
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 0

Multitenancy in Single Instance of Data
Persistence Service for Supporting Low-Code
Platforms
JÚLIO GUSTAVO COSTA1, LUIZ M. G. GONÇALVES2, and Samuel Xavier-de-Souza.3
1Programa de Pós-Graduação em Engenharia Elétrica e Computação/UFRN, Natal, RN, Brasil (e-mail: julio.costa.026@ufrn.edu.br)
2Departamento de Computação e Automação/UFRN, Natal, RN, Brasil (e-mail: lmarcos@dca.ufrn.br)
3Departamento de Computação e Automação/UFRN, Natal, RN, Brasil (e-mail: samuel@dca.ufrn.br)

Corresponding author: First A. Author (e-mail: julio.costa.026@ufrn.edu.br).

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001.

ABSTRACT Corporate digitalization, especially among Small and Medium Enterprises, has led to a
significant increase in the demand for scarce professionals with expertise in the IT area, especially in Web
Information Systems area. On the other hand, concerns about high levels of resource idleness in the cloud
are constant. In this scenario, Low-Code Platforms have gained traction in the software industry, whose most
commonly found service is the automation of code generation to perform data persistence tasks driven by
data models. This approach, however, implies a mode of operation that is not the most mature among cloud
computing providers, implying for each model a service instance running on the provider side. Here, we
propose a data persistence service for these platforms that avoids code generation, since it interprets data
models at runtime and operates in multi-tenant mode with a single service instance. This approach improves
resource sharing, mitigating resource idleness within the platform. In addition, we present experiments to
support the technical feasibility of the proposed approach. The proposed solution offers an alternative to
code generation methods, with the potential to optimize resource utilization while preserving the flexibility
to adapt to changes in data models as business needs evolve.

INDEX TERMS Model Driven Engineering; Low Code Development; Model Interpretation; Multi-tenancy
Single Instance; Separation of Concerns

I. INTRODUCTION

The substantial increase in demand for the digitalization of
business processes that have occurred in the last decade has
brought with it a set of significant challenges and oppor-
tunities. The growing need for software systems, combined
with the difficulty of training qualified professionals at the
speed needed to meet demand, has reinforced the search for
software development and operation approaches capable of
performing this task in a more agile and simplified way,
especially those of Small andMedium-sizedBusiness (SMB).
In this context, the so-called Low-Code Platforms (LCP) have
gained traction [24], [28].

Recent studies [18], [23] highlight how LCPs can help
mitigate the mismatch between supply and demand, either by
being able to alleviate the dependence on scarce and expen-
sive professionals with in-depth training or by being able to
respond more quickly to demands for new applications, even
if values such as quality are relativized in favor of results [9],

especially in the context of SMB.

LCPs are designed to simplify the software development
process by quickly enabling professionals without in-depth
technical knowledge in software development to create soft-
ware applications [17], [18] or to offer significant produc-
tivity gains for more experienced professionals. These plat-
forms, on the one hand, typically provide an intuitive visual
interface for these professionals to abstract away various
technical aspects at the implementation level and focus more
objectively on abstractions that more directly touch the busi-
ness aspects of the software system [13], [17], [26] and, on
the other hand, they also hide a series of infrastructure and
database concerns related to the solution deployment process
and its operation. These facilities, among others, are com-
monly obtained through the use of modeling mechanisms,
generally originating from the Model-Driven Engineering
(MDE) knowledge domain, capable of allowing the capture
of system abstractions at their highest levels, close to the

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

business abstraction levels [4], [23].
From this, underlying the working environment of users

of LCPs, the software systems that emerge from their use
follow a three-tier architecture: presentation (frontend), busi-
ness logic (backend), and database (infrastructure) [19], es-
pecially in the context of the web Information Systems (SI).
The presentation tier exhibits the least potential for resource
sharing. Such presentation bundles are distributed and exe-
cuted, typically not sharing the same host or compiled code
instance. However, the remaining tiers offer more flexibility
and can be structured to maximize the utilization of shared
resources—code and host—on the provider side. This is
convenient because cloud providers face challenges due to
high idle resources or wasted computing capacity. Research
by [1] and [29] highlight these concerns. To address this,
software systems are designed with transparent mechanisms
to distribute workloads dynamically across the provider’s in-
frastructure. This ensures more efficient resource utilization.

Currently, approaches that support the operation of busi-
ness logic layer (or backend layer) services on LCP platforms
employ automated code generation directly from models.
These approaches generate, for each model delivered by each
client, a code instance that, when compiled and executed,
becomes a service instance that meets the specific demand
of that client (its model). In these terms, for each model,
there is a compiled service instance dedicated to serving
only the requests of the frontend layer of the model of the
application—a situation in which reuse occurs only at the
level of knowledge exposed in the models and not at the code
or host level. In other words, the providers’ operational mode
is aMulti-TenantMulti-Instance (MTMI) servicemodel, with
one instance for each client model.

In this regard, our research identified a opportunity regard-
ing the design and operation of data persistence services in
the context of LCP platforms. Despite our best research ef-
forts, we found no studies exploring the Multi-Tenant Single-
Instance (MTSI) operating mode at the backend level in such
platforms. This is relevant because it is the most attractive
cloud computing service mode for service providers with a
higher degree of maturity in the service implementation—
maximizing resource sharing and minimizing idleness. Fur-
thermore, it is worth highlighting that data persistence service
is one of the most present in the context of LCPs [17], [26].

We propose, discuss, implement, and present initial ex-
periments with an MTSI data persistence service for LCP
platforms. To achieve this, we choose the Runtime Model
Interpretation [3], [6] approach from the MDE approaches.
This approach maximizes decoupling between client domain
models and the LCP platform’s persistence service imple-
mentation. Our work offers at least two contributions. First,
we discuss the design and implementation of the proposed
service for LCPs, addressing the growing demand from LCP
providers. Second, we present initial experiments that help to
understand the feasibility of the approach from the perspec-
tive of evaluating the processing load dynamics and memory,
introduced by the dynamic loading and runtime manipulation

of data models.
The rest of the text is organized so that Section II presents

a brief discussion of the relations between LCP and MDE,
in which we highlight the design and how the design of our
proposition fits into the relation. Section III, in turn, presents
the implementation following this design. We classify and
evaluate experimental data in Section IV. In the penultimate
Section V, we put this work into perspective, discussing
related works. Finally, in the conclusions, we offer a brief
discussion about the limits and challenges of our proposition.

II. THE PROPOSED MULTI-TENANT PERSISTENCE
SERVICE
Low-code platforms strongly rely onMDE approaches within
their underlying architecture. This reliance is critical to
achieving the productivity gains that LCPs promise. MDE
methodologies involve systemmodeling tools, usually graph-
ical, that allow automated code generation directly from user-
created models—the cornerstone of LCP benefits.
However, the path we have chosen is different. Given the

objective of maximizing the use of shared resources within
the context of the service provider infrastructure, to achieve
the proposed objective, we consider among theModel-Driven
approaches the one capable of offering the most significant
potential to decouple the implementation of the persistence
service from the different business data domain models of
different LCP clients, namely: runtime model interpretation
approach.
In this approach, the business data domain is made known

to the service only at runtime, loading and interpreting data
models only at the time of the client application request.
Instead of precompiling code for each data model, this service
in an LCP retrieves and interprets the data specifications
dynamically to build the persistence command required to
fulfill the request and execute it against a database.
In this sense, the following discussion is directly associated

with the issues surrounding building a single multi-tenant
service instance for data persistence performed in the scope
of the backend layer on the LCP provider backend side. Here
and in the subsequent two sessions, we present the design,
implementation, and initial experimentation of a persistence
service driven by the interpretation of models at runtime.
This will be done assuming that the working environment
of its users centrally implies the use of data modeling tools,
more precisely, a subset of UML Class Diagrams symbols,
through which the entire process of the service instance will
be conducted.

A. DATA METAMODELS DESIGN
As a first step towards implementing a data persistence ser-
vice driven by runtime model interpretation, it is necessary to
define the scope of data modeling possibilities that users of
the service platformwill have at their disposal. Thus, from the
perspective of the defined scope, here we are addressing the
central lines of the interpretation process for the persistence
service, abstracting all other aspects of the scenario.

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

In this context, users of this service can abstract away
the complexities related to the implementation, infrastructure,
and deployment underlying their data models, whether at
the backend software system level or at the database level,
focusing only on the business aspects that can improve the
understanding and definition of the data model. From there,
we can focus on the mechanisms for interpreting models,
in the sense that these mechanisms require a metamodel
definition capable of helping them recognize the concepts
and operations they can perform on the data [25]. Thus, all
models must be structured and standardized according to the
metamodel. Second, this must be done so that the model can
evolve as the data in the business domain evolves.

The metamodel presented in Fig. 1 is a subset of the UML
Class Diagrams metamodel. It subtracts the signature of class
methods from the class representation. We chose this level
of abstraction to allow new representation possibilities to
be explored as the research progresses, in addition to being
associated with the demands of the business logic/backend
layer where the interpretation will occur. As an illustration
of the expressiveness of this metamodel, Fig. 2 synthetically
presents what can be considered an example of a data model.

In turn, the illustration of a specification that defines which
account role can access or persist data can be seen in the
partial data model in Fig. 3, according to the metamodel
in Fig. 1 and the data model in Fig. 2. From the point of
view of the operation of the interpretation engine, seman-
tically, Fig. 3 should be understood as follows: Privilege
(GrantPolicy instance) establishes a relationship between
Maria (Account instance) and Waiter (Role instance) so
that this relationship informs that Maria is a waitress. This
relationship authorizes the system to accept Maria to perform
reading operations on instances of Orders in the database.

Furthermore, the metamodel in Fig. 1 offers three op-
portunities for its users to indicate the use of relevant fea-
tures: to perform concurrency control tasks when accessing
data; the realization of data classes in a specific class of
database (SQL, NoSQL classes, for example); and hooks for
invoke functions defined and coded by users. Respectively,
in Fig. 2, «Concurrency» denotes the arbitrary choice of
one among many possibilities for implemented concurrency
control algorithms when accessing data related to the Order
class; «SQL», in turn, inform the need to use a specific type
of database when loading classes at the database level; and
the stereotypes «BHook» (class Billing) and «AHook»
(classes Card, OrderItem) indicates to the interpreters the
need to invoke functions immediately before and/or after the
execution of the commands to persist changes on data linked
to the object. Moreover, the symbols , !, and , respectively,
mean that the value space of an attribute must contain only
unique values, that an attribute must always have some value
associated with it, and finally, that values associated with an
attribute should not be persisted.

Finally, the expressiveness of models according to the
presented metamodel is not limited to it. More expressive
metamodels can be built to offer a broader range of function-

FIGURE 1. The proposed persistence data service metamodel.

alities to leverage the data persistence service. Themetamodel
offered in Fig. 1 is presented only as a starting point to under-
stand the motivations for using runtime model interpretation
mechanisms discussed in this work.

B. MULTI-TENANT SINGLE SERVICE INSTANCE
ARCHITECTURE DESIGN
Once the metamodels have been defined, reflecting on how
the interpretation engines should assimilate the models, a
unique service instance guides their execution in a multi-
tenantmanner. In that regard, Fig. 4 presents the architecture’s
first two layers of services: the ComposableModeling Service
and the Data Definition Language (DDL) Statements Trans-
formation Service.
The Composable Modeling Service is the first layer of the

service and directly handles client requests made from data
models. In this first layer, the Model Manager (MM) compo-
nent is the artifact that receives requests directly from clients
and dispatches them to other components. Furthermore, in the
same layer, the Model Parser (MP) is the artifact responsible
for analyzing the data model sent to the MM regarding its

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 2. Data hierarchy model for a pizzeria service.

FIGURE 3. A partial data hierarchy model improved with the role-based
access control specification.

adequacy to the metamodel in Fig. 1.
Another component present in this first layer is the

Function Deployer (FD), responsible for receiving the
functions that will be invoked immediately before or after the
execution of the persistence commands. Through it, behaviors
related to business rules and validations, for example, can
be integrated into the execution of the model interpretation.
This component constitutes an execution environment (virtual
machines, containers, or similar) capable of delivering the ap-
propriate computing environment for the function in terms of
the chosen programming language and libraries—preferably
through dynamic binds.

The Data Definition Language (DDL) Instruction Trans-
formation Service (DDL-IT) is a second layer of the service.
After passing the necessary model validations, one must per-
form the transformations required to transpose the represen-
tations in class diagrams to database representations (non-
relational or relational) with their constraints indicated. This
is done by the SQL Representation Transformer (SQL-RT)
or NoSQL Representation Transformer (NoSQL-RT) compo-
nents, both performing their transformations according to the
metamodel in Fig. 1.
Fig. 5, in turn, presents two other groups of components.

The Composable Model Interpretation Engine (CMIE) is the
first layer of the persistence service and is immediately as-
sociated with client requests. The second layer is the Data
Manipulation Language (DML) Instruction Transformation
Service (DML-IT), which handles representation transforma-
tions. The first layer combines the Data Repository (DR),
Data Handle Hook (DHH) and the Model Cache Manager
(MCM) components.
The DR component receives and forwards commands that

involve modifying the state of the data, or queries, directly
to the representation transformers. However, based on the
analysis of the metadata (of the model) to which the request
is linked, it may invoke functions to be executed by the DHH
immediately before sending these commands or queries to the
transformers. It may also invoke functions in the DHH imme-
diately after the commands are executed by the transformers.
TheMCMcomponent, in turn, keeps the metadata of the most
recently used models in memory in order to avoid constantly
loading models from less agile reading devices.
In Fig. 5, there are also the NoSQL-RT and SQL-RT com-

ponents. They receive commands and queries from DR and
convert them to the appropriate DML format at the database
level, according to the modeling delivered to the MM compo-
nent.
It is also in this group of components, more specifically

in the transformers, that we locate the access control evalua-
tion logic. We chose these components because they directly
handle the manipulation of data classes. This logic evaluates
the authorization of the transformation engine to execute the
request made to DR based on its type (read/write), identity of
the requester, and class of data in the request. Such operations
are performed as specified in the metamodel in Fig. 1 and in
the pseudocode in Fig. 11, the latter seen later.
A third group of components, the Database Driver Service

(DDS), is elaborated in Fig. 6, consisting of the NoSQL
Database Driver (NoSQL-DD) and the SQL Database Driver
(SQL-DD) components. These are tasked with executing
specific instructions required by the NoSQL-RT or SQL-RT
components, whether those components operate from the per-
spective of DDL-IT layer or DML-IT layer concerns. These
instructions are the result of processing carried out by MM
(on metadata deployment) or processing carried out by DR
(on data access).
To maximize the applicability of the data persistence ser-

vice proposed, the functionalities chosen to compose it are

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. The synthetic proposed data persistence service design.

FIGURE 5. A synthetic data persistence service architecture for model interpretation engine.

transversal to any business domain of a given software ap-
plication. In terms of implementation, given these concerns,
each component should be viewed as a microservice—our
strategy to ensure more effective separation of concerns and
improve service scalability [15]. In the following section, we
will delve into the implementation aspects of this approach.

III. IMPLEMENTATION
Our platform’s first group of components, as depicted in
Fig. 4, is responsible for receiving the models and deploy-

ing them according to the platform’s resources. The second
group, as shown in Fig.5, provides a set of computational
services necessary to deliver the data access and persistence
service compatible with the limits imposed by the meta-
model. The third group sends the instructions generated by the
transformers to be executed in the databases. The instances
in this group are responsible for accessing and maintaining
access to the databases. In this section, we only address
the relevant points necessary for operating the model inter-
pretation engines from an architectural perspective, aligning

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 6. The database drivers service

the highlighted components with the metamodel described
previously.

A. MODEL DEPLOYMENT
Our models are built on existing external data modeling
platforms that use standardized file formats, such as XML
Metadata Interchange (XMI), for UMLClass Diagrams (CD).
These files are delivered to theMM through the modeling ser-
vice interface (see Fig. 4). Then, theymust go through parsers,
transformers, and drivers for deployment in the database.

Inside the platform, to facilitate the transfer of model meta-
data and their manipulation inmemory, we use JSON technol-
ogy as a data wrapper for exchanging data between compo-
nents because it provides efficiency compared to XML [7],
[20].

Upon receiving the XMI file that represents the data model,
the MM will invoke the MP for a dual function. First, it
evaluates the compliance of the delivered models with our
metamodel (as shown in Fig. 1). Second, it must recognize
marks on the model that indicate possible changes in the
representation to allow corrections and/or evolutions of the
business-domain data. If these marks are present in the data
model and are recognized, the MM forwards them to either
one of the transformation engines: SQL-RT or NoSQL-RT
(see Fig. 7).

When the MP identifies such marks present in the data
model, it will indicate to the MM the need for a change in
the current state of the database representation. This compo-
nent will then request the appropriate representation transfor-
mation component—SQL-RT or NoSQL-RT—to build and
execute the statements suitable for the underlying databases
authorized by the platform so that the new data representation
can be deployed into the database. For example, a newly
added data class (see Fig. 7, representation of OrderItem)
in the model must be prefixed with the following two charac-
ters: c: for it to be deployed in the database. After editing the
diagram in the modeling tool of the user’s preference, it must

be submitted in XMI format to the MM’s external interface.
The MM, in turn, will invoke the MP to perform validations
in regard to the metamodel presented in Fig. 1. The MP, upon
recognizing the specification in XMI format, must identify
the presence of the c: characters prefixed to the name of the
new OrderItem class. Upon recognizing these characters,
the MP will return to the MM the set of metadata necessary
to create the database statement that will create the table in a
database, in this case, SQL (see the <<SQL>> stereotype in
Fig. 7). This metadata will also include information related to
constraints defined in the modeling itself (such as uniqueness,
nullability, and volatility). Finally, once these statements are
generated, they will be executed against the database either
by the SQL-DD engine or the NoSQL-DD engine.
Moreover, to correctly instruct the transformation engines

to delete data classes, the class names must be prefixed with
d:—the same applies to attributes and associations. If any
properties of data classes, attributes, or associations appear
to the parser prefixed with the characters u:, operations
to emphasize or modify the current representations will be
performed. The symbol ! should be used to denote that an
attribute cannot exist without an associated value, as shown
in Fig. 7. Similarly, * should be understood as the property of
non-duplication of values in the attribute’s value space. The
∼ character indicates that values associated with attributes
prefixed by it should not persist in the database.
We highlight that the transformations discussed in the

previous paragraphs can be carried out with the support of
representation transformers such as the Eclipse Modeling
Framework 1 (EMF), for example, or through a custom im-
plementation of interest to the platform’s development.
Furthermore, after a new model is deployed on the plat-

form, they receive a unique identification key, arbitrarily
called ’tenantId’, in order to distinguish them from
each other, especially when interpreters need to use them.

1https://eclipse.dev/modeling/emf/

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Therefore, to invoke different models (and their underlying
databases) from a software application and integrate them,
the tenantIds of each model need to be known by the user
implementing frontends or functions executed through hooks
(see Fig. 5 and the subsession III-C).

Finally, the FD component (see Fig. 4) succinctly repre-
sents the platform’s ability to deploy containers within its
context. Such containers are virtual machines (TypeScript or
Python, for example), an appropriate set of libraries, and the
client functions to be invoked by the interpreters at the appro-
priate time. We standardize the invocation of these functions
through an HTTP/REST interface. The deployment occurs
automatically through container managers like Docker, for
example.

FIGURE 7. A Trace of a UML Class Diagram—Flagging commands to the
Model Manager Component

There are two types of transformations during the model
deployment. The first type occurs after using the MP, aiming
to create and store a lighter representation of the model that
better meets the purposes of manipulation by the compo-
nents in the persistence service. This lighter representation
is obtained by transforming an XMI file format (sent to the
platform during model deployment) into a JSON format and
store indexing it by its key tenantId—see Fig. 8.

After that transformation, the second type of transfor-
mation generates data-related statements of the underlying
database in DDL format. These statements are primarily of
four kinds: create, update, delete, and those related to con-
straint data manipulation.

At this point, we believe it is relevant to highlight the
flexibility that comes together due to using the model inter-
pretation approach. The flexibility we are talking about is
related to the fact that it is possible to implement new data
models or carry out updates without requiring the service to
stop, in addition to the possibility of the platform remaining
operational for all user data models despite the need to update
a specific model.

B. MODEL CACHING
Storage and retrieval of models are significant implementa-
tion concerns. Here, the approach does not involve dealing
with the challenges of large models (hundreds of megabytes
of descriptive metadata) and even less with the systematic use
of different types of diagrams and modeling languages [14],
[15], [22]. The use of a Model Caching service is treated
as relevant here in the potential sense that such a service

01. {
02. "model": {
03. "data": {
04. "classes": {
05. "order": {
06. "type": "sql",
07. "roles": {
08. "read": ["Waiter"]
09. "write": ["Customer"]
10. },
11. "composedKey": ["customerid", "number"],
12. "invokeBeforeHook":"payment",
13. "attributes": {
14. "number": {
15. "type": "Long",
16. "nullable": "false"
17. },
18. "date": {
19. "type": "Datetime",
20. "nullable": "false"
21. },
22. "total": {
23. "type": "Money",
24. "nullable": "true"
25. }
26. },
27. "associations": {
28. "belongs": {
29. "type": "Set<OrdemItem>"
30. }
31. }
32. },
33. // Other classes...
34. }
35. }
36. }
37. }

FIGURE 8. A shortcode in JSON description about the internal model
representation.

platform would be needed to handle multiple data models
from various clients.
In very simplified terms, the MCM component (see

Fig. 10), in cases where the cache has reached its storage
limit (arbitrarily set to 1000 stored models), one model will
be removed from the cache so that the requested model can be
stored into the cache. The criteria for choosing which models
will be removed is the Least Recently Used (LRU).

C. DATA REPOSITORY
The DR component receives requests involving per-
sistent commands and queries against the underly-
ing database. Each of these requests carries the tu-
ple <authToken, tenantId, clazzName, data,
command>: command is either Create, Update, or Delete;
data is the data used by the commands; clazzName is
the class name to the data; authToken is a token that
contains encoded information about the user’s credentials;
and tenantId is the key chosen as the data model indexer.
Upon receiving a request, the DR invokes the MCM to

evaluate the cache. If the data model is present in its memory,
it updates the model retention timestamp based on the current
time (see Fig. 10) and sends the data model as a response to
the DR. Then, the DR evaluates whether a hook needs to be
invoked before the execution of persistence commands (see
line 13 of Fig. 11). As previously defined (see Section II-A)),
pseudocode for the hook can be found in Fig.12. Afterward,
the DR invokes the appropriate transformation component,
SQL-RT or NoSQL-RT, according to the class specification

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

01. class ModelManagerService {
02. ModelParser parser;
03. SqlRepresentationTransformer sqlTransformer;
04. SqlDatabaseDriver sqlDbDriver;
05. NoSqlRepresentationTransformer noSqlTransformer;
06. NoSqlDatabaseDriver noSqlDbDriver;
07. /**
08. * @param XMI file, a Class Diagram
10. * @param ’tenantId’ from an existing model
11. * @return the ’tenantId’ of the deployed model.
12. */
13. String deployModel(XMI xmi, String tenantId) {
14. DataModel dataModel;
15. if (tenantId == null) {
16. // UUID.randomGen() generates a hash, the
17. // ’tenantId’ value.
18. dataModel = new DataModel(UUID.randomGen())
19. .parse(xmi).build();
20. } else dataModel = new DataModel(tenantId)
21. .parse(xmi).build();
22. dataModel.getClasses().forEach(clazz -> {
23. // to extract from the model the ’Data
24. // Definition’ command
25. if (clazz.getType().equals("SQL")) {
26. DdlSqlStatement ddlStatement
27. = sqlTransformer.extractDdlCmd(clazz);
28. sqlDbDriver.ddl().execute(ddlStatement);
29. } else if (clazz.getType().equals("NoSQL")) {
30. DdlNoSqlStatement ddlStatement
31. = noSqlTransformer.extractDdlCmd(clazz);
32. sqlDbDriver.ddl().execute(ddlStatement);
33. } else throw new Exception("unknown database");
34. });
35. return dataModel.persist();
36. }
37. JSON getDataModel(String tenantId) {
38. return new Model(tenantId).getJsonRep();
39. }
40. }

FIGURE 9. A short Java-like description about the implementation of the
Model Manager Component.

01. class ModelCacheManagerService {
02. Map<String, Map<String, Object>> cache;
03. void put(String tenantId, DataModel dataModel) {
04. if (cache.length() > 1000) {
05. removeLRU();
06. }
07. Map<String, Object> entry;
08. entry.put("usedOn", Calendar.now());
09. entry.put("model", dataModel);
10. cache.put(tenantId, entry);
11. }
12. DataModel getDataModel(String tenantId) {
13. if (cache.contains(tenantId)) {
14. cache.get(tenantId).put("usedOn", Calendar.now());
15. return cache.get(tenantId).get("model");
16. } else throw new Exception("model not found");
17. }
18. void removeLRU() {
19. Map<Long, String> lru;
20. cache.keys().forEach(key -> {
21. lru.put(cache.get(key).get("usedOn"), key);
22. });
23. cache.remove(lru.get(order(lru.keys()).getLast()));
24. }
25. }

FIGURE 10. A short in Java description about the implementation of
Model Cache Manager Component.

in the data model, considering the constraints imposed in the
model itself (for example, uniqueness, nullability, and volatil-
ity). These components, in turn, assess the authorization to
execute the request and, if authorized, transform the request
into a format accepted by the underlying DML. In the final
stage, a new hook execution evaluation is conducted (see line
32 of Fig. 11), and functions may or may not be invoked. The
code in Fig.13 illustrates the body of a request to the DR.

After completing the representation transformation, the re-

01. class DataRepositoryService {
02. ModelCacheManagerService mcmService;
03. HookHandler hookHandler;
03. /**
04. * @param: the tuple <authToken,
05. * tenantId, clazzName, data, command>
06. */
07. void command(String authToken,
08. String tenantId, String clazzName,
09. JSON data, String command) {
10. JSON clazzes = mcmService
11. .getDataModel(tenantId);
12. JSON clazz = clazzes.getJSON(clazzName);
13. if (clazz.has("BHook")) {
14. data = hookHandler.invoke(clazz.get("BHook"),
15. authToken, tenantId, data, command, true);
16. }
17. if (clazz.get("Type").equals("SQL")) {
18. DmlSQLStatement dmlStatement
19. = sqlTransformer.set(authToken,
20. clazzes, clazz, data, command)
21. .isAuthorized()
22. .extractDmlCmd();
23. data = sqlDbDriver.dml().execute(dmlStatement);
24. } else if (clazz.get("Type").equals("NoSQL")) {
25. DmlNoSQLStatement dmlStatement
26. = noSqlTransformer.set(authToken,
27. clazzes, clazz, data, command)
28. .isAuthorized()
29. .extractDmlCmd();
30. data = noSqlDbDriver.dml().execute(dmlStatement);
31. }
32. if (clazz.has("AHook")) {
33. hookHandler.invoke(clazz.get("AHook"),
34. authToken, tenantId, data, command, false);
35. }
36. }
37. /**
38. * @param the tuple <authToken, tenantId,
39. * clazzName, filter>;
40. * @return the list of objects from a table,
41. * or collection;
42. */
43. JSON query(String authToken, String tenantId,
44. String clazzName, JSON filter) {
45. JSON clazzes
46. = mcmService.getDataModel(tenantId);
47. JSON clazz = clazzes.getJSON(clazzName);
48. if (clazz.getType().equals("SQL")) {
49. DmlSQLStatement dmlStatement
50. = sqlTransformer.set(authToken,
51. clazzes, clazz, filter)
52. .isAuthorized()
53. .extractDmlQuery();
54. return sqlDbDriver.dml().query(dmlStatement)
55. .toListOfObject();
56. } else if (clazz.getType().equals("NoSQL")) {
57. DmlNoSQLStatement dmlStatement
58. = noSqlTransformer.set(authToken,
59. clazzes, clazz, filter)
60. .isAuthorized()
61. .extractDmlQuery();
62. return noSqlDbDriver.dml().query(dmlStatement)
63. .toListOfObject();
64. }
65. }
66. }

FIGURE 11. A short Java description about the implementation of the
Data Repository Component.

sulting statements need to be sent to the appropriate database
driver component—either the SQL-DD or the NoSQL-DD—
as depicted in Fig. 6.

IV. EXPERIMENTS AND RESULTS
In this section, we present experiments to evaluate the techni-
cal feasibility of the proposed persistence service platform re-
garding two technical aspects. First, we compare the average
request processing time to a conventional implementation.
Second, we evaluate distinct processing and memory loads
and compare them to the same conventional implementation.
These experiments’ results establish a minimum empirical

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

01. class HookHandler {
02. HttpClient httpClient;
03. void invoke(String functionId,
04. String authToken, String tenantId, String data,
05 String command, Boolean isBefore) {
06. JSON body = new JSON();
07. body.put("authToken", authToken);
08. body.put("tenantId", tenantId);
09. body.put("functionId", functionId);
10. body.put("command", command);
11. body.put("data", data);
12. body.put("isBefore", isBefore);
13. HttpRequest request = HttpRequest.newBuilder()
14. .POST(body)
15. .uri("http://localhost:8080")
16. .build();
17. HttpResponse<String> response = httpClient
18. .send(request,
19. HttpResponse.BodyHandlers.ofString());
20. if (response.statusCode() == 200)
21. return response.body();
22. else throw new Exception("Hook fail");
23. }
24. }

FIGURE 12. A short in Java description about the implementation for
Hooks.

01. {
02. "authToken": "...",
03. "tenantId": "...",
04. "class": {
05. "name": "order"
06. "instance": {
07. "number": "23",
08. "total": "5.56",
09. "date": "2023-12-03"
10. }
11. }
12. }

FIGURE 13. A short JSON description about body message request to
Data Repository Component.

understanding of the technical implementation and operation
challenges.

To evaluate both aspects, we carried out experiments re-
lated to data persistence and retrieval tasks in databases,
measuring processing time and hardware load required for
such tasks. In general terms, the experiments consisted of
firing variable loads of asynchronous requests at maximum
speed to persist or read data.

In this sense, we compared the effect of these requests on
the operation of two different persistence APIs. The first is a
conventional implementation of a data persistence service us-
ing the Spring Boot JPA framework with Java—implemented
as a microservice for data persistence in accordance with
the model in Fig. 2 and running a t2.small instance on
AmazonWeb Service (AWS) infrastructure.We chose a cloud
execution environment since this is the intended execution
context for the platform in production conditions.

The second is the implementation of the same service
according to the proposed persistence service, submitted to
the load of five instances of the same data model in Fig 2.
The implementation follows the previously specified design,
with the DR, MCM, SQL-RT, and NoSQL-RT components
in a single microservice (from now on, we call this microser-
vice mDR), deployed on a second t2.small instance. The
SQL-DD component (from now on, we call this microser-
vice mSQLDD), in turn, was implemented together in a third

t2.small instance. The choice of a distributed architec-
ture for implementation is more natural for improving the
platform’s management capacity, evolution, and scalability.
Therefore, implementing it in these terms helps to approxi-
mate the operational conditions of these experiments to the
real application. All these components are implemented in
Java and use the Spring Boot framework.
The requests made to the persistence service were always

in proportional quantities for each of the models and in a
shuffled way during the realization of each of the four groups
of experiments—as further described.Moreover, all messages
were sent asynchronously at maximum speed for either im-
plementation. While executing requests, we evaluated the
CPU and memory utilization and the time elapsed average
necessary to carry out the requests. These evaluations occur
per t2.small and microservice.
We highlight that the requests sent to the persistence ser-

vice platform, referring to the operations on five models
related to writing or reading data, are counted in aggregate
form to measure the CPU and memory effort and evaluate
the elapsed time per request. Therefore, the CPU, Memory,
and Elapsed Time columns in the following tables indicate
the effort required to process the aggregate of requests.
Furthermore, to perform the Create operations, the same

data class was employed for both implementations, namely
the Order class. The same class was chosen for the Up-
date and Delete operations. Regarding data reading opera-
tions (Read), the query involved retrieving, at a time, dif-
ferent records from two data classes, namely, Order and
OrderItem—for each Order record, through a database-
level Join, its set of OrderItems. None of the read op-
erations involved querying data that did not exist in the
database. Similarly, Update and Delete operations only dealt
with data that existed in the database. When executed, Create
operations always involved creating data that respected the
constraints of the Order table in the database.
We created four groups of experiments. The first group,

Table 1, involves executing a load of 200 requests, separated
into two subgroups, with 100 requests for each subgroup.
The first subgroup experimented only with shuffled requests
of Create, Update e Delete operations, which targeted the
"Java/Spring Boot JPA"-based service API—see line 1 of the
Table 1, the Java/JPA implementation was coded into the
microservice. The second subgroup, in turn, also aimed to
investigate the behavior of the persistence API under the same
set of operations. See line 2 in Table 1.
It is important to highlight that, regarding the choice of

persistence load and data query request, based on the authors’
experience in the context of Information Systems (IS) in
SMEs, in general, it is quite unusual for such systems to be
subjected to dealing with demands exceeding the order of
thousands per second. This was the criterion that guided our
choice of load for the experiments.
From the experiment in Table 1, we observed that the

average elapsed time due to the adversarial Java/JPA imple-
mentation was close to one and a half times the average time

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. First Experiment

Models Implementation Requests Operation CPU (%) (peak) Memory(MB) (peak) Elapsed Time - AVG(ms)
1 Java/JPA 100 C,U,D 1.1 222 34
5 Proposed Service 100 C,U,D 1.6(mDR), 1.8(mSQLDD) 165(mDR), 427(mSQLDD) 22

of the persistence API. As for CPU usage, concerning the
effort to meet the demand of the mDR API, its usage was
slightly higher than that of the adversarial API. The same
can be said regarding the CPU behavior to serve mSQLDB.
Regarding memory usage, the total memory used to serve
requests from five models was 592 MB, compared to the
total memory of 222 MB used to serve a single model in the
adversarial API.

The second group, Table 2, involves executing a load of
1000 requests, separated into two subgroups, with 500 re-
quests for each subgroup. The first subgroup experimented
only with shuffled requests of Create, Update e Delete oper-
ations, which targeted the "Java/Spring Boot JPA"-based ser-
vice API—see line 1 of that table, the Java/JPA implementa-
tionwas coded into themicroservice. The second subgroup, in
turn, also aimed to investigate the behavior of the persistence
service API under the same set of operations. See line 2 in
Table 2.

From the experiment in Table 2, we observed that the av-
erage elapsed time due to the persistence API was equivalent
to the average time of the adversarial API. As for CPU usage,
concerning the effort to meet the demand of the mDR API,
its usage was slightly higher than that of the adversarial API.
The same can be said regarding the CPU behavior to serve
mSQLDB. Regarding memory usage, the total memory used
to serve requests from five models was 484 MB, compared to
the total memory of 220 MB used to serve a single model in
the adversarial API.

The third group, Table 3, involves executing a load of 200
requests, separated into two subgroups, with 100 requests
for each subgroup. The first subgroup experimented only
requests of Read operations, which targeted the Java/JPA-
based service API—see line 1 of that table. The Java/JPA
implementation was coded into the microservice. The second
subgroup, in turn, also aimed to investigate the behavior of
the persistence API under the same set of operations. See line
2 in Table 3.

From the experiment in Table 3, we observed that the
average elapsed time due to the persistence API was close
to one and a half times the average time of the adversarial
API. As for CPU usage, concerning the effort to meet the
demand of the mDR API, its usage was slightly higher than
that of the adversarial API. The same can be said regarding the
CPU behavior to serve mSQLDB. Regarding memory usage,
the total memory used to serve requests from five models was
equivalent to 394 MB, compared to the total memory of 202
MB used to serve a single model in the adversarial API.

The fourth group, Table 4, involves executing a load
of 1000 requests, separated into two subgroups, with 500
requests for each subgroup. The first subgroup experi-

mented only requests of Read operations, which targeted the
Java/JPA-based service API (see line 1 of that table). The
Java/JPA implementation was coded into the microservice.
The second subgroup, in turn, also aimed to investigate the
behavior of the persistence API under the same set of opera-
tions. See line 2 in Table 4.
Furthermore, from the experiment in Table 4, we observed

that the average elapsed time due to the persistence service
API was close to over 2/3 higher than the average time of
the adversarial API. As for CPU usage, concerning the effort
to meet the demand of the mDR API, its usage was slightly
higher than that of the adversarial API. The same can be said
regarding the CPU behavior to serve mSQLDB. Regarding
memory usage, the total memory used to serve requests from
five models was 578 MB, compared to the total memory of
218 MB used to serve a single model in the adversarial API.
The objective of these experiments is to evaluate howmuch

the overhead of the interpreted approach causes performance
degradation in the proposed persistence service compared
to the conventional execution. The microservice that im-
plements the conventional approach in a single t2.small
instance receives the request, processes it, and dispatches it
directly to the database. The proposed persistence service
approach performs the same task through two microservices
in different t2.small instances. However, the processing
load necessary for the interpretation activity and the transfor-
mation between representations is concentrated in just one of
the microservices—the mDR.
In this sense, in at least two of the four experiments, the

proposed persistence service presents a processing time close
to or shorter than the adversarial API in the context of opera-
tions that involve changing the state of data in the database. In
Read operations, however, the proposed persistence service
consistently underperformed.
It is also relevant to note that to run the data persistence

service API for five data models, the proposed persistence
service required a consumption of up to, in any case, less
than double the consumption of the adversary API—the con-
ventional implementation, meeting the demand for 1 data
model consumed a maximum of 222 MB of memory in the
experiments. Thus, the proposed persistence service suggests
a more efficient use of memory under the conditions of these
experiments.

V. RELATED WORK
Existing work [6], [10] shows that the model interpretation
approach remains almost unexploited. Although we have
extensively searched for research that exploited an interpre-
tation strategy beyond the initial phases of software devel-
opment (analysis, validation, and simulation), such studies

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Second Experiment

Models Implementation Requests Operation CPU (%) (peak) Memory(MB) (peak) Elapsed Time - AVG(ms)
1 Java/JPA 500 C,U,D 1.2 220 13
5 Proposed Service 500 C,U,D 1.8(mDR), 1.7(mSQLDD) 162(mDR) & 322(mSQLDD) 15

TABLE 3. Third Experiment

Models Implementation Requests Operation CPU (%) (peak) Memory(MB) (peak) Elapsed Time - AVG(ms)
1 Java/JPA 100 R 1.1 202 25
5 Proposed Service 100 R 1.7(mDR), 1.9(mSQLDD) 151(mDR), 243(mSQLDD) 35

TABLE 4. Fourth Experiment

Models Implementation Requests Operation CPU (%) (peak) Memory(MB) (peak) Elapsed Time - AVG(ms)
1 Java/JPA 500 R 1.9 218 17
5 Proposed Service 500 R 2.2(mDR), 1.8(mSQLDD) 162(mDR), 416(mSQLDD) 29

proved to be quite scarce. We highlight some of these works
as follows.

In the Deep Models@run.time for User-Driven Flexible
Systems [16], the focus is on the use of the Deep Models
approach [2]. From this, the central concept that is explored
is the Clabject Hierarchies [11] — an abstraction of a dual
nature that authorizes the author to embody metadata and
data in it, creating an opportunity to carry out modeling and
code construction at the same time. The author finds in Clab-
jects an opportunity for constructs capable of mutating their
representations at runtime, making the system more flexible
and evolving synchronously in relation to its data model. In
this sense, using this approach requires its adopters to be
able to deal with Clabjects, a lesser-known concept. Besides
employing model interpretation, our approach uses the well-
known UML Class diagrams.

In Modeling Low-Code Databases With Executable Mod-
els [5], class diagrams are employed to generate database
schemas automatically. The authors’ approach captures data
representations, performs transformations by mapping UML
Class Diagrams to the underlying database, and creates it.
Furthermore, its construction also delivers a RESTful API
for accessing data from the generated database. Its central
objective is to offer undergraduate students in IT courses a
standalone tool capable of facilitating the process of build-
ing databases and accessing their data through a RESTful
API. Unlike our approach, the authors intentionally avoid the
complexities associated with production level by focusing on
educational purposes.

In turn, Driessen [8] proposes something similar to our
work regarding using UML Class Diagrams as first-class
artifacts, whether in the software development phase or the
execution phase. However, this is done so that, when the
software is executed, the data models are interpreted to gen-
erate the domain data class code—a hybrid approach. In
this sense, as a condition for adopting this approach, the
programming language must allow dynamic binding between
the representation of new data classes, or changes to them,
and the latest binary codes injected into the application for

these classes at run time. In this sense, we chose not to
create dependencies between the platform’s services and the
programming language used to build them.
In code generation, Torres et al. [27] address the chal-

lenge of persistence modeling in Model-Driven Engineering
(MDE). Its main contribution is prioritizing the use of UML
diagrams as the primary modeling language to serve technical
and non-technical users, simplifying the persistence speci-
fication and facilitating communication between developers
and domain experts. Furthermore, the approach integrates for-
mal methods to check model consistency and ensure data in-
tegrity, addressing concerns about the reliability and correct-
ness of the generated code. Another paper, Data integration
and interoperability: Towards a model-driven and pattern-
oriented approach [21], presents a model-driven, standards-
centric approach to data integration and interoperability, pri-
oritizing the representation of domain data through Entity-
Relationship or UMLClass Diagrams.While data persistence
concerns remain outside its scope, it defines reusable design
patterns to effectively integrate diverse data representations
into legacy systems. Despite its relevance in using models to
integrate different systems, it is supported by code generation.
Distinctively from these two approaches, our work is entirely
built using the model interpretation.
Finally, we also highlight the work of [12] who defines a

metamodel to represent domain data in an IS, for its manipu-
lation by end users, as well as the automated generation of a
RESTfulWebAPI tomanipulate it. This is done to support the
implementation and operation of the backend of applications
in the context of he LCP service. However, although the work
centrally implies the use of models to collaborate with the
execution of the LCP platform, it does not offer a discussion
on the aspects related to the persistence service itself, or its
mode of operation.
In summary, we seek to move away from lesser-known

techniques among industry practitioners by making them
interested in using our data persistence service at a produc-
tion level in a multi-tenant single-service instance manner;
we decoupled the platform’s services from the programming

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

language used to build them; we use a fully interpretative
approach to achieve flexibility from the users’ perspective
and, potentially, better results in terms of code and computing
resource reuse.

VI. FINAL REMARKS
This paper has exploited the potential of MDE approaches in
the context of LCPs, specifically focusing on using runtime
model interpretation for data persistence services.We provide
experimental results that suggest the technical feasibility of
this approach to interpreting data models at runtime. We have
presented an alternative LCP architecture that leverages a
model interpretation approach to manage data access and
persistence across multi-tenant software services, doing so
more flexibly than automated or manual code generation
approaches. The proposed architecture utilizes a subset of
UML Class Diagrams as the primary modeling tool, enabling
users to capture and represent data hierarchies with basic
IT training. Given that the load test results yielded numbers
that are comparable to the performance of solutions involving
conventional domain model encoding (through manual or
automatic generation), coupled with superior performance in
terms of resource allocation and sharing, we deem it relevant
to delve deeper into the research.

We have also detailed the implementation of our LCP pro-
totype, presenting some components that, together, interpret
models, translate them into database-specific instructions,
and manage data access and persistence.

Although our work highlights the potential of MDE in
LCPs using a data model interpretation approach, we do not
exploit aspects related to scalability and security, as well as
the limitations imposed by the need for isolation of request
executions from different clients. Furthermore, investigating
the use of more expressive data models, as well as the use
of process models, is necessary to improve the capabilities of
this LCP. Another relevant aspect involves the investigation
of error handling mechanisms more suitable for distributed
and multi-tenant architectures like the one presented in this
platform.

DISCLOSURE STATEMENT
The first and third authors have shares in the software devel-
opment and operation company Ycodify, which acts as a Low
Code services platform. The second author declares that he
has no competing interests.

ACKNOWLEDGMENTS
This work was supported by Coordenação de Aperfeiçoa-
mento de Pessoal deNível Superior—Brazil (CAPES)—Finance
Code 001.

REFERENCES
[1] Ahmed, Usama, Imran Raza, and Syed Asad Hussain. 2019. “Trust eval-

uation in cross-cloud federation: Survey and requirement analysis.” ACM
Computing Surveys (CSUR) 52 (1):1–37.

[2] Atkinson, Colin, and Thomas Kuhne. 2015. “In defence of deep mod-
elling.” Information and Software Technology 64:36–51.

[3] Blair, Gordon, Nelly Bencomo, and Robert B. France.
2009. “Models@ run.time.” Computer 42 (10): 22–27.
https://doi.org/10.1109/MC.2009.326.

[4] Bock, Alexander C, and Ulrich Frank. 2021. “Low-code platform.” Busi-
ness & Information Systems Engineering 63: 733–740.

[5] Bubalo, Alan, and Nikola Tankovi´c. 2023. “Modeling low-code databases
with executable UML.” Human Systems Engineering and Design (IHSED
2023): Future Trends and Applications 112 (112).

[6] Ciccozzi, Federico, Ivano Malavolta, and Bran Selic. 2019.
“Execution of UML models: a systematic review of research
and practice.” Software & Systems Modeling 18: 2313–2360.
https://doi.org/https://doi.org/10.1007/s10270-018-0675-4.

[7] Colantoni, Alessandro, Antonio Garmendia, Luca Berardinelli, Manuel
Wimmer, and Johannes Brauer. 2021. “Leveraging Model-Driven Tech-
nologies for JSON Artefacts: The Shipyard Case Study.” In 2021
ACM/IEEE 24th International Conference on Model Driven Engineering
Languages and Systems (MODELS), 250–260. IEEE.

[8] Driessen, Ralph. 2020. “UML class models as first-class citizen: Metadata
at design-time and run-time.” Leiden University. Leiden Institute of Ad-
vanced Computer Science (LIACS) 1–42.

[9] Elshan, Edona, Ernestine Dickhaut, and Philipp Alexander Ebel. 2023.
“An investigation of why low code platforms provide answers and new
challenges.” In Proceedings of the 56th Hawaii International Conference
on System Sciences.

[10] Galhardo, Pedro, and Alberto Rodrigues da Silva. 2022. “Combining
Rigorous Requirements Specifications with Low-Code Platforms
to Rapid Development Software Business Applications.” Applied
Sciences 12 (19). https://doi.org/https://doi.org10.3390/app12199556,
https://www.mdpi.com/2076-3417/12/19/9556.

[11] Henderson-Sellers, Brian, and Cesar Gonzalez-Perez. 2005. “The ratio-
nale of powertype-based metamodelling to underpin software development
methodologies.” In Conferences in research and practice in information
technology series, 7–16. http://hdl.handle.net/10453/1937.

[12] Hili, Nicolas, and Raquel Ara´ujo de Oliveira. 2022. “A light-weight
low-code platform for back-end automation.” In Proceedings of the 25th
International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, 837–846.

[13] Hintsch, Johannes, Daniel Staegemann, Matthias Volk, and Klaus
Turowski. 2021. “Low-code development platform usage: towards
bringing citizen development and enterprise it into harmony.” ACIS.
https://aisel.aisnet.org/acis2021/11.

[14] Horvath, Benedek, Akos Horvath, and Manuel Wimmer. 2020. “Towards
the next generation of reactive model transformations on low-code plat-
forms: three research lines.” MODELS’20, New York, NY, USA. Associ-
ation for Computing Machinery.

[15] Indamutsa, Arsene, Davide Di Ruscio, and Alfonso Pierantonio. 2021. “A
Low-Code Development Environment to Orchestrate Model Management
Services.” In Advances in Production Management Systems. Artificial
Intelligence for Sustainable and Resilient Production Systems, edited by
Alexandre Dolgui, Alain Bernard, David Lemoine, Gregor von Cieminski,
and David Romero, Cham, 342–350. Springer International Publishing.

[16] Kegel, Karl, and Ing Sebastian G¨otz. 2022. “Deep Models@ Run. time
for User-Driven Flexible Systems.”

[17] Kass, Sebastian, Susanne Strahringer, and Markus Westner.
2023. “Practitioners’ Perceptions on the Adoption of Low
Code Development Platforms.” IEEE Access 11: 29009–29034.
https://doi.org/10.1109/ACCESS.2023.3258539.

[18] Martinez, Eder, and Louis Pfister. 2023. “Benefits and limitations
of using low-code development to support digitalization in
the construction industry.” Automation in Construction 152:
104909. https://doi.org/https://doi.org/10.1016/j.autcon.2023.104909,
https://www.sciencedirect.com/science/article/pii/S0926580523001693.

[19] Neto, Josino Rodrigues, Vinicius Cardoso Garcia, Andreza Leite de Alen-
car, Julio Cesar Damasceno, Rodrigo Elia Assad, and Fernando Trinta.
2012. “Software as a Service: Desenvolvendo Aplicacoes Multi-tenancy
com Alto Grau de Reuso.” Sociedade Brasileira de Computacao .

[20] Peng, Dunlu, Lidong Cao, and Wenjie Xu. 2011. “Using JSON for data
exchanging in web service applications.” Journal of Computational Infor-
mation Systems 7 (16): 5883–5890.

[21] Petrasch, Roland J, and Richard R Petrasch. 2022. “Data integration and
interoperability: Towards a model-driven and pattern-oriented approach.”
Modelling 3 (1): 105–126.

[22] Philippe, Jolan, Helene Coullon, Massimo Tisi, and Gerson Sunye.
2020. “Towards transparent combination of model management exe-

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

cution strategies for low-code development platforms.” In Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, MOD-
ELS ’20, New York, NY, USA. Association for Computing Machinery.
https://doi.org/10.1145/3417990.3420206.

[23] Pinho, Daniel, Ademar Aguiar, and Vasco Amaral. 2023.
“What about the usability in low-code platforms? A system-
atic literature review.” Journal of Computer Languages 74:
101185. https://doi.org/https://doi.org/10.1016/j.cola.2022.101185,
https://www.sciencedirect.com/science/article/pii/S259011842200082X.

[24] Rymer, John R, Rob Koplowitz, Christopher Mines, Sara Sjoblom, and
Christine Turley. 2019. “The Forrester wave: low-code development plat-
forms For AD&D professionals, Q1 2019.” Forrester Report, Forrester.

[25] Song, Hui, Gang Huang, Franck Chauvel, and Yanshun Sun. 2010. “Ap-
plying MDE Tools at Runtime: Experiments upon Runtime Models.” In
Proceedings of the 5th International Workshop on Models at Run Time,
edited by Nelly Becomo, Gordon Blair, and Franck Fleurey, Oslo, Norway,
October. To be published, https://inria.hal.science/inria-00560785.

[26] Tisi, Massimo, Jean-Marie Mottu, Dimitrios S. Kolovos, Juan de Lara,
Esther M Guerra, Davide Di Ruscio, Alfonso Pierantonio, and Manuel
Wimmer. 2019. “Lowcomote: Training the Next Generation of Experts in
Scalable Low-Code Engineering Platforms.” In STAF 2019 Co-Located
Events Joint Proceedings: 1st Junior Researcher Community Event, 2nd
InternationalWorkshop onModel-Driven Engineering for Design-Runtime
Interaction in Complex Systems, and 1st Research Project ShowcaseWork-
shop co-located with Software Technologies: Applications and Founda-
tions (STAF 2019), CEURWorkshop Proceedings (CEUR-WS.org), Eind-
hoven, Netherlands, July. https://hal.science/hal-02363416.

[27] Torres, Alexandre, Renata Galante, and Marcelo S. Pimenta.
2011. “A synergistic model-driven approach for persistence
modeling with UML.” Journal of Systems and Software 84 (6):
942–957. https://doi.org/https://doi.org/10.1016/j.jss.2011.01.027,
https://www.sciencedirect.com/science/article/pii/S0164121211000197.

[28] Vincent, Paul, Kimihiko Iijima,MarkDriver, JasonWong, andYefimNatis.
2019. “Magic quadrant for enterprise low-code application platforms.”
Gartner report .

[29] Yao, Mengdi, Donglin Chen, and Jennifer Shang. 2019. “Optimal over-
booking policy for cloud service providers: Profit and service quality.”
IEEE Access 7: 96132–96147.

FIRST A. AUTHOR Julio Gustavo Costa was born in Natal, Brazil. He holds
a Bachelor’s degree in Computer Engineering from the Federal University
of Rio Grande do Norte (UFRN), Brazil, in 2003, and a Master’s degree in
Systems and Computing from the same university in 2020.

He worked at i3C as a software analyst and developer from 2003 to 2007.
He worked as a systems and projects analyst at the Municipal Government
of Parnamirim, RN, Brazil, between 2006 and 2017.

Since 2020, he has been pursuing a Ph.D. in the area of Systems and
Computing at the Graduate Program in Electrical and Computer Engineer-
ing/UFRN.

Since 2022, he has been a partner at Ycodify, a software development
company, and serves as a software architect for the process modeling and
automation platform.

SECOND B. AUTHOR Luiz M. G. Gonçalves holds a Doctorate in Systems
and Computer Engineering from COPPE-UFRJ, Brazil, in 1999, which
included a two years study at the Laboratory for Perceptual Robotics of
UMASS, Amherst, USA.

He is a full Professor at the Computer Engineering Department of UFRN,
Brazil. He has done research in several aspects of Graphics Processing
including fields such as Robotics Vision (main interest), Computer Graphics,
GIS, Geometric Modelling, Computer Animation, Image Processing, Com-
puter Vision, and Robotics in Education.

THIRD C. AUTHOR Samuel Xavier-de-Souza was born in Natal, Brazil. He
holds a Computer Engineer degree fromUniversidade Federal do Rio Grande
do Norte-UFRN, Brazil, 2000, and a Ph.D. in Electrical Engineering from
Katholieke Universiteit Leuven, Belgium, 2007.

He worked for IMEC, Belgium, as a Software/Hardware Engineer and
for the Flemish Supercomputing Center, Belgium, as a High-Performance
Computing Consultant.

In 2009, he joined the Department of Computer Engineering and Automa-
tion at UFRN, where he currently holds the position of Associate Professor.
He is a founder and Director of the High-Performance Computing Center-
NPAD at UFRN. In 2016, he became a Royal Society-Newton Advanced
Fellow in 2016 for his research on Software Energy. In 2019, he became an
IEEE Senior Member. His current research interests are high-performance
and energy-efficient computing, scaleable and efficient parallel systems,
scaleability profiling, visualization, analysis tools, parallel algorithms, par-
allel architectures, and their applications.

VOLUME 11, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525639

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

