116] and serve as a tool to support

planning and control at the tactical level [46]. Additionally, it

is possible to simulate the typical behavior of software

development projects to address planning and control issues

[117].

The schedule and delivery time of software development

projects have been of interest [118], [119], [120], [121], [122],

as well as resource allocation [123] and the inspection and

testing process [124], [125], [126]. These proposals recognize

that SD is a simulation paradigm that facilitates the

management of software development projects.

Regarding non-technical factors, Caulfield and Maj (2002)

indicated that including soft variables in simulation models

allows for more informed sociotechnical models. From a

qualitative perspective, factors such as leadership, self-

management, and adaptability have been incorporated [128],

[129]. Likewise, some simulation models address aspects such

as openness and the ability to understand the ideas and

interests of others [130], team interaction, individual behavior

[131], communication overload [27], [86], [94], [132], and

motivation [133]. Even though these research works consider

non-technical factors, there remains a need for an approach

that adequately integrates them, considering the available

instruments for their measurement. In fact, having strategies to

obtain data for simulating software processes remains an

aspect to be addressed [134]. Regarding this gap, the

contribution of this study lies in the formalization of a

structured evaluation framework based on a simulation model

that incorporates non-technical factors using the tools reported

in the literature.

The simulation model presented in this study can capture

the complex dynamics of software development team

productivity over short time frames, incorporating technical,

non-technical, and organizational aspects. This integrative

approach allows for estimating the behavior of productivity in

response to variations in aspects such as the level of

organizational maturity or the stage of development in which

the work team is situated. In this way, the model reveals

relationships among these aspects, showing, for example, how

an adaptive leadership strategy can enhance the team's work

capacity. The results obtained align with previous studies that

highlight the interdependence of technical and human factors

[135] and, on the other hand, validate the effectiveness of the

approach used [134], [136]. These considerations reinforce the

applicability of the model in real-world scenarios, providing

recommendations that support the management of software

development teams when a project needs to be executed.

The simulation provides an analytical framework that

facilitates the identification of strategic interventions in project

management, allowing the adoption of practices that enhance

team effectiveness [137]. In this case, the proposed simulation

model highlights the importance of maintaining effective

communication and adaptive leadership, especially in

processes characterized by a high level of human intervention.

Adjusting these non-technical aspects can mitigate internal

friction and enhance productivity by strengthening teamwork

[83]. In this way, the model presented in this study serves as

support for informed decision-making, contributing to

continuous improvement in software development.

Using simulation models based on SD is convenient to

support process improvement in software development [138].

In this regard, Ramdoo and Gukhool [139] proposed a model

that involves the relationship between maturity levels and

fluctuations in software quality. Aligned with this approach,

the model proposed in this study integrates information about

the level of maturity, considering CMMI and its relationship

with ISO/IEC 29110. This aspect is relevant because it

facilitates the identification of improvement opportunities,

promoting the implementation of best practices that are

aligned with high standards in the software industry. Including

ISO/IEC 29110 [140] in this type of model is the first step to

support their dissemination and adoption in small information

technology companies, given that these companies represent

at least 70% of the sector [96].

In the field of Software Engineering, few studies use SD

models and report in detail the stock and flow diagrams along

with the underlying equations that support them [20]. This

situation limits the replicability and validation of the models

presented [137]. This study addresses this limitation and

stands out from other published works by providing a detailed

description of both the stock and flow diagrams as well as the

equations used. This approach aims at facilitating the review,

implementation, and application of the model by researchers

and professionals in this field.

VI. CONCLUSIONS AND FUTURE WORK

This study presents a productivity simulation model of

software development teams based on System Dynamics. The

model incorporates three relevant social and human factors in

its analysis: communication, leadership, and teamwork. The

measurement of these factors, the establishment of causal

relationships among them, and the transition from a qualitative

to a quantitative approach culminating in a robust simulation

model with explicit equations represent a significant

contribution to empirical research in Software Engineering.

The results of the simulations provide a variety of patterns

of the aggregate productivity of software development teams.

Thus, the model proposed in this study represents a

foundational structure for understanding the productivity

behavior of these teams. This aspect contributes to team

management, as it allows the identification of improvement

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

opportunities related to social and human factors and enables

decisions aimed at strengthening team effectiveness.

In summary, key findings include:

• Leadership strategies aligned with the team's

developmental status and a positive perception of

communication reduce the percentage of rework.

• Teams in advanced stages of development (such as the

performance stage) achieve higher levels of

productivity, especially when they have adaptive

leadership.

• The proposed system dynamics model provides a robust

tool for analyzing and predicting productivity

behaviors, facilitating strategic decisions in project

management.

• The inclusion of non-technical factors in planning

improves the accuracy of estimates and the design of

more effective strategies in team management.

Regarding the simulation model, considering that non-

technical factors are treated as input data, the methodology

proposed by McLucas (2003) could be adapted to include

other factors once the problem articulation stage is completed.

Given that the simulation model presented in this study

corresponds to an early stage of project management, it would

be advisable to adapt the model for the subsequent stages of

software development projects, where the work to be done

may be affected by additional requirements or requests made

by the user at later points after the project has started.

Furthermore, we propose to integrate other paradigms, such

as agent-based simulation, as a future research direction, with

the aim of providing more comprehensive analyses and

exploring multiple perspectives on the productivity behavior

of software development teams.

Another future line work corresponds to the design and

construction of a simulation framework based on the model

presented here so that software development project leaders

have an environment that facilitates decision-making during

the project planning stage. This line includes the design of

interventions for the team related to social and human factors.

This framework, in addition to being a tool for managing work

teams, also contributes to the Sustainable Development Goals

[142] by providing decision-making tools in the growing

software industry [143], which is one of the key players in

enhancing the technological capacity of industrial sectors in

the context of the fourth industrial revolution [144], [145].

VII. ACKNOWLEDGMENT

This research was supported by a collaborative study between

Universidad de Medellín (Colombia) and Universidad de

Aysén (Chile). The authors would like to thank the Editor and

the anonymous reviewers for their helpful comments. During

the preparation of this work, the authors used ChatGPT to

improve the manuscript's readability and language. After

using this tool, the authors reviewed and edited the content as

needed and took full responsibility for the content of the

publication.

REFERENCES
[1] W. Royce, Software Project Management A unified framework.

1998.

[2] Project Management Institute, Guía de los fundamentos para la

dirección de proyectos (Guía del PMBOK), Séptima ed. 2021.
[3] H. Krasner, “The Cost of Poor Software Quality in the US: A 2020

Report,” 2021.

[4] B. Sharma and R. Purohit, “Review of current software estimation
techniques,” Communications in Computer and Information

Science, vol. 799, pp. 380–399, 2018, doi: 10.1007/978-981-10-

8527-7_32.
[5] A. J. Albrecht, “Measuring application development

productivity,” 1979.
[6] C. A. Behrens, “Measuring the Productivity of Computer Systems

Development Activities with Function Points,” IEEE

Transactions on Software Engineering, vol. SE-9, no. 6, pp. 648–
652, 1983, doi: 10.1109/TSE.1983.235429.

[7] C. Sadowski and T. Zimmermann, Rethinking Productivity in

Software Engineering. New Yotk: Springer, 2019.
[8] G. Karner, “Resource estimation for objectory projects,”

Objective Systems SF AB, pp. 1–9, 1993.

[9] P. C. Pendharkar, “Probabilistic estimation of software size and
effort,” Expert Syst Appl, vol. 37, no. 6, pp. 4435–4440, 2010, doi:

10.1016/j.eswa.2009.11.085.

[10] C. H. C. Duarte, “Software Productivity in Practice: A Systematic
Mapping Study,” Software, vol. 1, no. 2, pp. 164–214, 2022, doi:

10.3390/software1020008.

[11] U. M. Devadas and Y. Y. Dharmapala, “Soft skills Evaluation in
the Information Technology and Business Process Management

Industry in Sri Lanka: Skills, Methods and Problems,”

International Journal of Economics Business and Human
Behaviour, vol. 2, no. 3, 2021, doi: 10.5281/zenodo.5280309.

[12] D. T. W. Wardoyo and R. S. Dewi, “Agile Leadership Cost

Estimation Model in Software Development Project (Case Study:
Public Service Applications),” Proceedings - 2023 6th

International Conference on Computer and Informatics

Engineering: AI Trust, Risk and Security Management (AI Trism),
IC2IE 2023, pp. 271–275, 2023, doi:

10.1109/IC2IE60547.2023.10330999.

[13] E. D. Canedo and G. A. Santos, “Factors affecting software
development productivity: An empirical study,” in ACM

International Conference Proceeding Series, Association for

Computing Machinery, Sep. 2019, pp. 307–316. doi:
10.1145/3350768.3352491.

[14] L. F. Capretz, F. Ahmed, and F. Q. B. da Silva, “Soft sides of

software,” Inf Softw Technol, vol. 92, pp. 92–94, 2017, doi:
10.1016/j.infsof.2017.07.011.

[15] J. A. García-García, J. G. Enríquez, M. Ruiz, C. Arévalo, and A.

Jiménez-Ramírez, “Software Process Simulation Modeling:
Systematic literature review,” Comput Stand Interfaces, vol. 70,

no. August 2019, p. 103425, 2020, doi:

10.1016/j.csi.2020.103425.

[16] John. D. Sterman, Business Dynamics: systems thinking and

modeling for a complex world. Mc Graw Hill, 2000.

[17] K. Hiekata, M. T. Khatun, and M. A. Chavy-Macdonald, “System
dynamics modeling to manage performance based on scope

change for software development projects,” in Proceedings of the

26th ISTE International Conference on Transdisciplinary
Engineering, Tokyo, Japan, 2019, pp. 675–684. doi:

10.3233/ATDE190177.

[18] M. T. Khatun, K. Hiekata, Y. Takahashi, and I. Okada, “Design
and management of software development projects under rework

uncertainty: a study using system dynamics,” J Decis Syst, vol.
00, no. 00, pp. 1–24, 2022, doi:

10.1080/12460125.2021.2023257.

[19] J. S. Aguilar-Ruiz, J. C. Riquelme, D. Rodríguez, and I. Ramos,
“Generation of management rules through system dynamics and

evolutionary computation,” Lecture Notes in Computer Science,

vol. 2559, pp. 615–628, 2002, doi: 10.1007/3-540-36209-6_50.

[20] E. Ferreira Franco, K. Hirama, and M. M. Carvalho, “Applying

system dynamics approach in software and information system

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

projects: A mapping study,” Inf Softw Technol, vol. 93, pp. 58–

73, 2018, doi: 10.1016/j.infsof.2017.08.013.

[21] L. Machuca-Villegas, G. P. Gasca-Hurtado, S. Morillo Puente,
and L. M. Restrepo-Tamayo, “Factores sociales y humanos que

influyen en la productividad del desarrollo de software: Medición

de la percepción,” Revista Ibérica de Sistemas e Tecnologias de
Informação, vol. E41, no. 02/2021, pp. 488–502, 2021.

[22] O. Filipova and R. Vilão, Software Development From A to Z.

2018. doi: 10.1007/978-1-4842-3945-2.
[23] A. P. Murray, The Complete Software Project Manager. New

Jersey: Wiley, 2016.

[24] B. Baj, Ed., Wiley Encyclopedia of Computer Science and
Engineering. John Wiley & Sons, 2008.

[25] J. F. Dooley, Software Development, Design and Coding.

Galesburg, Illinois, USA: Apress, 2017. doi: 10.1007/978-1-
4842-3153-1.

[26] R. Pressman, Ingeniería del Software: Un Enfoque Práctico,

Séptima ed. Mc Graw Hill, 2010.

[27] B. Hughes and M. Cotterell, Software Proiect Management, Fifth

Edit. McGraw Hill Education, 2009.

[28] A. Villafiorita, Introduction to Software Project Management.
CRC Press, 2014.

[29] M. Jørgensen and M. Shepperd, “A systematic review of software

development cost estimation studies,” IEEE Transactions on
Software Engineering, vol. 33, no. 1, pp. 33–53, 2007, doi:

10.1109/TSE.2007.256943.
[30] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature

review of machine learning based software development effort

estimation models,” Inf Softw Technol, vol. 54, no. 1, pp. 41–59,
2012, doi: 10.1016/j.infsof.2011.09.002.

[31] N. Govil and A. Sharma, “Estimation of cost and development

effort in Scrum-based software projects considering dimensional
success factors,” Advances in Engineering Software, vol. 172, no.

April, p. 103209, 2022, doi: 10.1016/j.advengsoft.2022.103209.

[32] L. Machuca-Villegas, G. P. Gasca-hurtado, S. Morillo, and L. M.

Restrepo-Tamayo, “Perceptions of the human and social factors

that influence the productivity of software development teams in

Colombia: A statistical analysis,” J Syst Softw, vol. 192, 2022, doi:
10.1016/j.jss.2022.111408.

[33] V. Spiezia, “Jobs and skills in the digital economy,” 2017. doi:

10.1787/de5b1ac4-en.
[34] Infosys, “Talent Radar How the best companies get the skills they

need to thrive in the digital era,” 2019.

[35] L. M. Restrepo-Tamayo and G. P. Gasca-Hurtado, “Non-technical
Factors in Software Engineering Within the Context of Industry

4.0,” in New Perspectives in Software Engineering. Studies in

Computational Intelligence, J. Mejía, M. Muñoz, A. Rocha, Y.
Hernández Pérez, and H. Avila-George, Eds., Springer, Cham,

2024, pp. 89–103. doi: 10.1007/978-3-031-50590-4_6.

[36] K. G. Cooper, “The Rework Cycle: Why Projects are
Mismanaged,” Project Management Action, vol. 24, no. 1, pp. 17–

21, 1993.

[37] S. Bayer and D. Gann, “Balancing work: Bidding strategies and
workload dynamics in a project-based professional service

organisation,” Syst Dyn Rev, vol. 22, no. 3, pp. 185–211, 2006,

doi: 10.1002/sdr.344.
[38] H. Rahmandad and K. Hu, “Modeling the rework cycle: Capturing

multiple defects per task,” Syst Dyn Rev, vol. 26, no. 4, pp. 291–

315, 2010, doi: 10.1002/sdr.435.
[39] Y. Jalili and D. N. Ford, “Quantifying the impacts of rework,

schedule pressure, and ripple effect loops on project schedule

performance,” Syst Dyn Rev, vol. 32, no. 1, pp. 82–96, 2016, doi:
10.1002/sdr.1551.

[40] S. H. Lee and F. Peña-Mora, “Understanding and managing

iterative error and change cycles in construction,” Syst Dyn Rev,
vol. 23, no. 1, pp. 35–60, 2007, doi: 10.1002/sdr.359.

[41] B. D. Owens, N. G. Leveson, and J. A. Hoffman, “Procedure

rework: A dynamic process with implications for the ‘rework
cycle’ and ‘disaster dynamics,’” Syst Dyn Rev, vol. 27, no. 3, pp.

244–269, 2011, doi: 10.1002/sdr.464.

[42] J. M. Lyneis, K. G. Cooper, and S. A. Els, “Strategic management

of complex projects: A case study using system dynamics,” Syst

Dyn Rev, vol. 17, no. 3, pp. 237–260, 2001, doi: 10.1002/sdr.213.
[43] L. F. Luna-Reyes, L. J. Black, A. M. Cresswell, and T. A. Pardo,

“Knowledge sharing and trust in collaborative requirements

analysis,” Syst Dyn Rev, vol. 24, no. 3, pp. 265–297, 2008, doi:
10.1002/sdr.404.

[44] T. Walworth, M. Yearworth, L. Shrieves, and H. Sillitto,

“Estimating Project Performance through a System Dynamics
Learning Model,” Systems Engineering, vol. 19, no. 4, pp. 334–

350, Jul. 2016, doi: 10.1002/sys.21349.

[45] F. Ahmed, L. F. Capretz, S. Bouktif, and P. Campbell, “Soft skills
and software development: A reflection from software industry,”

International Journal of Information Processing and

Management, vol. 4, no. 3, pp. 171–191, 2013, doi:
10.4156/ijipm.vol4.issue3.17.

[46] Alexandre. Rodrigues and T. Williams, “System dynamics in

software project management: Towards the development of a

formal integrated framework,” European Journal of Information

Systems, vol. 6, no. 1, pp. 51–66, 1997, doi:

10.1057/palgrave.ejis.3000256.
[47] C. Caulfield, G. Kohli, and S. P. Maj, “Sociology in software

engineering,” in Proceedings of the 2004 American Society for

Engineering Education Annual Conference & Exposition, 2004,
pp. 12685–12697. doi: 10.18260/1-2--14027.

[48] L. M. Restrepo-Tamayo, G. P. Gasca-Hurtado, and J. Valencia-
Calvo, “Characterizing Social and Human Factors in Software

Development Team Productivity: A System Dynamics

Approach,” IEEE Access, vol. 12, no. 1, pp. 59739–59755, 2024,
doi: 10.1109/ACCESS.2024.3388505.

[49] M. Schaffernicht, Indagación de situaciones dinámicas mediante

la dinámica de sistemas. Tomo 1: Fundamentos. 2006.
[50] J. Aracil, Dinámica de Sistemas, 4th ed. Madrid, España: Isdefe,

2016.

[51] E. Pruyt, System dynamics models for big issues: Triple Jump
towards Real-World Complexity. The Netherlands: TU Delft

Library, 2013. doi: 10.1007/978-1-84882-809-4_2.

[52] C. Cadenas and W. Guaita, Dinámica de sistemas Una
metodología para la construcción de modelos de toma de

decisiones en sectores agroindustriales. Bogotá, Colombia:

Editorial Politécnico Grancolombiano, 2020.
[53] P. M. Senge, La quinta disciplina: el arte y la práctica de la

organización abierta al aprendizaje, 2° ed. Buenos Aires:

Granica, 2010.
[54] A. Sarmiento-Vásquez and E. López-Sandoval, “Una

comparación cualitativa de la dinámica de sistemas, la simulación

de eventos discretos y la simulación basada en agentes,”
Ingeniería Industrial, no. 35, p. 27, 2017, doi:

10.26439/ing.ind2017.n035.1789.

[55] A. M. Law, Simulation Modeling and Analysis, 5th ed. Mc Graw
Hill, 2015. doi: 10.2307/2288169.

[56] J. W. Forrester, Industrial Dynamics. The M.I.T Press, 1961.

[57] L. G. Birta and G. Arbez, Modelling and Simulation Exploring
Dynamic System Behaviour, Third Edit. Springer, 2019. doi:

10.1201/b16599-4.

[58] Y. Barlas, “Model Validation in System Dynamics,” in
Proceedings of the 1994 International System Dynamics

Conference, 1994, pp. 1–10.

[59] P. Sudhakar, A. Farooq, and S. Patnaik, “Measuring productivity
of software development teams,” Serbian Journal of

Management, vol. 7, no. 1, pp. 65–75, 2012, doi:

10.5937/sjm1201065s.
[60] D. Rodríguez, M. A. Sicilia, E. García, and R. Harrison,

“Empirical findings on team size and productivity in software

development,” Journal of Systems and Software, vol. 85, no. 3,
pp. 562–570, 2012, doi: 10.1016/j.jss.2011.09.009.

[61] L. Rising and N. Janoff, “The Scrum Software Development

Process for Small Teams,” IEEE Softw, no. July/August, pp. 26–
32, 2000, doi: 10.1109/52.854065.

[62] B. W. Tuckman, “Developmental sequence in small groups,”

Psychol Bull, vol. 63, no. 6, pp. 384–399, 1965, doi:
10.1037/h0022100.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

[63] L. Gren, R. Torkar, and R. Feldt, “Group development and group

maturity when building agile teams: A qualitative and quantitative

investigation at eight large companies,” Journal of Systems and
Software, vol. 124, pp. 104–119, 2017, doi:

https://doi.org/10.1016/j.jss.2016.11.024.

[64] D. Strode, T. Dingsøyr, and Y. Lindsjorn, “A teamwork
effectiveness model for agile software development,” Empir

Softw Eng, vol. 27, no. 2, pp. 1–50, 2022, doi: 10.1007/s10664-

021-10115-0.
[65] B. W. Tuckman and M. A. C. Jensen, “Stages of Small-Group

Development Revisited,” Group & Organization Studies, vol. 2,

no. 4, pp. 419–427, 1977.
[66] M. Rossi, Human Resource Design Steering Human-centered

Innovation within Organisations. Springer, 2021.

[67] S. Eybers and M. J. Hattingh, “The last straw: Teaching project
team dynamics to third-year students,” in Communications in

Computer and Information Science, Springer International

Publishing, 2019, pp. 237–252. doi: 10.1007/978-3-030-05813-

5_16.

[68] K. M. Lui and K. C. C. Chan, “Pair programming productivity:

Novice-novice vs. expert-expert,” International Journal of
Human Computer Studies, vol. 64, no. 9, pp. 915–925, 2006, doi:

10.1016/j.ijhcs.2006.04.010.

[69] M. Edson and G. Metcalf, “Adaptive Capacity in Project Teams,”
in Proceedings of the 58th Annual Meeting of the Isss 2014 United

States, 2014.
[70] J. F. Super, “Building innovative teams: Leadership strategies

across the various stages of team development,” Bus Horiz, vol.

63, no. 4, pp. 553–563, 2020, doi: 10.1016/j.bushor.2020.04.001.
[71] K. Nicolopoulou, M. Koštomaj, and A. Campos, “How to address

group dynamics in virtual worlds,” AI Soc, vol. 20, no. 3, pp. 351–

371, 2006, doi: 10.1007/s00146-005-0027-0.
[72] M. Niever, N. Trefz, J. Heimicke, C. Hahn, and A. Albers,

“Situation- and need-based method recommendation for coaching

agile development teams,” in Procedia CIRP, Elsevier B.V.,

2021, pp. 512–517. doi: 10.1016/j.procir.2021.05.112.

[73] A. L. Mesquida, J. Karać, M. Jovanović, and A. Mas, “A game

toolbox for process improvement in agile teams,” in
Communications in Computer and Information Science, 2017, pp.

302–309. doi: 10.1007/978-3-319-64218-5_25.

[74] S. A. Wheelan and J. M. Hochberger, “Validation Studies of the
Group Development Questionnaire,” Small Group Res, vol. 27,

no. 1, pp. 143–170, 1996, doi:

https://doi.org/10.1177/1046496496271007.
[75] L. Gren, C. Jaconsson, N. Rydbo, and P. Lenberg, “The Group

Development Questionnaire Short (GDQS) Scales: Tiny-Yet-

Effective Measures of Team/Small Group Development,” 2020.
[76] D. L. Miller, “The stages of group development: A retrospective

study of dynamic team processes,” Canadian Journal of

Administrative Sciences, vol. 20, no. 2, pp. 121–134, 2003, doi:
10.1111/j.1936-4490.2003.tb00698.x.

[77] R. E. Levasseur, “People skills: Optimizing team development

and performance,” Interfaces (Providence), vol. 41, no. 2, pp.
204–208, 2011, doi: 10.1287/inte.1100.0519.

[78] Project Management Institute, A guide to the project management

body of knowledge (PMBOK guide). 2017.
[79] R. Hughes, “Streamlining Project Management,” in Agile Data

Warehousing Project Management, 2013, pp. 81–113. doi:

10.1016/b978-0-12-396463-2.00003-x.
[80] S. Wolpers, “The Scrum Anti-Patterns Guide,” 2023.

[81] A. N. B. M. Nasir, D. F. Ali, M. K. bin Noordin, and M. S. Bin

Nordin, “Technical skills and non-technical skills: predefinition
concept Mohd Safarin Bin NORDIN,” in Proceedings of the

IETEC’11 Conference, Kuala Lumpur, Malaysia, 2011, pp. 1–17.

[82] M. Hoegl and H. G. Gemuenden, “Teamwork Quality and the
Success of Innovative Projects: A Theoretical Concept and

Empirical Evidence,” Organization Science, vol. 12, no. 4, pp.

435–449, 2001, doi: 10.1287/orsc.12.4.435.10635.
[83] G. Marsicano, F. Q. B. Silva, C. B. Seaman, and B. G. Adaid-

castro, “The Teamwork Process Antecedents (TPA)

questionnaire: developing and validating a comprehensive

measure for assessing antecedents of teamwork process quality,”

Empir Softw Eng, vol. 25, pp. 3928–3976, 2020.

[84] P. Hsia, C. Hsu, and D. C. Kung, “Brooks’ Law Revisited: A
System Dynamics Approach,” in Twenty-Third Annual

International Computer Software and Applications Conference,

1999, pp. 370–375.
[85] M. Wu and H. Yan, “Simulation in software engineering with

system dynamics: A case study,” Journal of Software, vol. 4, no.

10, pp. 1127–1135, 2009, doi: 10.4304/jsw.4.10.1127-1135.
[86] T. K. Abdel-Hamid, “The Dynamics of Software Project Staffing:

A System Dynamics Based Simulation Approach,” IEEE

Transactions on Software Engineering, vol. 15, no. 2, pp. 109–
119, 1989, doi: 10.1109/32.21738.

[87] S. Wood, G. Michaelides, and C. Thomson, “Successful extreme

programming: Fidelity to the methodology or good
teamworking?,” Inf Softw Technol, vol. 55, no. 4, pp. 660–672,

2013, doi: 10.1016/j.infsof.2012.10.002.

[88] E. Salas, D. E. Sims, and C. Shawn Burke, “Is there A ‘big five’

in teamwork?,” Small Group Res, vol. 36, no. 5, pp. 555–599,

2005, doi: 10.1177/1046496405277134.

[89] M. Alefari, M. Almanei, and K. Salonitis, “A system dynamics
model of employees’ performance,” Sustainability, vol. 12, no.

16, 2020, doi: 10.3390/su12166511.

[90] P. Hersey, K. H. Blanchard, and W. E. Natemeyer, “Situational
Leadership, Perception, and the Impact of Power,” https://doi-

org.ezproxy.unal.edu.co/10.1177/105960117900400404, vol. 4,
no. 4, pp. 418–428, Dec. 1979, doi:

10.1177/105960117900400404.

[91] P. Ciancarini, M. Missiroli, and S. Zani, Empirical Evaluation of
Agile Teamwork, vol. 1439 CCIS. Springer International

Publishing, 2021. doi: 10.1007/978-3-030-85347-1_11.

[92] C. Laporte and A. April, Software Quality Assurance. 2018.
[93] B. Nagaria and T. Hall, “How Software Developers Mitigate their

Errors when Developing Code,” IEEE Transactions on Software

Engineering, vol. 14, no. 8, 2020, doi:

10.1109/TSE.2020.3040554.

[94] S. G. Dastidar, “Model of distributed software development using

system dynamics,” 2015.
[95] ISACA, “CMMI Technical Report: Performance Results,” 2023.

[96] R. V. O’Connor and C. Y. Laporte, “The Evolution of the ISO /

IEC 29110 Set of Standards and Guides,” International Journal
of Information Technologies and Systems Approach, vol. 10, no.

1, 2017, doi: 10.4018/IJITSA.2017010101.

[97] ISO, “ISO/IEC TR 29110-5-1-1:2012 Software engineering —
Lifecycle profiles for Very Small Entities (VSEs) — Part 5-1-1:

Management and engineering guide: Generic profile group: Entry

profile,” 2012.
[98] C. Y. Laporte, R. V. O. Connor, and L. H. García Paucar, “The

Implementation of ISO / IEC 29110 Software Engineering

Standards and Guides in Very Small Entities,” in Evaluation of
Novel Approaches to Software Engineering. ENASE 2015.

Communications in Computer and Information Science, L. A.

Maciaszek and J. Filipe, Eds., Springer, Cham, 2016, pp. 162–
179. doi: 10.1007/978-3-319-30243-0.

[99] J. F. Defranco and P. A. Laplante, “Review and analysis of

software development team communication research,” IEEE
Trans Prof Commun, vol. 60, no. 2, pp. 165–182, 2017, doi:

10.1109/TPC.2017.2656626.

[100] D. A. Bonebright, “40 years of storming: A historical review of
tuckman’s model of small group development,” Human Resource

Development International, vol. 13, no. 1, pp. 111–120, 2010, doi:

10.1080/13678861003589099.
[101] C. Rosen, “Team Management,” in Guide to Software Systems

Development, 2020, ch. 4, pp. 57–77. doi: 10.1007/978-3-030-

39730-2.
[102] T. C. Pfutzenreuter, E. P. de Lima, and J. R. Frega, “Building High

Performance Teams,” in Communications in Computer and

Information Science, Springer International Publishing, 2021, pp.
251–264. doi: 10.1007/978-3-030-76307-7_19.

[103] M. Kokkoniemi and V. Isomöttönen, “A systematic mapping

study on group work research in computing education projects,”

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

Journal of Systems and Software, vol. 204, p. 111795, 2023, doi:

10.1016/j.jss.2023.111795.

[104] A. Jones, “The Tuckman’s model implementation, effect, and
analysis & the new development of Jones LSI model on a small

group,” J Manage, vol. 6, no. 4, pp. 23–28, 2019, doi:

10.34218/jom.6.4.2019.005.
[105] P. Kaygan, “From forming to performing: team development for

enhancing interdisciplinary collaboration between design and

engineering students using design thinking,” Int J Technol Des
Educ, vol. 33, no. 2, pp. 457–478, 2023, doi: 10.1007/s10798-

022-09736-3.

[106] S. V. Spiegler, D. Graziotin, C. Heinecke, and S. Wagner, “A
Quantitative Exploration of the 9-Factor Theory: Distribution of

Leadership Roles Between Scrum Master and Agile Team,” in

Lecture Notes in Business Information Processing, Springer
International Publishing, 2020, pp. 162–177. doi: 10.1007/978-3-

030-49392-9_11.

[107] L. Gren and M. Lindman, “What an Agile Leader Does: The

Group Dynamics Perspective,” in Lecture Notes in Business

Information Processing, Springer International Publishing, 2020,

pp. 178–194. doi: 10.1007/978-3-030-49392-9_12.
[108] T. Myklebust and T. Stålhane, “Agile Practices,” in Functional

Safety and Proof of Compliance, 2021, pp. 25–58. doi:

10.1007/978-3-030-86152-0_2.
[109] C. A. Schriesheim, J. B. Wu, and T. A. Scandura, “A meso

measure? Examination of the levels of analysis of the Multifactor
Leadership Questionnaire (MLQ),” Leadership Quarterly, vol.

20, no. 4, pp. 604–616, 2009, doi: 10.1016/j.leaqua.2009.04.005.

[110] M. J. Tejeda, T. A. Scandura, and R. Pillai, “The MLQ revisited
Psychometric properties and recommendations,” Leadersh Q, vol.

12, pp. 31–52, 2001.

[111] B. Bala, F. Mohamed, and K. Mohd, System dynamics. Modelling
and Simulation. Springer Nature, 2017. doi:

10.4324/9780203112694-14.

[112] L. Gren and M. Shepperd, “Problem reports and team maturity in

agile automotive software development,” Proceedings - 15th

International Conference on Cooperative and Human Aspects of

Software Engineering, CHASE 2022, pp. 41–45, 2022, doi:
10.1145/3528579.3529173.

[113] T. C. Pfutzenreuter, E. P. de Lima, and J. R. Frega, “High

performance teams: an investigation of the effect on self-
management towards performance,” Production, vol. 31, no.

2019, pp. 1–14, 2021, doi: 10.1590/0103-6513.20210053.

[114] A. Zirar, N. Muhammad, A. Upadhyay, A. Kumar, and J. A.
Garza-Reyes, “Exploring lean team development from the

Tuckman’s model perspective,” Production Planning and

Control, vol. 0, no. 0, pp. 1–22, 2023, doi:
10.1080/09537287.2023.2275693.

[115] A. P. Galvão Scheidegger, T. Fernandes Pereira, M. L. Moura de

Oliveira, A. Banerjee, and J. A. Barra Montevechi, “An
introductory guide for hybrid simulation modelers on the primary

simulation methods in industrial engineering identified through a

systematic review of the literature,” Comput Ind Eng, vol. 124,
pp. 474–492, 2018, doi: 10.1016/j.cie.2018.07.046.

[116] A. Rodrigues and J. Bowers, “System dynamics in project

management: A comparative analysis with traditional methods,”
Syst Dyn Rev, vol. 12, no. 2, pp. 121–139, 1996, doi:

10.1002/(sici)1099-1727(199622)12:2<121::aid-sdr99>3.0.co;2-

x.
[117] D. Pfahl, N. Koval, and G. Ruhe, “An experiment for evaluating

the effectiveness of using a system dynamics simulation model in

software project management education,” in International
Software Metrics Symposium, Proceedings, 2001, pp. 97–109.

doi: 10.1109/metric.2001.915519.

[118] Alexandre. Rodrigues and T. Williams, “System dynamics in
project management: Assessing the impacts of client behaviour on

project performance,” Journal of the Operational Research

Society, vol. 49, no. 1, pp. 2–15, 1998, doi:
10.1057/palgrave.jors.2600490.

[119] P. C. Das and U. R. Dhar, “A System Dynamics Approach

towards Software Development Project - A Case Study,”
International Advanced Research Journal in Science,

Engineering and Technology, vol. 3, no. 4, pp. 120–123, 2016,

doi: 10.17148/IARJSET.2016.3426.

[120] C. Andersson, L. Karlsson, J. Nedstam, M. Host, and B. I.
Nilsson, “Understanding software processes through system

dynamics simulation: A case study,” in Proceedings - 9th Annual

IEEE International Conference and Workshop on the Engineering
of Computer-Based Systems, ECBS 2002, 2002, pp. 41–48. doi:

10.1109/ECBS.2002.999821.

[121] M. T. I. Trammell, S. E. Madnick, and A. Moulton, “Using
System Dynamics to Analyze the Effect of Funding Fluctuation

on Software Development,” EMJ - Engineering Management

Journal, 2013, doi: 10.1080/10429247.2016.1155390.
[122] D. Pfahl, A. Al-Emran, and G. Ruhe, “A System Dynamics

Simulation Model for Analyzing the Stability of Software Release

Plans,” Software Process: Improvement and Practice, vol. 12, pp.
475–490, 2007, doi: 10.1002/spip.

[123] H. Rahmandad and D. M. Weiss, “Dynamics of concurrent

software development,” Syst Dyn Rev, vol. 25, no. 3, pp. 224–249,

2009, doi: 10.1002/sdr.425.

[124] J. D. Tvedt and J. S. Collofello, “Evaluating the effectiveness of

process improvements on software development cycle time via
systems dynamics modeling,” in Proceedings - IEEE Computer

Society’s International Computer Software & Applications

Conference, 1995, pp. 318–325. doi:
10.1109/cmpsac.1995.524796.

[125] R. J. Madachy, “System dynamics modeling of an inspection-
based process,” in Proceedings - International Conference on

Software Engineering, 1996, pp. 376–386. doi:

10.1109/icse.1996.493432.
[126] Z. Sahaf, V. Garousi, D. Pfahl, R. Irving, and Y. Amannejad,

“When to automate software testing? decision support based on

system dynamics: An industrial case study,” in ACM
International Conference Proceeding Series, 2014, pp. 149–158.

doi: 10.1145/2600821.2600832.

[127] C. Caulfield and S. P. Maj, “A case for system dynamics,” Global
Journal of Engineering Education, vol. 6, no. 1, pp. 2793–2798,

2002.

[128] I. Fatema and K. Sakib, “Using Qualitative System Dynamics in
the Development of an Agile Teamwork Productivity Model,”

International Journal on Advances in Software, vol. 11, no. 1 &

2, pp. 170–185, 2018.
[129] I. Fatema, “Agile Software Develoment Teamwork Productivity -

A System Dynamcs Approach to Analyse the Productivity

Influence Factors,” University of Dhaka, 2019.
[130] F. Stallinger and P. Grünbacher, “System dynamics modelling

and simulation of collaborative requirements engineering,”

Journal of Systems and Software, vol. 59, no. 3, pp. 311–321,
2001, doi: 10.1016/S0164-1212(01)00071-1.

[131] M. Alshammri, “Simulation modelling of human aspects in

software project environment,” in ACM International Conference
Proceeding Series, 2015, pp. 145–146. doi:

10.1145/2811681.2824995.

[132] J. Collofello, D. Houston, I. Rus, A. Chauhan, D. M. Sycamore,
and D. Smith-Daniels, “System dynamics software process

simulator for staffing policies decision support,” in Proceedings

of the Hawaii International Conference on System Sciences, 1998,
pp. 103–111. doi: 10.1109/hicss.1998.654764.

[133] T. K. Abdel‐Hamid and S. Madnick, “Software productivity:

Potential, actual, and perceived,” Syst Dyn Rev, vol. 5, no. 2, pp.
93–113, 1989, doi: 10.1002/sdr.4260050202.

[134] B. Liu, H. Zhang, L. Dong, Z. Wang, and S. Li, “Metrics for

software process simulation modeling,” Journal of Software:
Evolution and Process, no. August 2023, pp. 1–34, 2024, doi:

10.1002/smr.2676.

[135] C. Z. Kirilo et al., “Organizational climate assessment using the
paraconsistent decision method,” Procedia Comput Sci, vol. 131,

pp. 608–618, 2018, doi: 10.1016/j.procs.2018.04.303.

[136] J. A. García-García, J. G. Enríquez, M. Ruiz, C. Arévalo, and A.
Jiménez-Ramírez, “Software Process Simulation Modeling:

Systematic literature review,” Comput Stand Interfaces, vol. 70,

no. January, p. 103425, 2020, doi: 10.1016/j.csi.2020.103425.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 7

[137] N. Tiruvengadam, A. Elizondo-Noriega, D. Gemes-Castorena,

and M. G. Beruvides, “Opportunities for System Dynamics

Implementation in Project Management Evaluation,” in PICMET
2022 - Portland International Conference on Management of

Engineering and Technology: Technology Management and

Leadership in Digital Transformation - Looking Ahead to Post-
COVID Era, Proceedings, 2022. doi:

10.23919/PICMET53225.2022.9882860.

[138] H. Zhang, B. Kitchenham, and R. Jeffery, “A framework for
adopting software process simulation in CMMI organizations,” in

Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2007, pp. 320–331. doi: 10.1007/978-3-540-

72426-1_27.

[139] V. D. Ramdoo and O. Gukhool, “Applying System Dynamics to
Software Quality Management,” International Journal of

Emerging Research in Management &Technology, vol. 6, no. 2,

pp. 28–43, 2017, doi: 10.23956/ijermt/v6n2/108.

[140] ISO/IEC FDIS 29110-5-1-2 Systems and software engineering —

Life cycle profiles for very small entities (VSEs). 2011.

[141] A. McLucas, “Incorporating soft variables into system dynamics
models: a suggested method and basis for ongoing research,”

2003 System Dynamics Conference papers, 2003.

[142] United-Nations, “Goal 9: Build resilient infrastructure, promote

sustainable industrialization and foster innovation,”

https://www.un.org/sustainabledevelopment/infrastructure-
industrialization/.

[143] CompTIA, “IT Industry Outlook 2022 Return to Strategy,” 2022.

[144] M. Akşit, “The Role of Computer Science and Software
Technology in Organizing Universities for Industry 4.0 and

beyond,” in Proceedings of the 2018 Federated Conference on

Computer Science and Information Systems, FedCSIS 2018, 2018,
pp. 5–11. doi: 10.15439/2018F002.

[145] O. Bongomin, G. Gilibrays Ocen, E. Oyondi Nganyi, A.

Musinguzi, and T. Omara, “Exponential Disruptive Technologies
and the Required Skills of Industry 4.0,” Journal of Engineering

(United Kingdom), vol. 2020, 2020, doi: 10.1155/2020/4280156.

 LUZ MARCELA RESTREPO-TAMAYO
received her degree in Industrial Engineering in

2009 from the University of Antioquia, and in

2014, she graduated with a Master of Statistics
from the National University of Colombia. She is

currently a PhD student in Engineering at the

University of Medellin. His line of research is
related to the improvement of productivity and

process quality through data analysis. She worked
in manufacturing companies and is currently an

assistant professor in the Faculty of Engineering at

the University of Medellin. She is currently
working on the analysis of the productivity of software development teams,

considering non-technical factors based on system dynamics.

 GLORIA PIEDAD GASCA-HURTADO is a

professor at the University of Medellín in the

Faculty of Engineering. In addition, she has a
background in systems engineering and a

specialization in Systems Auditing. Her doctorate

was completed at the Polytechnic University of
Madrid, Spain, in the Department of Languages,

Computer Systems and Software Engineering of

the Faculty of Informatics. Her research is oriented
towards educational innovation and digital

transformation in engineering education, with a specific focus on

gamification and enabling technologies of the Fourth Industrial Revolution.
Additionally, her areas of interest include training in promising practices for

software development in teams and agile methodologies, the treatment of

social and human factors in software engineering, and the productivity of
software development teams. At the curricular level, the research professor

has experience in leading and participating in curricular innovation

processes that incorporate active learning strategies.

 JOHNNY VALENCIA-CALVO received his

degree in Electronics Engineering in 2010, an
M.Sc. in Industrial Automation from Universidad

Nacional de Colombia in 2012, and his Ph.D. in
2016 in Computer Sciences and Decisions. His

research experience has led him to become

involved in topics related to dynamic analysis,
non-linear dynamics, and system dynamics,

focusing on modeling, simulation, and

applications of mathematics in engineering.
Professional in computer science and decision, electronics engineer from

the National University of Colombia, and Master in Industrial Automation.

He worked on the analysis, design, and modeling of a national electricity
market to formulate new political strategies. Expert in systems dynamics

and complex systems modeling.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3527330

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

