
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

PermGuard: A Scalable Framework for
Android Malware Detection Using
Permission-to-Exploitation Mapping
ARVIND PRASAD1, SHALINI CHANDRA 2, MUEEN UDDIN 3, TAHER AL-SHEHARI 4,
NASSER A ALSADHAN 5, SYED SAJID ULLAH 6
1Department of Computer Engineering and Applications, GLA University, Mathura, India
2Department of Computer Science, BBA University, Lucknow India
3College of Computing and Information Technology, University of Doha for Science and Technology, Doha, Qatar
4Computer Skills, Department of Self-Development Skill, Common First Year Deanship, King Saud University, Riyadh, Saudi Arabia
5Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
6Department of Information and Communication Technology, University of Agder, Grimstad, Norway

Corresponding author: Mueen Uddin(mueen.uddin@udst.edu.qa)

This work was supported by the Researchers Supporting Project number (RSPD2024R846), King Saud University, Riyadh, Saudi Arabia.
The Open Access funding was provided by the Qatar National Library.

ABSTRACT Android, the world’s most widely used mobile operating system, is increasingly targeted
by malware due to its open-source nature, high customizability, and integration with Google services. The
increasing reliance on mobile devices significantly raises the risk of malware attacks, especially for non-
technical users who often grant permissions without thorough evaluation, leading to potentially devastating
effects. This paper introduces PermGuard, a scalable framework for Android malware detection that map
permissions into exploitation techniques and employs incremental learning to detect malicious apps. It
presents a novel technique for constructing the PermGuard dataset by mapping Android permissions to
exploitation techniques, providing a comprehensive understanding of how permissions can be misused
by malware. The dataset consists of 55,911 benign and 55,911 malware apps, providing a balanced
and comprehensive foundation for analysis. Additionally, a new strategy using similarity-based selective
training reduces the amount of data required for the training of an incremental learning-based model,
focusing on the most relevant data to improve efficiency. To ensure robustness and accuracy, the model
adopts a test-then-train approach, initially testing on application data to identify weaknesses and refine the
training process. The framework’s resilience is tested against adversarial attacks, demonstrating its ability
to withstand attempts to bypass or deceive detection mechanisms and enhance overall security. Designed
for scalability, PermGuard can handle large and continuously growing datasets, making it suitable for real-
world applications. Empirical results indicate that the model achieved an accuracy of 0.9933 on real datasets
and 0.9828 on synthetic datasets, demonstrating strong resilience against both real and adversarial attacks.

INDEX TERMS Android Malware Detection, Machine Learning, Permissions Exploitation, Cybersecurity,
Mobile Security

I. INTRODUCTION

Android OS (Operating System) continues to dominate the
global mobile operating system market, holding a 71.67%
share [1], as of August 2024. This dominance is even more
evident when looking at all operating systems worldwide,
where Android leads with 45.38%, far ahead of Windows
at 25.61% and iOS (iPhone Operating System) at 18.39%.
Because of its widespread use, Android has become a prime
target for cyberattacks. In recent times, millions of malware

attacks have been detected and blocked on Android mobile
devices by various security vendors [2], [3].

With over three billion active users globally, Android is the
most popular mobile operating system [4]. Its success comes
from several key factors: its open-source nature, high cus-
tomizability, and seamless integration with Google services.
However, these same features make it attractive to cybercrim-
inals to develop malicious apps. The open nature and support
for wide range of devices mean there are more chances

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



for hackers to find and exploit weaknesses, and to spread
malware. This makes Android a big target for malicious
activities. This subsection explores the factors contributing
to Android’s popularity and how these same factors make it
an attractive target for cybercriminals to create and spread
malware:

Open Source Nature: The open-source nature of the An-
droid OS encourages a vast developer community to create a
wide variety of applications, further increasing its popularity.
Because it is open source, manufacturers and developers can
modify the source code to create unique user experiences
and features, attracting many manufacturers and boosting its
adoption. However, open-source code is accessible to every-
one, including hackers. They can study the code to find and
exploit weaknesses, creating security risks. Additionally, The
platform’s support for third-party app (application) stores,
which often have low security checks, further aids in the
distribution of malicious apps [5], [6].

Security Gaps: The rapid and widespread adoption of
Android sometimes outpaces the development of robust se-
curity measures. Despite this, users flock to Android because
of its features and affordability. Many Android devices run
different versions of the OS, and not all receive timely
updates. This fragmentation leaves many devices with known
vulnerabilities unpatched, making them easy targets for mal-
ware. Security patches often reach devices slowly, if at all,
giving hackers a larger window of opportunity to exploit
these security gaps.

Diverse Manufacturers: A multitude of manufacturers
use Android, offering a wide range of devices from budget-
friendly to high-end models. This variety helps Android
reach a broad audience. The presence of numerous manu-
facturers means Android can cater to different markets and
preferences, contributing to its widespread use. However, dif-
ferent manufacturers have varying levels of commitment to
security. Some may not prioritize timely updates or robust se-
curity measures, increasing the risk for users. Customizations
and modifications by different manufacturers can introduce
unique vulnerabilities that may not be present in the base
Android OS.

Google Play Store and Beyond: The Google Play Store
offers a wide selection of apps, enhancing the appeal of
Android devices. This vast ecosystem attracts users seeking
diverse applications. The Google Play Store’s integration
with Android devices makes it easy for users to find and
download apps, contributing to user satisfaction and reten-
tion. Despite Google’s efforts to secure the Play Store, mali-
cious apps occasionally bypass security checks and infiltrate
the platform. Once in the store, these apps can be downloaded
by many users before they are detected and removed. More-
over, Android allows the installation of apps from third-party
stores, which often lack the security measures of the Google
Play Store. These sources can be rife with malware, posing
significant risks to users who download from these sources.

Malware apps exploit permissions granted by the Android
OS to perform malicious activities [7], [9]. For example,

the Joker malware pretends to be real apps and uses SMS
(Short Message Service) permissions to secretly sign users
up for various online services without their knowledge [8].
Similarly, the BankBot trojan steals financial information by
using accessibility services to display fake login screens on
top of real banking apps, tricking users into entering their
passwords [10]. The Ghimob trojan abuses permissions like
SMS, call log, and accessibility services to intercept and
forward authentication codes, allowing attackers to bypass
two-factor authentication and access victims’ accounts.

These examples illustrate how Android malware leverages
permissions granted to apps to carry out various malicious
activities, ranging from subscription fraud to credential theft
[11]. As Android permissions grant apps access to sensitive
device resources and user data, it is crucial for users to
exercise caution when granting permissions and to regularly
review and uninstall suspicious apps.

Addressing this challenge requires innovative approaches
that transcend traditional signature-based detection methods.
Machine learning (ML) emerges as a promising solution,
leveraging advanced algorithms to analyze vast datasets and
identify intricate patterns indicative of malicious behav-
ior [12]–[18]. ML-based Android malware detection frame-
works offer several advantages, including adaptability to
evolving threats, scalability to handle large datasets, and
efficiency in detecting previously unseen malware variants
[19]–[24].

Android permissions serve as an important line of defense
against malware by providing insights into app behavior
and enabling the detection of suspicious activities. Security
solutions leverage permission analysis techniques to identify
potential indicators of malware and protect users from mali-
cious apps. By carefully analyzing the permissions requested
by an app, security researchers and antivirus solutions can
identify potential indicators of malicious behavior.

The research addresses a critical problem in Android secu-
rity: the increasing prevalence of malware attacks that exploit
app permissions. With over three billion active users glob-
ally, Android’s open-source nature makes it a prime target
for cybercriminals. Traditional malware detection methods,
such as signature-based approaches, are proving ineffective
against evolving malware threats, especially those that ma-
nipulate permissions for malicious purposes. This research
proposes a scalable, machine-learning-based framework that
dynamically analyzes Android permissions and maps them to
exploitation techniques [25]. By focusing on subtle indicators
of malicious behavior, this research enhances malware detec-
tion efficiency, addressing the urgent need for better mobile
security in real-world scenarios.

Here are the major contributions of this research, high-
lighting its innovative aspects and practical significance:

• A dataset construction technique is proposed that col-
lects 55,911 benign apps and 55,911 malware apps.
It further extracts Android permissions from these
apps and maps them into exploitation techniques. This
method enables a comprehensive understanding of how

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



permissions can be misused by malware while signifi-
cantly reducing the number of features.

• The proposed framework includes a similarity-based se-
lective training approach to minimize the data required
for training, focusing on the most relevant information
and reducing computational overhead.

• PermGuard applies a test-first approach to validate its
robustness and accuracy by evaluating multiple datasets
before refining the learning process.

• The framework is evaluated for its resilience against ad-
versarial attacks, ensuring that it can withstand attempts
to deceive or bypass its detection mechanisms, thereby
enhancing security.

• PermGuard is scalable, capable of managing large and
expanding datasets.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses existing work on Android malware detec-
tion. Section 3 presents the proposed PermGuard framework,
followed by Section 4, which explains the dataset construc-
tion technique. Section 5 describes the malware detection
techniques, while Section 6 provides the evaluation results.
Finally, Section 7 concludes the paper and outlines directions
for future work.

II. RELATED WORK
In Android malware detection, recent research has introduced
various machine learning approaches aimed at mitigating
the ever-evolving landscape of threats. Prior works have
contributed significantly to the field, laying the groundwork
for advancements in feature selection, model interpretability,
and detection accuracy. Researchers aim to create effective
solutions for identifying malicious applications by delving
into the intricacies of Android malware behaviour. This sec-
tion offers an in-depth exploration of some of the state-of-
the-art work within this domain.

Wajahat et al. [26] introduced a lightweight Android mal-
ware detection system employing explainable machine learn-
ing. Through recursive feature elimination, they pinpointed
critical features, reducing computational overhead while pre-
serving high accuracy. The utilization of Shapley additive
explanation (SHAP) values enhances interpretability. Diverg-
ing from traditional methods, the approach emphasizes static
feature analysis, enhancing efficiency and obviating the need
for app execution. Experimental results demonstrate accu-
racy (>0.99 F1-score) with minimal resource consumption.
Furthermore, the study presents a condensed dataset of 40
high-impact features, facilitating future research. In sum, it
presents a practical solution for IoT security, making notable
strides in feature selection, transparency, and efficiency.

Almarshad et al. [27] introduce a pioneering approach
to Android malware detection by integrating Siamese one-
shot learning with machine learning algorithms. Utilizing the
Drebin dataset comprising 9476 benign and 5560 malware
apps, the proposed model achieves an impressive accuracy
of 98.9%. Through the amalgamation of Siamese one-shot
learning and machine learning algorithms, the authors ef-

fectively address the challenge of limited training samples.
Moreover, they employ visualization analysis for feature
comprehension, enabling the model to surpass traditional
methods. The Siamese network architecture demonstrates
robustness, generalization, and the ability to avoid over-
fitting. The study underscores its superiority over LSTM
(Long Short-Term Memory), random forest classifier, and
SVM (Support Vector Machine), marking significant ad-
vancements in malware detection efficacy.

Aurangzeb and Aleem [28] addressed the pressing issue
of detecting obfuscated Android malware, which poses a sig-
nificant security threat. They introduced an ensemble voting-
based classification approach and a novel feature-based ob-
fuscation mechanism to defend against Android malware.
Leveraging the Kronodroid dataset, the study conducts com-
prehensive evaluations on both real devices and emulators. It
demonstrates the effectiveness of the proposed deep learning
model in accurately detecting obfuscated malware while
identifying key features crucial for detection. Notably, the
study highlights the importance of a small subset of features
for detection, emphasizing the significance of intelligent
tools in combating evolving malware threats.

Odat and Yaseen [29] utilized co-existing static features
and machine learning techniques to detect Android malware.
The authors established that malware demonstrates abnor-
mal co-existence patterns of permissions and APIs (Appli-
cation Programming Interface) compared to benign apps.
They constructed a dataset from Drebin, Malgenome, and
MalDroid2020, and extracted co-existence features at vary-
ing levels, which were then analyzed using the FP-growth
algorithm. Several conventional machine learning algorithms
were employed for evaluation, with Random Forest achieving
the highest accuracy of 98%. This approach outperformed ex-
isting models, notably surpassing PermPair, and achieved up
to 98% accuracy. The research work highlights the efficacy of
feature co-existence in Android malware detection, providing
valuable insights for future research.

Alani and Awad [30] proposed PAIRED, a novel approach
to Android malware detection, addressing the security chal-
lenges posed by the widespread adoption of the Android
operating system. Leveraging explainable machine learning,
the system achieved over 98% accuracy while maintaining
a small footprint on devices. It employed feature selection
via recursive feature elimination, reducing the number of
critical features necessary for accurate detection. The use
of SHAP (Shapley Additive Explanation) values enhanced
model explainability. PAIRED introduced a reduced version
of the dataset, enhancing future research. With high accu-
racy and explainability, PAIRED stood out as a significant
advancement in Android malware detection.

Alkahtani and Aldhyani [31] have addressed the escalating
threat of malware targeting Android devices. By employing
machine learning and deep learning techniques, such as
SVM (Support Vector Machine), KNN (K-Nearest Neigh-
bors), LDA (Linear Discriminant Analysis), LSTM (Long
Short-Term Memory), CNN-LSTM (Convolutional Neural

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Network, Long Short-Term Memory), and autoencoder al-
gorithms, they have made significant contributions. The pro-
posed approach was experimented with on the CICAnd-
Mal2017 [32] and Drebin [33] datasets, where SVM reached
100% accuracy, while LSTM achieved 99.40%. The research
emphasizes feature selection through correlation analysis,
highlighting the efficiency of SVM, LSTM, and CNN-LSTM
in malware detection. The study underscores the importance
of AI-based security systems in mitigating evolving threats
to Android devices, showcasing the superior performance of
SVM and LSTM models.

Gupta et al. [34], the authors proposed a novel method
for detecting Android malware by applying rough set theory.
The main contribution lies in prioritizing features using dis-
cernibility matrices and ranking scores, leading to enhanced
detection accuracy. Various machine learning models, includ-
ing Support Vector Machines, K-Nearest Neighbor, Random
Forest, and Logistic Regression, were utilized. Feature se-
lection was performed through a combination of data pre-
processing and rough set theory, improving overall detection
effectiveness while minimizing complexity. The proposed
model achieved a 97

Vu and Jung [35] introduced AdMat, a novel frame-
work for Android malware detection. It employs adjacency
matrices as input images for Convolutional Neural Net-
works (CNNs). AdMat achieves an average detection rate
of 98.26% across various malware datasets and successfully
categorizes over 97.00% of different malware families with
limited training data. The framework proposes adjacency
matrices for effective feature engineering, which is validated
by CNN models, showcasing the approach’s efficacy. AdMat
demonstrates promising results in malware classification,
signifying a significant advancement in mobile security re-
search.

Surendran et al. [36] proposed GSDroid, a novel approach
to Android malware detection using graph signal processing.
It addressed the limitations of existing high-dimensional
feature representations by proposing a low-dimensional rep-
resentation based on system call sequences. Through mod-
eling system call sequences as directed graphs and defining
informative signals on graph vertices, the method captured
system call dependencies effectively. Using machine learning
classifiers like random forest and decision tree, it achieved a
remarkable accuracy of 0.99 with a 16-dimensional feature
vector. The main contributions included graph-based repre-
sentation of Android apps, defining informative signals, and
demonstrating superior performance in malware detection.
Overall, GSDroid offered a promising solution for combating
sophisticated Android malware.

Mehtab et al. [37] introduced AdDroid, a rule-based ma-
chine learning framework for Android malware analysis.
AdDroid used 63 meticulously crafted rules, derived from
diverse application artefacts, to pinpoint malicious behavior
accurately. Employing an ensemble-based strategy incorpo-
rating Adaboost and traditional classifiers, AdDroid deliv-
ered an outstanding 99.11% accuracy on a robust dataset

of 1420 Android applications. Feature selection techniques
further refined the model’s efficacy. Noteworthy for its high
true positive and true negative rates, AdDroid demonstrated
versatility across varying application types. Its streamlined
computational complexity facilitated real-time analysis, ef-
fectively combating the challenge of detecting Android mal-
ware. AdDroid stood out as an indispensable tool for an-
alysts, empowering them in the precise identification and
categorization of potential malware applications.

Mahindru and Sangal [38] proposed MLDroid, a web-
based framework for Android malware detection using ma-
chine learning. The authors applied feature selection tech-
niques to reduce feature sets and enhance model perfor-
mance. The experiment, conducted on a dataset of over
500,000 Android apps, reveals a 98.8% detection rate using
four machine learning algorithms: deep learning, farthest
first clustering, Y-MLP, and nonlinear ensemble decision tree
forest. MLDroid’s innovation lies in its utilization of per-
missions, API calls, app ratings, and downloads as features,
enabling efficient detection even of unknown malware fam-
ilies. This research underscores the effectiveness of feature
selection in improving detection accuracy and reducing mis-
classification errors, with notable contributions from various
machine learning techniques.

Li et al. [39] introduced an Android malware detection
method that uses multimodal fusion of fine-grained features
extracted from both source code (PM) and binary code
(MM). Their method employs sensitive API calls and RGB
image processing for feature extraction. Experimented on
a dataset of 10,000 benign and 10,000 malicious apps, the
method demonstrated high accuracy of 98.28% and robust
generalization of 92.86%.

Liu et al. [40] proposed SeGDroid, a novel Android mal-
ware detection method based on sensitive function call graph
learning. Using datasets like CICMal2020 and MalRadar,
SeGDroid achieved 98% accuracy in malware detection and
96% in family classification. The model employs graph prun-
ing to reduce training complexity by focusing on sensitive
APIs, though it may face challenges when dealing with
smaller graphs. Despite these limitations, SeGDroid provides
efficient and accurate detection through advanced graph-
based learning mechanisms.

After reviewing the existing state-of-the-art work in An-
droid malware detection using machine learning, it is evident
that researchers have made significant strides in addressing
security challenges. Their dedication has led to the develop-
ment of various effective detection methodologies. However,
the following are a few limitations that are lacking in the
existing studies:

• Existing studies lack large and up-to-date datasets, po-
tentially limiting the effectiveness of their models.

• Some studies may not effectively leverage Android per-
missions as features, resulting in larger dataset sizes or
less efficient feature representation.

• The scalability of existing frameworks may be limited,
particularly in handling large and continuously growing

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



datasets.
• Classical machine learning techniques employed in

prior studies need complete retraining when data
changes, potentially leading to inefficiencies in model
maintenance and adaptation to evolving threats.

III. PROPOSED FRAMEWORK
With mobile devices becoming integral to daily life, users
frequently grant app permissions without proper evaluation
or understanding of the potential risks, thereby increasing
their vulnerability to malicious attacks. Android malware can
exploit these permissions to access sensitive data, monitor
user activities, or take control of the device.

PermGuard addresses this escalating threat by providing a
robust solution specifically designed to combat Android mal-
ware. By mapping permissions into exploitation techniques,
PermGuard effectively identifies and mitigates these threats,
ensuring greater security for Android users.

This section presents the flowchart of the proposed Per-
mGuard framework in Figure 1, offering a comprehensive
visual representation of the Android malware detection pro-
cess. The flowchart illustrates each stage of the framework,
which includes the following steps:

• Starts with app collection from various sources
• Permission extraction from the collected apps.
• Construction of a dataset of both benign and malicious

applications.
• Mapping permissions to exploitation techniques com-

monly used by malware.
• Application of similarity-based selective training to re-

duce computational overhead.
• Utilization of incremental learning to improve the effi-

ciency of malware detection.
• Testing the model on the PermGuard dataset for valida-

tion.
• Testing on a synthetic dataset to evaluate resilience

against adversarial attacks.
The subsequent sections provide detailed overview of each

stages.

IV. ANDROID MALWARE DATASET CONSTRUCTION
TECHNIQUE
Machine learning models trained on large datasets typically
exhibit better generalization performance [41]. By exposing
models to a wide range of malware instances, researchers can
mitigate overfitting and improve the model’s ability to ac-
curately classify previously unseen samples [42]–[45]. This
section outlines the process of constructing a comprehensive
and up-to-date dataset of Android malware, a crucial step in
improving the efficacy of machine learning algorithms for
threat detection.

A. ANDROID APPLICATION COLLECTION
This subsection outlines an automated approach for down-
loading Android applications from Androzoo [46]. It has two

FIGURE 1. Flowchart of the PermGuard Framework for Android Malware
Detection

steps, Prerequisite Application Data and Android appli-
cation download from Androzoo. The Prerequisite Appli-
cation Data step is a Python script that filters the extensive
’latest.csv’ dataset downloaded from Androzoo website to
include only Android application records scanned between
January 1, 2019, and July 1, 2024. It separates benign and
malware applications based on detection values, streamlining
analysis by focusing on relevant data subsets. Algorithm 1
presents the pseudo-code for acquiring Android application
data for further processing.

Algorithm 1 Pseudo code for Prerequisite Application Data
Require: CSV (Comma Separated Values) file path contain-

ing dataset (’latest.csv’).
Ensure: Processed dataframes dfBenign and dfMalware.

1: Load CSV file into a dataframe:
df ← pd.read_csv("latest.csv")

2: Filter dataframe to select records scanned after ’2019-
01-01’:
dfNew ← df.loc[(df [′vt_scan_date′] >′ 2019 − 01 −
01′)]

3: Extract records identified as benign:
dfBenign ← dfNew.loc[dfNew[′vt_detection′] ==
0]

4: Extract records identified as malware:
dfMalware ← dfNew.loc[dfNew[′vt_detection′] >
10]

5: Concatenate benign and malware dataframes:
df ← pd.concat([dfBenign, dfMalware])

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



The Android application download from Androzoo step
is a Python script that facilitates this automated downloading
approach. This script uses sha256 (Secure Hash Algorithm
256-bit) values extracted from a local Excel file named
’latest.csv’, downloaded directly from the Androzoo website.

The automation process further requires an API key ob-
tained from the Androzoo platform. The script constructs
unique download URLs using this key by combining the API
key with each sha256 hash. The script then sends requests to
Androzoo to download the Android applications.

The script saves the downloaded applications locally after
successful retrieval. Each file is named after its correspond-
ing sha256 value, ensuring clear identification and orga-
nization. This streamlined approach empowers researchers
with efficient access to Android applications for analysis
and research endeavours. The researchers downloaded 55911
benign and 55911 malware apps using the above discussed
technique. The pseudo-code to download applications is
given in Algorithm 2.

Algorithm 2 Pseudo code for Android application download
from Androzoo
Require: Obtain dataframe df from Algorithm 1
Ensure: Downloaded Android application files saved lo-

cally with their corresponding sha256 values as file-
names.

1: Define function download_apk(api_key, sha256):
2: Construct the URL for downloading the APK (Android

Application Package) using the provided API key and
sha256 value.

3: Send a GET request to the constructed URL.
4: if the response status code is 200 then
5: Open a new file with the name as the sha256 value and

".apk" extension in binary write mode.
6: Write the content of the response to the newly created

file.
7: Print a success message indicating the download.
8: else
9: Print a failure message indicating the download fail-

ure.
10: end if
11: Define function main():
12: Load sha256 values from df (obtained from prerequisite

data processing)
13: Include ’Your_API_Key’ into obtained from Androzoo.
14: for each sha256 value in the list do
15: Call the download_apk function with the API key and

current sha256 value as arguments.
16: end for
17: Call the main function.

B. DECOMPILATION AND PERMISSION EXTRACTION
Following the download of the applications, the next cru-
cial step involved the extraction of permissions requested
by the app. This was achieved by extracting the Android-

Manifest.xml file from each application. Subsequently, the
axmldec tool was used to decompile the XML (Extensible
Markup Language) file and decompile these files to make it
human-readable [47]. This process extracts the permissions
requested by each application.

Initially, two lists were compiled: one comprising the top
100 permissions frequently utilized in benign applications
and the other containing the top 100 permissions prevalent
in malware applications. These lists were then combined,
consolidating the permission landscape across benign and
malicious applications. Subsequently, redundant permissions
were removed, resulting in a refined list which includes 123
distinct permissions.

C. MAPPING OF PERMISSIONS INTO TECHNIQUES FOR
MALWARE DEVELOPMENT
To better understand the behavior of malicious Android ap-
plications, the researchers map Android permissions to spe-
cific malware development techniques. This approach maps
individual permissions into broader exploitation categories,
providing a more comprehensive view of how malware can
misuse permissions.

The 123 permissions identified in previous subsection,
were mapped onto 23 techniques that could potentially be
used in developing Android malware. These techniques are
identified based on the working approach of various An-
droid malware. Table 1 presents the mapping of permissions
into techniques for malware development. By categorizing
permissions into broader techniques such as "App Permis-
sion Exploitation" or "Network Surveillance," the researchers
gain a detailed understanding of the potential threats posed by
app permissions. This mapping allows for a detailed analysis
of app behavior, enabling the identification of patterns and
trends associated with various types of malicious activity.

Table 2 categorizes Android permissions into broader ex-
ploitation techniques commonly used by malware. It high-
lights how malicious actors can exploit these permissions
for various attacks, such as data exfiltration, credential theft,
or device control. Understanding these techniques is crucial
for enhancing malware detection systems and improving
Android security.

The approach of mapping Android permissions into tech-
niques for malware development offers several advantages:

• Aggregating permissions into higher-level techniques
makes the dataset more compact and manageable. This
condensed representation simplifies analysis and visual-
ization.

• Grouping permissions based on their potential for ex-
ploitation enables a focused analysis of the techniques
commonly employed by malware developers.

• Many permissions may contribute to multiple malware
development techniques. By consolidating these per-
missions, redundancy in the dataset is reduced, leading
to a more efficient use of resources for analysis and
mitigation.

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE 1. List of mapped Android permissions into techniques for malware development

Malware Development
Techniques

Android Permissions

Remote Command Execution INTERNET, BIND_DEVICE_ADMIN, PROCESS_OUTGOING_CALLS, READ_SMS, SEND_SMS, READ_-
CALL_LOG, READ_LOGS, RECORD_AUDIO, CAMERA, MODIFY_PHONE_STATE, WRITE_EXTERNAL_-
STORAGE

Rootkit Installation INTERNET, BIND_DEVICE_ADMIN, READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE,
READ_LOGS, MODIFY_PHONE_STATE, RECORD_AUDIO, CAMERA, SYSTEM_OVERLAY_WINDOW,
ACCESS_SUPERUSER

Exploit Delivery INTERNET, WRITE_EXTERNAL_STORAGE, READ_EXTERNAL_STORAGE, INSTALL_PACKAGES, RE-
QUEST_INSTALL_PACKAGES

Data Exfiltration INTERNET, READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE, ACCESS_NETWORK_STATE
Credential Theft INTERNET, READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE, RECORD_AUDIO, CAMERA,

READ_CONTACTS, GET_ACCOUNTS
Screen Logging INTERNET, READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE, RECORD_AUDIO, CAMERA
Keylogging INTERNET, READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE, RECORD_AUDIO, CAMERA,

READ_LOGS, READ_SMS, RECEIVE_SMS, READ_CONTACTS
Audio Surveillance RECORD_AUDIO, INTERNET, READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE
Social Engineering Attack READ_CONTACTS, SEND_SMS, READ_SMS, RECEIVE_SMS, WRITE_EXTERNAL_STORAGE
GPS Spoofing ACCESS_ASSISTED_GPS, ACCESS_GPS
Device Bricking DEVICE_POWER
Call Interception READ_PHONE_STATE, READ_CALL_LOG, PROCESS_OUTGOING_CALLS
Network Traffic Interception INTERNET, ACCESS_NETWORK_STATE, CHANGE_NETWORK_STATE
Device Lockout MODIFY_PHONE_STATE, WRITE_SECURE_SETTINGS, SHUTDOWN
Browser Hijacking INTERNET, WRITE_HISTORY_BOOKMARKS, WRITE_SECURE_SETTINGS
System Settings Modification WRITE_SETTINGS, WRITE_SECURE_SETTINGS, CHANGE_CONFIGURATION
File System Manipulation READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE, ACCESS_CACHE_FILESYSTEM, WRITE_IN-

TERNAL_STORAGE
Camera Hijacking CAMERA, RECORD_AUDIO, RECORD_VIDEO
App Installation without User
Consent

INSTALL_PACKAGES, REQUEST_INSTALL_PACKAGES, INSTALL_SHORTCUT, DOWNLOAD_WITHOUT_-
NOTIFICATION

Location Tracking ACCESS_LOCATION
Contact Information Theft READ_CONTACTS, WRITE_CONTACTS
Browser History Theft READ_HISTORY_BOOKMARKS, ACCESS_DOWNLOAD_MANAGER
Package Management Manip-
ulation

INSTALL_PACKAGES, REQUEST_INSTALL_PACKAGES, DELETE_PACKAGES, PACKAGE_USAGE_STATS

Notification Manipulation BIND_ACCESSIBILITY_SERVICE
System Log Manipulation READ_LOGS
Process Management Manip-
ulation

KILL_BACKGROUND_PROCESSES, BIND_JOB_SERVICE, UPDATE_APP_OPS_STATS

Alarm Hijacking SET_ALARM, RECEIVE_BOOT_COMPLETE, RECEIVE_USER_PRESENT
Calendar Event Manipulation READ_CALENDAR, WRITE_CALENDAR
Task Manipulation REORDER_TASKS, GET_TASKS
Fake App Installation INSTALL_PACKAGES, REQUEST_INSTALL_PACKAGES
Bluetooth Hijacking BLUETOOTH, BLUETOOTH_ADMIN
WiFi Network Hijacking ACCESS_WIFI_STATE, CHANGE_WIFI_STATE
USB Debugging Exploitation WRITE_SECURE_SETTINGS
Screen Overlay Attack SYSTEM_ALERT_WINDOW
Sim Card Manipulation READ_PHONE_STATE, WRITE_SETTINGS
Battery Drain Attack MODIFY_PHONE_STATE
SMS Spamming SEND_SMS, BROADCAST_SMS, SEND_RESPOND_VIA_MESSAGE, RECEIVE_MMS, MESSAGE
Ad Fraud ACCESS_NETWORK_STATE, INTERNET
Account Information Theft GET_ACCOUNTS, MANAGE_ACCOUNTS, AUTHENTICATE_ACCOUNTS
Certificate Manipulation READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE
Runtime Environment Manip-
ulation

MODIFY_AUDIO_SETTINGS, MODIFY_PHONE_STATE

Call Log Manipulation READ_CALL_LOG, WRITE_CALL_LOG

• Quantifying the occurrence of each technique allows
the researchers to prioritize defense strategies based on
the prevalence of specific threats. High-occurrence tech-
niques may warrant immediate attention for mitigation
efforts, while less common techniques can be addressed
as secondary concerns.

• As new permissions are introduced in Android releases
and malware developers exploits these new permissions,

this approach remains adaptable by updating the map-
ping of permissions to techniques.

V. EMPLOYING DATA VALIDATION STRATEGIES FOR
EFFECTIVE FEATURE SELECTION
In this section, the researchers explore the application of
data validation strategies as a precursor to effective feature
selection. The construction of this extensive Android mal-
ware dataset enables researchers to observe evolving trends

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE 2. Description of each of the mapped Android permissions focusing on their role in malware development

Malware Development
Technique Description focusing on their role in malware development

Remote Command Execution Allows malware to remotely execute commands, enabling control over the device, launching malicious actions, or
sending/receiving data covertly.

Rootkit Installation Enables malware to gain elevated privileges, bypassing security mechanisms and granting persistent, undetectable control
over the device for malicious purposes.

Exploit Delivery Facilitates the downloading and installation of additional malicious payloads or exploits, expanding the malware’s impact
and capabilities without user intervention.

Data Exfiltration Allows the transmission of sensitive user data, including personal, financial, or system information, to external servers
controlled by attackers.

Credential Theft Enables unauthorized access to user credentials, such as login information or account details, which can be exploited for
fraud or identity theft.

Screen Logging Captures sensitive on-screen information, such as user inputs or displayed data, for the purpose of stealing personal or
financial details.

Keylogging Monitors user input, including keystrokes or other forms of input, allowing malware to record sensitive information such
as passwords or messages.

Audio Surveillance Enables the recording of audio from the device’s microphone, allowing attackers to eavesdrop on private conversations
or gather sensitive information.

Social Engineering Attack Facilitates the sending and receiving of deceptive messages designed to trick users into divulging personal information
or installing further malware.

GPS Spoofing Alters the device’s reported location, misleading users or location-based services and potentially enabling fraud or
misrepresentation.

Device Bricking Maliciously disables key device functionalities, rendering the device inoperable, often as part of ransomware or
destructive attacks.

Call Interception Enables the interception or monitoring of phone calls, allowing attackers to eavesdrop on conversations or steal call-
related information.

Network Traffic Interception Allows the interception or manipulation of network communications, enabling attackers to monitor, alter, or redirect data
for malicious purposes.

Device Lockout Prevents the user from accessing the device, often used in ransomware attacks where attackers demand payment to restore
access.

Browser Hijacking Redirects browser traffic or alters browser settings, potentially leading users to malicious websites or altering browsing
history for tracking purposes.

System Settings Modification Alters critical system settings, disabling security features or allowing the malware to maintain persistent control over the
device.

File System Manipulation Enables the reading, modification, or deletion of files, allowing malware to tamper with user data or hide its presence
within the file system.

Camera Hijacking Gains unauthorized access to the device’s camera, allowing malware to capture photos or videos for surveillance or
blackmail.

App Installation without User
Consent Installs malicious applications without the user’s consent, escalating malware activity or gaining further control over the

device.
Location Tracking Tracks the device’s real-time location, allowing attackers to monitor user movements or target location-based attacks.
Contact Information Theft Steals or manipulates contact data, which can be used to propagate malware or gather information for social engineering

attacks.
Browser History Theft Accesses browsing history to track user behavior, potentially launching targeted phishing attacks or selling user data to

third parties.
Package Management Manip-
ulation Maliciously installs or uninstalls applications, including removing security apps and installing harmful software to further

compromise the device.

and patterns in malware behaviour over time. Additionally,
the balanced distribution of benign and malware instances
ensures robustness and reliability in model training and eval-
uation, mitigating biases commonly associated with imbal-
anced datasets.

Dataset validation is crucial in ensuring the quality, in-
tegrity, and relevance of the data used for analysis. Density
plots, heatmaps, and histograms are powerful visualization
techniques that serve as effective approaches for dataset
validation. Density plots provide insights into the distribu-
tional characteristics of data, allowing for identifying pat-
terns and anomalies. Heatmaps visualize correlations be-
tween variables, highlighting relationships and trends within
the dataset. Histograms offer a detailed depiction of data
distribution, facilitating the assessment of central tendency,

variability, and shape. These visualization tools enable re-
searchers to validate the dataset’s quality, integrity, and rele-
vance, enhancing the robustness and reliability of subsequent
analyses and modelling endeavours.

Effective feature selection is essential for streamlining the
modeling process, enhancing interpretability, and boosting
predictive performance. This approach reduces dimension-
ality, mitigates overfitting, and optimizes model efficiency
by identifying and prioritizing the most informative and
discriminative features [48]–[53]. Furthermore, feature se-
lection facilitates the extraction of actionable insights from
complex datasets, enabling researchers to focus on factors
that significantly influence the outcome of interest.

In the following subsections, the researchers delve into
the applications of visualization techniques—density plots,

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



heatmaps, and histograms—as powerful tools for dataset
validation. Further, the researchers explore their role in iden-
tifying and prioritizing informative features to ensure robust
and reliable modelling outcomes.

A. DENSITY PLOTS FOR DATASET VALIDATION AND
FEATURE SELECTION
Density plots visualize the distribution of data by estimating
the probability density function of a continuous variable.
These plots provide insights into the shape, spread, and
peaks of the data distribution, allowing for the identification
of patterns and anomalies. The probability density function
(PDF) represents the probability distribution of a continuous
random variable. It describes the likelihood of the variable
taking on a particular value within a given range.

Density plots are a visual representation of the probability
density function of a continuous variable. The kernel density
estimate (KDE) is commonly used to construct density plots.
The mathematical formula for the kernel density estimate at
a point x is given by:

f̂(x) =
1

n · h

n∑
i=1

K

(
x−Xi

h

)
(1)

Where:
f̂(x) is the kernel density estimate at point x.
n is the number of observations in the dataset.
h is the bandwidth parameter, controlling the smoothness

of the estimate.
Xi are the observed data points.
K(u) is the kernel function.
Commonly used kernel functions include the Gaussian

kernel K(u)

K(u) =
1√
2π

e−
u2

2 (2)

and the Epanechnikov kernel K(u)

K(u) =
3

4
(1− u2) (3)

This above formula calculates the kernel density estimate
by summing up the contributions of each data point, weighted
by the chosen kernel function and bandwidth parameter.
The resulting estimate represents the probability density of
observing a data point at the specified value x.

Figure 2 shows the distribution of each feature’s values for
both malware and benign samples.

The density Plots provide insights into the probability
density of each feature for the two classes, helping to identify
patterns or differences between malware and benign data.
The researchers considered following aspect while analysing
the density graph in Figure 2:

• A significant overlap suggests that the feature alone may
not be a strong indicator of malware or benign behavior.

• If the distributions are well-separated, it indicates that
the feature can potentially discriminate between mal-
ware and benign samples effectively.

• A skewed distribution may indicate the presence of out-
liers or a non-normal distribution of data, which could
impact the effectiveness of the feature in distinguishing
between malware and benign samples.

• Features with distinct peaks or narrower spreads for
malware or benign samples may provide valuable dis-
criminatory information.

• Features that consistently exhibit differences in distri-
butions between malware and benign samples are likely
more informative for classification purposes.

Table 3 shows the ranking of the features based on the
mean density value. The researchers calculated the absolute
difference between normalized density value of benign and
malware applications. The researchers removed the feature
which has highest absolute difference between normalized
density value as they cannot potentially discriminate an appli-
cation between malware and benign application effectively.

B. HEATMAP FOR DATASET VALIDATION AND
FEATURE SELECTION
The heatmap illustrates the correlation matrix of features in
the dataset. Features with values close to 1 or -1 indicate
strong positive or negative correlations respectively, while
values close to 0 suggest weak or no correlation. Strong
correlations between features might indicate redundancy,
potentially allowing for feature reduction. Conversely, low
correlations may imply independence or lack of relationship
between features.

The formula to calculate the Pearson correlation coeffi-
cient (ρ) is given in Equation 2

ρ =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
(4)

Where:
Xi and Yi are the individual data points of variables X and

Y respectively.
X̄ and Ȳ are the means of variables X and Y respectively.

Figure 3 shows the heatmap plotted using the Pearson
correlation coefficient. Most of the correlation values in
the heatmap are low. It indicates that all features are di-
verse and independent. Low correlations between variables
are desirable, especially in predictive modelling tasks, as
highly correlated features can introduce multicollinearity and
potentially degrade model performance. To remove highly
correlated features, the researchers first identified a list
of features with correlation values higher than 0.85. The
researchers then removed features that appeared more than
once, suggesting they have high correlations with multiple
features. These redundant features were then removed to
avoid potential multicollinearity issues, which can affect
model performance. Table 4 presents the correlations be-
tween various features with values above 0.85. Only the
highlighted features from this list were retained for further
analysis, as they demonstrated lower redundancy compared
to others.

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FIGURE 2. Density plot for visualising the distribution of features in the dataset

C. HISTOGRAM PLOTS FOR DATASET VALIDATION
AND FEATURE SELECTION

Histograms provide a visual representation of the distribution
of data within each feature. By comparing the distributions of
different features, one can identify patterns or irregularities
that may require further investigation. It visually represents
the data distribution by dividing it into intervals and counting
the frequency of data points falling into each interval, which
is then normalized to represent a probability distribution. The
process of generating histograms involves two primary steps:
binning and normalization.

• Binning involves dividing the range of the data into
intervals, called bins or buckets. The number of bins
and their width can vary depending on the data and the
desired level of detail in the histogram.

• After binning, the counts of data points falling into each
bin are typically normalized to represent a probability
distribution. This normalization ensures that the area
under the histogram’s curve sums up to 1, making it a
probability density function. This step involves dividing
the count of data points in each bin by the total number
of data points and the bin width.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE 3. Ranking of features by absolute difference in normalized density between benign and malware applications

Features Normalized Benign
Density

Normalized Malware
Density

Absolute Difference
(High to Low)

Duplicate Permissions Requested 0.125000 0.820769 0.695769
Content Providers Declared 0.125000 0.749692 0.624692
Account Information Theft 0.766379 0.181077 0.585302
Remote Command Execution 0.125000 0.678615 0.553615
Permissions Requested 0.285345 0.820769 0.535424
Screen Overlay Attack 0.766379 0.252154 0.514225
Screen Logging 0.125000 0.607538 0.482538
Metadata Elements 0.285345 0.749692 0.464347
Ad Fraud 0.606034 0.181077 0.424957
Device Bricking 0.125000 0.536462 0.411462
Rootkit Installation 0.285345 0.678615 0.393270
Activities Declared 0.445690 0.820769 0.375079
System Log Manipulation 0.766379 0.394308 0.372071
USB Debugging Exploitation 0.606034 0.252154 0.353880
System Settings Modification 0.125000 0.465385 0.340385
Call Log Manipulation 0.445690 0.110000 0.335690
Keylogging 0.285345 0.607538 0.322193
Version Code 0.445690 0.749692 0.304002
Location Tracking 0.766379 0.465385 0.300994
Task Manipulation 0.606034 0.323231 0.282803
Contact Information Theft 0.125000 0.394308 0.269308
SMS Spamming 0.445690 0.181077 0.264613
Call Interception 0.285345 0.536462 0.251117
Exploit Delivery 0.445690 0.678615 0.232925
Browser Hijacking 0.766379 0.536462 0.229917
Services Declared 0.606034 0.820769 0.214735
Notification Manipulation 0.606034 0.394308 0.211726
Process Management Manipulation 0.125000 0.323231 0.198231
WiFi Network Hijacking 0.445690 0.252154 0.193536
File System Manipulation 0.285345 0.465385 0.180040
Runtime Environment Manipulation 0.285345 0.110000 0.175345
Audio Surveillance 0.445690 0.607538 0.161848
GPS Spoofing 0.766379 0.607538 0.158841
Target SDK Version 0.606034 0.749692 0.143658
App Installation without User Consent 0.606034 0.465385 0.140649
Fake App Installation 0.125000 0.252154 0.127154
Calendar Event Manipulation 0.445690 0.323231 0.122459
Browser History Theft 0.285345 0.394308 0.108963
Battery Drain Attack 0.285345 0.181077 0.104268
Network Traffic Interception 0.44569 0.536462 0.090772
Credential Theft 0.766379 0.678615 0.087764
Data Exfiltration 0.606034 0.678615 0.072581
Device Lockout 0.606034 0.536462 0.069572
Sim Card Manipulation 0.125000 0.181077 0.056077
Broadcast Receivers 0.766379 0.820769 0.054389
Package Management Manipulation 0.445690 0.394308 0.051382
Alarm Hijacking 0.285345 0.323231 0.037886
Bluetooth Hijacking 0.285345 0.252154 0.033191
Camera Hijacking 0.445690 0.465385 0.019695
Is App Taking Backup 0.766379 0.749692 0.016687
Certificate Manipulation 0.125000 0.110000 0.015000
Social Engineering Attack 0.606034 0.607538 0.001504

Figure 4 shows the plotted histogram comparing feature
distributions between malware and benign applications. The
researchers considered the following points while validating
the dataset.

• A significant difference in the distribution of a feature
between classes may indicate its importance in distin-
guishing between benign and malware applications.

• A data point significantly different from the rest of the
dataset can be identified in histograms as values that fall
outside the expected range or have a shallow frequency.

• Features that exhibit clear separation between classes
are likely to be more informative and useful for clas-
sification tasks.

• Skewed distributions or features with different scales
between classes may indicate the need for such prepro-
cessing techniques to improve model performance.

Considering the aforementioned criteria, the researchers
examined Figure 4. This figure depicts a subset of features
with minimal absolute differences between the normalized
frequencies of benign and malware applications. Table 5

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FIGURE 3. Correlation Heatmap to visualizing relationships between features

TABLE 4. Features with high correlation Values (>0.85)

First Feature Second Feature Correlation (>0.85)
Rootkit Installation Screen Logging 0.94960
Keylogging Remote Command Execution 0.94553
Credential Theft Screen Logging 0.94451
Device Lockout USB Debugging Exploitation 0.94346
Package Management Manipulation Fake App Installation 0.94078
Audio Surveillance Screen Logging 0.93652
Credential Theft Keylogging 0.92738
Permissions Requested Duplicate Permissions Requested 0.92346
Data Exfiltration Audio Surveillance 0.91767
Credential Theft Rootkit Installation 0.91414
File System Manipulation Exploit Delivery 0.90425
Audio Surveillance Rootkit Installation 0.90082
Keylogging Rootkit Installation 0.89494
Browser Hijacking USB Debugging Exploitation 0.89357
Fake App Installation App Installation without User Consent 0.88291
Credential Theft Audio Surveillance 0.87308
Keylogging Screen Logging 0.86605
Device Lockout Browser Hijacking 0.86112
Package Management Manipulation App Installation without User Consent 0.85305

Highlighted features were retained for further analysis, as they appeared only once in correlations.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



FIGURE 4. Comparison of feature distributions between malware and benign applications

presents the feature ranking based on these normalized fre-
quencies. The researchers eliminated the feature with the
lowest absolute difference.

VI. MALWARE DETECTION TECHNIQUE

In this section, the researchers present an overview of
the malware detection technique employed in this re-
search, delineating its methodology, innovation, and advan-
tages. This approach embodies an ensemble model utiliz-
ing incremental learning classifiers, namely MLPClassifier,
BernoulliNB, and PassiveAggressiveClassifier, meticulously

chosen through empirical evaluation from a pool of seven
classifiers.

A. IDENTIFYING ALGORITHM AND BUILDING
ENSEMBLE MODEL

To determine the top-performing incremental learning al-
gorithm for the proposed ensemble model, the researchers
evaluated seven different incremental learning algorithms:
MLPClassifier, GaussianNB, MultinomialNB, BernoulliNB,
PassiveAggressiveClassifier, Perceptron, and SGDClassifier.
The selection of these seven algorithms was based on their

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE 5. Feature ranking based on normalized frequencies between malware and benign applications

Features Normalized Benign
Frequency

Normalized Malware
Frequency

Absolute Difference
(High to Low)

Duplicate Permissions Requested 0.125000 0.807358 0.682358
Broadcast Receivers 0.731522 0.110000 0.621522
Permissions Requested 0.125000 0.720189 0.595189
Battery Drain Attack 0.731522 0.197170 0.534352
Ad Fraud 0.125000 0.633019 0.508019
Content Providers Declared 0.327174 0.807358 0.480184
GPS Spoofing 0.731522 0.284340 0.447182
System Settings Modification 0.125000 0.545849 0.420849
Sim Card Manipulation 0.529348 0.110000 0.419348
Screen Overlay Attack 0.327174 0.720189 0.393015
Process Management Manipulation 0.731522 0.371509 0.360013
Task Manipulation 0.125000 0.458679 0.333679
Browser History Theft 0.529348 0.197170 0.332178
Device Bricking 0.327174 0.633019 0.305845
Account Information Theft 0.529348 0.807358 0.278010
Call Interception 0.731522 0.458679 0.272843
Exploit Delivery 0.125000 0.371509 0.246509
Runtime Environment Manipulation 0.529348 0.284340 0.245008
Call Log Manipulation 0.327174 0.545849 0.218675
Data Exfiltration 0.327174 0.110000 0.217174
Metadata Elements 0.529348 0.720189 0.190841
Location Tracking 0.731522 0.545849 0.185673
WiFi Network Hijacking 0.125000 0.284340 0.159340
Notification Manipulation 0.529348 0.371509 0.157839
Contact Information Theft 0.327174 0.458679 0.131505
Calendar Event Manipulation 0.327174 0.197170 0.130004
Activities Declared 0.529348 0.633019 0.103671
System Log Manipulation 0.731522 0.633019 0.098503
Remote Command Execution 0.731522 0.807358 0.075836
Target SDK Version 0.125000 0.197170 0.072170
SMS Spamming 0.529348 0.458679 0.070669
Services Declared 0.327174 0.371509 0.044335
File System Manipulation 0.327174 0.284340 0.042834
Version Code 0.529348 0.545849 0.016501
Network Traffic Interception 0.125000 0.110000 0.015000

The highlighted features indicate the lowest absolute difference and were eliminated from further analysis.

ability to support incremental learning through the partial_-
fit function, which enables the models to continue learning
as new data becomes available. The experiments were con-
ducted on a dataset constructed for this study. Each algorithm
was evaluated on its performance in terms of accuracy, preci-
sion, recall, and overall detection efficacy. Table 6 shows the
experimental result.

The experimental results revealed that three algo-
rithms—MLPClassifier, BernoulliNB, and PassiveAggres-
siveClassifier—consistently outperformed the others across
various performance metrics.

MLPClassifier: Demonstrated high accuracy and robust-
ness in handling diverse malware patterns, owing to its multi-
layer perceptron architecture.

BernoulliNB: Exhibited strong performance particularly
in binary/boolean feature spaces, making it well-suited for
the feature set derived from Android permissions.

PassiveAggressiveClassifier: Showed excellent adapt-
ability and efficiency, quickly learning from misclassifica-
tions and adjusting its parameters accordingly.

Based on these findings, the researchers selected MLP-
Classifier, BernoulliNB, and PassiveAggressiveClassifier for

the ensemble model. These algorithms’ superior performance
in the incremental learning context ensures that the frame-
work can effectively detect and adapt to new and evolving
Android malware threats.

B. MODEL TRAINING APPROACH
In this subsection, we detail the methodology used to train the
PermGuard framework. This approach focuses on efficiency
and adaptability, leveraging novel techniques to ensure that
the model remains robust and effective against a wide array
of malware threats.

1) The Sequentially Prediction-Then-Training Approach
Fundamental to the proposed approach is the incremental
learning paradigm, a dynamic framework that allows the
model to adjust to changing datasets without the need for
extensive retraining. Unlike conventional machine learning
models, incremental learning enables smooth adaptation to
emerging malware variants by continuously updating the
model with new data. This model building and training ap-
proach are grounded in a sequential process aimed at optimiz-
ing model adaptability while minimizing data exposure bias.

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE 6. Feature ranking based on normalized frequencies between malware and benign applications

Incremental learning algorithms Accuracy Precision Recall F1Score
BernoulliNB 0.96566 0.97505 0.95589 0.96537
MLP Classifier 0.96259 0.94595 0.98137 0.96334
PassiveAggressive Classifier 0.91636 0.85853 0.99732 0.92273
MultinomialNB 0.61681 0.90346 0.26292 0.40730
GaussianNB 0.51218 0.69973 0.04536 0.08519
SGD Classifier 0.51116 0.50650 0.92935 0.65566
Perceptron 0.50043 1 0.00244 0.00487

The bold values highlight outperforming incremental learning algorithms.

The following steps delineate this sequentially prediction-
then-training approach:

• Initialization: The model is initialized using the first
record of the dataset. This step is crucial as it establishes
the baseline for subsequent predictions and training
iterations.

• Prediction: Upon initialization, the model predicts the
label for the second record in the dataset. This prediction
serves as the basis for subsequent model training.

• Training: Following prediction, the model is trained
using the features and label of the second record. This
training process incrementally updates the model’s pa-
rameters based on the newly encountered data.

• Iterative Prediction and Training: The aforemen-
tioned steps of prediction followed by training are itera-
tively repeated for each subsequent record in the dataset.
This iterative approach ensures the model adapts to
evolving data patterns while reducing the risk of over-
fitting.

The rationale behind the prediction-then-training approach
lies in mitigating the bias introduced by exposing the model
to the entire dataset at once. By sequentially predicting and
training on each record, the researchers ensure that the model
learns incrementally without being unduly influenced by the
entirety of the data. This mitigates the risk of data exposure
bias, wherein the model may inadvertently memorize the
dataset rather than learn generalized patterns. Advantages:

• Adaptability: The incremental learning approach en-
ables the model to adapt seamlessly to evolving datasets,
ensuring robust performance against emerging malware
variants and changing threat landscapes.

• Bias Mitigation: By sequentially predicting and train-
ing on individual records, the researchers mitigate
the risk of data exposure bias, thereby enhancing the
model’s generalization capabilities.

• Efficiency: The iterative nature of the proposed ap-
proach optimizes computational efficiency by incremen-
tally updating the model parameters, obviating the need
for wholesale retraining with each new data arrival.

2) Similarity-Based Selective Training Strategy
Similarity-Based Selective Training Strategy: In this re-
search, the researchers present a novel Similarity-Based
Selective Training Strategy to make model training more
efficient and reduce unnecessary computations and biases

from nearly identical data. The key element of this method
is the use of cosine similarity to measure the similarity
between new data and previously seen data. Before starting
the training process, the model evaluates the novelty of the
new data by comparing it with the last 100 records. By setting
a threshold for data dissimilarity, the model only updates
itself when the new data is sufficiently different, preventing
overfitting and saving computational resources. Here’s how
it works:

• Before starting model training, each new data record is
checked for similarity to existing records. This helps
identify data that is very similar to what the researchers
already have.

• The researchers use cosine similarity to compare each
new data record with the last 100 records in the dataset.
This helps us evaluate how similar the new data is,
allowing us to distinguish between new and redundant
records.

• To balance model adaptation with computational effi-
ciency, the researchers set a selective training threshold
using cosine similarity scores. The researchers test dif-
ferent thresholds, ranging from 80% to 95%, to evaluate
how data diversity affects model performance.

• If the cosine similarity between the features of a new
app and any of the last 100 trained apps is low, the re-
searchers will train the model on the new app’s features.

• Checking the similarity with only the last 100 apps
speeds up the process by reducing computational time
compared to checking the similarity with all apps.

The formula to calculate cosine similarity between fea-
tures of app A and features of app B is given in equation
5.

CosineSimilarity(A,B) =

∑n
i=1 Ai ×Bi√∑n

i=1 A
2
i ×

√∑n
i=1 B

2
i

(5)

C. HYPERPARAMETER TUNING
VII. RESULT AND DISCUSSION
In this section, the researchers present and analyze the
outcomes of the experiments with the incremental learning
model for Android malware detection. The results from vari-
ous classifiers, both individually and as part of an ensemble,
are scrutinized to determine their effectiveness in identifying
malware. The researchers also examine the impact of the

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



model training approaches on adaptability, computational
efficiency, and bias mitigation. By comparing performance
metrics and evaluating real-world applicability, it provides
a comprehensive discussion of the findings, highlighting
the strengths and potential areas for improvement in this
approach.

A. EXPERIMENTAL SETUP
The experiments were conducted on a 64-bit Windows 11
Home (version 23H2) system, equipped with an AMD Ryzen
7 7730U processor with Radeon Graphics running at 2.00
GHz. Model development and testing were carried out us-
ing Python 3.11 in a Jupyter Notebook environment, while
Java version 21 was employed for additional implementation
tasks.

B. PERFORMANCE METRICS
Performance metrics are crucial for assessing the accuracy
and effectiveness of a machine learning model’s predictions.
They offer quantitative measures that facilitate the compar-
ison of different models. In this study, these metrics were
extensively employed to identify the best incremental learn-
ing algorithms for the proposed ensemble model. They also
played a key role in hyperparameter tuning, providing in-
sights into the model’s strengths and weaknesses, and bench-
marking its performance against various advanced machine
learning models. The following metrics were used to evaluate
PermGuard’s performance:

Accuracy: Accuracy measures the proportion of correctly
classified instances out of the total instances. It provides a
general sense of how often the model makes correct predic-
tions.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision: Precision, also known as Positive Predictive
Value, indicates the proportion of true positive results among
all positive results predicted by the model. It is crucial for
assessing the relevance of the positive predictions.

Precision =
TP

TP + FP
(7)

Recall (Sensitivity): Recall, or Sensitivity, measures the
proportion of true positives that were correctly identified by
the model. It is essential for evaluating the model’s ability to
capture all relevant instances.

Recall =
TP

TP + FN
(8)

F1-Score: The F1-Score is the harmonic mean of Preci-
sion and Recall, providing a single metric that balances both
concerns. The F1-Score combines precision and recall into
a single metric by taking their harmonic mean, useful for
datasets with imbalanced classes.

F1-Score = 2 · Precision · Recall
Precision + Recall

(9)

Matthews Correlation Coefficient (MCC): The MCC is
a balanced measure that takes into account true and false
positives and negatives. It is regarded as a more informative
metric than Accuracy in the presence of imbalanced classes.

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

Markedness Measure: Markedness assesses the quality
of the predictions, focusing on the positive predictive value
and negative predictive value. It ranges from -1 to 1, where 1
indicates perfect prediction.

Markedness =
TP

TP + FP
+

TN

TN + FN
− 1 (11)

Youden’s J Statistic: Informedness, also known as
Youden’s J Statistic, measures the probability of an informed
decision. It ranges from -1 to 1, where 1 indicates perfect
decision making.

J =
TP

TP + FN
+

TN

TN + FP
− 1 (12)

Fowlkes–Mallows Index: The FM Index measures the
similarity between the true positive rate and the positive
predictive value. It ranges from 0 to 1, where 1 indicates
perfect similarity.

FM Index =

√(
TP

TP + FP

)
×
(

TP

TP + FN

)
(13)

Where,
TP (True Positives): Total correctly predicted benign apps.
TN (True Negatives): Total correctly predicted malwares.
FP (False Positives): Total incorrectly predicted benign

apps.
FN (False Negatives): Total incorrectly predicted mal-

wares.
By utilizing these performance metrics, the researchers

can thoroughly evaluate the model’s prediction capabilities,
ensuring a comprehensive understanding of its strengths and
limitations.

C. COMPARATIVE ANALYSIS
In this section, the researchers compare the performance of
PermGuard with benchmark Android malware datasets. This
comparative analysis helps to highlight the strengths and
weaknesses of the approach and provides insights into its
relative efficacy in detecting Android malware. To evaluate
the effectiveness of the model, the researchers use several
performance metrics including Accuracy, Precision, Recall,
F1-Score, and MCC. The comparison of these metrics across
different models is presented in Table 7.

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE 7. PermGuard performance on various Android malware datasets

Dataset Accuracy Precision Sensitivity F1Score MCC Markedness
Measure

Youden’s
J Statistic

Fowlkes Mal-
lows Index

Naticusdroid [54] 0.9992 1 0.9984 0.9992 0.9984 0.9984 0.9984 0.9992
Malgenome [55] 0.9573 0.9707 0.9653 0.9680 0.9041 0.9016 0.9066 0.9680
CICMalDroid2020 Syscallsbinders [56] 0.9969 0.9963 1 0.9982 0.9881 0.9963 0.9799 0.9982
CICMalDroid2020 Syscalls [56] 0.9957 0.9950 0.9999 0.9975 0.9835 0.9945 0.9726 0.9975
Android Malware [57] 0.9994 1 0.9914 0.9957 0.9954 0.9994 0.9914 0.9957
PermGuard Dataset 0.9933 0.9934 0.9932 0.9933 0.9866 0.9866 0.9866 0.9933

D. EVALUATION ON OTHER CYBERSECURITY
DATASETS
In addition to Android malware detection, it is crucial to
assess the versatility and robustness of PermGuard on a
variety of cybersecurity datasets. Therefore, the researchers
extend the evaluation process to include several prominent
cybersecurity datasets, namely Intrusion Detection, DDoS
Attack, Phishing Attack, and Botnet Attack datasets. This
broader analysis aims to demonstrate the generalizability and
efficacy of PermGuard across different types of cyber threats.

The results of the model on the different cybersecurity
datasets are summarized in Table 8. Through these compar-
ative analyses, the researchers highlight the strengths and
weaknesses of the model in various cyber threat scenarios.
This evaluation helps in understanding how well this ensem-
ble incremental learning model adapts to different types of
cyber-attacks and its overall effectiveness in a broader cyber-
attack context.

E. SIMILARITY-BASED SELECTIVE TRAINING
STRATEGY EFFECTIVENESS
In this section, the researchers evaluated the effectiveness
of the Similarity-Based Selective Training Strategy by ex-
perimenting with various threshold values on a dataset of
Android applications. The researchers tested thresholds of
70%, 75%, 80%, 85%, 90%, and 95%, which represents
the degree of resemblance between two records of Android
applications. The higher the threshold, the more similar the
new data must be to the existing data for it to be skipped.
Conversely, a lower threshold means the model will train
on less similar new data more frequently. The results show
a clear relationship between the similarity threshold and
model performance metrics, including accuracy, precision,
sensitivity, F1 Score, MCC, Markedness Measure, Youden’s
J Statistic, and Fowlkes–Mallows Index. The findings indi-
cate that as the similarity threshold increases, accuracy and
other performance metrics also improve, but at the cost of
increased computational load due to more frequent model
training.

Table 9 summarizes the experimental results for different
threshold values:

Table 10 compares the performance of PermGuard
with state-of-the-art Android malware detection approaches
across key metrics. PermGuard, evaluated on a significantly
larger dataset (111,822 apps), achieves a high accuracy of
99.33%, matching or surpassing other methods. It demon-

strates competitive precision (99.34%), recall (99.32%), and
F1-measure (99.33%), outperforming several studies. Per-
mGuard’s large-scale testing and consistently high perfor-
mance across all metrics indicate its robustness in detecting
malware, proving its effectiveness compared to other models,
especially when handling larger datasets, making it a reliable
solution for Android malware detection.

The experimental results clearly demonstrate a trade-off
between accuracy and computational efficiency. As the sim-
ilarity threshold increases, the model’s accuracy improves,
reaching up to 99.31% at a 95% threshold. However, this
comes at the cost of needing to train on more records, as
evidenced by the decrease in the number of skipped records.
On the other hand, lowering the threshold to 70% leads
to a higher number of skipped records, thus requiring less
training, but results in a slightly lower accuracy of 98.13%.

This trade-off highlights the importance of selecting an
appropriate threshold based on the specific needs of the
application. For scenarios where high accuracy is paramount,
a higher threshold should be chosen, while for scenarios
where computational resources are limited, a lower threshold
might be more suitable.

The line graph plotted in Figure 5 reveals significant
insights into the performance of the model as the similarity
threshold increases from 70% to 95%. Increasing the similar-
ity threshold results in better accuracy, precision, sensitivity,
and MCC, indicating fewer false positives and negatives
and a more reliable model. These metrics collectively show
that the model’s performance improves as it trains on more
distinct data, affirming the efficacy of the selective training
strategy.

FIGURE 5. Accuracy, Precision, Sensitivity, and MCC vs. Similarity Threshold

The graph plotted in Figure 6 illustrates the number of

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE 8. PermGuard performance on various cybersecurity datasets

Dataset Accuracy Precision Sensitivity F1Score MCC Markedness
Measure

Youden’s
J Statistic

Fowlkes Mal-
lows Index

CSECICIDS2018 - Botnet attack [58] 0.9981 0.9994 0.9979 0.9987 0.9951 0.9939 0.9964 0.9987
CICIDS2017 - Botnet attack [58] 0.9897 0.9905 0.9992 0.9948 0.1864 0.4738 0.0733 0.9948
PhiUSIIL - Phishing attack [59] 0.9949 0.9938 0.9974 0.9956 0.9897 0.9903 0.9891 0.9956
CICIDS2017 - DDoS attack [58] 0.9981 0.9987 0.9969 0.9978 0.9962 0.9964 0.9960 0.9978
CICIDS2018 - DDoS attack [58] 0.9977 0.9960 0.9974 0.9967 0.9950 0.9946 0.9953 0.9967
PermGuard Dataset 0.9933 0.9934 0.9932 0.9933 0.9866 0.9866 0.9866 0.9933

TABLE 9. PermGuard performance on various similarity index

Performance Metric Similarity>70% Similarity >
75%

Similarity>80% Similarity>85% Similarity>90% Similarity>95%

Accuracy 0.9815 0.9832 0.9863 0.9899 0.9916 0.9931
Precision 0.9911 0.9927 0.9919 0.9931 0.9935 0.994
Sensitivity 0.9717 0.9736 0.9805 0.9866 0.9896 0.9922
F1Score 0.9813 0.9831 0.9862 0.9899 0.9916 0.9931
MCC 0.9632 0.9666 0.9726 0.9798 0.9832 0.9862
Markedness_Measure 0.9634 0.9668 0.9726 0.9798 0.9832 0.9862
Youden’s_J_Statistic 0.963 0.9664 0.9725 0.9798 0.9831 0.9862
Fowlkes–Mallows_Index 0.9814 0.9831 0.9862 0.9899 0.9916 0.9931

TABLE 10. PermGuard performance comparison with related works

Android Malware De-
tection Technique

Benign Apps Malicious
Apps

Total Apps Accuracy Precision Recall F1-
measure

Wajahat et al. [26] 9476 5560 15036 0.979 0.982 0.976 0.979
Almarshad et al. [27] 9476 5560 15036 0.994 0.989 0.988 0.987
Alani and Awad [30] 9476 5560 15036 0.9798 0.981 0.9759 0.9783
Mehtab et al. [37] 510 910 1420 0.9911 0.9933 0.9936 0.9934
Li et al. [39] 10000 10000 20000 0.9828 0.9961 0.9773 0.9866
Liu et al. [40] 4043 12552 16595 0.9807 0.9931 0.9812 0.9871
PermGuard 55911 55911 111822 0.9933 0.9934 0.9932 0.9933

records skipped by the model at each similarity threshold
level, ranging from >70% to >95%.

At a 70% similarity threshold, the highest number of
records is skipped, totaling 58,123. This indicates that when
the threshold for considering new data is lower, the model
identifies a larger amount of incoming data as redundant,
resulting in more skipped records. This behavior helps con-
serve computational resources but may come at the cost of
missing subtle, yet important, new variations in malware
data.

As the similarity threshold increases, the number of
skipped records progressively decreases. For instance, at a
75% threshold, the total skipped records drop to 47,174, and
further to 42,739 at an 80% threshold. This pattern continues
with 33,782 records skipped at an 85% threshold, 26,102 at a
90% threshold, and finally, only 14,059 records are skipped
at the highest threshold of 95%.

Lower thresholds result in more skipped records, conserv-
ing resources but potentially missing important data, while
higher thresholds reduce the number of skipped records,
enhancing model performance at the cost of increased com-
putational effort.

In this training strategy, the researchers compare new data
records with only the last 100 records to balance compu-
tational efficiency and model accuracy. Calculating cosine

FIGURE 6. Total Records Skipped vs. Similarity Threshold

similarity is computationally intensive. Comparing each new
record with all previous records would significantly increase
processing time and resource consumption. By limiting the
comparison to the last 100 records, the researchers reduce the
computational burden, making the model more scalable and
efficient. In practical scenarios, such as malware detection
in Android applications, real-time performance is crucial.
Rapidly evaluating and updating the model ensures timely
detection of new threats without delaying system perfor-
mance. The chosen approach helps maintain this balance.
The most recent 100 records are likely to reflect the latest

18 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



trends and patterns in malware behavior. Focusing on these
records ensures that the model stays up-to-date with the
most current threat landscape, which is essential for effective
malware detection.

F. EVALUATING RESILIENT AGAINST ADVERSARIAL
MANIPULATIONS
In this section, we evaluate the performance of PermGuard
on artificially generated synthetic dataset. The primary aim
is to assess the model’s robustness and its resilient against
adversarial manipulations. This helps in identifying poten-
tial weaknesses that adversarial attacks could exploit. The
authors generated 20000 synthetic data from gretel.ai and
evaluated the trained model on this synthetic data.

Here’s the line graph comparing the performance metrics
of PermGuard on the real and synthetic datasets. The metrics
include Accuracy, Precision, Sensitivity, F1 Score, and MCC.

FIGURE 7. Comparison of Model Performance on PermGuard and Synthetic
Datasets

The model achieved an accuracy of 0.9828 on the synthetic
dataset while accuracy on the real dataset is 0.9933. The
graph plotted in Figure 7 shows a slight decrease when tested
on the synthetic dataset, indicating robust generalization ca-
pabilities and minimal performance loss, thereby validating
the model’s resilient against adversarial attacks.

By periodically testing the model against AI generated
synthetic data, we can monitor its robustness over time.
This continuous evaluation helps in proactively identifying
and mitigating new vulnerabilities that adversarial attackers
might exploit. This ongoing evaluation process is key to
building resilient machine learning models capable of with-
standing adversarial attacks while maintaining high perfor-
mance.

VIII. CONCLUSION
In conclusion, this research presents a scalable Android
malware detection framework, PermGuard, which leverages
machine learning to effectively combat the rising threat of
Android malware. The framework includes a dataset con-
struction technique that collects 55,911 benign apps and
55,911 malware apps, mapping Android permissions into
exploitation techniques. This mapping significantly reduces

the feature size, enabling a comprehensive understanding of
permission misuse by malware.

PermGuard introduces a similarity-based selective train-
ing approach to reduce the data required for incremental
model development, enhancing overall training efficiency. It
employs a test-then-train approach to ensure robustness and
accuracy, initially testing the model on various datasets to
identify weaknesses and refine the training process. Evalu-
ated for its resilience against adversarial attacks, PermGuard
can withstand attempts to deceive or bypass its detection
mechanisms, enhancing security. Designed to be scalable, it
handles large and continuously growing datasets, essential
for real-world applications. Empirical results demonstrate
that PermGuard achieved an accuracy of 0.9933 on real
datasets and 0.9828 on synthetic datasets, showing strong
resilience against both real and adversarial attacks.

Despite its strengths, PermGuard has limitations. Its re-
liance on permission-based features may not capture the
complexity of advanced malware that exploits vulnerabili-
ties without explicit permission misuse. It lacks behavioral
analysis, which could provide deeper insights into malware
actions, and does not use emerging techniques such as gen-
erative AI to analyze the entire source code, potentially
missing subtle patterns and threats. Future research can ad-
dress these limitations by incorporating behavioral analysis
using sandboxing techniques to understand malware actions
beyond permission misuse. Integrating generative AI models
to analyze the entire source code with large language models
(LLMs) could enhance detection capabilities, improving ac-
curacy and resilience against sophisticated malware threats.

DATASET AVAILABILITY
The PermGuard data set for Android malware de-
tection is available for download at IEEE DataPort
(https://dx.doi.org/10.21227/d744-tb96).

REFERENCES
[1] StatCounter, "Mobile Operating System Market Share Worldwide,"

StatCounter. Accessed: Sep. 25, 2024. [Online]. Available: https://
gs.statcounter.com/os-market-share/mobile/worldwide

[2] Kaspersky, "Turkey, Russia, Southeast Asia and Latin America hit by
Android threats, Kaspersky identifies," Kaspersky. Accessed: Sep. 26,
2024. [Online]. Available: https://www.kaspersky.com/about/press-
releases/turkey-russia-southeast-asia-and-latin-america-hit-by-android-
threats-kaspersky-identifies

[3] S. Fadilpašić. "Dangerous new Android malware infects 11 million devices
— here’s what we know," TechRadar. Accessed: Sep. 26, 2024. [On-
line]. Available: https://www.techradar.com/pro/security/dangerous-new-
android-malware-infects-11-million-devices-here-s-what-we-know

[4] D. Curry, "Business of Apps, Android statistics," Business
of Apps. Accessed: Sep. 26, 2024. [Online]. Available:
https://www.businessofapps.com/data/android-statistics/.

[5] ST. Sutter, T. Kehrer, M. Rennhard, B. Tellenbach, and J. Klein, “Dynamic
Security Analysis on Android: A systematic literature review,” IEEE
Access, vol. 12, pp. 57261–57287, 2024. doi: https://doi.org/10.1109/
ACCESS.2024.3390612

[6] H. Zhu, H. Wei, L. Wang, Z. Xu, and V. S. Sheng, “An effective end-
to-end android malware detection method,” Expert Systems With Ap-
plications, vol. 218, p. 119593, Jan. 2023. doi: https://doi.org/10.1016/
j.eswa.2023.119593

VOLUME 4, 2016 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://dx.doi.org/10.21227/d744-tb96
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.kaspersky.com/about/press-releases/turkey-russia-southeast-asia-and-latin-america-hit-by-android-threats-kaspersky-identifies
https://www.kaspersky.com/about/press-releases/turkey-russia-southeast-asia-and-latin-america-hit-by-android-threats-kaspersky-identifies
https://www.kaspersky.com/about/press-releases/turkey-russia-southeast-asia-and-latin-america-hit-by-android-threats-kaspersky-identifies
https://www.techradar.com/pro/security/dangerous-new-android-malware-infects-11-million-devices-here-s-what-we-know
https://www.techradar.com/pro/security/dangerous-new-android-malware-infects-11-million-devices-here-s-what-we-know
https://www.businessofapps.com/data/android-statistics/
https://doi.org/10.1109/ACCESS.2024.3390612
https://doi.org/10.1109/ACCESS.2024.3390612
https://doi.org/10.1016/j.eswa.2023.119593
https://doi.org/10.1016/j.eswa.2023.119593


[7] C. E. Rubio-Medrano et al., “DyPolDroid: Protecting against permission-
abuse attacks in Android,” Information Systems Frontiers, Oct. 2022. doi:
https://doi.org/10.1007/s10796-022-10328-8

[8] P. Arntz, "New variant of Android SpyJoker malware removed from Play
Store after 3 million installs," Malwarebytes Labs. Accessed: Sep. 26,
2024. [Online]. Available: https://www.malwarebytes.com/blog/news/
2022/07/new-variant-of-android-spyjoker-malware-removed-from-play-
store-after-3-million-installs. Accessed: Jun. 22, 2024.

[9] H. H. R. Manzil and S. M. Naik, “Detection approaches for android
malware: Taxonomy and review analysis,” Expert Systems With Ap-
plications, vol. 238, p. 122255, Oct. 2023. doi: https://doi.org/10.1016/
j.eswa.2023.122255

[10] K. Sun, "BankBot found on Google Play, targets ten new UAE banking
apps," Trend Micro Security Intelligence. Accessed: Sep. 26, 2024.
[Online]. Available: https://www.trendmicro.com/enin/research/17/i/
bankbot-found-google-play-targets-ten-new-uae-banking-apps.html.
Accessed: Jun. 24, 2024.

[11] D. Bisson, "What is Ghimob malware?." Security Intelligence. Accessed:
Sep. 26, 2024. [Online]. Available: https://securityintelligence.com/
articles/what-is-ghimob-malware/. Accessed: Jun. 24, 2024.

[12] J. Kaur, U. Garg, and G. Bathla, “Detection of cross-site scripting
(XSS) attacks using machine learning techniques: a review,” Artificial
Intelligence Review, vol. 56, no. 11, pp. 12725–12769, Mar. 2023. doi:
https://doi.org/10.1007/s10462-023-10433-3

[13] A. Prasad and S. Chandra, “VMFCVD: An Optimized Framework to
Combat Volumetric DDoS Attacks using Machine Learning,” Arabian
Journal for Science and Engineering, Jan. 2022. doi: https://doi.org/
10.1007/s13369-021-06484-9

[14] J. Kaur, A. Agrawal, and R. A. Khan, “P2ADF: a privacy-preserving
attack detection framework in fog-IoT environment,” International Journal
of Information Security, vol. 22, no. 4, pp. 749–762, Jan. 2023. doi:
https://doi.org/10.1007/s10207-023-00661-7

[15] A. Prasad and S. Chandra, “BotDefender: A Collaborative Defense Frame-
work Against Botnet Attacks using Network Traffic Analysis and Machine
Learning,” Arabian Journal for Science and Engineering, vol. 49, no. 3, pp.
3313–3329, Jun. 2023. doi: https://doi.org/10.1007/s13369-023-08016-z

[16] F. Mohsen, U. Rauf, V. Lavric, A. Kokushkin, Z. Wei, and A. Martinez,
“On identification of intrusive applications: A step towards heuristics-
based adaptive security policy,” IEEE Access, vol. 12, pp. 37586–37599,
Jan. 2024, doi: https://doi.org/10.1109/ACCESS.2024.3373202.

[17] R. Vaish, U. D. Dwivedi, S. Tewari, and S. M. Tripathi, “Machine
learning applications in power system fault diagnosis: Research advance-
ments and perspectives,” Engineering Applications of Artificial Intel-
ligence, vol. 106, p. 104504, Oct. 2021. doi: https://doi.org/10.1016/
j.engappai.2021.104504

[18] P. Kumari, A. K. Jain, A. Seth, and N. Raghav, “Leveraging blockchain and
machine learning to counter DDoS attacks over IoT network,” Multimedia
Tools and Applications, Mar. 2024, doi: https://doi.org/10.1007/s11042-
024-18842-4

[19] A. Dahiya, S. Singh, and G. Shrivastava, “Android malware analysis and
detection: A systematic review,” Expert Systems, Oct. 2023. doi: https:
//doi.org/10.1111/exsy.13488

[20] S. Tewari, A. Prasad, H. Patel, M. Uddin, T. Al-Shehari and N. A. Alsad-
han, “A novel multiagent collaborative learning architecture for automatic
recognition of mudstone rock facies,” IEEE Access, pp. 1–1, 2024. doi:
https://doi.org/10.1109/ACCESS.2024.3507569

[21] F. Nawshin, D. Unal, M. Hammoudeh, and P. N. Suganthan, “AI-powered
malware detection with Differential Privacy for zero trust security in
Internet of Things networks,” Ad Hoc Networks, vol. 161, p. 103523, Apr.
2024. doi: https://doi.org/10.1016/j.adhoc.2024.103523

[22] A. Manikandaraja, P. Aaby, and N. Pitropakis, “Rapidrift: Elementary
Techniques to Improve Machine Learning-Based Malware Detection,”
Computers, vol. 12, no. 10, p. 195, Sep. 2023. doi: https://doi.org/10.3390/
computers12100195

[23] A. Guerra-Manzanares, “Machine learning for Android malware detec-
tion: mission accomplished? A comprehensive review of open challenges
and future perspectives,” Computers & Security, vol. 138, p. 103654, Mar.
2024. doi: https://doi.org/10.1016/j.cose.2023.103654

[24] T. Sutter, T. Kehrer, M. Rennhard, B. Tellenbach, and J. Klein, “Dynamic
security analysis on Android: A systematic literature review,” IEEE Ac-
cess, vol. 12, pp. 57261–57287, Jan. 2024. doi: https://doi.org/10.1109/
ACCESS.2024.3390612

[25] A. Taha and O. Barukab, “Android Malware Classification Using
Optimized Ensemble Learning Based on Genetic Algorithms,”

Sustainability, vol. 14, no. 21, p. 14406, Nov. 2022, doi:
https://doi.org/10.3390/su142114406. doi: https://doi.org/10.3390/
su142114406

[26] A. Wajahat, J. He, N. Zhu, T. Mahmood, A. Nazir, F. Ullah, et al., "Se-
curing Android IoT devices with GuardDroid transparent and lightweight
malware detection", Ain Shams Eng. J., vol. 15, no. 5, May 2024. doi:
https://doi.org/10.1016/j.asej.2024.102642

[27] F. A. Almarshad, M. Zakariah, G. A. Gashgari, E. A. Aldakheel, and
A. I. A. Alzahrani, “Detection of Android Malware Using Machine
Learning and Siamese Shot Learning Technique for Security,” IEEE Ac-
cess, vol. 11, pp. 127697–127714, Jan. 2023. doi: https://doi.org/10.1109/
ACCESS.2023.3331739

[28] S. Aurangzeb and M. Aleem, “Evaluation and classification of obfuscated
Android malware through deep learning using ensemble voting mecha-
nism,” Scientific Reports, vol. 13, no. 1, Feb. 2023. doi: https://doi.org/
10.1038/s41598-023-30028-w

[29] E. Odat and Q. M. Yaseen, “A Novel Machine Learning Approach for
Android Malware Detection Based on the Co-Existence of Features,” IEEE
Access, vol. 11, pp. 15471–15484, Jan. 2023. doi: https://doi.org/10.1109/
ACCESS.2023.3244656

[30] M. M. Alani and A. I. Awad, “PAIRED: An explainable lightweight An-
droid malware detection system,” IEEE Access, vol. 10, pp. 73214–73228,
Jan. 2022. doi: https://doi.org/10.1109/ACCESS.2022.3189645

[31] H. Alkahtani and T. H. H. Aldhyani, “Artificial Intelligence Algorithms for
Malware Detection in Android-Operated Mobile Devices,” Sensors, vol.
22, no. 6, p. 2268, Mar. 2022. doi: https://doi.org/10.3390/s22062268

[32] I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, "Toward generating a
new intrusion detection dataset and intrusion traffic characterization", In
2018 International Carnahan conference on security technology (ICCST)
(pp. 1-7). IEEE.

[33] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
"DREBIN: Effective and explainable detection of Android malware in
your pocket," in Proc. Network and Distributed System Security Sympo-
sium (NDSS), 2014, pp. 1–15.

[34] R. Gupta, K. Sharma, and R. K. Garg, “Innovative Approach to Android
Malware Detection: Prioritizing Critical Features Using Rough Set The-
ory,” Electronics, vol. 13, no. 3, p. 482, Jan. 2024. doi: https://doi.org/
10.3390/electronics13030482

[35] L. N. Vu and S. Jung, “AdMat: A CNN-on-Matrix Approach to An-
droid Malware Detection and Classification,” IEEE Access, vol. 9, pp.
39680–39694, 2021. doi: https://doi.org/10.1109/ACCESS.2021.3063748

[36] R. Surendran, T. Thomas, and S. Emmanuel, “GSDroid: Graph Signal
Based Compact Feature Representation for Android Malware Detection,”
Expert Systems with Applications, vol. 159, p. 113581, Nov. 2020. doi:
https://doi.org/10.1016/j.eswa.2020.113581

[37] A. Mehtab, W.B. Shahid, T. Yaqoob, M.F. Amjad, H. Abbas, H. Afzal,
et al., "AdDroid: Rule-Based Machine Learning Framework for Android
Malware Analysis", Mobile Netw Appl, vol. 25, pp. 180-192, 2020. doi:
https://doi.org/10.1007/s11036-019-01248-0

[38] A. Mahindru and A. L. Sangal, “MLDroid—framework for Android mal-
ware detection using machine learning techniques,” Neural Computing and
Applications, Sep. 2020. doi: https://doi.org/10.1007/s00521-020-05309-
4

[39] X. Li, L. Liu, Y. Liu, and H. Liu, “Detecting Android malware: A
multimodal fusion method with fine-grained feature,” Information Fusion,
vol. 114, pp. 102662–102662, Sep. 2024. doi: https://doi.org/10.1016/
j.inffus.2024.102662

[40] Z. Liu, R. Wang, N. Japkowicz, Heitor Murilo Gomes, B. Peng, and
W. Zhang, “SeGDroid: An Android malware detection method based on
sensitive function call graph learning,” Expert systems with applications,
vol. 235, pp. 121125–121125, Jan. 2024. doi: https://doi.org/10.1016/
j.eswa.2023.1211254.

[41] A. Prasad and S. Chandra, “Machine learning to combat cyberattack: a
survey of datasets and challenges,” The Journal of Defense Modeling
and Simulation Applications Methodology Technology, vol. 20, no. 4, pp.
577–588, May 2022. doi: https://doi.org/10.1177/15485129221094881

[42] M. M. Alani and A. I. Awad, “AdStop: Efficient flow-based mobile adware
detection using machine learning,” Computers & Security, vol. 117, p.
102718, Jun. 2022. doi: https://doi.org/10.1016/j.cose.2022.102718

[43] M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Multi-Stage Op-
timized Machine Learning Framework for Network Intrusion Detection,”
IEEE Transactions on Network and Service Management, pp. 1–1, 2020.
doi: https://doi.org/10.1109/TNSM.2020.3014929

20 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/s10796-022-10328-8
https://www.malwarebytes.com/blog/news/2022/07/new-variant-of-android-spyjoker-malware-removed-from-play-store-after-3-million-installs
https://www.malwarebytes.com/blog/news/2022/07/new-variant-of-android-spyjoker-malware-removed-from-play-store-after-3-million-installs
https://www.malwarebytes.com/blog/news/2022/07/new-variant-of-android-spyjoker-malware-removed-from-play-store-after-3-million-installs
https://doi.org/10.1016/j.eswa.2023.122255
https://doi.org/10.1016/j.eswa.2023.122255
https://www.trendmicro.com/en_in/research/17/i/bankbot-found-google-play-targets-ten-new-uae-banking-apps.html
https://www.trendmicro.com/en_in/research/17/i/bankbot-found-google-play-targets-ten-new-uae-banking-apps.html
https://securityintelligence.com/articles/what-is-ghimob-malware/
https://securityintelligence.com/articles/what-is-ghimob-malware/
https://doi.org/10.1007/s10462-023-10433-3
https://doi.org/10.1007/s13369-021-06484-9
https://doi.org/10.1007/s13369-021-06484-9
https://doi.org/10.1007/s10207-023-00661-7
https://doi.org/10.1007/s13369-023-08016-z
https://doi.org/10.1109/ACCESS.2024.3373202
https://doi.org/10.1016/j.engappai.2021.104504
https://doi.org/10.1016/j.engappai.2021.104504
https://doi.org/10.1007/s11042-024-18842-4
https://doi.org/10.1007/s11042-024-18842-4
https://doi.org/10.1111/exsy.13488
https://doi.org/10.1111/exsy.13488
https://doi.org/10.1109/ACCESS.2024.3507569
https://doi.org/10.1016/j.adhoc.2024.103523
https://doi.org/10.3390/computers12100195
https://doi.org/10.3390/computers12100195
https://doi.org/10.1016/j.cose.2023.103654
https://doi.org/10.1109/ACCESS.2024.3390612
https://doi.org/10.1109/ACCESS.2024.3390612
https://doi.org/10.3390/su142114406
https://doi.org/10.3390/su142114406
https://doi.org/10.1016/j.asej.2024.102642
https://doi.org/10.1109/ACCESS.2023.3331739
https://doi.org/10.1109/ACCESS.2023.3331739
https://doi.org/10.1038/s41598-023-30028-w
https://doi.org/10.1038/s41598-023-30028-w
https://doi.org/10.1109/ACCESS.2023.3244656
https://doi.org/10.1109/ACCESS.2023.3244656
https://doi.org/10.1109/ACCESS.2022.3189645
https://doi.org/10.3390/s22062268
https://doi.org/10.3390/electronics13030482
https://doi.org/10.3390/electronics13030482
https://doi.org/10.1109/ACCESS.2021.3063748
https://doi.org/10.1016/j.eswa.2020.113581
https://doi.org/10.1007/s11036-019-01248-0
https://doi.org/10.1007/s00521-020-05309-4
https://doi.org/10.1007/s00521-020-05309-4
https://doi.org/10.1016/j.inffus.2024.102662
https://doi.org/10.1016/j.inffus.2024.102662
https://doi.org/10.1016/j.eswa.2023.121125
https://doi.org/10.1016/j.eswa.2023.121125
https://doi.org/10.1177/15485129221094881
https://doi.org/10.1016/j.cose.2022.102718
https://doi.org/10.1109/TNSM.2020.3014929


[44] M. M. Rahman, M. S. Chowdhury, M. Shorfuzzaman, L. Karim, Md Shafi-
ullah, and Farag Azzedin, “Enhancing Septic Shock Detection through
Interpretable Machine Learning,” Computer Modeling in Engineering &
Sciences, vol. 0, no. 0, pp. 1–10, Jan. 2024. doi: https://doi.org/10.32604/
cmes.2024.055065

[45] I. Almomani, T. Almashat, and W. El-Shafai, “Maloid-DS: Labeled
Dataset for Android Malware Forensics,” IEEE Access, vol. 12, pp.
73481–73546, 2024, doi: https://doi.org/10.1109/access.2024.3400211.
doi: https://doi.org/10.1109/ACCESS.2024.3400211

[46] K. Allix, T. F. Bissyandé, J. Klein and Y. L. Traon, "AndroZoo: Collecting
millions of Android apps for the research community", Proc. IEEE/ACM
13th Work. Conf. Mining Softw. Repositories (MSR), pp. 468-471, May
2016. doi: https://doi.org/10.1145/2901739.2903508

[47] Y. Tsutano, "axmldec." GitHub. Accessed: Sep. 26, 2024. [Online]. Avail-
able: https://github.com/ytsutano/axmldec

[48] A. Prasad, S. Chandra, Ibrahim Atoum, N. Ahmad, and Yazeed Alqahhas,
“A collaborative prediction approach to defend against amplified reflection
and exploitation attacks,” Electronic Research Archive, vol. 31, no. 10, pp.
6045–6070, Jan. 2023. doi: https://doi.org/10.3934/era.2023308

[49] R. Verma and S. Chandra, “RepuTE: A soft voting ensemble learning
framework for reputation-based attack detection in fog-IoT milieu,” En-
gineering Applications of Artificial Intelligence, vol. 118, p. 105670, Feb.
2023. doi: https://doi.org/10.1016/j.engappai.2022.105670

[50] G. Xu, H. Shao, J. Cui, H. Bai, J. Li, G. Bai, S. Liu, W. Meng, and X.
Zheng, “Gendroid: A query-efficient black-box android adversarial attack
framework,” Computers & Security, p. 103359, 2023. doi: https://doi.org/
10.1016/j.cose.2023.103359

[51] C. S. Yadav, A. Yadav, H. S. Pattanayak, R. Kumar, A. A. Khan, M.
A. Haq, et al., "Malware Analysis in IoT & Android Systems with
Defensive Mechanism", Electronics, vol. 11, no. 15, pp. 2354, 2022. doi:
https://doi.org/10.3390/electronics11152354

[52] A. Daniel, R. Deebalakshmi, R. Thilagavathy, T. Kohilakanagalak-
shmi, S. Janakiraman, and Balamurugan Balusamy, “Optimal fea-
ture selection for malware detection in cyber physical systems us-
ing graph convolutional network,” Computers & Electrical Engineering,
vol. 108, pp. 108689–108689, Apr. 2023. doi: https://doi.org/10.1016/
j.compeleceng.2023.108689

[53] M. Mudassir, D. Unal, M. Hammoudeh, and F. Azzedin, “Detection
of Botnet Attacks against Industrial IoT Systems by Multilayer Deep
Learning Approaches,” Wireless Communications and Mobile Computing,
vol. 2022, pp. 1–12, May 2022. doi: https://doi.org/10.1155/2022/2845446

[54] A. Mathur, L. M. Podila, K. Kulkarni, Q. Niyaz, and A. Y. Javaid,
“NATICUSdroid: A malware detection framework for Android using
native and custom permissions,” Journal of Information Security and
Applications, vol. 58, p. 102696, May 2021. doi: https://doi.org/10.1016/
j.jisa.2020.102696

[55] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and
Evolution,” 2012 IEEE Symposium on Security and Privacy, May 2012.
doi: https://doi.org/10.1109/SP.2012.16

[56] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A.
A. Ghorbani, “Dynamic Android Malware Category Classification
using Semi-Supervised Deep Learning,” In 2020 IEEE Intl Conf
on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and
Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 515-
522). IEEE. doi: https://doi.org/10.1109/DASC-PICom-CBDCom-
CyberSciTech49142.2020.00094

[57] C. Cop, "Android malware detection," Kaggle. Accessed: Sep. 27,
2024. [Online]. Available:https://www.kaggle.com/datasets/subhajournal/
android-malware-detection

[58] I. Sharafaldin, A. Habibi Lashkari and A. A. Ghorbani, "Toward generating
a new intrusion detection dataset and intrusion traffic characterization,"
4th International Conference on Information Systems Security and Privacy
(ICISSP), Purtogal, 1, 108-116.

[59] A. Prasad and S. Chandra, “PhiUSIIL: A diverse security profile empow-
ered phishing URL detection framework based on similarity index and
incremental learning,” Computers & Security, p. 103545, Oct. 2023. doi:
https://doi.org/10.1016/j.cose.2023.103545

ARVIND PREASAD received the Ph.D. degree
in Computer Science from Babasaheb Bhimrao
Ambedkar University (a central university), Luc-
know, with a focus on cybersecurity and machine
learning. He is currently serving as an Assistant
Professor in the Department of CEA at GLA Uni-
versity, Mathura. Prior to this role, he contributed
significantly to academia during his tenure as a
lecturer at King Saud University, Riyadh, from
2010 to 2019. His research interests include Cy-

bersecurity, Reverse Engineering, Malware Analysis, Network Traffic Anal-
ysis, and Machine Learning. His work is dedicated to developing innovative
solutions addressing the dynamic challenges of securing cyberspace.

SHALINI CHANDRA is working as Assistant
Professor in the Department of Computer Sci-
ence, Babasaheb Bhimrao Ambedkar University
(A Central University), Lucknow, UP. Her re-
search areas are Fog Computing and Cyber Secu-
rity, Software Security, and Software Quality.

MUEEN UDDIN received his Ph.D. degree from
the Universiti Teknologi Malaysia (UTM), in
2013. He is currently working as an Associate
Professor of Cybersecurity and Data Sciences at
the University of Doha for Science and Technol-
ogy Qatar. He has published over 170 international
journals and conference papers in highly reputed
journals with a cumulative impact factor of over
300. His research interests include Blockchain,
Cybersecurity, IoT, Network Security and Cloud

Computing.

TAHER AL-SHEHARI received the B.S. degree
in Computer Science from King Khalid Univer-
sity, Saudi Arabia, in 2007 and the M.S. degree
in Computer Science from King Fahd University
of Petroleum and Minerals (KFUPM), in 2014.
From 2011 to 2014, he was a Research Assistant at
King Fahd University of Petroleum and Minerals.
Since 2015, he is working as a senior lecturer and
researcher at King Saud University. His research
interests include information security and privacy,

insider threat detection and prevention systems, machine learning models
and data analysis. His awards and honors include an Honor Award from
King Khalid University’s Rector, and Best Designed Curriculum Award from
CFY’s Dean, KSU. He is the author of several papers that are published in
prestige journals.

VOLUME 4, 2016 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.32604/cmes.2024.055065
https://doi.org/10.32604/cmes.2024.055065
https://doi.org/10.1109/ACCESS.2024.3400211
https://doi.org/10.1145/2901739.2903508
https://github.com/ytsutano/axmldec
https://doi.org/10.3934/era.2023308
https://doi.org/10.1016/j.engappai.2022.105670
https://doi.org/10.1016/j.cose.2023.103359
https://doi.org/10.1016/j.cose.2023.103359
https://doi.org/10.3390/electronics11152354
https://doi.org/10.1016/j.compeleceng.2023.108689
https://doi.org/10.1016/j.compeleceng.2023.108689
https://doi.org/10.1155/2022/2845446
https://doi.org/10.1016/j.jisa.2020.102696
https://doi.org/10.1016/j.jisa.2020.102696
https://doi.org/10.1109/SP.2012.16
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094
https://www.kaggle.com/datasets/subhajournal/android-malware-detection
https://www.kaggle.com/datasets/subhajournal/android-malware-detection
https://doi.org/10.1016/j.cose.2023.103545


NASSER ALSADHAN is a distinguished mem-
ber of the IEEE community, known for his sig-
nificant contributions to the field of computer and
information sciences. With an affiliation to the
College of Computer and Information Sciences at
King Saud University in Riyadh, Saudi Arabia.
Dr. Alsadhan has been instrumental in advancing
research in various areas of technology.

His work has spanned a range of topics, includ-
ing prediction accuracy, affective states, and big

data analytics. Dr. Alsadhan’s expertise in convolutional neural networks
and language models has led to innovative developments in understanding
emotion words and personality traits through text analysis.

SYED SAJID ULLAH Syed Sajid Ullah attained
his master’s degree in computer science from Haz-
ara University, Pakistan, in 2020. Currently, he is
pursuing his Ph.D. at the Department of Informa-
tion and Communication Technology, University
of Agder (UiA), located in Grimstad, Norway. He
actively contributes as a reviewer for over 30 es-
teemed journals and serves on the editorial boards
of multiple reputable publications. With a prolific
track record, he has authored more than 90 articles

across various high-impact journals. Additionally, he plays a pivotal role
as a researcher in the NIST project focusing on quantum cryptography and
Named Data Networking. His primary research interests span cryptography,
blockchain, access control, post-quantum cryptography, network security,
information-centric networking, named data networking, and the Internet of
Things.

22 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3523629

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Related Work
	Proposed Framework
	Android Malware Dataset Construction Technique
	Android Application Collection
	Decompilation and Permission Extraction
	Mapping of Permissions into Techniques for Malware Development

	Employing Data Validation Strategies for Effective Feature Selection
	Density Plots for Dataset Validation and Feature Selection
	Heatmap for dataset validation and feature selection
	Histogram Plots for Dataset Validation and Feature Selection

	Malware detection technique
	Identifying Algorithm and Building Ensemble Model
	Model Training Approach
	The Sequentially Prediction-Then-Training Approach
	Similarity-Based Selective Training Strategy

	Hyperparameter Tuning

	Result and Discussion
	Experimental Setup
	Performance Metrics
	Comparative Analysis
	Evaluation on Other Cybersecurity Datasets
	Similarity-Based Selective Training Strategy Effectiveness
	Evaluating resilient against adversarial manipulations

	Conclusion
	REFERENCES
	Arvind Preasad
	Shalini Chandra
	Mueen Uddin
	TAHER AL-SHEHARI
	Nasser Alsadhan
	Syed Sajid Ullah


