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ABSTRACT A detailed Lie symmetry analysis of the nonlinear damped Klein-Gordon Fock equation:
utt +α(u) ut = uxx + f (u) is addressed in this paper. Applying the Lie symmetry method, a comprehensive
Lie group classification is performed for the arbitrary smooth functionsα(u) and f (u) present in the equation,
leading to two distinct cases. Additionally, for each case an optimal system of one-dimensional subalgebras
is derived, which is a minimal set of all the linearly independent symmetry generators without redundant
symmetries. Using the similarity transformation method, the above-mentioned partial differential equation
is reduced into a set of ordinary differential equations. In certain cases, several exact invariant solutions
encompassing the travelling wave solutions and soliton waves are obtained. The graphs of the soliton
solutions and traveling wave solutions are also presented. Finally, the conservation laws are identified via
the partial Noether approach, leading to distinct cases with several subcases. The derived conservation laws
provide valuable tools for examining the dynamics and stability of physical systems, making this research
suitable to a range of scientific studies.

INDEX TERMS Conservation laws, invariant solutions, Lie symmetry classification, mathematical model,
optimal system

I. INTRODUCTION

NOnlinear partial differential equations find wide appli-
cations in modeling various phenomena in engineer-

ing, mathematics, quantum mechanics, and related fields.
Some well-known partial differential equations (Pdes) are
the Blasius equation, heat equation, Laplace equation, and
the wave equation. Several studies have been undertaken in
finding solutions of Pdes, such as the Navier-Stokes equation,
nonlinear diffusion equation, and the Klein-Gordon-Fock
equation in quantum theory, as well as others [1], [2].

In this paper, we consider a damped Klein-Gordon Fock
(Kgf) equation, formulated as

utt + α(u) ut = uxx + f (u), (1)

here, the damping term α(u) ut and the source function f (u)
imparts nonlinearity into the equation giving rise to solitons
and complex wave dynamics. Moreover, damping leads to a
gradual reduction in the amplitude of the wave due to energy

dissipation and it is used to model the effects of viscosity,
friction, or other dissipative processes that removes energy
from a system, resulting in eventual reduction or stabilization
of the system. The inclusion of a damping in Pdes has
significant implications for the behaviour of the solutions, for
instance, it can lead to stable and well-behaved solutions in
some cases, while in some others, it may cause oscillations to
diminish over time. The combined effects of nonlinearity and
damping can result in interesting wave dynamics, including
the formation of solitons, wave steepening, wave breaking, or
other types of nonlinear wave patterns.

Equation (1) represents a second-order equation in both
space and time, comes under the class of nonlinear evolution
equations. It models the dynamics of scalar particles in
quantum theory. This equation has extensive applications in
non-linear dynamics, wave propagation, and quantum theory
[3]. Also, the nonlinear damped Kgf equation is significant
in applied mathematics as it acts as a test tool for the devel-
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opment of semi-analytical and analytical methods, to study
the stability, uniqueness and existence of solutions, as well
as construction of numerical methods to understand the more
complex nonlinear Pdes [4].

Obtaining solutions of nonlinear differential equations
holds paramount importance in nonlinear science, and the Lie
symmetry method is a powerful algebraic technique for this
purpose. It not only deals with the general class of nonlinear
equations but also efficiently identifies reductions, invariant
solutions, and simpler forms of these equations. The Lie
symmetry method and prolongation formulas are proposed
in [5], [6], for conducting symmetry analysis of differential
equations. The application of Lie symmetry method to the
nonlinear damped Kgf equation allows for a construction of
its Lie symmetries. These symmetries lead to the reduction of
independent variables or reduces the complexity of the equa-
tion, which in turn helps identifying the invariant solutions,
and derive conservation laws. These invariant solutions and
conservation laws offer complete insight into the properties
and dynamics described by the equation.

Various tools, involving numerical and analytical tech-
niques, have been developed to solve such nonlinear Pdes
[7]. Liu et al. proposed an appropriate and efficient method
for obtaining approximate solutions to problems related to
wave propagation. The proposed method generates alge-
braic results that remain robust against discretizations [8].
Employing the Nucci’s reduction and new extended direct
algebraic methods Faridi et al. derived the solitary waves
and exact solutions of Kuralay equation [9]. Subsequently,
Hosseini et al. applied the Lie symmetry method to obtain the
reductions and exact solutions of Kodama equation, alongside
performing bifurcation and sensitivity analyses on its derived
dynamical system [10]. Moreover, Hosseini et al. studied the
generalized Kadomtsev–Petviashvili equation and obtained
its positive multi-complexiton solution [11]. To study the
wave propagation in high-frequency, Huang proposed the
Gaussian Airy beam approximation [12], [13]. By employing
the (φ

′
/φ, 1/φ)−expansion method Dey et al. derived the

soliton solutions of a generalized (3 + 1)−dimensional shal-
low water-like equation [14]. Additionally, Akbar et al. [15]
discussed the dynamics of solitons of the perturbed nonlin-
ear Schrodinger equation using the generalized Kudryashov
scheme.

The symmetry group properties of a nonlinear wave equa-
tion with arbitrary function was, e.g., carried out by Ames et
al. [16]. The group theoretic approach for the classification
of nonlinear differential equations was earlier presented by
Ovsiannikov [5]. The method of Lie symmetry rooted in
group theory is quite systematic and effective for solving lin-
ear as well as nonlinear differential equations and works with-
out making early guesses and approximations. The method
is feasible for reducing the dimension of the differential
equations. For a detailed exposure to this method the reader

is referred to the well-known books by Ovsiannikov [5],
Bluman and Kumei [6], Ibragimov [17] and Olver [18]. The
soliton solutions of the 3-dimensional nonlinear Klein-Fock
equation was proposed by Tajiri et al. [19]. They reduced
it to 2D Klein Gordon equation and subsequently to Odes
by similarity transformations to seek solition solutions. The
exact solution as well as the complete Lie symmetry analysis
of the damped wave equation was presented by Usamah et al.
[20].

Moreover, conservation laws and optimal systems play
central roles in Lie symmetry analysis as they are helpful
in performing reductions of the differential equations. Fur-
thermore, conservation laws are effective in order to achieve
accuracy and existence of numerical solutions of nonlinear
and linear Pdes.

Symmetries are also applicable in Finance (see, e.g., Ma-
homed et al. [21]). For nonlinear wave equations, the optimal
system, reductions and conservation laws were recently pro-
vided by Raza et al. [22]. The relation between symmetries
and conservation laws was studied via the port-representation
by Nishida et al. [23]. Recent applications of group symmetry
theory are found in machine learning, for instance, [24].

Other important aspects of Lie group analysis in differ-
ential equations is that of symmetry classification, optimal
system, and reductions. The reader is referred to, e.g., Azad
et al. [25] on the Kgf equation

utt = uxx + f (u). (2)

Azad et al. performed the Lie group classification, obtained
optimal system and reductions of Equation (2). The present
paper deals with the Lie group classification, optimal system,
reductions, identification of some exact invariant solutions
including soliton waves as well as travelling wave solutions,
and determination of conservation laws for Equation (1),
which features nonlinear damping and is a generalized ver-
sion of Equation (2). In addition, the presence of the damping
term changes the dynamics, overall analysis, symmetries,
and solutions found in [25]. The considered Equation (1)
can serve as a test tool in applied mathematical research
for evaluating both analytical and numerical methods used
for solving Pdes. Furthermore, by means of Lie symmetry
analysis, Khalique et al. [26] analysed the nonlinear Kgf
equation and obtained stationary solutions. To obtain the
optimal system and invariant solutions, we have used the
approaches presented in the known works [5], [6] and [17].

The outline of this paper is as follows: In Section 2, we
obtain the Lie symmetry group classification of the damped
Kgf Equation (1). Section 3 gives the adjoint table and the
optimal systems. Also, the reduction of the damped Kgf
equation to ordinary differential equations through optimal
systems is given in the subsequent section 4. We also find
invariant solutions by solving the reduced Odes. Section 5
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provides examples of soliton solutions of Equation (1). Addi-
tionally, this sections includes the graphical representation of
these solutions. Section 6 includes the conserved quantities of
the considered damped Kgf equation obtained via the partial
Noether approach.

II. SYMMETRY GROUP CLASSIFICATION
This section finds the principal Lie symmetries and performs
a group classification to identify particular forms of the arbi-
trary functions α(u) and f (u). To derive the Lie symmetries
of Equation (1), the one-parameter Lie group of point trans-
formations in (u, t, x), is given by

x̄ = x + ε ξ1(u, t, x) + O(ε2),

t̄ = t + ε ξ2(u, t, x) + O(ε2),

ū = u + εϕ(u, t, x) + O(ε2),

here, ε denotes the parameter in the group transformation. The
operator of the transformation is represented as follows

χ = ξ1(u, t, x)
∂

∂x
+ ξ2(u, t, x)

∂

∂t
+ ϕ(u, t, x)

∂

∂u
. (3)

We require the second-order prolongation as the Equation (1)
is of second order. This is well-known from the sources [5],
[6] and given by

χ[2] = χ+ϕx
∂

∂ux
+ϕt

∂

∂ut
+ϕxt

∂

∂uxt
+ϕxx

∂

∂uxx
+ϕtt

∂

∂utt
,

(4)
where

ϕx = Dx ϕ − ux Dx ξ1 − ut Dx ξ2,

ϕt = Dt ϕ − ux Dt ξ1 − ut Dt ξ2,

ϕxt = Dt ϕx − uxx Dt ξ1 − uxt Dt ξ2,

ϕxx = Dx ϕx − uxx Dx ξ1 − uxt Dx ξ2,

ϕtt = Dt ϕt − uxt Dt ξ1 − utt Dt ξ2,

and Di is the total derivative operator:

Di =
∂

∂x i
+ ui

∂

∂u
+ . . . , (x1, x2) = (x, t).

According to the Lie symmetry method, the local group of
transformations is a Lie group that leaves Equation (1) in-
variant, if it satisfies the following invariance condition

χ[2] (utt + α(u) ut − f (u) − uxx)
∣∣
(utt =−α(u) ut + f (u) + uxx)

= 0.

(5)
The expansion of Equation (5) and comparison of the coef-
ficients of independent derivatives of u lead to the following
system of determining Pdes

ϕuu = 0, (6)

ξ1
t α(u) + (2ϕxu − ξ1

xx) + ξ1
tt = 0, (7)

ϕ αu + ξ2
t α(u) + (2ϕtu − ξ2

tt) + ξ2
xx = 0, (8)

ξ2
x − ξ1

t = 0, (9)

ξ1
x − ξ2

t = 0, (10)

−ϕfu + α(u)ϕt + (ϕu − 2ξ2
t ) f (u) + ϕtt − ϕxx = 0. (11)

Equation (6) implies that

ϕ = m(x, t) u+ n(x, t).

Further, Equations (9) and (10) lead to

ξ1
tt = ξ1

xx , ξ2
tt = ξ2

xx .

After some manipulations, we obtain

ξ1
t α(u) + 2mx = 0, (12)

(m(x, t) u+ n(x, t))αu + ξ2
t α(u) + 2mt = 0. (13)

If α and f are arbitrary in u, then Equations (12) and (13)
result in

m = 0, n = 0,

ξ2
t = 0, ξ1

t = 0.

Consequently, Equations (9) and (10) imply that

ξ2 = C1, ξ1 = C2.

Thus, for arbitrary α(u) and f (u), we have the two dimen-
sional Lie algebra, which is the principal Lie algebra of
Equation (1), spanned by

χ1 =
∂

∂t
, χ2 =

∂

∂x
, (α 6= 0).

Now for the extension of the principal Lie algebra, we have

ξ1 = C1 x + C2,

ξ2 = C1 t + C3.

From Equation (13), we obtain(
m(t) u+ n(x, t)

)
αu + C1 α+ 2mt = 0. (14)

The following two cases arise for which the principal algebra
extends.

Case 1: m 6= 0, k 6= 0, 1.
This case yields the following form of the function α(u)

α(u) = B1 (u+ k1)k ,

which subsequently leads to f (u) of the form

f (u) = D1 (u+ k1)1+2k .

The additional symmetry generator of Equation (1) for these
forms of the functions is

χ3 = −k x ∂

∂x
− k t ∂

∂t
+ (u+ k1)

∂

∂u
.

Case 2: m = 0, k2 6= 0.
In this case, we obtain different forms of the functions, α(u)
and f (u)

α(u) = E1 ek2 u, f (u) = F1 e2 k2 u, k2 6= 0.

Consequently, the principal algebra extends to
3-dimensions, along with the following symmetry generator

χ3 = −k2 x
∂

∂x
− k2 t

∂

∂t
+

∂

∂u
.
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A. EQUIVALENCE TRANSFORMATION
The equivalence transformations of an equation leaves the
family invariant [17]. Equation (1) has the following equiv-
alence transformations

t̄ = a1 t + a2, x̄ = a1 x + b1, ū = c1 u+ c2, (15)

where a1, a2, b1, c1, and c2 are the arbitrary constants. We
show this to be the case. Indeed

Di = Di f j D̄j̄, x̄ i = f i(x),

where x̄1 = t̄ = f 1, x̄2 = x̄ = f 2 and Di is the
total derivative transform on f i. For the above transforms in
(x, t)−space, we have

Dx = Dx f 1 D̄t̄ + Dx f 2 D̄x̄ ,

Dt = Dt f 1 D̄t̄ + Dt f 2 D̄x̄ .

After some manipulations, we deduce

D̄x̄ =
1

a1
Dx ,

D̄t̄ =
1

a1
Dt .

Implication of the above two on ū results in

ūt̄ =
c1

a1
ut , ūt̄ t̄ =

c1

a2
1

utt ,

ūx̄ =
c1

a1
ux , ūx̄x̄ =

c1

a2
1

uxx .

Equation (1) under the equivalence transformations becomes

ūt̄ t̄ + ᾱ(ū) ūt̄ = f̄ (ū) + ūx̄x̄ ,

subject to the following equivalence conditions

f (u) =
a2

1

c1
f̄ (ū), (16)

and
α(u) = a1 ᾱ(ū). (17)

By means of the equivalence transformations one can
simplify α(u) and f (u) for both cases.

Case 1:
Here, if we set a1 = c1 = 1 and c2 = k1, then ᾱ = B1 ūk

and f̄ = D1 ū1+2k .

Case 2:
In this case, if we take a1 = 1, c1 = k2, and c2 = 0, then
ᾱ = E1 eū and f̄ = F̃1 e2 ū.

Therefore, one can take k1 = 0 and k2 = 1 in the extended
algebras.

III. OPTIMAL SYSTEM OF ONE-DIMENSIONAL
SUBALGEBRAS
To reduce the effort for finding invariant solutions, we look
for the optimal system of one-dimensional subalgebras. For
this, we partition the symmetry generators into dissimilar
classes and find the complete set of invariants via the optimal
system for reduction purposes. This section represents the
commutator table, adjoint table of the above extended sym-
metry algebras, and the optimal system of one-dimensional
subalgebras for each case.

A. COMMUTATOR TABLE AND ADJOINT REPRESENTATION
The commutation relations for cases 1 and 2 are represented
in Table 1, which are subsequently used in finding the ad-
joint representation of the generators in the extended three-
dimensional algebra.

Table 1 Commutation relations for Cases 1 and 2
[χi, χj] χ1 χ2 χ3

χ1 0 0 −k χ1

χ2 0 0 −k χ2

χ3 kχ1 k χ2 0

The adjoint table for the extended symmetry algebras is
represented by

Table 2 Adjoint Table for Cases 1 and 2
Ad(eχi)χj χ1 χ2 χ3

χ1 χ1 χ2 χ3 + ε k χ1

χ2 χ1 χ2 χ3 + ε k χ2

χ3 e−k εχ1 e−k εχ2 χ3

The adjoint map used in the computation of the adjoint table
is given by

Ad(eχi)χj = χj−ε [χi, χj] +
ε2

2!
[χi, [χi, χj]] + . . . . (18)

Since, the adjoint table and the commutator table of the
extended symmetry algebras overlap for the cases 1 and 2,
we represent them by Table 2 and Table 1, respectively.
However, the symmetry χ3 differs for each case of the adjoint
representation, and in the commutator table, k can be replaced
by k2 for case 2.

B. OPTIMAL SYSTEM OF ONE-DIMENSIONAL
SUBALGEBRAS
To find the optimal system of one-dimensional subalgebras,
we take the generic element χ ∈ Γ3, defined by

χ = υ1 χ1 + υ2 χ2 + υ3 χ3, (19)

which we need to simplify by adjoint maps. Next, by using
Table 2, we invoke the adjoint action representation (18) on
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the generic element defined in Equation (19) and obtain the
following optimal system of one-dimensional subalgebras

χ1 = χ3 ± χ2,

χ2 = χ3,

χ3 = χ2,

χ4 = χ1 + υ2 χ2.

Case 1:
The optimal system of subalgebras is

χ1 = (±1 − k x)
∂

∂x
− k t ∂

∂t
+ (u+ k1)

∂

∂u
,

χ2 = −k x ∂

∂x
− k t ∂

∂t
+ (u+ k1)

∂

∂u
,

χ3 =
∂

∂x
,

χ4 =
∂

∂t
+ υ2

∂

∂x
.

Case 2:
The optimal system of subalgebras is as follows

χ1 = (±1− k2 x)
∂

∂x
− k2 t

∂

∂t
+

∂

∂u
,

χ2 = −k2 x
∂

∂x
− k2 t

∂

∂t
+

∂

∂u
,

χ3 =
∂

∂x
,

χ4 =
∂

∂t
+ υ2

∂

∂x
.

IV. REDUCTIONS TO ORDINARY DIFFERENTIAL
EQUATIONS
After obtaining the Lie point symmetries, an essential step
is to reduce the partial differential equation into a simpler
form through the derived symmetry generators, typically by
deriving the similarity variables associated with those sym-
metry generators. The solution of the reduced Des results in
the invariant solutions.
This section outlines the reductions of Equation (1) through
the principal symmetry algebras and the corresponding one-
dimensional subalgebras resulted from the optimal system.

A. REDUCTIONS FOR ARBITRARY FUNCTIONS α(U) AND
F (U)
We begin by taking the time translation symmetry generator,
given by

χ1 =
∂

∂t
,

by the method of characteristics, the characteristic equation
associated with this symmetry generator is written as

dx
0

=
dt
1

=
du
0
,

which gives the following similarity variables, x = γ and
u = ω(γ). Corresponding to these similarity variables,
Equation (1) is reduced into the following form

ωγγ + f (ω) = 0.

Now, we consider the translation in x symmetry generator,
given by

χ2 =
∂

∂x
,

corresponding to this symmetry, we have

dx
1

=
dt
0

=
du
0
,

which yields t = γ and u = ω(γ). Hence, we have the
following reduced Ode

ωγγ + α(ω)ωγ = f (ω).

B. REDUCTIONS FOR CASE 1
By considering the symmetry generator χ1, the following
reduced form of Equation (1) is obtained

ωγγ + D1 (ω + k1)1+2k = 0,

which has exact solution of the form

c2 ± γ =

∫ [
c1 − 2

∫
D1 (k1 + ω)1+2kdω

]− 1
2 dω.

The reduced form of Equation (1) for the translation in x
generator, i.e., χ2 = ∂

∂x , is given as follows

ωγγ + ωγ B1 (ω + k1)k − D1 (ω + k1)1+2k = 0,

having solution of the form

[(γ + c2)
2
, ω(γ)] =

∫ ω(γ)

1

(
1√

c1 + 2
∫ K2
1 (−B1[k1 + Kk1 + D1[k1 + K1+2k

1 )dK1

)
dK2.

Also, the symmetry generator

χ3 = −k x ∂

∂x
− k t ∂

∂t
+ (u+ k1)

∂

∂u
,

results in the following reduction of Equation (1)

(γ2−1)ωγγ+ωγ
(
2

1 + k
k

γ−B1 ω
k)+ω

(
D1 ω

2k +
1 + k
k2

)
= 0.

1) Reductions by optimal system of subalgebras
The symmetry generator

χ1 = (±1 − k x)
∂

∂x
− k t ∂

∂t
+ (u+ k1)

∂

∂u
,

reduces Equation (1) into the following Ode

γ2(γ2 − 1)ωγγ + γ ωγ
(
2 γ2 +

2

k
− B1 ω

k)+
ω
(
D1 ω

2k +
B1

k
ωk − 1 + k

k2
γ4
)
= 0,

which provides similarity solutions of the equation.

The reduced form of Equation (1) associated with the
symmetry generator

χ4 =
∂

∂t
+ υ2

∂

∂x
,

5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3525503

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



is given by

(υ2
2−1)ω

′′
+B1 (ω+ υ2 k1)k ω

′
−D1 (ω+ υ2 k1)1+2k = 0,

which gives rise to the traveling wave solutions. The special
cases

χ4 =
∂

∂t
± ∂

∂x
,

yield the following similarity solutions of Equation (1)

u1(t, x) =

(
B1

D1 k (−t + x + c1 )

)k−1

− k1 ,

u2(t, x) =

(
− B1

D1 k (t + x + c1 )

)k−1

− k1 .

These solutions can be visualized graphically as follows:

(a) u1(t, x) =
√

1
2(x−t) − 2 (b) u2(t, x) = −

√
1

2(x+t) − 2

FIGURE 1: 3D graphs of u1 and u2 with parameters B =
D = 2, C1 = 0, and k = k1 = 2.

These solutions in Fig. 1 illustrate a wave propagation in a
nonlinear damped medium. The singular behavior of solution
u1 in Fig. 1a is due to the term 1

2(x−t) , it is clear that as
t approaches x, the solution u1 tends to infinity, reflecting
that the solution is undefined at this point. Moreover, as x
increases, the damping effects become more dominant and
the energy in the system dissipates, while keeping the wave-
like profile. While, in Fig. 1b, one can see the flattening of
the wave, this is due to the dominant dissipative effects and
for increase in x + t .

C. REDUCTIONS FOR CASE 2
For the time translation symmetry generator, χ1 = ∂

∂t , we
determine the following reduced form of Equation (1)

ωγγ + F1 e2k2 ω = 0,

having solution

ω(γ) =
1

k2
log
[
±

√
k2 c1 (1− tanh [k2

2

√
c1 ( γ + c2 )2]2)

√
F1

]
.

For translation in x, χ2 = ∂
∂x , we have

ωγγ + E1 ek2 ω ωγ − F1 e2k2 ω = 0,

having solution of the form

ω(γ) =
1

σ
ln[− σ

F1
(c1 + δ2 ln|s| − δs)],

where δ = F1/E1 and

γ = − δ

σ

∫
s−1 (c1 + δ2 ln|s| − δs)−1ds + c2.

Similarly, associated with the symmetry generator

χ3 = −k2 x
∂

∂x
− k2 t

∂

∂t
+

∂

∂u
,

the reduction of Equation (1) is given by

γ2 (1−γ2)
(
ω ωγγ−ω2

γ

)
+ω ωγ

(
E1 ω−2γ

)
γ2 +ω2 (F1 ω

2 k2+1
)
= 0.

1) Reductions by optimal system of subalgebras
Associated with the symmetry generator

χ1 = (±1− k2 x)
∂

∂x
− k2 t

∂

∂t
+

∂

∂u
,

we obtain the following reduction of Equation (1)

γ2 (1−γ2)
(
ω ωγγ−ω2

γ

)
+ω ωγ

(
E1 ω−2γ

)
γ2 +ω2 (F1 ω

2 k2+1
)
= 0.

Similarly, the symmetry generator

χ4 =
∂

∂t
+ υ2

∂

∂x
,

leads to the following reduction

(υ2
2 − 1)ωγγ + E1 υ2 e

k2
υ2
ω ωγ −+F1 υ2 e

2
k2
υ2
ω = 0,

which yields travelling wave solutions. The special cases

χ4 =
∂

∂t
± ∂

∂x
,

yield the following similarity solutions of damped Kgf Equa-
tion (1)

u3(t, x) =
1

k2
ln

(
E1

F1 k2 (−t + x + C1 )

)
,

u4(t, x) =
1

k2
ln

(
− E1

F1 k2 (t + x + C1 )

)
.

Graphically, these solutions can be represented as follows:

(a) u3(t, x) = 1
2
ln 1

2(x−t) (b) u4(t, x) = 1
2
ln (− 1

2
(x + t))

FIGURE 2: 3D graphs of u3 and u4 with parameters E1 =
F1 = 2, C1 = 0, and k2 = 2.

Fig. 2 reflect how the solutions u3 and u4 evolves over space
and time. The vertical asymptote in the Figure 2a is due to
the presence of the term x − t in the solution. It can be
seen that, near x = t the solution breaks down causing the
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amplitude of the wave to be undefined, reflecting phenomena
like shock or singularity in the system. Moreover, Fig. 2b
represents the solution profile spreading logarithmically and
being undefined as x + t → 0.

V. EXAMPLES OF SOLITON SOLUTIONS
This section presents the examples of soliton solutions for
Equation (1) along with their graphical representations. The
balance between nonlinear and dispersion effect results in
stable and localized wave packets that maintain their shape
and speed over distance and time; these wave packets form
solitons.

Example 1: α(u) = c3 and f (u) = −c1 u + c2 u2.
Given α(u) = c3 and f (u) = −c1 u + c2 u2, Equation (1)
admits the following soliton solutions with parameters c1 =
2, c2 = 1, and c3 = 4

u5(x, t) = 1 + tanh
(1
4
(x − t) − C

)
,

u6(x, t) = 6 coth
( 5

24
t − 1

24
x − C

)(
coth

( 5

24
t − 1

24
x − C

)
− 2
)
+ 6.

Graphically, these solutions can be seen as:

(a) u5(x, t) = 1 + tanh
( 1
4
(x − t)

) (b) Solution profiles of u5 for t = 0, 1, 2, 3

FIGURE 3: 3D and 2D plots of u5

(a) u6(x, t) = 6 coth
( 5
24

t −
1
24

x
) (

coth
( 5
24

t − 1
24

x
)
− 2

)
+ 6

(b) Solution profiles of u6 for t = 0, 1, 2, 3

FIGURE 4: 3D and 2D plots of u6

Fig. 3 represents a traveling wave that evolves diagonally over
different values of time t . It can be seen in Fig. 3b that as
t increases the wave moves towards the positive x-axis with
the width of 1/4. The graph shows a wave traveling to the
right with the stable amplitude, illustrating the damped nature
of the considered model. The presence of the tanh function
in the solution introduces nonlinearity allowing the wave to
preserve its speed and shape. Fig. 3b shows that: at t = 0
the center of the wave lies at x = 0, at t = 1 its center is
at x = 1, similarly for t = 2 the wave shifts to right having
center at x = 2, and so on, indicating proportionality between

x and t . Additionally, the wave reflects a soliton nature as it
is traveling with a constant speed and shape.

Fig. 4 represents a damped oscillatory wave traveling towards
the positive x-axis with the increase in time t . Initially the
wave reflects sharp changes that spreads out but due to the
damping effect, the wavefront gradually loses amplitude, al-
lowing the wave to flatten out.

Example 2: α(u) = c3 and f (u) = c1 u + c2 u3.
With α(u) = c3 and f (u) = c1 u + c2 u3, Equation
(1) yields the following soliton solutions for the parameters
c1 = 40

9 , c2 = −1, and c3 = 5

u7(x, t) =

√
10

3

(
− 1 + tanh(x − 2

3
t − C)

)
,

u8(x, t) =

√
10

3

(
1 + coth(

2

3
t − x − C)

)
.

These solutions can be graphically represented as:

(a) u7(x, t) =

√
10
3

(
− 1 + tanh(x − 2

3
t)
) (b) Solution profiles of u7 for t = 0, 1, 2, 3

FIGURE 5: 3D and 2D plots of u7

(a) u8(x, t) =

√
10
3

(
1 + coth( 2

3
t − x)

) (b) Solution profiles of u8 for t = 0, 1, 2, 3

FIGURE 6: 3D and 2D plots of u8

Fig. 5 illustrates a solitary wave that travels through a damped
medium. Fig. 5b shows that as t increases the wave shifts
along the positive x-axis while preserving its shape and speed
over different time values, due to the factor

√
10
3 that keeps the

amplitude of the wave bounded and finite.

Fig. 6 represents sharp peaks in the wave behavior due the
nature of coth function. It can be observed from the graph
that the solution depicts asymptotic behavior. Moreover, as
time progresses the influence of damping become more sig-
nificant and it stabilizes the amplitude of the wave. Also,
the graph shows vertical asymptotes for t = 1, 2, and 3 at
x = 2

3 ,
4
3 , and 2, respectively.
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Example 3: α(u) = u and f (u) = −c1 u + c2 u2.
Equation (1) yields the following soliton solutions forα(u) =
c3 u and f (u) = −c1 u+ c2 u2

u9(x, t) = −3
(
1 + tanh(x − 2t + C)

)
,

u10(x, t) = −3
(
1 + coth(x − 2t + C)

)
.

where c1 = −12 and c2 = 2. These solutions can be
visualized graphically as:

(a) u9(x, t) = −3
(
1 + tanh(x − 2t)

) (b) Solution profiles of u9 for t = 0, 1, 2, 3

FIGURE 7: 3D and 2D plots of u9

(a) u10(x, t) = −3
(
1 + coth(x − 2t)

) (b) Solution profiles of u10 for t = 0, 1, 2, 3

FIGURE 8: 3D and 2D plots of u10

Fig. 7 represents a traveling wave that moves rightward keep-
ing a consistent shape and speed with the width of 2. While
the minus sign indicates negative amplitude of the wave.

Fig. 8 represents vertical asymptotes in the wave behavior due
the nature of coth function.

Example 4: α(u) = u and f (u) = c1 u + c2 u3.
Equation (1) provides the following soliton solutions for
α(u) = c3 u and f (u) = c1 u+ c2 u3

u11(x, t) = − 3√
2

tanh
(
x −
√

2t + C
)
,

u12(x, t) = 12
(

coth(−t − x + C)
)
.

where c1 = 1 and c2 = − 2
9 . Graphically, we have:

(a) u11(x, t) = − 3√
2

tanh
(
x −
√

2t
)

(b) Solution profiles of u11 for t = 0, 1, 2, 3

FIGURE 9: 3D and 2D plots of u11

(a) u12(x, t) = 12
(
coth(−t − x)

) (b) Solution profiles of u12 for t = 0, 1, 2, 3

FIGURE 10: 3D and 2D profiles of u12

Fig. 9 represents a wave that retains its shape and shift right-
wards with constant speed of

√
2, characterizing a soliton

solution. While the negative sign indicates amplitude of the
wave increases downwards.

Fig. 10 represents singularity in the wave behavior due the
presence of coth function. The graph depicts how the wave
maintains its speed while traveling through the medium and
its amplitude diminishes over time, reflecting the characteris-
tics of a damping medium.

VI. CONSERVATION LAWS
This section deals with the conservation laws of the damped
Klein-Gordon Fock equation through the partial Lagrangian
approach. The partial Lagrangian works even when the usual
Lagrangian for a system does not exist. For instance, this is
the case for scalar evolution equations, including the simple
classical heat equation. To find the conserved currents of the
equation under normal consideration with usual Lagrangian,
one utilizes the classical Noether’s theorem [27]. However, in
the absence of usual Lagrangian or in the existence of partial
Lagrangian only, the partial Noether’s approach becomes an
effective technique in finding the conserved quantities with
the existence of the partial Lagrangian. In order to pursue
conservation laws here, we invoke the partial Noether’s ap-
proach [28].

The partial Lagrangian of Equation (1) is given as

L =
1

2
u2
t −

1

2
u2
x +

∫
f (u) du, (20)

where
∂L
∂u

= f (u) + uxx − utt = α(u) ut .

The operator defined in Equation (3) associated with the
partial Lagrangian (20), is called a partial Noether symmetry
operator of Equation (1) if the following condition is satisfied

χ[1] L + (Dt ξ2 + Dx ξ1)L = W ∂L
∂u

+ Dt B1 + Dx B2,

(21)
where

W = ϕ − ξ2 ut − ξ1 ux ,
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B1 & B2 are gauge terms depending on (x, t, u). From
Equation (21), we arrive at the following set of equations with
ξ1
u = 0 = ξ2

u ,

ϕu −
1

2
ξ2
t +

1

2
ξ1
x + α(u) ξ2 = 0,

(22)

−ϕu +
1

2
ξ1
x −

1

2
ξ2
t = 0,

(23)

ξ2
x − ξ1

t + α(u) ξ1 = 0,
(24)

ϕt − B1
u − α(u)ϕ = 0,

(25)

ϕx + B2
u = 0,

(26)

ϕ f + ξ2
t

∫
f (u) du + ξ1

x

∫
f (u) du − B1

t − B2
x = 0.

(27)

From Equation (23), we have

ϕ =
1

2
(ξ1
x − ξ2

t ) u + A(t, x). (28)

Now, we consider different cases for α(u) and f (u).

Case 1: α(u) is arbitrary function of u, i.e., α(u) 6= Const .

From Equations (22) and (24), we find, ξ1 = 0 = ξ2. Thus,
Equation (28), implies that

ϕ = A(t, x). (29)

Subsequently, from Equations (25) and (26), we obtain the
following gauge terms

B1 = At u− A
∫
α(u) du + H2(t, x),

and
B2 = −Ax u + H1(t, x),

with the following conserved vector components

T t = At u − A
∫
α(u) du + H2(t, x) − ϕ ut , (30)

T x = −Ax u + H1(t, x) + ϕ ux , (31)

subject to the condition

A f (u) = Att u−At

∫
α(u) du+H2

t −Axx u+H1
x . (32)

Subcase 1.1: If f (u), α(u), and u are not related.
This case implies that

A = 0,

H1
x +H2

t = 0.

So, no operator is obtained in this case.

Subcase 1.2: If f (u) = 0 and α(u) is an arbitrary function
of u.
In this case, the following components of the conserved vec-
tors are obtained

T t = −(A1 + A2 x)

∫
α(u) du + H2 − (A1 + A2 x) ut ,

T x = −A2 u + H1 + (A1 + A2 x) ux .

where A1 and A2 are constants. So, we have the following
conserved vectors

(T t
1 , T x

1 ) =

(
−
∫
α(u) du + H2 − ut , ux + H1

)
,

(T t
2 , T x

2 ) =

(
−x

∫
α(u) du + H2 − x ut , x ux + H1 − u

)
.

Subcase 1.3: If f (u) = f1 + f2 u, and α(u) is not linear
function in u.
For f2 > 0, the following components are determined

T t = −(A1 cos
√
f2 x + A2 sin

√
f2 x) (

∫
α(u) du + ut) + H2,

T x = −
√
f2 (A2 cos

√
f2 x − A1 sin

√
f2 x) u+ (A1 cos

√
f2 x+

A2 sin
√
f2 x) ux +

f1√
f 2

(A1 sin
√
f2 x − A2 cos

√
f2 x).

where A1 and A2 are constants.
Now for f2 < 0, we obtain the following components of
conserved quantities

T t = −(A1 e
√
f2 x + A2 e

−
√
f2 x) (

∫
α(u) du + ut) + H2,

T x = A1 e
√
f2 x
(
−
√
f2 u +

f1√
f2

+ ux
)
+ A2 e

−
√
f2 x
(√

f2 u −
f1√
f2

+ ux
)
.

So, for the constants A1 and A2, there are two indepen-
dent conserved quantities, i.e., T1 = (T t

1 , T x
1 ) and T2 =

(T t
2 , T x

2 ) for (A1 = 1 , A2 = 0) and (A2 = 1, A1 = 0 ),
respectively.

Subcase 1.4: If f (u) = k1
∫
α(u) du.

In this case, we derive the following conserved components

T t = −e−k1 t
(
A1 e

k1 x + A2 e
−k1 x

)
[k1 u + ut +

∫
α(u) du] + H2,

T x = −e−k1t
(
A1e

k1 x −A2e
−k1 x

)
k1u+H1 + e−k1 t

(
A1e

k1 x +A2 e
−k1 x

)
ux .

Hence, for both constants A1 and A2, we find two inde-
pendent conserved quantities given as T1 = (T t

1 , T x
1 ) and

T2 = (T t
2 , T x

2 ) for (A1 = 1 , A2 = 0) as well as
(A2 = 1, A1 = 0 ), respectively.

Case 2: α(u) = α is constant.

In this case, we have the following gauge terms

B1 =
1

4
(ξ1xt − ξ2tt ) u

2 + (At − αA) u −
1

4
(ξ1x − ξ2t ) u

2 α+ H2(t, x),

(33)

B2 = −
1

4
(ξ1xx − ξ2tx) u

2 − uAx + H1(t, x). (34)

Now, Equation (27) becomes
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[
1

2
(ξ1
x − ξ2

t ) u+A] f + (ξ2
t + ξ1

x )

∫
f (u) du−B1

t −B2
x = 0.

(35)
Substituting the values of B1

t and B2
x in Equation (34) and

then differentiating thrice w.r .t. u, we arrive at

fuuu (
1

2
(ξ1
x − ξ2

t ) u + A) + (
5

2
ξ1
x −

1

2
ξ2
t ) fuu = 0. (36)

Here, we have different subcases.
Subcase 2.1: If fuu 6= 0.
Differentiating Equation (36) w.r .t. u, we get

1

2
(ξ1
x − ξ2

t ) (u
fuuu
fuu

)u + (
fuuu
fuu

)uA = 0. (37)

Subsubcase 2.1.1: If fuuu
fuu

= m1 and m1 6= 0.
In this case, we determine the following conserved compo-
nents

T t = c1 eα t uxut + H2,

T x = − c1 eα t
(1

2
u2
x +

1

2
u2
t +

∫
f (u)du

)
+H1.

Subsubcase 2.1.2: If fuuu
fuu

= m1 and m1 = 0.
The case m1 = 0 implies that f (u) = 1

2 m1 u2 + m2 u+ m3,
providing the following conserved currents

T t = H2 + c3 ux ut +
(
c1 e

α
4

(x+5t) + c2 e−
α
4

(x+5t)
)

{
−

1

16
α2 u2−

4α2

(16m2 + α2)
m3 u+α (

1

2
u+

16

(16m2 + α2)m3
ut + u2t

}
(
c1 e

α
4

(x+5t) − c2 e−
α
4

(x+5t)
)
ux ut +(c3 sin

√
m2 x + c4 cos

√
m2 x){

ut +αu
}
−
(
c1 e

α
4

(x+5t) + c2 e−
α
4

(x+5t)
) (1

2
(u2t −u2x )+

∫
f (u)du

)
,

T x = H1 − c3 u2x +
(
c1 e

α
4

(x+5t) − c2 e−
α
4

(x+5t)
)

{ 1

16
α2 u2 +

4α2

(16m2 + α2)
m3 u−α (

1

2
u+

16

(16m2 + α2)m3
ux − u2x

}
−(

c1 e
α
4

(x+5t) − c2 e−
α
4

(x+5t)
)
ux ut −(c3 sin

√
m2 x + c4 cos

√
m2 x)

ux − (c3 cos
√
m2 x − c4 sin

√
m2 x)

√
m2 u−(

c1 e
α
4

(x+5t) − c2 e−
α
4

(x+5t) + c3eαt
) (1

2
(u2t −u2x )+

∫
f (u)du

)
.

where the constants c1, c2, c3, and c4 result in four
independent conserved quantities, i.e., T1 = (T t

1 , T x
1 ),

T2 = (T t
2 , T x

2 ), T3 = (T t
3 , T x

3 ) and T4 = (T t
4 , T x

4 ).

Subcase 2.2: fuu = 0.
Here, we deduce f (u) = m1 u + m2, and inserting into
Equation (36), the following equation arises

(2m1 +
α2

2
) (ξ2

t − α ξ2) = 0.

Subsubcase 2.2.1: If ξ2
t − α ξ2 = 0.

For this case, the conserved currents are

T t = H2− (c1 cos
√
m1x+ c2 sin

√
m1x) (αu+ ut)+ (c3 t + c5) eαt uxut

+ (c3 x + c4) eαt
(
α

2
u ut +

α

2

m2

m1
ut +

1

2
u2t +

1

2
u2x −

∫
f (u)du

)
,

T x = H1 +(
1

4
u+

1

2

m2

m1
) c3 α u eαt +(c1 cos

√
m1x+ c2 sin

√
m1x) ux −

(c3 x+ c4) eαt
(
α

2
u ux + utux +

α

2

m2

m1
ux

)
− (c3 t + c5) eαt

(1
2
u2t +

1

2
u2x+∫

f (u)du
)
−
√
m1 u (c2 cos

√
m1x − c1 sin

√
m1x).

Subsubcase 2.2.2: 2 m1 + α2

2 = 0.

The subsequent conserved quantities are derived for this case

T t = H2− (c1 sin
√
m1x+ c2 cos

√
m1x) (αu+ ut)+ h3 eαt uxut +

(h1 + h2) eαt
(
α

2
u ut +

1

2
u2t +

1

2
u2x −

∫
f (u)du+

α

2

m2

m1
ut − uxut

)
,

T x
= H1− (c1 cos

√
m1x− c2 sin

√
m1x)

√
m1 u− h3 e

αt ( 1

2
(u2x +u2t )+∫

f (u)du
)
− (h1 + h2) e

αt
(
α

2
u ux + utux +

α

2

m2

m1

ux −
1

2
u2x −

1

2
u2t −

∫
f (u)du

)
+ ux (c2 cos

√
m1x + c1 sin

√
m1x).

Subsubcase 2.2.3: ξ2 = 0 = ξ1.

Equation (28) in this case becomes

ϕ = A(t, x),

substituting it back into the determining system and
additional equations, we find the following Pde in A

Att − αAt −Axx − m1A = 0.

The solution of this equation further provide three subcases
for the construction of conservation laws:

D =
α

2
±
√
α2 − 4λ.

Subcase 2.2.3.1: If α2 − 4λ = 0.
We obtain the following conserved vectors

T t = H2 +
(
−α u(c2t + c3)− (c3 + c2t) ut

)
e x
√
m1−λ+α

2
t +(

−α u(c4t + c1)− (c1 + c4t) ut
)
e− x

√
m1−λ+α

2
t ,

T x = H1 +
(
−
√
m1 − λ u (c2t + c3)+(c3 + c2t) ux

)
e x
√
m1−λ+α

2
t +(

−
√
m1 − λ u (c1 − c4t) + (c1 + c4t) ux

)
e− x

√
m1−λ+α

2
t .
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Subcase 2.2.3.2: If α2 − 4λ > 0.
Let α2 − 4λ = a, we obtain the following conserved
vectors

T t = H2 +
(
((a−

α

2
)u− ut) c3

)
e x
√
m1−λ+ (α

2
+a) t +

(
((a−

α

2
)u− ut) c1

)
e− x

√
m1−λ+(α

2
+a) t −

(
((a+

α

2
)u + ut) c2

)
e x
√
m1−λ+(α

2
−a) t −(

((a+
α

2
)u + ut) c4

)
e− x

√
m1−λ+(α

2
−a) t ,

T x = H1 +
(
((−
√
m1 − λ)u + ux) c3

)
e x
√
m1−λ+ (α

2
+a) t +(

((
√
m1 − λ)u+ ux) c1

)
e− x

√
m1−λ+(α

2
+a) t −

(
((
√
m1 − λ)u− ux) c2

)
e x
√
m1−λ+(α

2
−a) t +

(
((
√
m1 − λ)u+ ux) c4

)
e− x

√
m1−λ+(α

2
−a) t .

Subcase 2.2.3.3: If α2 − 4λ < 0.
For α2 − 4λ = a, we obtain the following conserved
vectors

T t = H2−
(
cos at(αu+ ut) c3 +sin at(αu+ ut) c2

)
e x
√
m1−λ+ α

2
t −(

cos at(αu + ut) c1 + sin at(αu + ut) c4
)
e− x

√
m1−λ+ α

2
t ,

T x = H1 −
(
cos at(

√
m1 − λu − ux) c3 − sin at(αu − ux) c2

)
e x
√
m1−λ+ α

2
t +
(
cos at(αu+ ux) c1 +sin at(αu+ ux) c4

)
e− x

√
m1−λ+ α

2
t .

VII. CONCLUSION
We have studied the damped nonhomogeneous Klein-
Gordon-Fock equation from the Lie symmetry and conserva-
tion law standpoints. We first performed the Lie symmetry
analysis for arbitrary nonlinear damping function α(u) as
well as nonhomogeneous function f (u) in order to obtain
reductions. Next, we classified the damping and nonhomo-
geneous functions and found the extended Lie symmetries
and the optimal system of one-dimensional subalgebras for
different cases. We then used these to reduce the Kgf equa-
tion into nonlinear ordinary differential equations. In certain
cases, exact invariant solutions including the travelling wave
solutions were found by solving these reduced equations.
Some examples of soliton wave solutions and the graphical
representation of these solutions were also represented in
Section 5. In order to deduce further insight, we derived the
local conservation laws using the partial Lagrangian approach
via the partial Noether theorem. We found several cases for
nonlinear damping and nonhomogeneous functions for the
Kgf equation.

Regarding future work, further exploration will involve
solving the set of reduced ordinary differential equations
to gain further insight into the behaviour of the invariant
solutions. This approach, known for its conciseness and
efficacy, can also be applied to address other nonlinear partial
differential equations.

The discovered conservation laws offer valuable tools for
studying the dynamics and stability of physical systems, mak-
ing this work relevant to a range of scientific endeavors that
can be performed.
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