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ABSTRACT This paper presents a discrete-time sliding mode observer designed to estimate the rotor
position of PMSMs for sensorless control strategies. Without compromising the sliding feature, this study
employs a discretization method known as implicit Euler discretization, converting the set-valued function
to a projection over a limited interval, simplifying the coding compared to other ordinary implementations.
As a result, output chatter is significantly reduced without additional filters. The observer’s performance is
evaluated under sudden changes in load and parameter variations and then compared with other approaches.
The proposed SMO is also tested and validated on an experimental setup of a 600W PMSM coupled with
a DC generator for loading. The results show the robustness of the proposed observer, with a reduction in
execution time by approximately 20% compared to conventional implementations like the sigmoid-based
sliding mode observer.

INDEX TERMS Permanent magnet synchronous motor (PMSM), sensorless control, sliding mode observer
(SMO), sigmoid function, implicit Euler discretization.

I. INTRODUCTION

PERMANENT Magnet Synchronous Motors (PMSMs)
have become increasingly prevalent in various industrial

applications due to their high efficiency, compact size, and
excellent torque-to-weight ratio. They are widely utilized in
areas such as robotics, automotive industries, aerospace, and
renewable energy systems. An essential aspect of PMSM
drive systems is the requirement for precise control over rotor
position and speed, which has traditionally been achieved
through the use of physical sensors [1] to provide feedback
within the control framework. However, factors such as cost,
size, and robustness of physical sensors necessitate sensorless
control approaches for drive systems [2]–[5]. The primary
challenge in sensorless PMSM control is achieving accurate
and robust estimation of rotor position and speed across var-
ious operating conditions, including low-speed and standstill
operation. Traditional sensorless methods often struggle with
performance issues at low speeds due to weak back-EMF
signals, which are essential for position estimation [6], [7].
Furthermore, the dynamic response of sensorless drives is
critical, particularly in applications requiring fast and precise
control.

Another significant challenge is that motor parameters may

change according to the surrounding temperature, increasing
the design complexity and computational demands of sen-
sorless control algorithms. Advanced estimation techniques,
such as observer-based methods, can provide improved per-
formance, especially when the observation approach is robust
enough to handle parameter fluctuations over a wide range
of operating speeds [8]. Several observation techniques have
been proposed [6], [7], with most using the Luenberger Ob-
server [9], [10]. This observer type has a typical structure as
the motor model, plus a feedback term that works on reducing
the observation error via a gain vector. However, it may not
be able to handle system nonlinearities during operation.

Recently developed observer methods such as the Ex-
tended Kalman Filter (EKF) are popular for their ability
to estimate system states in nonlinear environments effec-
tively [11]. Bendjedia and Chouireb in [12] employed EKF
to achieve optimal performance and stability of the control
system for electric vehicles during speed sensor failure or
absence. This approach involves developing robust estimation
techniques to accurately assess the vehicle’s speed using alter-
native inputs. However, EKF has certain disadvantages. One
issue with the EKF is that it can suffer from DC offset, result-
ing in steady-state errors. It also suffers from non-global con-
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vergence, causing its performance to vary greatly depending
on the initial conditions. Due to its heavy matrix operations
and nonlinear calculations, the EKF also requires significant
computational power, especially for real-time applications.

Sliding mode observers (SMOs) have emerged as a robust
solution for sensorless control in motor drives. Their ability to
maintain performance under system uncertainties and param-
eter variations distinguishes them from traditional estimation
methods. SMOs create a sliding motion on the error between
the available measured output of the real system and the esti-
mated output of the observer. Once the sliding mode occurs,
the observer ensures that the estimated state precisely follows
the actual output of the system [13]. Different techniques
based on the sliding mode approach have been proposed [2],
[14] to integrate SMOs with advanced control techniques,
like vector control and direct torque control, enhancing the
performance of sensorless drives. This integration allowed
for better handling of dynamic changes and improved overall
efficiency.

The conventional sliding mode approach depends on a
discontinuity function that gives rise to a coupling problem
known as chattering phenomena [15]–[17]. The use of a low-
pass filter (LPF) for such phenomena can, however, lead to
buffering, reducing the accuracy of the estimated states. One
solution to relax the sharp-switched function and thereby
lessen the chattering issue is applying a sigmoid function
with variable boundary layers in place of a discontinuity char-
acteristic. There is however concern that a steeper sigmoid
function would lead to more chattering, so it is crucial to
modify the boundary layer width in order to prevent chatter-
ing or steady-state errors [3]. For example, Kim et al. [18]
recommended using heuristic methods to adjust those gains
of sigmoid function, while Sheng et al. [19] developed a fuzzy
technique to adjust same issues. Additionally, the sigmoid
function has lengthy computation time due to its exponential
behavior, creating a barrier for real-time applications.

Another way to reduce chattering is by using adaptive slid-
ing mode techniques [20]. These methods adjust the sliding
mode parameters in real-time based on how the system is
performing, which helps to smooth out the control action.
Additionally, higher-order sliding mode techniques [21], [22]
improve on this by using more advanced derivatives of the
sliding surface, not just the first-order ones. This helps to
reduce steep changes and makes the control smoother. How-
ever, these solutions can be quite complex and less suitable
for low-cost real-time applications. Efforts to simplify the
mathematical models used in SMOs without compromis-
ing performance have been a key focus area. Simplification
aims to make these observers more accessible for practical
implementation and reduce the expertise required for their
deployment.

More than decade ago, Acary and Brogliato [23], [24] pre-
sented implicit Euler discretization as a discretization tech-
nique to safely suppress chattering without need for extra
filters, while preserving the discontinuity feature of sliding
surfaces’ dynamics. Generally, high sampling rates are not

conducive to reducing chattering in discrete sliding mode
systems. Contrary to this, implicit Euler discretization allows
sampling rates to be freely increased, which typically results
in better performance for discrete systems [24]. Among the
numerous benefits highlighted here and in more detail in
[23]–[25], the feature that stands out to us is the ability to
harness the robust characteristics of sliding mode systems
without the chattering effect, coupled with straightforward
coding implementation. This is particularly advantageous for
real-time applications that necessitate an economical con-
troller. The coding simplicity stems from the fact that the
output of the discontinues function at each step is reduced
to a projection onto the interval [−1, 1]. Such a process is
relatively simple to encode. This developed technique reflects
a trend towards more robust and efficient application, such
as sensorless control methods for motor drives. The ongoing
research in this field continues to push the boundaries of what
is possible with sensorless motor control technologies [4],
[19].
Implicit Euler discretization has been tested primarily with

control approaches based on sliding mode. Until recently,
there have been very limited studies that expand the con-
cept of implicit Euler discretization to an observer approach
[26], and to the best of the author’s knowledge, it has not
been applied to PMSM in particular. The development of a
novel SMO, particularly those that simplify design and reduce
computational requirements while maintaining accuracy and
robustness, is of great interest in the field of controlling
sensorless SPMSM. In this context, this paper introduces a
sliding mode observer for sensorless PMSM drives adopting
the implicit Euler discretization. The proposed sliding mode
observer aims to estimate the machine’s speed and position
based solely on current measurements. The performance of
the proposed observer is evaluated by comparing it to other
traditional observer structures. The comparison was carried
out in both simulated and experimental settings. The objec-
tives of this paper can be summarized as follows;

• Propose a novel discrete-time sliding mode observer
based on implicit Euler discretization.

• Validate the use of implicit discretization techniques for
sliding mode observers, particularly for practical appli-
cations like observing the back EMF of PMSM.

• Analyze the stability of the novel SMO.
• Evaluate the performance of the proposed SMO against

low-speed operation, parameter uncertainties, and vari-
ous load conditions.

• Evaluate the execution time needed to implement the
novel SMO compared to other existing observers.

• Validate our findings experimentally.

In this paper, Section II introduces the mathematical model
of the PMSM, while Section III discusses the proposed SMO
and its implementation in the discrete-time. In Section IV,
simulations results and experimental results show the per-
formance of the proposed observer and its validation against
sudden changing in load and parameters variations. Finally,
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Section VI concludes the significant results of this work.

II. PROBLEM FORMLATION
A. MATHEMATICAL MODEL OF PMSM
In this article, we focus on a type of PMSM known as the
surface-mounted (SPMSM) or ’non-salient PMSM’, where
magnets are mounted directly on the surface of the rotor.
This design refines the air gap between the machine parts,
resulting in equal inductance along the direct and quadra-
ture axes. Based on the following parameters’ definitions;

ωe Electrical speed
ωm Rotor mechanical speed
θm Rotor angular position
θe Rotor electrical position

iα, iβ Stator currents in stationary reference frame (α, β)
vα, vβ Stator voltages in stationary reference frame (αβ)
ψf the magnetic flux of the permanent magnet
Rs Stator resistance
Ls Stator inductance,

the PMSMmodel in the stationary reference frame (α−β) is
modeled as follows:

İαβ = AIαβ +B(Vαβ −Eαβ) (1)

in which Iαβ = [iα iβ ]T ,V = [vα vβ ]T ,

A =

 −Rs
Ls

0

0 −Rs
Ls

 ,B =

 1

Ls
0

0
1

Ls

 , (2)

and Eαβ is the vector of electromotive forces (EMF), which
is defined as follows:

Eαβ :=

[
eα
eβ

]
=

[
−ψf ωe sin θe
ψf ωe cos θe

]
. (3)

As the motor operates, the back-EMF is generated and
fundamentally linked to the speed and position of the rotor as
depicted in (3). In field-oriented control (FOC), the position
θe is essential to complete the overall control loop as shown in
Figure 1. Throughout this paper, we aim to obtain an accurate
estimation of the back-EMF, which is crucial for sensorless
control strategies that eliminate the need for direct rotor po-
sition measurement, thus reducing costs and improving the
system’s robustness.

SVPWM

Inverter

uq 

u   
d 

Current 

controller

FIGURE 1. Block diagram of field oriented control (FOC) of SPMSM

III. PROPOSED SLIDING-MODE CURRENT OBSERVER FOR
BACK-EMF ESTIMATION
A sliding mode observer is a type of nonlinear observer
that utilizes the concept of sliding mode control to achieve
robust performance under uncertain or disturbing conditions.
The conventional implementation of the sliding mode tech-
nique can cause chattering and high-frequency oscillations
in the produced signal [15], [16]. Various techniques, such
as boundary layer smoothing, higher-order sliding modes,
and continuous approximations of the switching function,
are available to mitigate these issues. However, while these
methods aim to minimize or eliminate the chattering effect,
they often fail to retain the robustness features of the actual
sliding mode approach.
This section adopts a discretization method called ‘implicit

Euler discretization’, which is a promisingmethod introduced
by Acary et al. [24] to suppress numerical chattering. In
addition, implicit Euler discretization has the following core
advantages [23], [24]; first, it preserves the sliding surface of
the continuous-time system (the discretization does not mod-
ify the sliding surface); second, a finite sampling frequency
guarantees sliding motion for the discrete-time system. This
enhances the practical applicability of SMO in real-world
motor control systems.
To successfully observe the BEMF, we first need to check

the observability property, which is a mandatory test to de-
termine whether the desired motor states can be accurately
estimated regardless of the observation technique used. In the
manner of nonlinear observability [27], many studies [17],
[28], [29] discuss the observability of non-salient PMSM,
where

ωm ̸= 0 (4)

is the only condition for the observability of SPMSM.Consid-
ering this condition as a prerequisite in this paper, we propose
an implicit Euler discretization-based SMO for PMSM.

A. SMO CONSTRUCTION IN CONTINUOUS-TIME
The objective here is to construct a basic sliding mode
observer that can resemble the current dynamic in the α-
β frame. First, we should select a pre-determined surface
(called a sliding surface), on which the system moves along,
and is maintained by a switching function in response to
disturbances or uncertainty. Based on that, we introduce the
following sliding surface;

Σαβ =

[
σα
σβ

]
=

[
îα − iα
îβ − iβ

]
(5)

From now on, the following switching functions will be used
extensively:

sgn(x) ∆
=

{
[−1, 1] if x = 0
x/|x| if x ̸= 0,

(6)

satα(x)
∆
=

{
x if |x| ≤ α
αx/|x| if |x| > α.

(7)
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Now we can write the sliding mode-based current observer
as follows:

˙̂
Iαβ ∈ AÎαβ +B(Vαβ − ηsgn(Σαβ)) (8)

where

sgn(Σαβ) =

[
sgn(σα)
sgn(σβ)

]
, (9)

and η is a positive scalar selected based on stability analysis
as shown later in this section.

B. SLIDING MODE REACHABILITY CONDITION
It is worth noting that the above representation (8) of the
current observer considers the back EMF as a matched
disturbance that is attenuated by the discontinuous action
ηsgn(Σαβ) to keep the estimated current state follows the
measured one. This representation is also adopted in [19], in
which the error dynamics is written as follows:

Σ̇αβ ∈ AΣαβ +B[Eαβ − ηsgn(Σαβ)]. (10)

To analyze the behavior of the error equation (10), which re-
flects the sliding motion behavior, we introduce the following
lyapunov function;

V (Σαβ) =
1

2
ΣT

αβΣαβ , (11)

whereV (Σαβ) is a positive definite function for allΣαβ ̸= 0.
To ensure that the system’s state reaches the sliding surface
Σαβ = 0, we examine the time derivative of V (Σαβ) as
follows;

V̇= Σ̇T
αβΣαβ

= ΣT
αβA

TΣαβ + [ET
αβ − ηsgn(ΣT

αβ)B
TΣαβ (12)

in whichA is a negative definite matrix, and one can see that

η > ∥Eαβ∥∞ (13)

is the only sufficient condition to keep the negative definite-
ness of V̇ . Consequently, the system’s state converges and
holds on the sliding surface Σαβ = 0 as long as condition
(13) is true.

C. SMO IMPLEMENTATION IN DISCRETE-TIME
Before introducing the implicit-based discrete-time imple-
mentation of the basic SMO, we will briefly discuss how
the implicit technique overcomes the chattering problem.
Let us consider the following benchmark problem; ẋ(t) ∈
−asgn(x(t)), where a > 0. The traditional discretization re-
veals that (x(k + 1)− x(k)) ∈ −aT sgn(x(k))where k is the
interval index and T is the sampling time interval. The source
of chattering comes when x(k) lies in the discontinuous in-
terval [−aT , aT ], for example, in the positive interval 0 <
x(k) < aT , one can see that x(k+1) ∈ x(k)−aTsgn(x(k)) <
0, which indicates continuous changing in the sign of state x
at each sampling interval as long as |x(k)| < aT . Meanwhile,
the implicit discretization suggests considering the input of

the discontinuous function to be the predicted solution as
follows; x(k + 1) ∈ x(k) − aTsgn(x(k + 1)). As a result of
this configuration, the value of sgn(x(k +1)) can be selected
to be equal to x(k)/aT , which is a projection inside [−1, 1],
so that x(k + 1) is pushed to zero, and thus the chattering
phenomenon is eliminated. Roughly speaking, the implicit
technique considers the interaction between the input to the
set-valued function sgn and the system state as an algebraic
constraint. This technique uses the nominal model of the
controlled plant as a predictor of the system state, which is
done by giving a precise value for the set-valued function sgn.
Kikuuwe et al. [30] map this algebric constrain and propose
its solution simply in the following relation;

Y ∈ asgn(z− Y ) ⇐⇒ Y = sata(z), ∀y ∈ R,∀z ∈ R.

(14)

This again demonstrates the implicit technique’s effectiveness
in preventing chattering when the saturation function is in-
troduced into the solution. Further analysis for implicit tech-
nique performance and its stability is excessively proposed in
[24], [31].
Now let us back to the continuous-time system (1) and

introduce its discrete-time version as follows:

Iαβ(k+1) = AdIαβ(k) +BdVαβ(k) −BdEαβ(k), (15)

whereAd = eAT ≃ I+AT ,Bd =
∫ T
0
eAτdτ.B ≃ TB and

T is the sample-time interval. Here we introduce the discrete-
time version of the observer (8) based on implicit backward-
Euler-discretization as follows;

Îαβ(k+1) ∈ AdÎαβ(k) +BdVαβ(k) −Bdηsgn(Σαβ)(k+1),

(16)

in whichwe define the discontinuous action at time index (k+
1) as;

sgn(Σαβ)(k+1)

∆
= sgn(Îαβ(k+1) − Ĩαβ(k+1)). (17)

where

Ĩαβ(k+1) := AdIαβ(k) +BdVαβ(k). (18)

The observer state vector Îαβ(k+1) in (16) implicitly appears
now inside the discontinuous action, or in other words, the
instant observed state vector in (16) feeds the set-valued
function sgn in a closed loop. This implementation reflects
the approach of the implicit technique, then to solve (16), let
us first rewrite it as follows;

Îαβ(k+1)−AdÎαβ(k) −BdVαβ(k)

∈ Bdηsgn
(
[Ĩαβ(k+1) −AdÎαβ(k) −BdVαβ(k)]

−[Îαβ(k+1) −AdÎαβ(k) −BdVαβ(k)]
)
,

(19)

and thanks to relation (14), we can now handle (19) so that the
estimated state vector at (k +1) only appears in the left-hand
side as in the following construction:
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Îαβ(k+1)= AdÎαβ(k) +BdVαβ(k)

+satηBd
(Ĩαβ(k+1) −AdÎαβ(k) −BdVαβ(k))(20)

and by substituting in (20) by (18) , the final configuration of
the proposed observer is

Îαβ(k+1)= AdÎαβ(k) +BdVαβ(k)

+satηBd
(AdIαβ(k) −AdÎαβ(k)). (21)

Now, one can see that the set-valued function in (19) is indi-
rectly replaced by sat-function, which is a continues function
resulting in no numerical chattering in the observed states.
Figure 2 shows the implementation of the implicit SMO and
its equivalent after utilizing relation (14).

Sign

I -

V®
 
¯ 

Current

Modeling

¯ 

E

BEMF Estimation

FIGURE 2. The implicit SMO including signum function appears in (a), and
its equivalent in (b).

By subtracting (15) from (21), we can see the error dynam-
ics in the discrete-time as follows;

Σαβ(k+1) =AdΣαβ(k) +BdEαβ(k)

+satηBd
(AdIαβ(k) −Ad Îαβ(k)) (22)

Considering the error dynamic behavior in (22), let us study
the stability of the proposed observer in the discrete-time by
introducing the following proposition;

Proposition 1. A Special case of proposition 1 in [24]. Con-
sidering Σαβ0 is an initial state for the following discrete-
time sliding system;

Σ̃αβ(k+1) = AdΣαβ(k) −Bdηu(k+1)

u(k+1) ∈ sgn(Σ̃αβ(k+1))
Σαβ(k+1) = AdΣαβ(k) +BdEαβ(k) −Bdηu(k+1)

(23)

where its solution is typically (22). Then after a finite number
of time-interval k0, Σ̃αβ(k) = 0 and the disturbance Eαβ

is attenuated by a factor of the time-interval T ( Σαβ(k) ∝
TEαβ(k)).

Proof. See [24, Proposition 1]

Considering this proposition, one can see that Σαβ(k),
which is proportional to TEαβ(k), approaches zero as T ↘ 0,
and as a consequence, the switching term in (22) is used to
predict Eαβ(k) as follows;

Êαβ(k) = satηBd
(AdIαβ(k) −AdÎαβ(k)) (24)

Now, based on relation (3), we can finally estimate the elec-
trical position of PMSM as;

θ̂e = − arctan(
êα
êβ

) (25)

Remark 1. An attractive feature of the implicit Euler method
is that it preserves the characteristics of continuous-time
systems. To show that, let us consider the behavior of (21)
when the sampling interval approaches zero. In this scenario,
the following relation between the sgn and sat functions holds
true, as illustrated below:

lim
T↘0

satT (x)= lim
T↘0

Tx
max(T , |x|)

= T
x
|x|

= T sgn(x). (26)

Based on this relation, the discrete-time observer in (21) is
reduced to

Îαβ(k+1) − Îαβ(k)

T
∈AÎαβ(k) +BVαβ(k)

−Bηsgn(Îαβ(k) − Iαβ(k)) (27)

which yields the same ordinary discrete version of the
continuous-time SMO in (8).

IV. PERFORMANCE EVALUATION
In this section, we will show the performance of the proposed
observer against the following conditions: low-speed oper-
ation, parameter uncertainties, and various load conditions.
The observer loop shown in figure 3 integrated with the main
control loop in figure 1 and has been implemented via MAT-
LAB Simulink software. Table 1 shows the parameters of
PMSM. A Proportional-Integral (PI) controller is used within
the current control loop, and also within the outer control loop
of motor speed. The current controller parameters are set as
kp = 5.278, ki = 92.857 and the speed controller parameters
are set as kp = 0.02244, ki = 3.77. These parameters were
obtained based on the method outlined in [32]. The test was
done under 5 µsec dead-time and 10kHz switching frequency.
The control method is based on maximum torque per ampere
(id = 0). For the observation loop, the switching gain of the
sliding surface is selected as η = 90, according to (13).

As the back EMF is indirectly derived from the stator
voltages and currents, then the estimated back EMF still
carries further harmonics as a result of unmodeled dynamics.
To enhance the reliability of the estimated position and speed,
we applied a second-order low-pass filter (LPF) in a stage
before driving the motor angle as in (25). To compensate for
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FIGURE 3. Observer loop for Sensorless PMSM

TABLE 1. SPMSM Paramters and Values

Parameter Value Parameter Value
Rated Speed 1000 rpm Stator Inductance 14 mH
Pole Pairs 5 Stator Resistance 1.3Ω

Flux Linkage 0.112 Wb Rated Power 600 W
Viscous Friction 0.00193 N.s/m2 Rated Torque 5.7 N.m
Rotational Inertia 0.0015 kg.m Dead Time 5 µs

Switching Frequency 10 kHz

unwanted phase lag due to the LPF, a feed-forward compen-
sation is applied as appears in the following equation;

θ̂e = − arctan(
êα
êβ

) + arctan(
ω̂e
ωc

) ∗ 2 (28)

where ωc is the cutoff frequency of the 2nd order filter, and
ω̂e is the estimated speed obtained as a first derivative of the
estimated position.

However the observability condition is only guaranteed
when the mechanical speed is not equal to zero, at low
speeds, we often have difficulty measuring the BEMF, which
is proportional to the estimated rotor position. At such low
speeds, noise and unmodeled nonlinearities on the measuring
current and voltage are significantly bigger than the fluc-
tuated BEMF. For the same reasons, estimating the initial
rotor position is also a challenge that requires following a
specific starting method when dealing with observers. Here,
we followed the I-f start-up method [33], [34] in an open loop
manner by applying iq = 0.8 irated , and a ramping speed from
10% up to 20% of the rated speed. Once the error between the
reference angle and the estimated one approaches 0.1 rad , the
sensorless loop is applied.

To evaluate the performance of the proposed observer, four
main tests are carried out: the steady-state test, the sudden
load change test, the minimum speed test, and the parameter
variation test, which we will discuss in the next subsections.
We compared the performance of the proposed observer with
other two different observer schemes: the conventional Luen-
berger observer [10], and the sigmoid-based SMO, as shown
in figure 4. The sigmoid function is defined as:

sigmoid(x) =
2

1 + exp(−λx)
− 1. (29)

The parameter λ here is a positive-real tunable value. A larger
value of λ indicates a rapid rate of boundary layer change,
and accordingly, the sigmoid function shape approaches that
of the ideal switching function (signum-function).

Sigmoid

Gain

Luenberger  implementation

(b)

PI

-

- E
k

I ¯ 
k

I ¯ 
k

I ¯ 
k

I ¯ 
k

Gain

Sigmoid  implementation

(a)

E
k

FIGURE 4. The implementation of back EMF estimation loop in case of; a)
Sigmoid-based SMO, b) Luenberger Observer.

A. STEADY-STATE PERFORMANCE
Reviewing the behavior of the proposed observer over a range
of different speeds is a basic test to determine its steady-
state performance. In this test, the performance is examined
at 1000 rpm as a rated speed, and 0.2 N.m as a torque load.
In addition, the performance is also evaluated through a slow
rate of change in speed, where the reference speed profile is
ramped from 100 rpm up to 1000 rpmwithin 8 seconds. Using
the I-f startup methodology, Figure 5 shows that the observer
loop becomes active after 4.5 seconds, demonstrating the
smooth and stable performance of the implicit SMO.
For comparison purpose, Figure 5 shows the speed perfor-

mance of other two different observer schemes: the sigmoid-
based SMO with various tuning values, and the conventional
Luenberger observer. The implicit SMO and sigmoid-based
SMO at λ = 0.01 exhibit typical responses with fewer ripples
than the other schemes. On the other hand, the Luenberger
observer shows more noticeable ripples in the estimated
speed, similar to the poorly tuned sigmoid-based SMO with
λ = 0.03. In this test, we can conclude that the implicit
SMO offers a steady-state performance comparable to that of
a well-tuned sigmoid-based SMO, although the implicit SMO
does not in need for parameter adjustment.

FIGURE 5. Simulation waveform of speed response obtained using:
sigmoid-based SMO at λ = 0.01 (in red), sigmoid-based SMO at λ = 0.03
(in yellow), luenberger observer (in gray), implicit SMO (in blue).
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B. SUDDEN LOAD CHANGE TEST
Here we examine observer’s robustness by varying the motor
load and monitoring how it remains on target while the load
changes. The load suddenly increased from 0.68 N.m to 3.4
N.m at the 15th second. As in the previous test, same profile
speed is used here, and also the observer loop becomes active
after 4.5 seconds.
Compared to the same observer schemes as in the previous

test, Figure 6 shows that the luenberger observer and the
sigmoid-based SMO with λ = 0.03 failed to deal with this
sudden change in load. In contrast, the implicit SMO and
the sigmoid-based SMO with λ = 0.01 exhibited robust
performance under the same conditions. Both observers ef-
fectively managed the sudden load change, quickly adjusting
and returning to the reference speed. The similarity in their
responses suggests that these observers are well-suited for
dynamic scenarios involving rapid load changes, ensuring
stability and accuracy in speed estimation.

FIGURE 6. Simulation waveform of the estimated speed while a torque
load suddenly increased, at the 15th second, from 0.68 N.m to 3.4 N.m.

C. MINIMAL SPEED TEST
The operation of observers at low speed presents several
challenges due to a large ratio of the noise component to the
estimated signal. The objective of this test is to compare the
performance of the proposed observer at low speeds, around
10% to 1.8% of the rated speed. The reference speed was
decreased sequentially from 100 rpm to 70 rpm at the 6th

second, then down to 50 rpm at the 10th second, and finally
reached 18 rpm (1.8% of the rated speed) at the 15th second,
all under a load of 0.68 N.m.
Figure 7 illustrates the performance of the examined ob-

servers after activating their loops at the second 4.5. Here, the
Luenberger observer can no longer maintain operation below
19 rpm. In addition, the Luenberger observer’s speed carries
higher chatter than the speed estimated by other observer
schemes. This performance suggests that the Luenberger
observer is not ideal for low-speed scenarios in sensorless
SPMSM applications, where accurate estimation is essential.
On the other hand, the implicit SMO and sigmoid-based SMO
with λ = 0.01 can maintain stable operation down to 18
rpm. Although these observers are more resilient than the
Luenberger observer at low speeds, they are still prone to
performance deterioration as the speed approaches the lower

limits of the motor’s operating range, owing to the inherent
characteristics of this region.

FIGURE 7. Simulation waveform of the estimated speed response during
the possible minimum speed obtained using: sigmoid-based SMO with a
slope = 0.01, luenberger observer, and implicit SMO.

D. PARAMETER VARIATION PERFORMANCE
Now, we are going to examine the proposed observer against
change in motor’s parameters. This change may occur when
the motor’s temperature changes, as a high temperature can
duplicate the motor’s resistance while reducing the induc-
tance by half. In this test, we maintained the observer settings
designed in prior tests based on the motor’s nominal values in
normal temperature operation. While in motor modeling, we
change the motor’s resistance and inductance as mentioned
above. As well, a load is suddenly increased from 0.32 N.m
to 1.6 N.m at the 15th second.

FIGURE 8. Simulation waveform of the estimated speed response while
changing the motor resistance and inductance obtained by using:
sigmoid-based SMO with a slope = 0.01, luenberger observer, and implicit
SMO

Figure 8 shows that the Luenberger observer cannot handle
those changes inmotor parameters, where it completely failed
to produce proper position and speed. In contrast, the nonlin-
ear nature and the robust features of sliding mode systems
permit the implicit- and the sigmoid-based SMO to deal with
parameter variations and sudden load change. However, the
maximum load that the sliding mode-based observers could
handle decreased during this test to be around 1.6 N.m. This
reduction is expected due to the high level of uncertainty in
motor parameters.
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V. EXPERIMENTAL VALIDATION
In this section, the proposed observer is applied on experi-
mental setup shown in details in figure 9. The setup consists of
a surface permanent magnet synchronous motor (SPMSM),
a DC motor as a generator to load the motor, a three-phase
inverter and DSP tms320f28379d microcontroller. Two hall-
effect sensors are used to sense the motor currents. In order
to prove the inverter non-linearities, the tests are carried out
under light loads to identify the worst cases.

As outlined in Section IV, we selected the current and
speed control as conventional benchmarks to clearly distin-
guish the effects of the compared observers. Furthermore,
we extended the comparison by evaluating the ability of
each observer to track specific speed profiles under various
operating challenges, including low-speed operation, param-
eter uncertainties, and different load conditions. Beyond the
simulation tests, we introduced a new experiment to highlight
the proposed SMO’s advantage in reducing computational
time.

FIGURE 9. Hardware setup

A. DYNAMIC PERFORMANCE
In this section of the experiment, we validate the simulation
results that occur in the steady-state test, in which the refer-
ence speed profile includes changes in speed levels between
500 rpm down to 70 rpm. The results in Figure 10 show that
the Sigmoid-based SMO with λ = 0.03 causes excessive
chattering more than that caused at λ = 0.01. This empha-
sizes the importance of carefully selecting and tuning the
sigmoid function’s rate to prevent performance degradation.
the Sigmoid-based SMO with a rate of 0.03 can track the
reference speed during the dynamic test, but its performance
is notably affected by chattering, especially at higher speeds.

On the other hand, the Sigmoid-based SMO with a rate of
0.01, representing a well-tuned observer, shows much better
performance with a low level of chattering.
The Luenberger Observer’s performance during the speed

dynamic test introduces a higher chattering level than that is
introduced by the other observers. The Luenberger Observer’s
linear nature makes it more sensitive to disturbances. The Im-
plicit SMO demonstrates the most robust performance among
all the observers tested. The estimated speed closely aligns
with the reference speed, exhibitingminimal chattering,much
like the well-tuned Sigmoid-based SMO, typically as ap-
peared in simulation results. The implicit method’s inherent
capability to manage non linearities and disturbances makes
it exceptionally effective in maintaining smooth and accurate
speed estimation during dynamic transitions.

Time (s)

FIGURE 10. Experimental waveform of the estimated speed dynamic
response obtained by using: sigmoid-based SMO with different rates
0.01&0.03, luenberger observer, and implicit SMO

B. MINIMAL SPEED TEST
Now, we will confirm the simulation findings of the minimal
speed test. The reference speed profile changes from 8%
down to 4.2% of the rated speed, where the observers’ loop
cannot experimentally handle the operation below that range
of speed.
The results in Figure 11 indicate that the observers perform

differently at low speeds. It was found that the Luenberger
Observer had a greater level of ripples in the estimated speed
than the other observers and that it was unable to accurately
track the speed reference of 42 rpm. The Luenberger Ob-
server was expected to exhibit this behavior since it is a
linear estimator, which is more sensitive to non-linearities and
disturbances that are more apparent at low speeds. In contrast,
the Implicit SMO and the Sigmoid-based SMO with a 0.01
rate showed superior performance, exhibiting lower ripples
in the estimated speed. However, it was noted that as the
reference speed decreased, the ripples in the speed estimation
for these observers increased. This rise in ripples can be
attributed to the difficulty of maintaining robust estimation
accuracy at very low speeds, where the effects of system non-
linearities and noise become more significant.
Among the tested observers, the Implicit SMO demon-

strated the best performance during the final test stage, with
the reference speed set at 42 rpm. The chattering in the
estimated speed was significantly lower compared to the
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Sigmoid-based SMO, indicating that the Implicit SMO is
more capable of handling the challenges of low-speed opera-
tion in sensorless SPMSM control. This is owing to that the
implicit SMO is able to reach the intended sliding surface,
as stated in Remark 1, unlike the sigmoid-based SMO which
requires fine-tuning of its rate to maintain observer perfor-
mance. This advantagemakes the Implicit SMO amore fitting
choice for applications where precise speed estimation and
control at low speeds are critical.

Time (s)

FIGURE 11. Experimental waveform of the estimated speed response
during the possible minimum speed obtained by using: sigmoid-based
SMO with a slope = 0.01, luenberger observer, implicit SMO

C. PARAMETER VARIATION
Here, we are going to verify the robustness of the proposed
observer against parameter variations. As we clarified in
the performance evaluation section, we need to examine the
observer while the motor’s resistance is duplicated and its
inductance is reduced by half. To do that experimentally,
we designed the observer at the half of motor’s resistance
and twice of motor’s inductance value. As previous tests, the
system has to start using I-f start-up method.

As shown in figure 12 (a), the Luenberger observer attained
the speed reference (150 rpm) but could not switch from
open loop to sensorless mode. Several attempts were made to
duplicate the process, but each failed. Similarly, Figure 12(b)
depicts the performance of the sigmoid-based SMOwith 0.01
rate. The sigmoid-based SMO cannot also shift from open
loop to sensorless mode after achieving the speed reference.
The process was also repeated several times, but all of them
failed. Finally, Figure 12 (c) demonstrates that the implicit
SMO handled the parameter variations and successfully tran-
sitioned from open loop to sensorless mode, tracing the speed
reference correctlywith less chattering in the estimated speed.

It should be noticed in Figure 12 (c), although the implicit
SMO succeeded to deal with parameter variations, there is
still undesired behavior in the starting, where a spike appears
around the first sec. of operation. As part of our discussion
on this problem, it is noted that the algebraic solution of the
implicit Euler discretization requires nominal system param-
eters, as indicated by the boundaries of the saturation function
in (22). While the proposed observer demonstrates robust
performance under nominal conditions, significant deviations
from these parameters may impact its behavior. Hence, fu-
ture research may involve developing an efficient method

for estimating motor parameters to dynamically update the
observer with more accurate parameters, which would enable
it to be more adaptable and reliable under diverse operating
conditions.

Time (s)

Time (s)

Time (s)

(a)

(b)

(c)

One trial

FIGURE 12. Experimental waveform of the estimated speed response
while changing the motor resistance and inductance obtained by using:
(a)Luenberger Observer (b)Sigmoid-based SMO (0.01 rate) (c)Implicit SMO

D. EXECUTION TIME
When designing and implementing a control algorithm for
an embedded system, execution time is an important consid-
eration to ensure the system satisfies its real-time require-
ments, runs efficiently, and is reliable and stable. Design
choices, such as code structure, must be carefully considered
to achieve the best possible performance. Figure 13 illustrates
the code execution time for the implicit, sigmoid, and Lu-
enberger observers. Based on the results shown, it can be
concluded that the implicit and Luneberger observers have
the lowest execution time. The total execution time of the
implicit SMO is about 21.45 µsec and the execution time of
the implicit loop itself is about 700 nsec. For the Luenberger
observer, the total execution time is about 21 µsec. However,
the total execution time of the sigmoid-based SMO is about
24.85 µsec and the execution time of the sigmoid function
itself is 4.2 µsec. This shows that the implicit SMO is much
faster 5 times than the sigmoid-based SMO.
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(c)

(a)

(b)

Sigmoid-based SMO

Luenberger Observer

Implicit SMO

Total code time

Switching function time

Total code time

Switching function time

Total code time

Switching function time

FIGURE 13. Execution time graph with resolution 5µ sec per division.
Blue line represents total code time, while red line represents only the
execution time of switching function. The sub-graphs show the execution
times in case; (a) Implicit SMO, (b)Luenberger Observer, and (c)
Sigmoid-based SMO.

VI. CONCLUSION
This paper proposes a novel sliding mode observer for sen-
sorless PMSM motors that aims to simplify design and mini-
mize computational needs while preserving the accuracy and
robustness of SMOs. The observer calculates the machine’s
speed and position using current and voltage measurements
based on implicit (backward) Euler discretization, which not
only removes chattering but also mimics the behavior of
continuous-time sliding mode.

We evaluated the behavior of the proposed observer across
a wide range of speeds and torque loads using a simulation
approach. The results demonstrated its capability to main-
tain stability and accuracy under varying conditions when
compared to a Luenberger observer and a sigmoid-based
Sliding Mode Observer (SMO). Notably, despite the lack
of tuning requirements, the implicit SMO exhibited perfor-
mance comparable to that of a well-tuned sigmoid-based
SMO, particularly at steady and nearly steady speeds, as well
as during instances of sudden load changes. Furthermore, it
displayed superior performance at low speeds relative to other
observers. The observer’s resilience to variations in motor

parameters, specifically resistance and inductance, was also
investigated, confirming its adaptability to such changes.
The proposed observer was also implemented and evalu-

ated experimentally, corroborating the findings observed in
the simulation results except for the parameter variation test.
In this test, the implicit Sliding Mode Observer (SMO) was
the only observer scheme capable of adapting to motor uncer-
tainties. Furthermore, we assessed the execution time of each
observer in our comparison, revealing that the implicit SMO
operates at a faster rate than the sigmoid-based SMO, thereby
making it a more efficient option for low-cost embedded
systems.
Finally, we can conclude that with the adoption of the im-

plicit technique, the need for additional time-consuming steps
to prevent chattering effects is eliminated. Consequently, the
simplicity and robustness of the implicit-based SMO make it
well-suited for embedded systems where low execution time
and operational efficiency are essential as with PMSMcontrol
applications.
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