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ABSTRACT This paper investigates the enhancement of physical layer security (PHY security) in Recon-
figurable Intelligent Surfaces (RIS)-aided terrestrial and non-terrestrial networks (TN/NTN), focusing on
the challenges posed by node mobility. In the context of next-generation mobile networks, ensuring secure
communication is critical, especially under varying channel conditions caused by mobility. We explore
different mobility models, including random walk, Gauss-Markov, and reference point group mobility, to
assess their impact on key securitymetrics such as secrecy capacity and average secrecy rate. To address these
challenges, we develop robust algorithms for optimizing the phase-shift configurations of RIS. Additionally,
we employ Artificial Intelligence (AI) and Machine Learning (ML) techniques, specifically Deep Neural
Networks (DNN), for performance prediction of PHY security metrics. We also leverage transfer learning
to enhance model robustness across different mobility scenarios through domain adaptation. Our results
demonstrate the effectiveness of our proposedmethods inmaintaining high levels of PHY security despite the
dynamic nature of the channel conditions and the mobility of nodes. The proposed phase-shift configuration
algorithms andML-based solutions ensure secure and resilient communication in aerial RIS-aided TN/NTN,
contributing to the advancement of secure mobile networks.

INDEX TERMS Physical layer security, reconfigurable intelligent surface, reference point group mobility,
transfer learning, unmanned aerial vehicle.

I. INTRODUCTION

THE next generation network toward 6G is envisioned
to provide limitless connectivity through the integration

of terrestrial networks (TNs) and non-terrestrial networks
(NTNs). TNs primarily consist of ground-based infrastruc-
ture such as base stations and user equipment (UE). Con-
versely, NTNs incorporate aerial platforms like satellites,
high-altitude platforms (HAPs), and unmanned aerial vehi-
cles (UAVs), offering amore comprehensive coverage and en-
hanced connectivity, especially in remote or underserved ar-
eas. Examples of UAV use case in TNs and NTNs for remote
area are wildlife tracking, disaster recovery and public safety
missions [1]. Looking forward to 6G, the integration of TNs

and NTNs is expected to become more seamless, promising
ubiquitous connectivity and improved network performance
[2].

One of the persistent challenges in both TNs and NTNs
is managing the issues of line-of-sight (LOS) and non-line-
of-sight (NLOS) propagation. In LOS conditions, signals
travel directly from the transmitter to the receiver, typi-
cally resulting in stronger and more reliable communica-
tion links. However, in NLOS conditions, where signals are
obstructed by buildings, terrain, or other obstacles, signal
quality can severely degrade. Additionally, the mobility of
nodes in these networks—such as moving vehicles, UAVs,
and users—introduces further variability and complexity to
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the channel conditions. To meet the increasing demand for
mobility in TN/NTN, it is necessary to be aware of the
advancements in innovative architectures, breakthrough tech-
nologies, and adaptive strategies [3].

Reconfigurable Intelligent Surfaces (RIS) have emerged
as a promising solution to address the challenges associated
with NLOS conditions and node mobility. RIS are artificial
surfaces with electronically controllable elements that can
manipulate electromagnetic waves [4]. By dynamically ad-
justing these elements, RIS can reflect signals in desired di-
rections, effectively creating virtual LOS paths even in NLOS
environments [5]. Integrating RIS increases the likelihood of
having a LOS communication and improves the probability of
LOS availability [6]. This capability not only enhances signal
strength and reliability but also improves the overall network
performance in dynamic and complex scenarios [7].

Physical layer security (PHY security) is a critical con-
cern in both TNs and NTNs, aiming to protect data from
eavesdropping and unauthorized access by leveraging the
physical characteristics of the communication medium [8].
However, the introduction of RIS poses new challenges to
PHY security. While RIS can enhance signal propagation, it
can also inadvertently reflect signals in directions that could
be intercepted by eavesdroppers.

There are several researches concerning physical layer se-
curity in RIS deployment. Authors in [5], [9]–[11] analyzed
the secrecy performance of RIS-enabled communication in
the presence of an eavesdropper. However, the analysis in the
previous researches considered an ideal continuous phase-
shift at the RIS. High resolution phase-shifters are costly.
Therefore, in practice, only limited phase shifts are available
to be configured [12], [13].

Other authors in [14]–[19] analyzed the secrecy perfor-
mance in RIS-aided network with the assumption of perfect
knowledge in both legitimate and illegitimate channel state
information (CSI). In real world, this assumption is hard to
fulfill, especially in the condition of passive eavesdropping.
The direct CSI of an illegitimate node is available only if it
is active or it is a licensed user that has legal access to the
legitimate communication system [20]. However, when the
illegitimate user only overhear the legitimate user transmis-
sion, it does not send its CSI feedback to transmitter, which
causes one of challenges in this literature.

Node mobility in TN/NTN also adds another challenge in
PHY security. One of the primary characteristics of mobile
communications is the rapid time-variation of the channel
coefficients induced by the Doppler spread. The fast time-
variation in the channel makes mobile networks suscepti-
ble to channel aging, accordingly effective countermeasures
for PHY security in mobility scenarios becomes more dif-
ficult [12]. Hence, Doppler effect, channel selectivity, and
shorter coherence time in mobile networks constitute more
pronounced problem from a PHY security perspective [21].

Designing approaches with low complexity and effi-
cient system performance to optimize aerial RIS-enhanced
TN/NTN are challenging, especially when UAVs are de-

ployed in a partially unknown environment. Artificial intelli-
gence (AI) and machine learning (ML) approaches are pow-
erful tools for designing and optimizing such networks. Deep
neural networks (DNN) as a class of ML algorithms excels in
handling non-linear models. However, several challenges still
need to be investigated — for example, large computational
processing power, high energy consumption, and latency [22].
Transfer learning is one of the potential candidates to

make rapid decision-making with fast sampling efficiency
and mitigate the issues in most ML methods [23]. Transfer
learning is an advanced ML technique that involves transfer-
ring knowledge from one domain (source domain) to another
(target domain). This approach is particularly beneficial in
scenarios where the target domain has limited data but shares
similarities with the source domain.
Khan, et.al. leveraged domain adaptation under transfer

learning paradigm to deal with the outdated channel [24].
Domain adaptation refers to the process of using a DNN
model to discover and transfer latent knowledge from the
source domain to target domain. In [24], the transfer learn-
ing approach allows the designed detector to adapt itself
properly to different channel environments to improve the
system performance. In addition, authors in [25] established
a deep transfer learning (DTL)-based framework to optimize
the phase shifts at the RIS. However, both researches in [24]
and [25] do not consider PHY security in the RIS-assisted
networks.
Given these challenges, the key research focus is to develop

strategies that ensure PHY security in aerial RIS-aided TNs
and NTNs under various mobility scenarios. This includes
leveraging advanced techniques such as transfer learning to
adaptively enhance security measures in real-time, consider-
ing the dynamic nature of mobile networks. Addressing these
issues is crucial for the next generation of secure, efficient,
and resilient mobile communication systems.
In this paper, we focus on evaluating PHY security perfor-

mance in aerial RIS-aided TN/NTN with emphasis on node
mobility. Our goal is to design robust algorithms for discrete
phase-shift configuration of RIS under limited resource and
adapt transfer learning approach to deal with the varying
channel conditions due to node mobility. The detailed con-
tributions of our work are outlined as follows:

• We analyze the impact of different mobility models on
PHY security performance in aerial RIS-aided TN/NTN.
By considering the random walk, Gauss-Markov, and
reference point group mobility models, we aim to cap-
ture a broad spectrum of mobility patterns encountered
in real-world scenarios.

• We develop robust algorithms for optimizing the phase-
shift configuration of quantized RIS elements, namely
optimal secrecy-oriented phase shift (OSP) and maxi-
mizing main channel real coefficient phase-shift con-
figuration (MRC). OSP considers perfectly known CSI
of the legitimate and eavesdropper channel, while MRC
assumes without the knowledge of eavesdropper CSI.
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We also consider random phase-shift (RPS) as the per-
formance benchmark.

• We build DNN model and apply transfer learning tech-
nique to address the regression problem of performance
prediction in aerial RIS-aided TN/NTN. Our study is
not only a mere application of transfer learning method,
but also a thorough investigation of the transfer learning
impacts from the model modifications and dataset vari-
ations on the secrecy performance of aerial RIS-aided
TN/NTN under different mobility models.

• We comprehensively evaluate PHY security perfor-
mance under variousmobilitymodels usingmetrics such
as secrecy capacity and average secrecy rate. This anal-
ysis provides insights into the effectiveness of our pro-
posed algorithms in protecting information from eaves-
dropper in aerial RIS-aided TN/NTN.

The organization of this paper is as follows: In Section I, we
present an introduction to the topic, outlining the significance
of enhancing PHY security in aerial RIS-aided TN/NTN and
the challenges posed by node mobility. Section II provides
a detailed description of the system model we proposed,
including the integration of RIS and the leakage information
in eavesdropper. Section III describes the details of various
mobility models considered for every node in the proposed
system model. In Section IV, we formulate the optimization
problem aimed at designing an effective transmission proto-
col by optimizing the phase-shift configurations of the RIS.
Section IV elaborates on the robust algorithms we devel-
oped to solve this optimization problem, including Optimal
Secrecy-oriented Phase-shift (OSP), Maximizing Real Coef-
ficient (MRC), and RandomPhase Shift (RPS). SectionV dis-
cusses the use of DNNmodel and transfer learning techniques
for efficient performance prediction of PHY security metrics.
In Section VI, we present our simulation results, providing a
comprehensive analysis of the impact of different mobility
models and the effectiveness of our proposed algorithms.
Finally, Section VII concludes the paper by summarizing our
key findings and insights, emphasizing the practical solutions
provided for ensuring secure and resilient communication in
aerial RIS-aided TN/NTN.

II. SYSTEM MODEL
In this paper, we consider an aerial RIS-aided secure trans-
mission mobile system with one source node (S), one RIS
mounted on UAV (U), one destination node (D), and an
eavesdropper (E) as illustrated in Fig. 1. We assume that all
nodes in the system (S,D and E) are mobile with the velocity
vector v⃗ and has its own speed v and direction η. In addition,
all nodes are assumed to be equipped with a single antenna.
Due to far distance and the presence of obstacles, there is
NLOS transmission from S to D and from S to E. Hence, the
main channel transmission is assisted by the installation of a
RIS with R elements that is attached to U. At the same time,
E wiretaps the information from U that makes the system
unsecured.

FIGURE 1. Illustration of the considered system model of the RIS-assisted
communication.

Let Θ = diag
([
κ1ejθ1 , . . . , κrejθr , . . . , κRejθR

])
denotes

the phase-shift matrix of U, where κr ∈ (0, 1] and θr ∈
[0, 2π) represent the amplitude reflection coefficient and the
phase-shift of the r-th reflecting element at U, respectively.
For the sake of convenience, we assume that the ampli-
tude reflection coefficient for all R elements are the same
(κ = κr ∀ 1 ≤ r ≤ R), then the phase-shift matrix of U be-
comesΘ = κ diag

([
ejθ1 , . . . , ejθR

])
.

The received signal at D that is transmitted from S and
reflected by U can be written as

sD =
√
PS

R∑
r=1

√
FUDh̃UrDκe

jθr
√
FSUh̃SUruS + nD, (1)

where PS denotes the transmit power at S and uS denotes the
transmitted signal from S. h̃SUr and h̃UrD denote the complex
channel coefficients from S to r-th element of U and from
r-th element of U to D, respectively. Meanwhile, nD is the
additive white Gaussian noise (AWGN) at D with zero mean
and variance σ2

D.
FAB with A ∈ {S,U} and B ∈ {U,D,E} in (1) denotes the

large-scale fading of the wireless channel from A to B that
can be formulated as [26]

FAB = 20 log10

(
4πf
c

)
+ 10n log10(dAB) + χσ, (2)

where f , c, n, andχσ denote the carrier frequency, light speed,
path loss exponent, and shadow fading standard deviation,
respectively. The distance between two nodes is denoted by
dAB that can be calculated in the xyz-plane as

dAB =
√
(xA − xB)2 + (yA − yB)2 + (zA − zB)2. (3)

It is further assumed that within a coherence time block,
the location of the mobile nodes and their connections do
not change. Thus, the network topology is considered static
but changes independently from one time block to another.
By incorporating mobility model in a series of time blocks,
we can capture the dynamic nature of nodes’ mobility and
characterize the time-series changing of nodes’ locations and
connections [27].
Using polar representation, the complex channel coeffi-

cients in (1) can be expressed as h̃SUr = ĥSUr e
jϕSUr and
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h̃UrD = ĥUrDe
jϕUrD , where ĥSUr and ĥUrD are the magnitudes

of the channel coefficients while ϕSUr and ϕUrD are their
phases. Hence, the received signal-to-noise ratio (SNR) at D
can be formulated as

γD = ρDFSUFUDκ
2

∣∣∣∣∣
R∑

r=1

ĥSUr ĥUrDe
j(θr+ϕSUr+ϕUrD)

∣∣∣∣∣
2

, (4)

where ρD = PS/σ
2
D denotes the average SNR at D. Addi-

tionally, the achievable capacity of the received signal at D is
given by

CSUD = log2 (1 + γD) . (5)

In the wiretap link, let h̃UrE be the complex channel coeffi-
cient from the r-th element of U to E. The received signal at
E can be written as

sE =
√
PS

R∑
r=1

√
FUEh̃UrEκe

jθr
√
FSUh̃SUruS + nE, (6)

where nE is the AWGN with zero mean and variance σ2
E at E.

Incorporating more factors such as interference, environmen-
tal noise and imperfect CSI is also critical importance in PHY
security of RIS-aided networks. In this work, the influence of
those factors can be treated as noise effect. Detail analysis
for different type of such factors can be dealt with in the
future works. The resulting SNR at E based on (6) then can
be expressed as

γE = ρEFSUFUEκ
2

∣∣∣∣∣
R∑

r=1

ĥSUr ĥUrEe
j(θr+ϕSUr+ϕUrE)

∣∣∣∣∣
2

, (7)

where ρE = PS/σ
2
E denotes the average SNR at E. Without

loss of generality, we assume that ρ = ρD = ρE. The
magnitude and phase of the channel coefficient from the r-th
element of U to E are denoted by ĥUrE and ϕUrE, respectively.
Thus, the achievable capacity of the overheard signal at E is
given by

CSUE = log2 (1 + γE) . (8)

III. MOBILITY MODELS
In TN/NTN, node mobility introduces significant variability
and complexity to the communication channels, impacting
the performance and security of the network. To accurately
characterize these effects, we focus on several mobility mod-
els: the random walk mobility (RWM) model, the Gauss-
Markov mobility (GMM) model, and the reference point
group (RPG) mobility model. The random walk model cap-
tures the unpredictable and erratic movements of nodes, rep-
resenting high randomness in mobility. The Gauss-Markov
model provides amore realistic scenario where the current ve-
locity and direction are correlatedwith past behavior, simulat-
ing smoother transitions. The reference point group mobility
model is particularly relevant for scenarios involving coordi-
nated movements, such as those of a group of nodes following
a leader, which is common in applications involving UAVs
and other aerial platforms. By studying these models, we aim
to comprehensively understand and mitigate the impact of

mobility on the performance and security of aerial RIS-aided
TN/NTN systems, leading to robust and adaptive phase-shift
optimization strategies.

A. LEGITIMATE USERS
Regarding to all nodes’ mobility, we assume that all nodes
during their movements maintain the same height through all
the time. Specifically, we also assume that legitimate node
movements in the xy-plane are modeled as the RPG mobility
model, where they move toward the same direction. In this
system, the role of U is to help or assist main channel trans-
mission such that the information can be received securely at
D. Then, the movements of other legitimate nodes (S and U)
are directed by the movement of D.
The location of D as the reference point of RPG mobility

model in the xy-plane at time t can be expressed as

xg(t) = xg(t − 1) + vg(t) cos(ηg(t)), (9)

yg(t) = yg(t − 1) + vg(t) sin(ηg(t)), (10)

where vg(t) and ηg(t) represent the speed and direction of the
group. We assume that the movement of D as the speed and
direction of the group follows GMM model, which can be
expressed as

vg(t) = αvg(t − 1) + (1− α)E[vg] + σvg

√
(1− α2)mvg(t),

(11)
ηg(t) = αηg(t − 1) + (1− α)E[ηg] + σηg

√
(1− α2)mηg(t),

(12)
where α indicates the memory level.mvg(t) denotes the Gaus-
sian distribution of group speed with mean E[vg] and variance
σ2
vg . Meanwhile, mηg(t) denotes the Gaussian distribution of

group direction with meanE[ηg] and variance σ2
ηg [28]. GMM

model has smooth movement that is more similar with real
mobile node movement. GMM model was originally pro-
posed for the simulation of a personal communication system
(PCS) [29].

According to the RPG mobility model, the speed and di-
rection of other legitimate nodes at time t is a combination
of group movement and random deviation, which can be
mathematically expressed as

vnode(t) = min{max{vg(t) + ∆v, 0},Vmax}, (13)

ηnode(t) = ηg(t) + ∆η, (14)

where node ∈ {S,U}. ∆v and ∆η represent random speed
and direction deviation of each node which follows a uniform
distribution [30]. Vmax denotes the maximum speed of every
node. Consequently, the position of each legitimate node at
time t can be written as

xnode(t) = xnode(t − 1) + vnode(t) cos(ηnode(t)), (15)

ynode(t) = ynode(t − 1) + vnode(t) sin(ηnode(t)). (16)

Aside from group motion occurs frequently in ad hoc
networks and there is relationship among mobile nodes [30],
RPGmobilitymodel can be used to describe users’ movement
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FIGURE 2. The track of 20 different locations for each node under RWM
model.

for many scenarios, such as in military battlefield commu-
nications and during disaster recovery in search and rescue
(SAR) operations [31]. With RPG and GMMmodel for node
movement in aerial RIS-aided TN/NTN, the mobility scenar-
ios in this research are general to diverse conditions as group
movement in ad hoc networks and individual node movement
in PCS.

B. EAVESDROPPER MOBILITY
In this paper, we consider three mobility models for eaves-
dropper movement. RWM and GMM scenarios represent
independent eavesdropper. Meanwhile, RPG scenario repre-
sents smart and structured eavesdropper. Thus, the mobility
scenarios in this study are sufficient enough to characterize
eavesdropper behavior in mobile network. Further sophisti-
cated eavesdropper with active attacks or adaptive eavesdrop-
per mode can be dealt with in the future works.

1) Random Walk Mobility Model
In RWM model, instead of following the speed and direction
of D, the speed and direction of E at time t are randomly
selected from the uniform distribution, i.e., vRWM

E (t) ∼
U [Vmin,Vmax] and ηRWM

E (t) ∼ U [0, 2π), respectively. The
location of E at time t with RWM model can be further
expressed as

xRWM
E (t) = xRWM

E (t − 1) + vRWM
E (t) cos(ηRWM

E (t)), (17)

yRWM
E (t) = yRWM

E (t − 1) + vRWM
E (t) sin(ηRWM

E (t)). (18)

Fig. 2 shows a snapshot of the node movements with E
using RWM. The movement of S and U correlates with D’s
movement. Meanwhile, E moves according to RWM model
that follows random uniform distribution.

2) Gauss-Markov Mobility Model
In GMM model, E also does not follow the movement of D.
Node E has its own unique speed and direction with some
tendency not only continuing the current speed and direction

FIGURE 3. The track of 20 different locations for each node under GMM
model.

(Markov property), but also randomly following Gaussian
distribution. GMMmodel is known for its smooth movement
and thereby more similar with real mobile node movement.
The speed and direction of E at time t in GMMmodel can be
expressed as

vGMM
E (t) = αEvGMM

E (t − 1) + (1− αE)E[vGMM
E ]

+ σvGMM
E

√
(1− α2

E)mvGMM
E

(t),
(19)

ηGMM
E (t) = αEη

GMM
E (t − 1) + (1− αE)E[ηGMM

E ]

+ σηGMM
E

√
(1− α2

E)mηGMM
E

(t),
(20)

where αE indicates the memory level of E’s movement
(Markov’s property). mvGMM

E
(t) denotes the Gaussian distri-

bution of E’s speed with mean E[vGMM
E ] and variance σ2

vGMM
E

.
Meanwhile, mηGMM

E
(t) denotes the Gaussian distribution of

E’s direction with mean E[ηGMM
E ] and variance σ2

ηGMM
E

. The
location of E then can be written as

xGMM
E (t) = xGMM

E (t − 1)+ vGMM
E (t) cos(ηGMM

E (t)), (21)

yGMM
E (t) = yGMM

E (t − 1) + vGMM
E (t) sin(ηGMM

E (t)). (22)

Fig. 3 shows a snapshot of the node movements with E
using GMM. As can be seen in Fig. 3, the movement of S
and U correlate with D’s movement. Meanwhile, E moves
according to GMMmodel that also has smooth movement as
the legitimate node group but owns different Gauss-Markov
properties with them.

3) Reference Point Group Mobility Model
In the assumption of E that can acquire the legitimate users
mobility information, E can follow the legitimate nodes’ mo-
bility model. Therefore, the movement of eavesdropper can
be modeled as the RPG mobility model, whose speed and
direction at time t can be expressed as

vRPG
E (t) = min{max{vg(t) + ∆v, 0},Vmax}, (23)
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FIGURE 4. The track of 20 different locations for each node under RPG
mobility model.

ηRPG
E (t) = ηg(t) + ∆η. (24)

Consequently, the location of Ewith RPGmobility model can
be written as

xRPG
E (t) = xRPG

E (t − 1) + vRPG
E (t) cos(ηRPG

E (t)), (25)

yRPG
E (t) = yRPG

E (t − 1) + vRPG
E (t) sin(ηRPG

E (t)). (26)

Fig. 4 shows a snapshot of the node movements with RPG
mobility model. The movement of S,U, and E correlates with
D’s movement. Thus, although all nodes do not have exactly
the same speed and direction, they have similar pattern of
movement track as shown in Fig. 4.

IV. PHASE SHIFT OPTIMIZATION
Optimizing the configuration of the phase-shifts of RIS is
essential to control the propagation environment dynamically
and enhance the overall communication performance. By
adjusting the phase-shifts based on the instantaneous CSI, we
can steer the reflected signals toward the intended receiver,
thereby maximizing the signal strength and quality at the
destination. This targeted signal steering helps in creating
virtual line-of-sight paths in non-line-of-sight scenarios, sig-
nificantly improving the link reliability. Additionally, opti-
mizing the phase-shifts is crucial for minimizing the signal
leakage toward potential eavesdroppers, thereby enhancing
physical layer security. This dual objective of enhancing
legitimate communication while suppressing eavesdropping
necessitates precise and adaptive phase-shift configurations
to respond to the dynamic nature of wireless channels, espe-
cially under varying conditions such as node mobility in TNs
and NTNs . This motivation leads to the need of our proposed
algorithms, which dynamically optimize RIS phase-shifts by
leveraging instantaneous CSI to enhance signal strength at the
destination and minimize leakage to eavesdroppers, thereby
ensuring robust and secure communication in dynamic wire-
less environments.

A. PERFORMANCE METRICS
Evaluating the secrecy performance in a wireless system
involves several key metrics. In this study, we calculate the
instantaneous secrecy capacity (SC) that is defined as the dif-
ference between the main channel rate and the eavesdropper
channel rate, and can be formulated as

SC = max {CSUD − CSUE, 0} . (27)

Consequently, the average secrecy rate (ASR) of the system
can be mathematically calculated as

ASR = E [SC] . (28)

B. PROBLEM STATEMENT
In the proposed system model, we aim to maximize SC by
considering quantized phase shift instead of high phase-shift
resolution [32] and due to hardware limitation. The phase-
shift configuration atU is modeled as linear quantization with
Q levels. Hence, the objective function of our maximization
problem is

maximize
θ

SC(θ) = CSUD − CSUE (29a)

subject to θr ∈
{
0,

2π

Q
,
4π

Q
, · · · , 2π(Q− 1)

Q

}
, (29b)

ρ ≤ PS, (29c)

where θ = [θ1, . . . , θR] represents the phase-shift vector of
all R elements at U.

C. OPTIMAL SECRECY-ORIENTED PHASE-SHIFT
In the condition that U can obtain the CSIs of S, D, and E, U
can use these CSIs to obtain the optimal phase shift config-
uration that maximizes the instantaneous secrecy capacity of
the system, which is mathematically expressed as

(OSP problem) maximize
θ

CSUD − CSUE

subject to (29b), (29c).
(30)

Hence, the instantaneous SNR of the main and eavesdropper
channels with optimal secrecy-oriented phase shift (OSP) can
be expressed as

γOSP
D = ρκ2FSUFUD

∣∣∣∣∣
R∑

r=1

ĥSUr ĥUrDe
j(θOSP

r +ϕSUr+ϕUrD)

∣∣∣∣∣
2

,

(31)

γOSP
E = ρκ2FSUFUE

∣∣∣∣∣
R∑

r=1

ĥSUr ĥUrEe
j(θOSP

r +ϕSUr+ϕUrE)

∣∣∣∣∣
2

.

(32)
Let SCOSP denote the instantaneous secrecy capacity for

OSP. Meanwhile, channel coefficient vector hAB ∈ CR×1 is
the combination of large scale and small scale fading for the
channel from A to B, where hABr =

√
FABĥABr e

jϕABr . The
exhaustive search algorithm for OSP is shown in Algorithm 1.
OSP algorithm obtains the optimal phase-shift by calculating
the secrecy capacity (SC) from all QR possible phase-shift
configurations, then searching the maximum SC value among
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Algorithm 1 OSP exhaustive search
Input: R, Q, κ, ρ, hSU, hUD, and hUE;
Output: θOSP,SCOSP;
1: SCOSP = 0← secrecy capacity initialization;
2: for i ∈ [1, . . . ,QR] do
3: for r ∈ [1, . . . ,R− 1] do
4: θr ← 2π

Q ⌈
i

QR−r ⌉;
5: end for
6: θR ← 2πi

Q ;
7: Θ← κ diag

([
ejθ1 , . . . , ejθr , . . . , ejθR

])
;

8: γOSP
D ← ρ

∣∣hUDΘhSU
′∣∣2;

9: γOSP
E ← ρ

∣∣hUEΘhSU
′∣∣2;

10: CSUD ← log2
(
1 + γOSP

D

)
;

11: CSUE ← log2
(
1 + γOSP

E

)
;

12: SCtemp ← max [CSUD − CSUE, 0];
13: if SCtemp > SCOSP then
14: iOSP ← i; SCOSP ← SCtemp;
15: end if
16: end for
17: for r ∈ [1, . . . ,R− 1] do
18: θOSP

r ← 2π
Q ⌈

iOSP

QR−r ⌉;
19: end for
20: θOSP

R ← 2πiOSP

Q ;
21: return

all the resulted QR SCs. Therefore, OSP algorithm always
obtains the global optimum phase-shift and OSP complexity
is O(QR). Because there are QR combinations of phase-shift
configuration that should be calculated to obtain the optimal
phase shift in OSP, this exhaustive search makes the OSP not
feasible to be implemented within limited time.

D. MAXIMIZING REAL COEFFICIENT
In the condition of U that cannot obtain the CSI of E, U

is assumed that it can still acquire the CSIs of S and D to
maximize the received SNR at D. Thus, we propose phase-
shift optimization based on the maximum real component
of the main channel coefficient multiplication, which can be
expressed as [33]

(MRC problem) maximize
θ

ℜ
{
ĥSUr ĥUrDe

j(θr+ϕSUr+ϕUrD)
}

subject to (29b).
(33)

where ℜ{.} denotes the real component of the complex
number. Maximizing real coefficient (MRC) is considered
as theoretical-based optimization algorithm to obtain the
optimal phase-shift configuration in discrete-valued phase-
shift RIS. Let θMRC denotes the phase shift vector for all
R elements of RIS with MRC optimization, the resulting
instantaneous SNR at D and E then becomes

γMRC
D = ρκ2FSUFUD

∣∣∣∣∣
R∑

r=1

ĥSUr ĥUrDe
j(θMRC

r +ϕSUr+ϕUrD)

∣∣∣∣∣
2

,

(34)

Algorithm 2Maximizing Real Coefficient
Input: R, Q, hSU, and hUD ;
Output: θMRC;
1: for r ∈ [1, . . . ,R] do
2: val← 0;
3: for q ∈ [1, . . . ,Q] do
4: temp← ℜ

{
ĥSUr ĥUrDe

j( 2πq
Q +ϕSUr+ϕUrD)

}
;

5: if val < temp then
6: val← temp;
7: θMRC

r ← 2πq
Q ;

8: end if
9: end for
10: end for

Calculating Instantaneous SC of MRC
Input: κ, ρ, hSU, hUD, hUE, and θMRC;
Output: SCMRC;
11: Θ← κ diag

([
ejθ

MRC
1 , . . . , ejθ

MRC
R

])
;

12: γMRC
D ← ρ

∣∣hUDΘhSU
′∣∣2;

13: γMRC
E ← ρ

∣∣hUEΘhSU
′∣∣2;

14: CSUD ← log2
(
1 + γMRC

D

)
;

15: CSUE ← log2
(
1 + γMRC

E

)
;

16: SCMRC ← max [CSUD − CSUE, 0];
17: return

γMRC
E = ρκ2FSUFUE

∣∣∣∣∣
R∑

r=1

ĥSUr ĥUrEe
j(θMRC

r +ϕSUr+ϕUrE)

∣∣∣∣∣
2

.

(35)
The algorithm of MRC is shown in Algorithm 2. The

process of MRC algorithm is first in every RIS element it
calculates a composite coefficient that is the product of the
channel response from S to U, the reflection coefficient at U,
and the channel response from U to D, i.e., h̃SUrκe

jθr h̃UrD =
ĥSUr e

jϕSUr κejθr ĥUrDe
jϕUrD ≈ ĥSUr ĥUrDe

j(θr+ϕSUr+ϕUrD) when
we consider amplitude reflection κ = 1. Then,MRC searches
the maximum real coefficients from all Q possible composite
coefficients as the number of possible phase-shifts at every
element is Q.
The computational complexity of maximum real searching

at every RIS element is O(Q). Additionally, because the
maximum real searching is computed repeatedly R times,
then MRC complexity becomes O(Q × R). MRC algorithm
has linearly increasing complexity, while OSP algorithm has
exponentially increasing complexity. As a result, MRC has
lower complexity than OSP.

E. RANDOM PHASE SHIFT

The random phase shift (RPS) algorithm is considered as
the baseline configuration for comparing the phase-shift op-
timization performance. The RPS algorithm randomly tunes
the phase of the passive reflecting elements at RIS. It means
that RPS algorithm does not require any CSI to tune the
passive reflecting elements, which can be mathematically
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TABLE 1. Computational Complexity of Phase-Shift Optimization Methods

Optimization Method Complexity
Optimal Secrecy-oriented Phase-shift (OSP) O(QR)
Maximizing Real Coefficient (MRC) O(Q× R)
Random Phase Shift (RPS) O(R)

FIGURE 5. Execution time of phase-shift optimization methods.

expressed as
θRPS
r ∼ U(0, 2π), (36)

where U(·) represents the uniform distribution of the phase
shifts in (29b). Thus, the instantaneous SNR of the main and
eavesdropper channels with RPS can be expressed as

γRPS
D = ρκ2FSUFUD

∣∣∣∣∣
R∑

r=1

ĥSUr ĥUrDe
j(θRPS

r +ϕSUr+ϕUrD)

∣∣∣∣∣
2

,

(37)

γRPS
E = ρκ2FSUFUE

∣∣∣∣∣
R∑

r=1

ĥSUr ĥUrEe
j(θRPS

r +ϕSUr+ϕUrE)

∣∣∣∣∣
2

.

(38)

F. PRELIMINARY RESULTS
Computational complexity of the phase-shift optimization
methods using OSP, MRC, and RPS is presented in Table
1. By considering the number of RIS elements R and the
quantization levels in each element Q, OSP needs to cal-
culate all QR combinations to obtain the optimum phase-
shift configuration. On the other hand, MRC needs Q × R
calculations since it only calculates the main-channel real
coefficient multiplication at every element, whereas RPS only
needs R computations due to its random configuration.

Fig. 5 shows the execution time of the OSP,MRC, and RPS
with different number of RIS elements and quantization lev-
els. MRC and RPS have feasible execution time regardless of
the number of RIS elements and quantization levels because
the computational complexity only increases linearly with
the number of RIS elements. However, OSP execution time

increases exponentially as the number of RIS elements and
quantization levels also increase. The reason is that because
OSP needs to calculate all QR combinations to obtain the
optimum phase-shift configuration. Thus, OSP is not feasible
to be applied within limited time using high number of RIS
elements.
Considering the high execution time of the phase-shift

optimization methods, we propose a DNN model to predict
the secrecy performance. DNN arises as a well-suited method
for real-time system performance evaluation. DNN model
has the shortest execution time compared to the Monte-Carlo
simulation and mathematical analysis [34].

V. DEEP TRANSFER LEARNING
Addressing the environment changes due to nodemobility, we
propose a transfer learning method that has less training time
than re-training the DNN model with the new environment
data. In transfer learning approach, there are a source model
and a target model, which are denoted by subscript S and
T, respectively. Analogues to traditional machine learning,
source model corresponds to the model in the training pro-
cess, whereas target model is related to the model used in
testing [35].
Fig. 6 illustrates the source and target model in transfer

learning method to predict SC. The source model is a DNN
model with several hidden layers. On the other hand, target
model layers are transferred from the source model layers
with specific arrangement. First, frozen layer and fine-tuned
layer parameters are copied from the source model. These
layers are indicated by the gray boxes of ‘‘transfer parameter’’
in Fig. 6. The input layer and frozen layers are settled into
fixed parameters and do not join the backward propagation in
target model training.
Second, new layers are located before the output layer.

The new layers are small number of new layers where their
parameter initialization are given randomly, no relation with
the final trained parameter values in source model. These
layers are denoted by the ‘‘new parameter initialization’’ box
in Fig. 6. Adding new layers is intuitive method to transfer
knowledge in deep transfer learning [36]. Because there are
only small number of target dataset, we transfer or copy first
several layers from source model into the first several layers
of target model and add only small number of new layers in
target model. The transferred layers correspond to general
characteristics of features that can be applicable to source
and target datasets [37]. However, because target dataset is
different from source dataset, we need to add several new
layers located directly after the transferred layers to learn the
specific characteristics of features in target dataset.
Lastly, fine-tuned layers along with the new layer are

trained with the new environment data. Fine-tuning aims
to train just few layers of the source model by using few
labeled samples in the target environment. Fine-tuning can
dramatically reduce training costs because only parameters
from few layers will be trained [38]. The proposed transfer
learning approach in this paper is considered using a fine-
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FIGURE 6. Source model and target model with transfer learning-based regression.

tuned model to learn new environment data efficiently. In
this case, the optimal parameters in the trained source model
are used and transferred into the target model to enhance the
new training although the target model is only trained with
insufficient amount of data [39].

A. DOMAIN AND TASK
Both of the source model and target model in transfer learning
method have their own domain and task. A domain is defined
by D = {X , p(x)}, where X is a feature space, p(x) is a
marginal probability distribution, and x ∈ X . For a given
domain D, a task is defined by T = {Y, f (·)}, where Y is a
label space and f (·) is a predictive function f : X → Y which
is learned from the feature vector and label pairs (x, y) with
y ∈ Y [40]. From a probabilistic perspective, we can also
rewrite the task as T = {Y, p(y|x)}, where p(y|x) denotes
the posterior probability of label y for a given feature vector
x.

Assuming a source domainDS with a corresponding source
task TS and a target domain DT with a corresponding task
TT, transfer learning goal is to improve the target predictive
function fT(·) by using the related information from DS and
TS, where DS ̸= DT and/or TS ̸= TT. In addition, in most
cases, the size ofDS is much larger than the size ofDT [41]. In
nonstationarywireless networks, it is difficult to obtain a large
number of new training samples within a short time in the new
target environment, then transfer learning should be applied
and fine-tuned with small data set in new target domain [42].

In the special case of DS ̸= DT and TS = TT as in this
study, this case is categorized as transductive transfer learning

[43]. In this paper, we consider a source model with one
source domainDS and one source task TS, and a target model
with one target domainDT and one target task TT. We define
DS, TS, DT, and TT as

DS = {XS, p(xS)}, xS ∈ XS,

TS = {YS, fS}, fS : XS → YS, yS = fS(xS) ∈ YS,
(39)

DT = {XT, p(xT)}, xT ∈ XT,

TT = {YT, fT}, fT : XT → YT, yT = fT(xT) ∈ YT,
(40)

respectively. The source and target model have the same task,
which is to predict SC. However, they have different domain
since the node mobility causes environment changing. Con-
sidering that the data sets in new environment follow different
distributions, deep transfer learning has the ability to fine-
tune DNN model with new training samples as target domain
[44]. On the other hand, the case of traditional machine
learning is DS = DT and TS = TT. Conventional machine
learning analyzes the same task under the same domains and
assumes there is no difference in source and target environ-
ment.

B. SOURCE MODEL
In order to obtain the system secrecy performance in a short
time, we build a source model with DNN architecture that is
capable of predicting the system performancewith supervised
learning [45]. The developed deep learning model utilizes
regression analysis to estimate the relationship between the
dependent variable SC that denotes the instantaneous secrecy
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capacity in (27) and an input feature vector x that can be
expressed as

x = [ρ,pS,pU,pD,pE, dSU, dUD, dUE, ϕSU1
, ..., ϕSUR ,

ϕU1D, ..., ϕURD, ϕU1E, ..., ϕURE,ℜ{hSU1
},ℑ{hSU1

}, ...,
ℜ{hSUR},ℑ{hSUR},ℜ{hU1D},ℑ{hU1D}, ...,ℜ{hURD},
ℑ{hURD},ℜ{hU1E},ℑ{hU1E}, ...,ℜ{hURE},ℑ{hURE}]T ,

(41)

where hUrE denotes the channel coefficient of eavesdropper
CSI from the r th element of RIS to E, pX ≜ [xX, yX, zX]
denotes the 3D Cartesian coordinates of node X, and ℑ{.}
denotes the imaginer component of the complex number. It is
noted that the total number of input features is 16 + 9R.
The source model in our proposed transfer learning ap-

proach consists of five fully connected (FC) layers and an
output layer that can be written as

fS(x;ΓS) =
[
f6(ΓS

6) ◦ f5(ΓS
5) ◦ f4(ΓS

4) ◦ f3(ΓS
3)

◦ f2(ΓS
2) ◦ f1(ΓS

1)
]
(x),

(42)

where (f2(ΓS
2) ◦ f1(ΓS

1))(x) ≜ f2(f1(x;ΓS
1);Γ

S
2) and ΓS ≜

{ΓS
1 , . . . ,Γ

S
6} denotes the parameters (weights and biases of

all layers) in the sourcemodel that should be optimized during
deep learning process.

Let ol ∈ R1×al be the output vector of the lth FC layer with
al neurons, the output vector of every layer can be formulated
as [46]

ol = φl (ol−1Wl + bl) , (43)

where φl(·) is the activation function used at the lth layer,
Wl ∈ Ral−1×al is the weight matrix from the (l − 1)th

FC layer to the lth FC layer, and bl ∈ R1×al is the bias
vector for all of the al neurons at the lth layer. In this paper,
we consider all FC layers use rectified linear unit (ReLU)
φ(o) = max{0, o} as the activation function. The parameters
of the lth FC layer then can be denoted as Γl = {Wl ,bl}.

Using the assumption of the same number of neurons in
all five FC layer (al = a ∀ 1 ≤ l ≤ L), the number of
trainable parameters that are updated in the first FC layer is
(16+9R)a+a. Furthermore, the number of trainable param-
eters in the rest of FC layer is (L − 1)(a2 + a). When there
is only one predicting neuron in the output layer representing
the SC value, then the number of trainable parameters in the
output layer is a+1. Thus, total number of parameters in our
proposed source model is (18+ 9R)a+(L − 1)(a2 + a)+ 1.

C. TRAINING PHASE
In the source model and target model training phase, dataset
is prepared with the input vector in (41) and SC values as the
output. During the training step, an optimizer is used to obtain
optimal parameter Γ by minimizing the loss function of the
predicted secrecy capacity ŜC from the DNN model and the
actual secrecy capacity SC from (27). The optimizer used in
this study is adaptive moment estimation (Adam). The loss

Algorithm 3 Transfer learning algorithm
Input: Sbatch,Nepoch = 150, SPLIT_SIZE = 0.1;
1: Load: source dataset;
2: Load: target dataset;

Phase 1: Source model training phase
Input: source training dataset;
Output: trained parameters ΓS and trained source model

fS(x;ΓS);
3: build source model using (42);
4: i← 0;
5: while i < Nepoch do
6: i← i+ 1; j← 0;
7: while j < NS

batch do
8: j← j+ 1;
9: ΓS ← Optimizer(ΓS,∇L(i,j)

batch);
10: end while
11: end while
12: return

Phase 2: Target model training phase
Input: target training dataset, trained parameters ΓS;
Output: trained parameters ΓT and trained target model

fT(x;ΓT);
13: transfer ΓS into Γfr and Γft using (47) and (48);
14: build target model using (46);
15: i← 0;
16: while i < Nepoch do
17: i← i+ 1; j← 0;
18: while j < NT

batch do
19: j← j+ 1;
20: ΓT ← Optimizer(ΓT,∇L(i,j)

batch);
21: end while
22: end while
23: return

Phase 3: Inference phase
Input: testing dataset;
Output: predicted SC and RMSE values;

24: compute ŜC
(k)

= fT(xtest;ΓT) using the trained target
model fT(x;ΓT);

25: compute RMSE using (52);
26: return

function that calculates the squared error for each k-th sample
in the j-th mini-batch of the i-th epoch can be written as

L(i,j,k)(Γ) =
1

2

(
SC(i,j,k) − ŜC

(i,j,k)
)2

, (44)

where j is the index of the mini-batch in the i-th epoch.

Let ζ be the neural network learning rate, that is a prede-
termined small positive value to scale the parameters update
in the direction of the negative loss gradient. The updated
parameter in every j-th mini-batch of the i-th epoch can be
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TABLE 2. Number of Parameters in Fine-tuning

DNN Model Number of Non-trainable Parameters Number of Trainable Parameters
Source Model 0 (18 + 9R)a+ (L − 1)(a2 + a) + 1
Target Model (17 + 9R)a+ (M − 1)(a2 + a) (L −M)(a2 + a) + (a+ 1)

expressed as

Γ = Γ−∇L(i,j)
batch(Γ) = Γ− ζ

Sbatch

Sbatch∑
k=1

∇L(i,j,k)(Γ), (45)

where Sbatch is the size of the mini-batch and ∇L(i,j)
batch(Γ) is

the loss gradient value of the j-th mini-batch in the i-th epoch.
It is noted that DS ̸= DT at mobile TN/NTN due to

environment changes from node mobility. In most cases, the
size of DS is much larger than the size of DT [41]. Then, the
number of mini-batches in source model training (NS

batch) is
much larger than the number of mini-batches in target model
training (NT

batch) or we can say that NS
batch ≫ NT

batch when
we consider the same batch size Sbatch to train both the source
and target model.

D. TARGET MODEL
The target model in our proposed transfer learning approach
also consists of several FC layers and an output layer with
trained layers that are obtained from the source model and
can be written as

fT(x;ΓT) =
[ new layer︷ ︸︸ ︷
f7(Γout

7 ) ◦ f6(Γnew
6 ) ◦ f5(Γnew

5 )

◦

fine-tuned layers︷ ︸︸ ︷
f4(Γft

4 ) ◦ f3(Γft
3 ) ◦

non-trainable layers︷ ︸︸ ︷
f2(Γfr

2 ) ◦ f1(Γfr
1 )

]
(x),

(46)

where ΓT ≜ {Γfr
1 ,Γfr

2 ,Γft
3 ,Γft

4 ,Γnew
5 ,Γnew

6 ,Γout
7 } denotes

the parameters (weights and biases) of all layers in the target
model. Γfr indicates the frozen layer parameters where the
initial values are transferred from the source model and not
updated in the target model training, which can be written as

Γfr
l (i, j) = ΓS

l (i = Nepoch, j = NS
batch). (47)

On the contrary, Γft indicates fine-tuning parameters where
the initial values are also transferred from the source model
but updated in the target model training based on the loss
gradient value that can be calculated as

Γft
l (i = 1, j = 1) = ΓS

l (i = Nepoch, j = NS
batch), (48)

Γft
l (i, j) = Γft

l (i, j− 1)− ζ

Sbatch

Sbatch∑
k=1

∂L(k)(i, j− 1)

∂Γft
l (i, j− 1)

. (49)

In (46), Γnew and Γout indicate the new additional layer and
the output layer parameters respectively, where the values
are randomly initialized and iteratively updated in the target
model training, which can be expressed as

Γnew
l = Γnew

l − ζ

Sbatch

Sbatch∑
k=1

∂L(k)

∂Γnew
l

, (50)

TABLE 3. DNN Model Architecture

Parameters Values
Number of RIS elements, R 4
Number of input layer neurons 52
Number of hidden layers in the source model 5
Number of neurons at each hidden layer, a 512
Batch size, Sbatch 512
Number of epochs, Nepoch 150
Number of transferred layers from the source model 4
Number of new hidden layers in the target model 2

Γout = Γout − ζ

Sbatch

Sbatch∑
k=1

∂L(k)

∂Γout
. (51)

These layers are denoted by the ‘‘new parameter initializa-
tion’’ box in Fig. 6.
Considering there areM frozen layers in target model with

total L layers, parameters in the target model can be divided
into non-trainable parameters for the frozen layers (Γfr) and
trainable parameters for the fine-tuning layers (Γft), new lay-
ers (Γfr), and output layer (Γout). Using the same assumption
in the source model that each FC layer has a neurons, the
number of non-trainable parameters in the target model is
(17+9R)a+(M−1)(a2+a) and the number of the trainable
parameters is (L−M)(a2+a)+(a+1). The total number of
parameters in target model is the same with the total number
of parameters in the source model. The number of parameters
in the source model and target model are summarized in Table
2. The target model has less number of trainable parameters
than the source model, because non-trainable parameters in
target model is transferred from the source model training.
The justification for selecting the number of frozen layers
at the target model is explained by Fig. 13 in Section VI
that illustrates the impact of the number of non-trainable
parameters or number of frozen layers over its achieved ASR
value.

E. TESTING PHASE
In the testing step, the trained DNN model predicts the se-
crecy capacity as the output value. We assess the performance
of DNN model in terms of root mean squared error (RMSE)
function. The RMSE is used to determine the discrepancy
between the predicted value and the actual value over all
testing dataset that can be expressed as

RMSE =

√√√√√∑Ntest

k=1

(
SC(k) − ŜC

(k)
)2

Ntest

, (52)

where Ntest denotes the number of data in the testing dataset.
In the last inference phase, the trained DNN model is used
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FIGURE 7. The loss MSE in source model and target model.

to predict different dataset and compared with the simulation
results. Overall, the algorithm of transfer learning is shown in
Algorithm 3. Furthermore, the source model and target model
architectures used in this study specifically their number of
neurons and layers are summarized in Table 3. Both source
and target model have the same batch size and number of
epochs.

The mean squared error (MSE) value of the source model
and target model with three frozen layers during training and
validation is presented in Fig. 7. Target model in training and
validation process has lower value of MSE than source model
since target model has transfer knowledge from the source
model training that makes the target model learning better and
produces less error. Target model testing has RMSE value of
0.004004, while source model testing obtains 0.006943. The
low value of RMSE means that the DNN model prediction
has low discrepancy with the actual instantaneous SC value
in simulation. The lower RMSE value in target model is the
result of target model training that takes the advantage of
parameter transfer and learns feature characteristics better
than the source model.

F. DNN COMPLEXITY ANALYSIS
The computational complexity of the DNN model can be
calculated as

O
(
(16 + 9R)a+ a︸ ︷︷ ︸

first FC layer

+(L − 1)(a2 + a)︸ ︷︷ ︸
remaining FC layer

+ a+ 1︸ ︷︷ ︸
output layer

)
= O

(
(18 + 9R)a+ (L − 1)(a2 + a) + 1

)
≈ O

(
aR+ (L − 1)a2

)
≈ O

(
a2
)

(53)

since R ≪ a and L ≪ a. The resulted computational com-
plexity shows that the DNN model calculates its prediction
without considering the number of quantization levels Q for
every RIS elements.

For source model training, when there are Sbatch × NS
batch

samples to train the DNN model with number of epochs
Nepoch, the training complexity of source DNN model from
(53) can be recalculated as

O
(
(Nepoch × Sbatch × NS

batch)× a2
)
≈ O

(
a4
)

(54)

regarding of Nepoch ≪ a, Sbatch ≈ a, and NS
batch ≈ a. For

target model training with the same batch size and number of
epochs, its complexity is given by

O
(
(Nepoch × Sbatch × NT

batch)× a2
)
≈ O

(
a3
)

(55)

because NT
batch ≪ a. The training complexity neglects the

number of frozen layers (M ) since M < L ≪ a.
While the training complexity is O(a4) for source model

and O(a3) for target model, the inference complexity is
O(a2) from (53) because inference phase computes only one
sample to obtain the prediction and it becomes the main com-
putational complexity in DNN approach with the assump-
tion that training phase can be computed offline [47], [48].
Hence, DNN model with complexity O(a2) is considered as
having low complexity that neither grows with the increasing
number of RIS elements nor quantization levels. Therefore,
the proposed transfer learning-empowered PHY security is
practical to optimize the secrecy performance in aerial RIS-
aided network.

G. MAXIMUM MEAN DISCREPANCY
Since DS ̸= DT in transductive transfer learning, conse-
quently how to measure the distribution difference or the
similarity betweenDS andDT is an important issue. Themea-
surement metric termedmaximummean discrepancy (MMD)
is widely applied in the field of transfer learning [49]. MMD
is a nonparametric distribution discrepancy measure used to
compare the distributions of two different domains.

In order to calculate MMD, there are two samples as
{xiS}

nS
i=1 from DS and {xjT}

nT
j=1 from DT in (39) and (40),

respectively. The squared value of MMD between the two
distributions p(xS) and p(xT) is formulated as [50]

MMD2(DS,DT) =
1

n2S

nS∑
i=1

nS∑
i′=1

k(xiS,x
i′
S)

+
1

n2T

nT∑
j=1

nT∑
j′=1

k(xjT,x
j′

T)

− 2

nSnT

nS∑
i=1

nT∑
j=1

k(xiS,x
j
T),

(56)

where k(x,x′) is a Gaussian kernel function given by

k(x,x′) = exp

(
−∥x− x′∥2

2σ2
G

)
. (57)

∥x − x′∥2 is the Euclidean distance between two vectors x
and x′ that can be written as

∥x− x′∥2 =

nF∑
i=1

(xi − x′i )2, (58)
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TABLE 4. Simulation Parameters

Parameters Values
Carrier frequency, fc (GHz) 3
Noise figure, NF (dBm) 10
Thermal noise power density (dBm/Hz) -174
Noise bandwidth, BW (MHz) 10
Reference distance, d0 (m) 1
Gauss-Markov memory level of legitimate nodes group, α 0.6
Maximum speed of every node, Vmax 3
Mean of group speed, E[vg] 2
Standard deviation of group speed, σvg 0.1
Mean of group direction, E[ηg] π
Standard deviation of group direction, σηg π/2
Gauss-Markov memory level at E, αE 0.6
Mean of E’s speed, E[vGMM

E ] 4
Standard deviation of E’s speed, σηGMM

E
0.5

Mean of E’s direction, E[ηGMM
E ] π/2

Standard deviation of E’s direction, σηGMM
E

π/4

Number of RIS elements, R 4
Amplitude reflection coefficient, κ 1
Quantization levels, Q 16
Transmit Power at S, PS (dBm) [-40,80]
Width of the Gaussian kernel, γG 1

where x is the feature vector and nF is the number of feature
in (41), which is 16 + 9R. Meanwhile, xi and x′i are the i-th
feature of the vector x and x′, respectively. σ2

G is the variance
of the Gaussian kernel function with γG = 1

2σ2
G
that controls

the width of the Gaussian kernel.
In (56), the squared MMD value contains three parts of

kernel computations k(x,x′), which are the pairwise kernel
calculations within the source domain samples k(xiS,x

i′
S),

the pairwise kernel calculations within the target domain
samples k(xjT,x

j′

T), and the cross-domain kernel calculations
between the source and target samples k(xiS,x

j
T). Therefore,

the more similar DS and DT results in the higher value of
the cross-domain computation in the third part calculation of
(56) and yields lower value of the squared MMD as the final
calculation of the similarity metric between source and target
domain.

VI. RESULTS AND DISCUSSION
In this section, we present our simulation results of the sys-
tem secrecy performance.1 The parameter setting that we
used in the simulation is presented in Table 4. Considering
NLOS condition, the path-loss calculated in this research
is integrated in the channel gain of the Rayleigh fading as
GA + GB − 22.7 − 26 log(fc) − 36.7 log(dAB/d0), where G
is node antenna gain and d0 is the reference distance.

A. SIMULATION RESULTS
There are three major approaches in RIS optimization re-
search field, which are model-based methods, meta-heuristic
techniques, and ML algorithms [51]. In this research, OSP
and MRC algorithms are our proposed model-based solu-
tions that represent the first category of RIS optimization

1For the sake of reproducible results, our code can be found at https://
github.com/YTriwidyastuti/RIS-PLS-TL

approaches. Second category of RIS optimization approaches
is meta-heuristic technique. However, meta-heuristic algo-
rithms have possibility for early convergence in local optima
and sensitive to parameter settings [51]. Therefore, we are
not considering this second category of RIS optimization
approaches in this study. The third category of RIS opti-
mization approaches is machine learning (ML) technique.
Our proposed DNN model with transfer learning approach is
the representative of this third category of RIS optimization
approaches. By implementing at PHY security field, all of our
methods in the paper has acknowledged major optimization
approaches in RIS researches.
Fig. 8 displays the instantaneous secrecy capacity of the

system with transmit power 45 dBm at 40 different locations.
OSP shows the highest secrecy performance among others
since OSP obtains the optimal phase-shift configuration in
RIS by calculating the maximum secrecy capacity and us-
ing the CSIs of main channel and wiretap link, whereas
MRC only utilizes the main channel information to obtain
the phase-shift configuration without considering the wiretap
channel. Thus, the secrecy capacity of MRC is lower than
OSP, yet higher than RPS. Similar results are also obtained
for the scenario of E with RWM and GMM mobility model.
Fig. 9 depicts the effect of transmit power and number of

quantization levels on the ASR. As can be seen in Fig. 9, the
ASR increases as the transmit power increases. The reason
is that high transmit power increases the main channel and
wiretap received signal rate, but gives more impact on the
higher main channel data rate because the signal transmission
from RIS elements more focuses at D rather than at E. Fig. 9
also shows that ASR increases as the number of RIS quanti-
zation levels increases because higher quantization levels at
RIS elements makes signal reflections more focus on D. The
prediction results from theDNNmodel show good correlation
with the simulation results. Deep learning can achieve similar
performance with OSP, MRC, and RPS as the DNN model
obtains the relationship between the secrecy performance and
the input parameters through deep learning from all dataset.
Let us assume that the total circuit power in the system is

defined by [7]

P0 ≜ Pdyn
S + Psta

S + Psta
D + RPUb , (59)

where Pdyn
S = 10 dBm represents the dynamic power con-

sumption, related to the power radiation across all circuit
blocks at S. Psta

S = 15 dBm denotes the static power used
by the cooling system at S. Psta

D = 5 dBm is the hardware
static power dissipation at D. PUb is the power dissipation
per element at U, which is caused by the circuitry required
for adaptive phase-shifting with b-bit resolution, where b =
log2 Q. Typical power consumption values of each phase
shifter are 1.5 and 4.5 mW for 3- and 4-bit resolution phase
shifting, respectively. The system secrecy energy efficiency
then can be mathematically expressed as

SEE =
BW× SC
1
ϵPS + P0

, (60)
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(a) (b) (c)

FIGURE 8. Instantaneous secrecy capacity of the three phase-shift methods for E with different mobility models. (a) RPG. (b) RWM. (c) GMM.

FIGURE 9. The impact of transmit power on the ASR with R = 4 and RPG
eavesdropper.

where ϵ = 0.5 is the transmit power efficiency [52].
The result of the secrecy energy efficiency (SEE) for RPG

eavesdropper is presented in Fig. 10. At low transmit power,
SEE is proportional to the ASR. However, SEE is decreasing
at high transmit power due to the increasing power consump-
tion. As shown in Fig. 10, higher number of quantization
levels has lower SEE because it has higher power dissipation
per element, even though it can achieve higher SC.

B. TRANSFER LEARNING ANALYSIS
The proposed transfer learning-empowered PHY security is
general enough for various scenarios. Deep transfer learning
can handle model mismatch [53], nonstationary environment
[42], and diverse distribution in device data sets [44], while
still addressing PHY security performance in short time.
Thus, the proposed transfer learning-empowered PHY secu-
rity is feasible for practical applications in aerial RIS-aided
TN/NTN.

The instantaneous secrecy capacity prediction of the source
and target model with OSP phase-shift configuration in the

FIGURE 10. Average secrecy energy efficiency for eavesdropper with RPG
mobility model

scenario of RPG, RWM, and GMM eavesdropper mobility
models are shown in Fig. 11. The source and target model
can closely predict the instantaneous secrecy capacity in the
shown 100 different locations with various mobility models
because the source and target model can learn the features
of the node positions and channel coefficients during their
training process. The averages of source model and target
model prediction also have similar pattern with the simulation
average. The similar pattern means that source and target
model successfully captures the feature characteristics from
the input data in their training.
Fig. 12 presents the ASR result of the source model pre-

diction and target model prediction with the transfer learning
technique for E with RWM. As can be seen in Fig. 12, target
model prediction has more similar ASR result than the source
model prediction. Target model training takes the benefit of
parameter transfer that has been trained in the source model.
Thus, target model learns better than the source model, even
though there are only small number of dataset in the target
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(a)

(b)

(c)

FIGURE 11. Instantaneous secrecy capacity of OSP and transfer learning
prediction with PS = 40 dBm, R = 4 and Q = 16 on different mobility
models. (a) RPG. (b) RWM. (c) GMM.

FIGURE 12. The ASR result of the source and target model with R = 4,
Q = 16 and RWM eavesdropper.

domain. Similar results are also obtained for different phase-
shift configurations, where the source model and target model
prediction for OSP has the highest ASR.
In addition to the investigation of transfer learning secrecy

performance that is impacted by eavesdropper mobility sce-
narios, we also explore the effectiveness of our DNN model
architecture that is determined by how well it is trained using
data. It is not easy to train amodel with a large amount of data.
Minor adjustments in parameter values can have a significant
impact on the performance of the DNN model [54].
Due to insufficient number of target dataset, we freeze M

transferred layers in target model to avoid over-fitting. It is
well documented that the lower layers of a deep learning
model extract generic features that are common across mul-
tiple tasks, and the upper layers extract task-specific features
[36]. If the good and general enough transferred layers from
source model are fine-tuned by small new dataset, they can
results in over-fitting [37]. We fine-tune only a small number
of last layers because we only need to learn the specific
characteristics of features from the small target dataset.
Fig. 13 shows the ASR result from the target model predic-

tion as a function of the number of non-trainable parameters
which are the number of parameters in the frozen layers. The
source model has a total of 1,078,273 trainable parameters
with 815,104 parameters that are transferred into the target
model. As the more number of non-trainable parameters in
the target model, the better target model prediction is. Since
the source model parameters are trained with large number of
dataset, the trained parameters in the source model captures
more accurate features of the source domain. When there are
only small number of dataset in the target model training, the
trained parameters from the source model already represent
the general features of the target domain well enough and help
the small number of trainable parameters in the target model
to learn sufficiently only the specific features of the target
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FIGURE 13. ASR of the target model prediction with transmit power 30
dBm as the function of the number of non-trainable parameters.

domain.
It is also difficult to learn the data pattern of nodes because

of themobile and dynamic natures of the traffic obtained from
the network. Moreover, the employed parameters cannot be
defined as a constant value owing to the limitless quantity
of mobility [54]. Therefore, in our proposed transfer learning
approach we also conduct a process for assessing and under-
standing the dataset distribution in mobile TN/NTN.

Fig. 14(a) depicts the impact of intersection percentage be-
tween source and target domain on the squared MMD value.
As the intersection percentage between source and target do-
main increases, the squaredMMDdecreases. This is the result
of the increasing similarity between source and target domain,
such that the cross-domain kernel computations between the
source and target domain increases. Hence, it reduces the
MMD of source and target domain as the final result in (56).
The same decreasing trend also happens in different mobility
models with their own source and target domains.

Fig. 14(b) displays the ASR result of the target model pre-
diction with variation of intersection percentage between the
source and target domains. When the percentage of domain
intersection increases, target model prediction becomes more
similar with the simulation result. Increasing the similarity
between the source and target domain enhances the target
model training because target model can learn from more
number of similar dataset that had been learned in the source
model training. This tendency also happens in different value
of transmit power as presented in Fig. 14(b).

C. SCALABILITY ANALYSIS
In the scenario of multi-RIS, letN be the number of RISs with
R elements for each RIS, the total number of RIS elements
that should be optimized is Rtot = N × R. The computational
complexity of all methods with Q quantization levels and a
neurons in hidden layer then can be presented in Table 5.
Transfer learning in multi-RIS has the same computational

(a)

(b)

FIGURE 14. Impact of intersection percentage between source and target
domain on (a) squared MMD and (b) ASR.

TABLE 5. Computational Complexity for Multi-RIS

Method or Technique Complexity
Optimal Secrecy-oriented Phase-Shift (OSP) O(QRtot )
Maximizing Real Coefficient (MRC) O(Q× Rtot)
Random Phase Shift (RPS) O(Rtot)
Transfer Learning O(a2)

complexity with single-RIS’s, that is O(a2) since its com-
plexity does not grow with the number of RIS elements.
Thus, transfer learning-empowered PHY security can scale
efficiently to larger networks with multiple RIS units.
In addition, to conquer both the computation and com-

munication scalability problem, especially to handle larger-
scale deployment, the GPU-accelerated hardware, e.g., scal-
able GPU server [55] can be considered as the next gen-
eration hardware in future mobile TN/NTN and as one of
potential way to handle larger networks. Hence, the proposed
transfer learning-empowered PHY security can overcome the
challenge to be applied in real-time, especially for high-
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dimensional environment.

D. EXTENSION POSSIBILITY FOR ACTIVE RIS
Active RIS is equipped with phase-shift circuits and
reflection-type amplifiers, such that it is not only able to
adjust the phase shifts but also amplify the received signal
attenuated from the first hop to a normal strength level. Ac-
cordingly, active RIS can overcome the product/double path
loss attenuation in source-RIS and RIS-destination paths [56].

The implementation of active RIS introduces additional
noise power from its components, the received signal atD that
is transmitted from S and reflected by U then can be written
as

sactD =
√
PS

R∑
r=1

√
FUDh̃UrDκactejθr

√
FSUh̃SUruS

+
R∑

r=1

√
FUDh̃UrDκactejθrnUr + nD, (61)

where κact denotes the amplification gain for RIS active el-
ement. Meanwhile, nUr is the thermal noise introduced by
active RIS components at the r-th element and modeled as
additive white Gaussian noise (AWGN) with zero mean and
variance σ2

Ur
.

The received signal-to-noise ratio (SNR) at D with active
RIS can be formulated as

γact
D =

PSFSUFUD(κact)
2
∣∣∣∑R

r=1 ĥSUr ĥUrDe
j(θr+ϕSUr+ϕUrD)

∣∣∣2
FUD(κact)2σ2

U

∑R
r=1

∣∣∣ĥUrDej(θr+ϕUrD)
∣∣∣2 + σ2

D

,

(62)

when active noise variance for all R elements are the same(
σ2
Ur

= σ2
U ∀ 1 ≤ r ≤ R

)
. Additionally, the achievable ca-

pacity of the received signal at D is given by

Cact
SUD = log2

(
1 + γact

D

)
. (63)

In the wiretap link, the received signal at E can be formu-
lated as

sactE =
√
PS

R∑
r=1

√
FUEh̃UrEκactejθr

√
FSUh̃SUruS

+

R∑
r=1

√
FUEh̃UrEκactejθrnUr + nE. (64)

The resulting SNR at E then can be calculated as

γact
E =

PSFSUFUE(κact)
2
∣∣∣∑R

r=1 ĥSUr ĥUrEe
j(θr+ϕSUr+ϕUrE)

∣∣∣2
FUE(κact)2σ2

U

∑R
r=1

∣∣∣ĥUrEej(θr+ϕUrE)
∣∣∣2 + σ2

E

.

(65)

Thus, the achievable capacity of the overheard signal at E is
given by

Cact
SUE = log2

(
1 + γact

E

)
. (66)

FIGURE 15. ASR performance of active and passive RIS

TheOSP problem in active RIS then can bemathematically
expressed as

maximize
θ

SCact(θ) = Cact
SUD − Cact

SUE, (67a)

subject to θr ∈
{
0,

2π

Q
,
4π

Q
, · · · , 2π(Q− 1)

Q

}
, (67b)

ρ ≤ PS. (67c)

For simplicity, we assume σ2 = σ2
U = σ2

D = σ2
E and define

ρ = PS/σ
2 as the average SNR. The amplification gain of the

active RIS is given by [57]

(κact)
2 =

PS

PSFSU

∑R
r=1

∣∣∣h̃SUr e
jθOSP
ract

∣∣∣2 + σ2
∑R

r=1

∣∣∣ejθOSP
ract

∣∣∣2 .
(68)

The instantaneous SNR of the main and eavesdropper chan-
nels with OSP can be expressed as

γOSP
Dact

=
ρFSUFUD(κact)

2
∣∣∣∑R

r=1 h̃SUr h̃UrDe
jθOSP
r

∣∣∣2
FUD(κact)2

∑R
r=1

∣∣∣ĥUrDej(θ
OSP
r +ϕUrD)

∣∣∣2 + 1
, (69)

γOSP
Eact

=
ρFSUFUE(κact)

2
∣∣∣∑R

r=1 h̃SUr h̃UrEe
jθOSP
r

∣∣∣2
FUE(κact)2

∑R
r=1

∣∣∣ĥUrEej(θ
OSP
r +ϕUrE)

∣∣∣2 + 1
. (70)

The ASR result of the active and passive RIS for OSP
optimization method and eavesdropper with RPG mobility
model is shown in Fig. 15. Active RIS has higher ASR than
passive RIS for low transmit power because element ampli-
fication in active RIS can overcome multiplicative or double
path loss fading at D. However, active RIS has lower ASR
than passive RIS for high source transmit power. The possible
reason is that the amplification in active RIS also amplifies
the channel gain at eavesdropper’s link. Hereafter, active RIS
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amplification has possibility to make the transmission less
secure.

Considering the total power consumption, active RIS con-
sumes more power than passive RIS due to the amplification
in every element. The overall power consumption of active
and passive RIS-aided systems are respectively given by [56]

Qact = PS + R PSW + R PDC + PRIS (71)

Qpas = PS + R PSW (72)

where PSW is the power consumed by the phase shift switch
and control circuit in each RIS elements, PDC is the direct
current biasing power used by the amplifier in each active RIS
element, and PRIS is the power of amplified signal reflected
by the active RIS.

Regarding to the extra power consumption in (71) and the
possibility of signal leaking due to amplification gain, we
need to reconsider when applying active RIS in our system.
Since UAVs are powered by batteries, the energy available for
flight and communication is very limited. It is important to
reasonably allocate the power resource [58], even though the
proposed methods can be extended using active RIS. Thus,
passive RIS is more suitable for aerial RIS in TN/NTN.

VII. CONCLUSION
In this paper, we focused on enhancing PHY security in
aerial RIS-aided TN/NTN, specifically addressing the chal-
lenges introduced by node mobility. We proposed a system
model integrating RIS into both terrestrial and non-terrestrial
networks, investigating the impact of various mobility mod-
els—random walk, Gauss-Markov, and reference point group
mobility—on key security metrics like secrecy capacity and
average secrecy rate. To design an effective transmission
protocol, we formulated an optimization problem focused on
the phase-shift configurations of the RIS, aiming to maximize
the secrecy capacity and average secrecy rate under differ-
ent mobility scenarios. We developed several robust algo-
rithms: Optimal Secrecy-oriented Phase-shift (OSP), which
uses perfect knowledge of the CSI for both legitimate and
eavesdropper channels to achieve optimal secrecy; Maximiz-
ing Real Coefficient (MRC), which optimizes phase shifts
without requiring eavesdropper CSI; and Random Phase Shift
(RPS), used as a performance benchmark. We employed both
simulation and deep learning methods to validate our results,
utilizing DNNs and transfer learning techniques to predict
PHY security metrics efficiently. Our key insights include the
superior performance of OSP and MRC algorithms, signif-
icant effects of different mobility models on PHY security,
benefits of transfer learning in enhancing model robustness
and reducing computational costs, and the close correlation of
our DNNmodels with simulation results. This study provides
valuable insights and practical solutions for ensuring secure
and resilient communication in aerial RIS-aided TN/NTN,
significantly contributing to the advancement of secure mo-
bile networks by addressing the critical challenges posed by
node mobility in next-generation communication systems.
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