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ABSTRACT Breast cancer stands as a predominant health concern for women globally. As mammography
is the primary screening tool for breast cancer detection, improving the detection of breast cancer at
screening could save more lives. This mammography review paper comprehensively reviews computer-
aided techniques during a specific time frame for the segmentation and classification of microcalcification,
evaluating image processing, machine learning, and deep learning techniques. The review is meticulously
carried out, adhering closely to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. This article focuses on mammographic breast cancer detection approaches based
on automated systems, discussed chronologically from 1970 through 2023. This article encompasses the
breadth of artificial intelligence-based methods from the most primitive to the most sophisticated models.
Image processing and machine learning-based methods are comprehensively reviewed. Evaluating a deep
learning architecture based on self-extracted features for classification tasks demonstrated outstanding
performance. Large-scale datasets required for a broader and in-depth analysis of novel methods for breast
cancer detection are also discussed in this article. This research work is aligned with the United Nations’
sustainability development goals.

INDEX TERMS Breast cancer, Mammography, Microcalcification, Deep learning, Convolution neural
networks, Machine learning

I. INTRODUCTION

GLOBALLY , breast cancer ranks as the most preva-
lent cancer and holds the second-highest mortality rate

among women internationally. According to the WHO, half
a million women worldwide die each year from breast cancer
[1]. In 2018, breast cancer claimed the lives of 627,000

women, making up 15% of all cancer-related deaths. In
Europe, there were 3.9 million new cases reported in 2018
accounting for 25% of the world’s cancer toll [2]. This
research reviews breast cancer detection through mammog-
raphy over some time, aligning with several UN Sustainable
Development Goals (UDGs) [3] by improving early detection
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(goal 3), optimal health and well-being (goal 5), contributing
to industry, innovation, and infrastructure through techno-
logical innovation and collaboration (goal 9) and fostering
partnerships for collective action (goal 17).
Statistically, the increase in the death rate from breast cancer
can be attenuated by adopting routine screening pro-cedures
at its early stages. A reliable technique for breast cancer
screening is mammography. A mammogram can often reveal
breast changes that could represent cancer years before phys-
ical symptoms develop. The goal of screening programs such
as yearly mammography is to promote early cancer detection
while the cancer is still clinically occult. Ductal carcinoma
in situ (DCIS) is the earliest form of breast cancer, as it is
confined to the ductal system and is not yet invasive. Over
90% of non-palpable DCIS is detected by microcalcifications
alone [4]. Therefore, differ-entiating benign from malignant
calcifications based on their radiographic appearance is very
important [5]. Due to their small size (0.1-1.0 mm) and lack
of background contrast on images, malignant calcifications
have the potential to be difficult to observe and characterize
[6]. Accurately identifying and classifying such calcifications
on screening mammograms can be challenging. Previous
computer-aided detection (CAD) systems were disappoint-
ing, yielding reduced accuracy, increased biopsies, and no
definite improvement in cancer detection rate [7].
Optimizing the ability to differentiate benign from malig-
nant calcifications is an area of great interest in Artificial
Intelligence (AI) through Deep Learning (DL) [8]. DCIS
often has a natural history of non-progression, with an es-
timated up to about 40% progressing to invasive carcinoma,
according to some investigators [9]. Others have esti-mated
the progression of DCIS to invasive cancer to be about 53%
[10]. As DCIS is a pre-invasive and a non-obligate precursor
to invasive carcinoma, with approximately half of the cases
remaining non-invasive, greater emphasis is placed on de-
tecting early invasive breast cancer. While there are many
potential mammographic features associated with invasive
breast cancer at screening mammography, the most common
mammographic appearance is that of a mass [11]. The goal
of mammography in detecting invasive breast cancer is early
detection when it is 1 cm or smaller, with a 95% chance of
10-year survival compared to 85% and 60% survival at 1-
2 cm and 2-5 cm, respectively [12]. Morphological features
describing a mammographic mass’s shape and margins help
differentiate benign from ma-lignant masses. These features
have been exploited in DL using CNN for shape classifica-
tion, yielding an accuracy of 80% on a public dataset [13].
Mammography uses low-dose X-rays to approximate the
distribution of absorption coefficients depicted on imaging
as structural density variation, revealing anatomy based on
radiomic features used to translate/detect the presence of
breast cancer. In this context, this review article uses large
publicly available X-ray mammography datasets from differ-
ent time frames to perform a detailed summary of breast can-
cer diagnosis methodology. Although previous studies have
examined similar literature, most cover a specific range. They

must be revised to examine a broad spectrum of method-
ologies over a considerable period. Examining the consistent
improvements in technology and image quality can provide a
better understanding of how best to detect and classify lesions
with greater accuracy and efficiency.
Analyzing a mass manually is a time-intensive task, with
the effectiveness of contrast enhancement during screening
relying on both image quality and the radiologist’s skill
level. Screening techniques that are used include clinical and
self-examination (CSE) of the breast, mammography, breast
ultrasound, and magnetic resonance imaging (MRI) [1]. CSE
is a good approach where limited clinical resources are avail-
able with high sensitivity (60-70%) and specificity (90-97%)
[14], [15]. Among US women, mammography screening has
reduced mortality [16]. Although it has a positive impact,
screening mammography has many false positives [17]. In
addition, CSE performance varies based on the physician’s
experience and knowledge. This issue can be resolved with
multiple clinical exams, but this approach is costly, arduous,
and time-consuming.
Since 1990, researchers developed CAD tools to improve
screening accuracy. While computer-aided mammography
(CAM) has been in use for over two decades, the automatic
detection of microcalcification still needs to be improved,
mainly due to its low contrast, fuzzy nature, and poor dis-
crimination from the contiguous pixels. Researchers have
been using a variety of algorithms for the automatic diagnosis
of microcalcification. Different techniques and methods are
used for feature extraction and enhancement, such as wavelet
transforms, segmentation, and clustering. The medical com-
munity is successfully applying advanced AI machine learn-
ing (ML) techniques, to improve ac-curacy in cancer screen-
ing procedures [18]. In this context, unsupervised learning
methods have successfully aided radiologists in improving
screening outcomes [19]–[24]. ML techniques have allowed
for the detailed analysis of mammography images to be
performed using feature extraction techniques like textural,
statistical, and sub-band transformation, in addition to other
traditional feature extraction techniques. These features tune
classical ML techniques to classify unknown images into
benign and malignant cases.
Jeyasingh and Veluchamy [25] proposed a Modified Bat
Algorithm (MBA) for feature selection to enhance the ac-
curacy of breast cancer diagnosis. By eliminating irrelevant
features from the WDBC, MBA improves the per-formance
of Random Forest (RF) classification, yielding better results
in various evaluation metrics. This research demonstrates
the effectiveness of an MBA in improving diagnostic accu-
racy, highlighting its potential to streamline breast cancer
diagnosis. Mahesh et al. [26] introduced a novel ensemble
learning approach combining five ML models: Support Vec-
tor Machine (SVM), k-Nearest Neighbor (k-NN), Decision
Tree (DT), RF, and Logistic Regression (LR) for breast
cancer prediction, achieving 98.14% accuracy, enabling early
detection and effective treatment. In another work, Zhou et
al. [27] proposed an ML-based diagnostic system for breast
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cancer that achieves 99.12% accuracy using the AdaBoost-
Logistic algorithm on the Wisconsin breast cancer dataset,
demonstrating the potential for improved early detection
and treatment. Islam et al. [28] used ML and Explainable
AI to enhance breast cancer diagnosis accuracy. This study
compares five ML algorithms, viz. DT, RF, LR, Naive Bayes
(NB), and XGBoost on a dataset of 500 patients, with
XGBoost achieving 97% accuracy. SHAP analysis provided
feature-level insights, im-proving model interpretability and
trustworthiness. Ünalan et al. [29] conducted a comparative
study of ML algo-rithms and ensemble methods to enhance
breast cancer classification accuracy. LGBM achieved 98.9%
accuracy, while ensemble methods reached 99.5%. This
study identifies crucial features and highlights the importance
of en-semble learning and cross-validation for distinguishing
malignant from benign cases.
In 2017, Abdelhafiz et al. published a review of 83 studies
applying CNNs to mammography. Their review spanned
a period of 1995 to 2017 and DL techniques for lesion
localization and detection, risk assessment, image retrieval,
high resolution reconstruction, and classification tasks. Both
public and private datasets were included [30]. In 2019,
Gardezi et al. reviewed DL techniques for mammogram
datasets spanning a 5-year period, which discussed breast
density estimation, mass detection, and mass classification,
demonstrating how DL can contribute to the diagnostic per-
formance of CAD systems [31]. In 2019, Geras et al. per-
formed a review comparing conventional CAD, which uses
prompts to demonstrate possible cancers, to AI-based CAD.
Their review discusses the advantages of CAD system, which
include fewer false positives and sensitivity equal to radiol-
ogists, allowing its use as a double reader and potentially as
an independent first reader in the dismissal of normal cases
[32]. More recently, Hickman et al. [33] published a meta-
analysis of 15 studies in 2023 amalgamating 185252 cases
read by ML algorithms versus human readers. The overall
area under the curve for the receiver operating characteristic
AUC (ROC) curve for ML was 0.89, and for the human read-
ers was 0.85. They concluded that ML algorithms as stand-
alone applications in screening mammography can exceed
the performance of human readers in detecting breast cancer
and enhance efficiency. Similarly, in a recent work, Khan
et al. [34] carried out a review of representation learning-
based methods using whole-breast MRI scans without expert
radiologists’ help to predict pathological complete response
to neoadjuvant chemotherapy (NAC) in breast cancer. The
immediate effects in-cluded reducing the toxicity of unnec-
essary NAC, with improved clinical outcomes.
Our review is on breast cancer diagnosis and detection in
mammography from 1970 to 2023. We focused on the evo-
lution of techniques over this period chronologically, includ-
ing image preprocessing and enhancement methods, feature
extraction methods with ML, and DL methods applied to
mammography datasets. The value of this presentation is that
it is oriented to professionals in the computing segment of
healthcare, reaching beyond radiologists and clinicians. The

main contributions of this article are:

• This work encompasses mammography based on early
diagnosis and breast cancer detection, highlighting the
significant achievements from 1970 to 2023 using three
keywords, namely (mammography AND microcalcifi-
cation AND breast cancer).

• The notion is to divide the work into three main basic
strategies for early breast cancer detection: Image Pro-
cessing (IP)-based techniques, ML-based solutions, and
DL algorithms.

• Competing algorithms have been briefly discussed in the
field of mammography.

• All datasets of mammography have been discussed.
• Recent state-of-the-art techniques have been compared

and discussed.

This review is conducted carefully, following the pre-
ferred reporting items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines. The PRISMA flow
diagram illustrating the salient steps of the electronic liter-
ature collection process is shown in Figure 1. The search
was carried out in 20, 16, 10, and 8-year intervals based on
the keywords illustrated in Table 1. These intervals enable a
comprehensive overview of the field’s evolution, highlighting
progress, and identifying areas for further ginvestigation.
The time intervals (20, 16, 10, and 8 years) were chosen
to reflect significant milestones and advancements in breast
cancer research and treatment. The divisions allow for an ex-
amination of former trends and shifts in research focus (20
years), medium-term developments and establishment of cur-
rent standards (16 years), recent advancements and emerging
trends (10 years) and very recent studies and cut-ting-edge
research (8 years).The last column shows the highest-citation
articles in different periods for manual and computer-aided
techniques. The compilation and analysis of mammogra-
phy data involved an extensive online search of published
literature from the Macquarie University library. The elec-
tronic bibliographic databases that have been used include
Macquarie University library, Semantic Scholar, PubMed,
Google Scholar, the Biological Science database, Springer
Journals Complete - Open Access, the SciTech Premium
Collection, Taylor & Francis Open Access, the Catalog of
Open Access Journals, Wiley-Blackwell Open Access Titles,
the Engineering Database, Wiley Open Content, the Com-
puter Science Database, and IEEE Open Access Journals and
Conferences. The authors conducted the literature search,
with subsequent reviewers independently assessing the ar-
ticle’s relevance based on their titles and abstracts relevant
to the study or scope of the review paper, and suitability
of the methodology for the review article. The three main
themes, manual-aided, ML, and DL are equally crucial for
the early diagnosis problem. Also, the manual-aided articles
(conventional IP techniques) were the most cited due to
their relatively longer presence in re-search databases. The
converse is true for DL-based articles, which are more recent
and have needed more time to accrue citations. We have
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FIGURE 1. The PRISMA flow chart (1970-2023) from manual, ML and DL methods depicting the online research literature.

concisely reviewed primitive to recent methodologies and
techniques, including novel DL architectures-based ideas and
approaches related to mammography for micro-calcification
detection in the breast.

II. MATERIAL AND METHODS
This study highlights explicitly the techniques used to detect
abnormalities in breast cancer mammograms spanning 1970-
2023 to provide researchers with a quick overview of em-
ployed methods. A basic breast image classification scheme
is illustrated in Figure 2. We discussed the methods to detect
breast cancer via mammography using (a) image prepro-
cessing methods, including image enhancement methods, (b)
different feature extraction methods with ML approaches,
and (c) DL-based convolutional neural network (CNN) meth-
ods using three approaches, namely novel CNN algorithms,
transfer learning, where pre-trained models are fine-tuned
for mammography analysis, and DL-based feature extraction,
which can be used as input for traditional ML classifiers.
These methods are applied to different breast mammography
datasets.

A. PREPROCESSING

Preprocessing is a complex task that involves missing values,
transforming, and preparing the mammographic dataset for
further analysis. The common reasons for missing values
in mammography data are patient information not recorded,
image acquisition faults, and failure to feature detection.
The missing values can appear in various forms, depending
on the specific data collection process and variables being
measured. Some common examples of missing values are
Not a Number (NaN) which may represent missing or invalid
values for continuous variables like pixel intensity or breast
cancer size. The empty or blank fields indicate missing infor-
mation for categorical variables like breast density or lesion
location. It’s essential to identify and handle missing values
appropriately to ensure accurate analysis and interpretation
of mammography data.
The preprocessing steps help prepare mammography data for
effective ML and DL model training, improving the accuracy
and reliability of image analysis and diagnosis. The most
commonly used techniques are image resizing to a consistent
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TABLE 1. Top citation methods for the evolution of mammography from 1970-2023 based on the defined slabs (MA stands for Manual Aided, and CA stands for
Computer-Aided).

Years slab Methods Specific Type Basis Description Refs. No. of citations
1970-1989 (20) MA IP Mass screening through modern mammography. [35] 699+

CA ML Radiographic appearance of the breast parenchyma-based detection. [36] 376+
1990-2005 (16) MA IP Role of hormone replacement therapy correlated with age and micro-

calcification density.
[37] 1509+

CA ML Four methods for surveillance of mutation carriers due to BRCA1 and
BRCA2 mutation.

[38] 1498+

DL Novelty detection for identification of mass mammograms. [39] 483+
2006-2015 (10) MA IP Breast screening with MRI as an adjunct to mammography. [40] 3469+

CA ML Diagnosing mammographic masses using scalable image retrieval and
scale-invariant feature transform (SIFT).

[41] 146+

DL A swarm intelligence optimized wavelet neural network method for
breast cancer detection.

[42] 477+

2016-2023 (8) MA IP Tumor size, over-diagnosis and mammography effectiveness. [43] 727+
CA ML Breast mass classification based on SVM and Extreme Learning Ma-

chine (ELM).
[44] 183+

DL Detection of radiological lesions in mammograms using DL. [23] 1071+

size and normalizing to a common range [0, 1] to facilitate
model training. Standardizing image intensity and size to
facilitate comparison is essential across different images and
datasets. Moreover, removing noise and artifacts is important
from mammograms to improve quality and reduce potential
biases. The identification of regions of interest (ROIs), such
as tumorous areas plays a key role. To increase diversity
and reduce overfitting, data aug-mentation of mammograms
is also carried out through transformations like rotation,
flipping, and scaling.

B. IMAGE PROCESSING METHODS
Mammographic images, whether analyzed through self-
examination or intelligent algorithms, can be challenging
to interpret. The focus is primarily on the contrast between
malignant and normal tissues, with tumors or microcalcifi-
cations appearing as white or dense regions. Enhancing
these images to detect microcalcification involves a range of
direct and indirect techniques. The complexity of this task
is underscored by the following challenges: Direct image
enhancement means improving the perceptual quality of
the image by establishing correct discriminative contrast
using direct techniques. Rangayyan et al. [45] suggested
the adaptive neighborhood technique, in which the local
contrast of an image is computed. Tang et al. [46] proposed a
technique called multiscale local contrast, which decomposes
contrast using a wavelet domain, improving contrast details
in different scales.

In the indirect contrast enhancement technique, the image
histogram is modified instead of directly manipulating the
image contrast. The most popular indirect image contrast en-
hancement techniques are based on histogram modeling. Sig-
nificant variants of this technique are: In the histogram equal-
ization (HE) technique, grey levels are distributed equally
in the output, whereas input image mapping is proportional
to the cumulative intensity [47]. This technique enhances
the contrast of images globally, and the abnormal regions
are filled close to contrast values. Therefore, an increase in

the lower local contrast rises to higher contrast levels, and
unnatural artifacts are seen in the output image. An adaptive
histogram computes the difference in histograms against
distinct regions of an input image. Multiple histograms are
used to reallocate the contrast values of an image so that local
contrast and edges can be enhanced in each region. In the
adaptive and contrast limited adaptive histogram equalization
(ACLAHE), an image’s en-hancement amount is equalized
by computing the histogram of sub-matrices and truncated to
limit the enhancement gray levels [48]. In the minimum mean
brightness error bi-histogram equalization (MMBEBHE)
technique, the image is divided into two parts depending
on a threshold value. The threshold is calculated by find-
ing all possible separated ranges of intensity values in an
image and then finding the Absolute Mean Brightness Error
(AMBE) followed by HE. In the case of an inhomogeneous
background of a mammogram, local-based enhancement
techniques can perform better. Such a popular technique is
fixed-neighborhood statistical enhancement [49]. It estimates
the background of an input image by computing the statistical
properties of a pixel in the neighborhood and suppresses the
estimated background. As a result, an increase in the local
contrast of an image occurs.
Recently, novice image processing methods with DL have
been adopted in diverse fields that can be involved in early
breast cancer detection and classification. Sofos et al. [50]
presented a lightweight DL model for reconstructing high-
resolution turbulent flow images from low-resolution, noisy
data. Achieving a state-of-the-art PSNR of 45, this approach
offers a faster alternative to traditional simulation methods
for fluid dynamics applications with limited and noisy data.
Poulinakis et al. [51] investigated the effectiveness of ML
methods versus cubic splines in interpolating sparse and
noisy experimental data. The findings highlight the strengths
of each approach, providing valuable insights for accurate
signal interpolation in scientific simulations and laboratory
experiments. Furthermore, Sofos et al. [52] explored CNN
for reconstructing compressible turbulent flow fields. A
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FIGURE 2. Breast cancer detection techniques based on mammography. The data flow is depicted by the arrows, initiating with the ingestion of the dataset,
followed by a crucial pre-processing stage that feeds into three parallel strategies. The IP pipeline is applied for performance evaluation, whereas the ML and DL
branches undergo training and testing phases before performance analysis. In the ML branch, feature extraction is facilitated through either manual feature
engineering or DL-based feature extraction, or a fusion of both types of static and dynamic features. Conversely, the DL branch employs novel CNN architectures,
TL, and automatic feature extraction, to supply features to the ML branch.

parallel framework upscales coarse data to fine-resolution
images using an encoder-decoder network with residual and
skip connections.

C. CLASSIFICATION
Feature extraction in clinical images is an important pre-
processing step for ML and DL algorithms. It helps reduce
redundant data and an algorithm’s learning time. This section
highlights feature extraction methods, followed by a brief
overview of some of the most prominent methods proposed
in the past.

1) Feature Extraction for ML
Feature extraction reduces the dataset’s dimensionality by
condensing it into smaller subsets for processing. An un-
desirable effect of a large dataset is the buildup of many
variables, requiring much computational power. Various fea-
ture extraction methods are illustrated in Figure 3. A brief
overview of each of these methods follows next. Several
researchers suggested that different local features in mam-
mographic images can be extracted for clas-sification. Zhang
et al. [53] divided local mammogram features into two
classes, i.e., spatial (average and standard deviation intensi-
ties of foreground and background) and morphological fea-
tures (moment, compactness, and Fourier descriptor). Spa-
tial, morphology, and cluster description features were used
to designate mammogram clusters. Davies et al. [54] pro-
posed a technique using a few local mammographic features
(mean intensity level, area, the ratio based on the area to
the squared maximum-linear dimension, the strength of edge,
and shape parameter).

• Textual Feature Extraction: Textural features are re-
peated or identical arrangements of patterns of pixels’
intensities that refer to charac-teristics of an object,
such as its appearance, shape, size, density, coarse-
ness, and contrast. Different techniques for extract-
ing texture-based features are the surrounding region
dependence method (SRDM) [55], spatial gray-level
dependence method (SGLDM) [56], gray-level run-
length method (GLRLM) [57], and gray-level difference
method (GLDM) [58].

• Intensity-based Feature Extraction: It consists of first-
order statistics using features like mean, mode, variance,
and standard deviation to find the intensity and its vari-
ation [59]. Here, a large set of sampling features can
be extracted from a pixel’s local neigh-borhood to train
learning algorithms. However, the spatial arrangement
of a pixel, a key factor for detecting and classifying ab-
normal tissues in mammograms, needs to be considered.

• Multi-scale Feature Extraction: The disadvantage of
using texture-based features is that all methods focus on
the single scale of a pixel. To extract features, Laws [60]
has explained a system in which linear transformation
and energy computation perform better than the texture
features of second-order statistics. Over time, many
researchers have proposed improved methods for better
performance by domain transformation, like wavelet
transform-based methods [60]–[63], Gabor Filter Bank
Methods [64], and Laplacian of Gaussian Method [65].

2) ML Approaches
Extracting the most discriminative feature set is an essential
factor in classification [66]. The latest ML algorithms can
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FIGURE 3. . Well-known feature extraction methods and their classification, where SRDM represents Surrounding Region Dependence Method, SGLDM is Spatial
Gray Level Dependence Matrix, GLRLM symbolizes Gray-Level Run-Length Matrix, GLDM depicts Gray-Level Difference Matrix, and WT are the wavelet
transform-based features.

detect and classify normal and cancerous tissues (benign or
malignant). A brief overview of important classifiers is given
by:

• k-Nearest Neighbor (k-NN) Classifier: Alpaslan et al.
[67] developed a decision support system to aid experts
in analyzing mammogram images for breast cancer
detection. The system involves preprocessing mammo-
gram images to enhance clarity, segmenting the mass,
extracting features from the tumor mass, and classifying
the mass as normal, benign, or malignant using k-NN
classifiers, to assist in accurate breast cancer diagnosis.
It is used to categorize benign, malignant, and normal
tissues. It finds the distance between unobserved data
and all the known data in k-classes, and the unknown in-
stance is given the class name depending on the shortest
distance from the known data classes. The Minkowski
distance, dM, is a generalized form for the Euclidean-
(L1-norm) and the Manhattan-(L2-norm) distances that

are used with the k-NN classifier, as given by:

dM =

(
k∑

i=k

|xi − yi|q
) 1

q

(1)

The number of features is k, for object x the value of
feature is xi whereas for object y the value of feature is
yi. The value of q defines the Manhattan and Euclidean
metrics as one and two respectively.

• • Decision Tree Classifier: Kamalakannan and Babu
[68] proposed a system that used mammograms as in-
put, which are pre-processed and then analyzed using
GLCM to extract features. These features are then used
with a decision tree classifier to identify breast abnor-
malities as either benign or malignant. In diagnosing
breast cancer, a decision tree (DT) [69], composed of
decision and leaf nodes, is a commonly used classifier
because it is easy to define and map the rules from the
root to a leaf node thereby resulting in the classification
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of breast masses into benign and malignant classes. The
entropy or in-formation gain computes the homogeneity
in the dataset given by:

E(S) = −
∑
x∈X

P (i) logP (i) (2)

The dataset is represented by S, X represents class
cardinality and ith class probability is P(i). Zero entropy
means perfect classification.

• Naïve Bayes (NB) Classifier: Krishnaveni1 et al. [70]
proposed method for analyzing mammogram images
extracting the region of interest using chain code, fol-
lowed by pre-processing through enhancement, then
extracting features using Histogram of Oriented Gra-
dients, and finally classifying the image as Benign
or Malignant using a Naive Bayes classifier to detect
microcalcification. The NB categorizes the data statis-
tically by considering all features. Given the feature
set X = x1 + x2 + x3, NB computes the posterior
probability (probability to be assigned to the unknown
instance) of class c, about the type of breast tissues
as either benign or malignant, as given by: P (c|x) =
P (x1|c)× P (x2|c)× P (xn|c)× P (c). The probability
density function of class c is represented by P (xi|c),
whereas the class prior is given by P(c). NB performs
well for large datasets, and sometimes, due to the feature
set, it outperforms other classifiers [71]. The problem
with NB is zero frequency, which occurs when the class
and feature combination frequency becomes zero.

• Support Vector Machine Azar and El-Said [72] eval-
uated the performance of six SVM types in diagnos-
ing breast cancer using the Wisconsin breast cancer
dataset,and found that SVM classifiers provided a fast,
simple, and efficient method for breast cancer diagnosis.
The SVM algorithm finds the optimal hyperplane to
separate the classes, allowing for accurate prediction
of new, unseen examples. Features such as tumor size,
shape, and texture can be extracted and used as inputs to
the SVM model, enabling effective breast cancer diag-
nosis and classification [73]. SVM is a linear classifier
that constructs a linear hyper-plane of N-dimensional
space to categorize the linear data by maximizing the
margin between two classes. Non-linear mapping func-
tions can be used to link the data (source) to a higher
dimensional feature space (target) if the data is non-
linear. Training data is used to compute the weighted
vector w = [w1 + w2 + w3 + ....]T and the bias b for
discrimination boundary is given by

d(X,w, b) =

n∑
i=1

(wixi + b) (3)

where d(X,w,b) is the decision function that is optimal
whend(X,w,b)=0. For non-linear data, it is mapped to
a high dimensional space using a non-linear linking
function as given by

K(xi, xj) = ϕ(xi)
Tϕ(xj) (4)

where K(xi, xj) is the kernel function that maps the
non-linear mapping function ϕ(x). Different studies
suggested changing the dataset and adding more con-
straints (hard margin), the SVM produced good results
on mammographic images.

3) Deep Learning Approaches
DL is a sub-domain of ML and is the basis of many of
the approaches recently reported by many investigators. The
basic idea relates to the boosted hidden layers used in shallow
neural networks by many of the other time-to-time solutions
exploited for the early diagnosis of breast mass abnormality.
The schematic diagram of a popular deep learning approach
employed for mammography has been illustrated in a step
by step manner in Figure 4. DL has an edge over ML due to
its self-feature extraction capability (representation learning),
significantly improving breast cancer diagnosis [74]. A deep
neural network (DNN) is constituted of “n” layers and “m”
hidden neurons. Weights are associated with each input and
output link in the neural network. Regulating weights in
training helps neural networks learn significant information.
The information flows in the learning phase to make it a
self-learning network [75]. We have discussed numerous
DL-based methods for breast cancer classification and seg-
mentation that use the variants of CNN belonging to one
of the three categories (Figure 1): (a) Novel CNNs express
impressive results in mammography detection and classifi-
cation, (b) Transfer Learning (TL) consists of developing a
model to use the preset parameters, with salient variants to
make the training compatible after adjusting the input size
equal to the size of the mammogram with several neurons
in the concluding layer set equal to the class-cardinality of
the target database, (c) DL feature extraction solutions are
based on dynamic feature extraction using the DL models and
employed further by conventional ML algorithms to carry out
classification tasks. The TL models can also be used for deep
feature extraction using customized datasets. An overview of
salient DL methods by different authors is given by:

• Bayesian Neural Network: In DL, the Bayesian neu-
ral network (BNN) extracts the uncertainties using the
Bayesian model, and it refers to the uncertainty of the
model output [76]. Specht [77] proposed a Probabilistic
Neural Network (PNN) based on the Bayesian classifi-
cation. PNN classified the mammograms into normal,
benign, and malignant classes based on the input vector.
The feature vector was extracted from a mammogram
through Discrete Wavelet Transform (DWT) and then
applied classification. Seventy-five (75) images were
selected for the experimental purpose, and the accuracy
achieved by the authors was 90%.

• Back Propagation in DL: A back propagation neural
network (BPNN) is a supervised learning network called
a feed-forward neural network with backward propaga-
tion of error to adjust the neurons’ weights. This neural
network consists of an input layer, one or two hidden
layers (no hard rule for layers’ selection), and, in the
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FIGURE 4. Illustration of a prominent DL framework for mammography dataset analysis, where preprocessing techniques such as patch extraction, contrast
normalization, and quality control measures are first applied to the dataset. Next, a DL architecture is utilized to extract high-level features from the preprocessed
data. A meta-learner is then trained and tested using the output of strong ML classifiers to predict labels and evaluate performance, with metrics such as accuracy,
precision, recall, F1-score, and ROC-AUC calculated to assess the model’s effectiveness in label prediction.

end, an output layer. In the BPNN, during the training
phase, the features are fed to the neurons for learning.
Then, the algorithm fine-tunes the weights based on the
error rate (i.e., loss function) from the previous epochs
to converge quickly in the backward direction. Zhang et
al. [78] proposed a neural network that reduced the false
positive rate of microcalcification detection in real cases
of 100 patients’ mammograms. It consists of a three-
stage method. In the first stage, all the microcalcifica-
tions were detected. In the second stage, FP detection
was removed from the first stage’s output. In the third
stage, the BPNN with Kalman filter was used for the
classification of microcalcification in mammograms.

• Convolutional Neural Network: CNN is a sub-category
of deep neural networks that achieves impressive results
in mammography for detecting and classifying micro-
calcifications and is currently the most popular neural
network [79]. The classification decision is taken in
the decision layer by computing the prediction error
or loss function. The first CNN was developed by Fu-
kushima et al., known as “Recognition,” and was the
very first neural network model used for medical image
analysis [80]. The class with minimum loss is declared
the classifier decision. Sahiner et al. [81] proposed a
backpropagation CNN to classify mammograms. Sub-
regions, regions-of-interest (ROIs), are extracted for
CNN input. ROI patches are extracted by either averag-
ing, subsampling, or texture feature extraction methods.
Lo et al. [82] introduced the Multiple Circular Path
Convolutional Neural Network (MCP-CNN), which ini-
tially gathered information from the identified regions in
mammograms and subsequently processed the features
using CNN. Fonseca et al. [83] used an SVM-CNN
classifier for breast cancer categorization. Su et al. [84]
suggested a method for classifying the breast cancer

named “Fast Scanning CNN,” where the algorithm com-
puted the pixel-wise image segmentation to remove the
re-dundant information (which increased the original
CNN complexity). Jiao et al. [85] presented a method
that utilized deep features for breast mass classification.
The method combined the intensity-based features with
deep features extracted by CNN from the original image
and was finally used for classification. Arevalo et al.
[86] devised a hybrid approach where they employed
CNNs to learn from supervised data representa-tions
rather than extracting feature maps directly from mam-
mographic images. Rezaeilouyeh et al. [87] presented a
CNN-based model for classification of the breast cancer.
In this model, shearlet transform (ST) was applied to the
images to get the feature vector of shearlet coefficients
fed to classification network. Jadoon et al. [88] devel-
oped two DL models using CNN-Discrete Wavelet and
CNN-Curvelet transforms for normal, malignant, and
benign classes. The extracted features were fed to the
classification model. Jaffar [89] introduced a method in
which the mammograms are first enhanced; then, the
CNN is used for feature extraction, followed by SVM-
based classification. The outcome of their experimenta-
tion is discussed in the forthcoming section.

• Regions with CNN (R-CNN): Zhu et al. [90] used
a conditional random field and a fully convolutional
network model to segment the masses in mammograms.
By leveraging prior positional information, the method
empirically estimates the ROIs, enhancing the accuracy
of ROI predictions. Wang et al. [91] introduced a hybrid
method for classifying benign and malignant breast can-
cer, which involves cropping breast masses and extract-
ing clinical features from multi-view patches of mam-
mograms. CNN was employed to concentrate on regions
associated with semantic-based lesions. Gastounioti et
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al. [92] explained an ensemble method for breast cancer
classification. They used lattice-based techniques for
textural feature maps and fed them to CNN for multi-
class categorization.
R-CNN is a CNN-based network that detects and classi-
fies data on a regional basis regardless of the class. For
this reason, it is also referred to as a Region Proposal
Network (RPN). R-CNN reduced the convolution time
by selecting a region, which is considered an advan-
tage of using R-CNN. Ribli et al. [15] explained a
Faster R-CNN method used for classifying the breast
cancer. The feature extraction using Faster R-CNN was
based on ROI pooling technique. This method produced
bounding boxes accompanied by a confidence score
classifying the benign or malignant cancers. Chiao et
al. [93] proposed an advanced variant of RPN called
Mask R-CNN, which is used to detect and segment
mammographic images. Instead of extracting features
from the ROI pooling method, the Mask R-CNN em-
ployed ROI alignment (ROI-Align) procedure. ROI-
Align feature extraction tackled the spatial information
loss encountered in Faster R-CNN. Lastly, CNN was
used for detection and classification tasks.

• Long Short-Term Memory (LSTM) Neural Network:
LSTM is a Recurrent Neural Network (RNN) type that
can learn from the reference point instead of from
scratch (i.e., error feedback to the input). The reference
point is any middle layer whose output can be used
as input. As in CNN, the learning must be started
from scratch. Gradient vanishing is the major prob-
lem in RNN, which is overcome by LSTM, as pro-
posed by Hochreiter et al. [94]. Nahid et al. [95] used
LSTM to classify microcalcifications and the formation
of masses. They transformed images into 1-D vector
format and then converted them into time-series data,
followed by LSTM training. The maximum accuracy of
84.4% was achieved when using Softmax at the decision
layer.

III. RESULTS
Breast cancer detection has been a conventional problem in
medical science since the 16th century. It is still considered
the deadliest disease due to its complex morphological struc-
ture. In the early years, breast cancer diagnosis included a
self-examination method, which produced many false results.
With the advent of mammograms, cancer detection based
on imaging became feasible. However, microcalcification or
abnormal tissues are very subtle and unstable, making it
hard for experienced professionals to detect cancerous tissues
early. In recent years, IP techniques have been replaced by
computer-aided techniques that help radiologists and experts
make more reliable decisions; intelligent algorithms further
add classification (to classify cancerous types: benign or
malignant), and these techniques produce state-of-the-art,
accurate, and more reliable results.

A. DATASETS FOR MAMMOGRAPHY

Mammography datasets play a vital role in designing and
developing AI-based solutions, thereby attributing confi-
dence in the scope of the results along with the robustness
of the model. Table 2 illustrates large datasets used for
conventional machine and DL techniques, along with the
corresponding references, total instances, and categories
used for classification. The Mammographic Image Analysis
Society (MIAS) dataset is one of the pioneering datasets
in mammography. It contains 322 mammographic images
(digitized at 50 microns pixel edge) [96]. These images are
labeled as benign, malignant, and normal. The MIAS dataset
has been extensively utilized for developing and val-idating
CAD systems and algorithms to classify breast lesions. It is
a widely cited benchmark data set using mam-mographic
images for breast cancer detection research. Similarly, a
popular MIAS method is the Mini-MIAS data set [97]
(http : //peipa.essex.ac.uk/info/mias.html). The Mini-
MIAS is a well-known case study in breast screening. It
contains 322 mammograms reduced to 200 µm pixel edges
and cropped/padded so that each image is 1024×1024 pixels.
These mammograms are listed as safe and sensitive, making
them valuable for training and experimental computer-aided
detection programs. The dataset has been widely used to
develop and evaluate algorithms for breast cancer detection
and classification, which is a benchmark in medical image
analysis.
DDSM (Digital Database for Screening Mammography) is
a comprehensive database specially developed for research
in mammographic image analysis. It contains a collection
of 2620 scanned film mammography examinations labeled
normal, benign, and malignant, as well as associated clinical
data and ground truth descriptions [98] (http://www.eng.usf.
edu/cvprg/Mammography/Database.html). It is a valuable
resource for developing advanced IP techniques such as
detection and classification algorithms for breast cancer
detection Due to its size, diversity, and fine resolution,
the DDSM dataset is widely used in academia and en-
gineering in a research environment. The Curated Breast
Imaging Subset of the DDSM (CBIS-DDSM), a standard
for performance and accuracy, is a curated dataset designed
for breast cancer detection and diagnostic screening. The
CBIS-DDSM data set consisted of 10239 standard mammo-
grams to facilitate the creation and evaluation of computer
screening algorithms, and other image analysis techniques
developed for mammography [99] (https://wiki.cancer image
database.net/display/Public/CBIS-DDSM). Due to its com-
prehensive description, image quality, and focus on analysis
and diagnostic information, the CBIS-DDSM dataset has
become a widely used benchmark in mammographic image
analysis. The IRMA (Image Retrieval in Medical Applica-
tions) dataset from RWTH Aachen University in Germany
serves as a collection of mammogram patches designed
to assess the accuracy of mammogram patch classification
methods [100]. It includes datasets from MIAS, DDSM,
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Lawrence Livermore National Laboratory (LLNL), and reg-
ular images from RWTH Aachen. The dataset provides de-
tailed information about the images, classifying them based
on background nodes and the nature of abnormalities de-
tected in the mammogram patch. The mammogram patches
in the dataset are standardized as 128 × 128 pixels, with 931
normal, and 584 abnormal images.
The BancoWeb LAPIMO dataset is a mammographic image
dataset specially developed for research purposes in breast
cancer detection [101] (http://lapimo.sel.eesc.usp.br/bancoweb).
Based on 1400 images from 320 patients, this dataset is
designed to support the development of ML/ DL algorithms
and other image analysis techniques tailored for mammog-
raphy. The digitized mammograms are normal, benign, and
malignant, with detailed annotations and ground truth labels
indicating the presence of various types of lesions, such
as masses and calcifications. The INBreast is a mammo-
graphic image dataset designed to support research in breast
cancer detection and diagnosis [102]. It was created by
the Faculty of Medicine of the University of Porto, Por-
tugal, and consists of a collection of 410 mam-mograms
obtained from both screening and diagnostic examinations
(https://www.kaggle.com/datasets/ramanathansp20/inbreast-
dataset). This dataset includes images with numer-
ous breast abnormalities, such as masses, calcifica-
tions, and asymmetries, along with detailed annota-
tions and ground truth labels provided by expert radi-
ologists. Over and above, the King Abdulaziz Univer-
sity Breast Cancer Mam-mographic Dataset (KAU-BCMD
) [103] (https://www.kaggle.com/datasets/asmaasaad/king-
abdulaziz-university-mammogram-dataset) is a mammo-
graphic image dataset designed to support research in breast
cancer detection and diagnosis. This dataset consists of a
collection of digital mammograms accompanied by detailed
annotations and ground truth labels provided by three radiol-
ogists. The ordinal categorization of cancer is based on the
breast imaging reporting and data (BI-RAD) clas-sification
system. The VinDr-Mammo, a Vietnamese dataset of digi-
tal mammography developed by VinBigData, is a research
initiative by Vingroup JSC aiming to advance healthcare
through ML [104] (https : //doi.org/10.13026/br2v −
7517). This dataset comprises an extensive collection of
digital mammograms, cat-egorized on the ordinal states of
the BI-RAD classification system for extensive lesion-level
annotations and dam-age-level assessment, with detailed an-
notations and ground truth labels provided by the three expert
radiologists. The acronyms for some recent DL techniques
are illustrated in Table 3 with the dataset used and the method
adopted.

1) Image Processing
The subsection describes some IP-based studies used for
breast cancer analysis by mammography. In this study, salient
image-based techniques are briefly reviewed in the initial
part, where prominent algorithms are surveyed. In this con-
text, Verbeek et al. [35] analyzed data according to the age

groups of women, where the odds ratio of 0.48 (confidence
interval= 95%) was used. Further, the study was conducted
for unscreened objects as well. The fatality rates of both,
screened/unscreened subjects, were then compared based on
breast cancer. Rangayyan et al. [40] employed the Adap-
tive Neighborhood Contrast Enhancement (ANCE) method,
represented the digitization down-sampling to an adequate
pixel size and consequently degraded images affecting the
radiologist’s decision. The use of the ANCE technique as-
sisted the radiologist’s performance. The area parameter of
an “enhanced mammo-gram” was found to be 0.6745 which
was higher than the digitized and original mammograms.
In another study, Carney et al. [37] correlated Hormone
Replacement Therapy (HRT) with age and microcalcification
density, and its role in screening accuracy performance. By
adjusting breast density ranges between (62.9-87.0)% from
highly dense to fatty breasts, they found that the sensitivity
increased from 68.6% to 83.3% with age. Matsubara et al.
[106] used an adaptive thresholding scheme dividing the
mammogram so that the tissues in it are divided into one
of the three classes based on histogram analysis ranging
from fatty to dense classes. The affected regions containing
potential masses are detected by using multiple threshold
values. Dominguez and Nandi [107] based segmentation on
the conversion of mammograms to binary images at selected
threshold levels. They used 30 gray levels with a minimum
step of 0.025 with 8-bit gray levels between 0 and 1. The
segmentation sensitivity was 80% with the proposed method.
Zheng et al. [112] introduced a region growth mechanism
for initial boundary conditions of adaptive contouring of
the mass region in the mammogram. The final contour of
mass was achieved by using a contour algorithm working
runtime dynamically. For 85 queried regions, in an observer
preference study, a scheme was based on referenced regions
divided into two sets, and the previously randomly selected
regions were compared with the queried sets. In 54.1% of
the examined regions, the four observers chose the reference
image set that was visually more similar when compared to
the queried region. Zou et al. [113] proposed a deformable
model for parametric contouring using partial differential
equations for the determination of gradient vector flow field,
yielding an accuracy of 82.6%. After the enhancement of
mammographic images with adaptive histogram equaliza-
tion, the GVF field component with the larger entropy was
used to generate the ROI. Yuan et al. [114] employed a Full-
Field Digital Mammography (FFDM) image to highlight
abnormal masses from the surroundings using a dual-stage
procedure. Firstly, the initial contour is determined using
index-based segmentation using radial gradients. Secondly, a
contour model is used dynamically for the region segmenta-
tion to find the abnormal mass contour. The distance feature
outperformed using the leave one out method using lesion-
size, and contrast, and distance features, yielding the AUC
(ROC) = 0.86. Similarly, Hassanien and Ali [115] proposed
an algorithm for segmenting abnormal masses using fuzzy
sets with Pulse Coupled Neural Networks (PCNN). Before
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TABLE 2. Large publicly shared datasets in the field of mammography (B: benign, M: malignant, N: normal, (x) indicates the severity of disease according to the
BIRAD classification system).

Dataset Number of Images Classes Year
MIAS (50 microns) [96] 322 B, M, N 1994
Mini-MIAS (200 microns) [97] 322 B, M 1994
DDSM [98] 10480 B, M, N 1999
CBIS-DDSM [99] 10239 B, M, N 2017
IRMA [100] 1515 B, M, N 2009
BancoWeb LAPIMO [101] 1400 B, M, N 2011
INBreast [102] 410 B, M, N 2010
KAU-BCMD [103] 5662 B(2), M(5), N(1) 2021
VinDr-Mammo [105] 5000 B(2), M(5), N(1) 2022

TABLE 3. Acronyms and their full description, datasets, and methodology in determining microcalcification for some state-of-the-art techniques.

Microcalcification Method Acronym Dataset Method Authors Ref.
Mean Multi-Scale 2D NEO, Max
Multi-Scale 2D NEO

MnM2DNEO,
MxM2DNEO

DDSM, INBreast, PGIMER-
IITKGP

Data reduction approach based on data dis-
tribution

Karale et al. [108]

Anomaly Separation Network ASN INBreast Hybrid approach (generative plus discrimi-
native)

Zhang et al. [109]

Max Multi-Scale 2D NEO, Mean
Multi-Scale 2D-NEO

Modified MxM2DNEO,
Modified MnM2DNEO

DDSM, INBreast, PGIMER-
IITKGP

Computer-aided diagnosis Karale et al. [110]

Unsharp masking Unsharp masking DDSM, private database Contrast enhancement between microcalcifi-
cations and background

Karale et al. [111]

segmentation, the fuzzy histogram hyperbolization is applied
as a filter, followed by PCNN. Although, the IP methods are
very old, they are being used as preprocessing support to
exploit the feature space for AI-techniques.

B. MACHINE LEARNING
This section surveys the ML-based approaches for the de-
tection and classification of breast cancer. In this context,
numerous methods have been accumulated spanning over
time, emerging for mammography datasets focusing on dif-
ferent aspects of the problem domain. Davies and Dance [54]
studied three-step mammogram en-hancement before classi-
fication. A TP of more than 85% was reported with an image
count of 78 during the testing phase. The Frame Texture Clas-
sification Method (FTCM) was used for the classification of
abnormalities in mammograms. Local thresholding was used,
where the calcification was segmented from the background
for further classification of images. These studies reported
the true positives (TP) of 100% by testing the methodology
on 50 images. Rad et al. [55] used a multi-wavelet-based
feature extraction technique and features used for training the
classifiers and achieved an accuracy of 85%.
Caldwell et al. [116] computed the correlation between the
fractal dimensions to mammograms by experi-menting with
NB and SVM classifiers. The study reported an accuracy
of 84% (radiologist-approved) using 70 mammographic im-
ages. Zheng et al. [117] used a Bayesian network in which
an acyclic graph is used to compute probability influences
between features. By experimenting with a dataset of 433
images and 12 features, the authors reported AUC (ROC)
curve equal to 0.87. The Nijmegen database was used in
this study to test the methodology on 40 images. In another
study, 180 images from the Nijmegen LLNL/UCSF database
were tested by the k-NN classifier. It was trained on three

categories of extracted features (a combination of statistical
and multi-resolution) and reported an accuracy of 80% [118].
Cao et al. [119] investigated the additional benefit of peri-
calcification areas in contrast-enhanced mammography for
distinguishing between breast lesions appearing solely as
calcifications on standard mammograms. They analyzed ra-
diomic characteristics from both low-energy and recombined
images within the calcification sites and their surrounding
peri-calcification regions. These regions were defined by
extending the an-notation margin radially with gradients
ranging from 1 mm to 9 mm. ML models were employed
to categorize cal-cifications as either malignant or benign.
In another effort, Prinzi et al. [120] presented a radiomic
signature aimed at effectively distinguishing between healthy
tissue, benign microcalcifications, and malignant microcal-
cifications. Radiomic features were extracted from a propri-
etary dataset that included 380 samples of healthy tissue, 136
samples of benign microcalcifications, and 242 ROIs with
malignant microcalcifications. Following this, two separate
signa-tures were identified for detecting healthy tissue ver-
sus microcalcifications and for the classification of benign
versus malignant microcalcifications. Various ML models,
including SVM, RF, and XGBoost, were used as classifiers.
The performance of the models was assessed, with XGBoost
achieving an AUC (ROC) of 0.830 for healthy tissue clas-
sification, 0.856 for benign microcalcifications, and 0.876 for
malignant microcalcifications. Yoen et al. [121] investigated
factors linked to abnormality scores generated by AI soft-
ware. They performed a retrospective search in a database to
identify a series of asymptomatic women who had undergone
breast surgery from 2016-2019. Preoperative mammograms
were evaluated using AI software (LunitINSIGHT) to as-
sign abnor-mality scores. A score greater than 10 indicated
positive detection of an abnormal lesion. A general linear
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model was employed to analyze the mammographic and
pathological findings along with clinical repercussions as-
sociated with the AI software scores. Similarly, Malek et
al. [122] introduced a method for filtering and extracting
features utilizing persistent homology (PH), a robust math-
ematical tool for analyzing intricate datasets and patterns.
Instead of directly operating on the image matrix, the filtering
process is conducted on the diagrams derived from PH,
enabling the identification of significant image characteristics
amidst noise. They used the DDSM and MIAS datasets for
their experiments with supervised ML-models. The study
demonstrated that selecting a suitable PH filtering with dis-
criminative features can increase the performance score of
early cancer detection.
Khalid et al. [123] introduced an effective DL model to
detect breast cancer in computerized mammograms of vary-
ing densities. Their approach involved feature selection by
elimination of high-bias and repeating features. The model
was evaluated using 3002 merged images who underwent
digital mammography between 2007 and 2015. Addition-
ally, six classification models were applied for breast cancer
diagnosis, including RF, DT, k-NN, LR, and SVM. The
study demonstrates that the proposed model achieved high
efficiency, requiring minimal computational resources while
maintaining a high accuracy score. Li et al. [124] used
adaptive and multi-scale processing techniques to create a
novel CAD mass detection system that improved sensitiv-
ity, specificity, and robustness against fluctuations in mam-
mography. Using the dataset, they integrated hard and soft
categorization through a modified fuzzy decision tree and
committee decision-making method. This approach enabled
them to achieve an AUC (ROC) of over 0.9. Iseri et al.
[125] developed a novel method for the classification of mi-
crocalcification clusters employing a mul-ti-window-based
statistical analysis (MWBSA) method. This method uses a
two-stage software framework as a computational search and
analysis system, with an artificial neural network (ANN) as
a classifier. Experimental results on different datasets with
MIAS and DDSM are also presented. Datasets showed that
the MWBSA-based strategy was as successful as other well-
known methods such as GLCM and Wavelet techniques.
Their classification task achieved a 97% accuracy rate. Ram-
pun et al. [126] presented a novel investigation of ML
performance by examining prob-ability outputs in conjunc-
tion with classification accuracy score and AUC for ROC
curve. They used the CBIS-DDSM database1872 micro-
calcification clusters. They experimented on Random Forest
(RF), Multi-layer Perceptron (MLP), Logistic Regression
(LR), Naive Bayes (NB), Bayesian Network (BNet), k-NN,
Alternate Decision Tree (AD-Tree), Logistic Model Trees
(LMT), AdaBoostM1(AdaBoost) and SVM.
Further, Fanizzi et al. [127] suggested a binary classification
model for differentiating tissues in digital mam-mograms to
support radiologists in their work. They specifically exam-
ined the impact of various techniques on the feature selec-
tion procedure concerning the chosen features and learning

performances. They extracted textural features using Haar
wavelet decompositions for each ROI, as well as interest
spots and corners that were found using the Minimum Eigen-
value Algorithm (MinEigenAlg) and Speeded Up Robust
Feature (SURF). Next, a subset of fea-tures was chosen using
two distinct feature selection methods, namely filter and
embedding methods, used to train an RF binary classifier. For
the benign/malignant and normal/abnormal situations, the
prediction performance achieved the accuracy and median
AUC (ROC) values as (97.31% and 0.88), and (98.16% and
0.92), respectively. Vy et al. [128] created a machine-learning
classification model that would use clinical factors, mam-
mography results, ultra-sound results, and histopathological
features to distinguish between ductal carcinoma in situ
(DCIS) and minimally invasive breast cancer (MIBC). Using
a trained XGBoost algorithm, tumors were classified as DCIS
or MIBC using the five most significant clinical charac-
teristics including calcification on mammograms. XGBoost
model attained AUC (ROC) and accuracy of 0.93 and 84%,
respectively, comparable to that of a skilled radiologist in dis-
tinguishing be-tween DCIS and MIBC and providing patients
with the most excellent possible therapy options. Sarvestani
et al. [129] assessed the practicability and precision of au-
tomatically separating images of micro-calcifications in the
breast tissue. The decision tree classification approach was
used to classify the breast tissue mi-crocalcification clusters
that have been identified. ANN was employed to identify the
benign and malignant forms of segmented ROI clusters. The
DDSM was used to train the proposed system. After training,
the model led to an im-proved generalization of 93%. Lin
et al. [130] showed that an automated deep-learning pipeline
can facilitate early breast cancer diagnosis for mammography
microcalcifications detection and classification. The system’s
develop-ment and testing utilized a total of 4,810 images
from various centers. For both the training and test sets,
the overall classification accuracy values for differentiating
benign and malignant breasts were 72.37% and 81.24%,
respec-tively. Their automated artificial intelligence system
was claimed to have the potential to enhance the decision-
making abilities of clinicians by helping them identify, di-
agnose, and treat breast cancer more effectively. Fu et al.
[131] proposed a two-step detection model. First, the location
and nature of potential microcalcifications were determined
using a mathematical model. It was investigated that the
proposed model could accurately detect micro-calcification
events when tested in the Nijmegen University Hospital
database. Second, after extracting the features of each pu-
tative microcalcification, the sequential forward search (SFS)
method was applied to identify sensitive attributes for mi-
crocalcifications. The classification performance of SVM and
general regression neural network (GRNN) in terms of AUC
(ROC) were 0.98 and 0.97, respectively, using the test data
set.
Computer-assisted breast cancer detection from mammo-
grams was introduced by Golobardes et al. [132]. Firstly,
several microcalcification feature extraction techniques were
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used on the mammograms. Secondly, automatic diagnosis
was obtained by applying several ML algorithms. The au-
thors examined the use of these characteristics as a clas-
sification system to differentiate between benign and ma-
lignant microcalcifications in mammograms taken from the
mammography database of the Girona Health Area. They
achieved a maximum accuracy of 78.57%. Similarly, Alolfe
et al. proposed a four-step approach to developing intelligent
diagnostic systems [133]. These steps were (a) the selection
of ROIs, (b) the use of wavelet decomposition as the basis for
the feature extraction step, (c) the selection of features, and
(d) the classification of the results. The SVM classifier and
the voting k-NN classifier were utilized in the classification
stage. The MIAS mammographic datasets comprising 322
mammograms were used to assess the suggested method.
SVM yielded the best accuracy of 87.5% of the potential
classifiers tried, whereas k-NN produced the best accuracy
of 75%. Using the Nijmegen and MIAS mammographic
databases, Papadopoulos et al. [134] demonstrated a novel
automated system for characterizing microcalcification clus-
ters in three phases (cluster detection, feature extraction, and
classification). A rule-based system, an ANN, and an SVM
were constructed and assessed during the classification stage
using the ROC analysis. A comprehensive comparison of
evaluations of some ML-based techniques is illustrated in
Table 4.
In this review article, we consolidate key performance met-
rics (AUC, sensitivity, specificity) from relevant studies, pro-
viding a clear picture of model performance. By summarizing
these metrics, we concisely convey essential insights, thereby
avoiding unnecessary complexity, as illustrated in Table 5.

C. DEEP LEARNING
Convolution Neural Network (CNN) is mainly used for DL.
A CNN is constituted of n layers and m hidden neurons.
Weights are associated with each input and output link in the
neural network. Regulating weights in training helps neural
networks to learn significant information, known as represen-
tation learning. The information flows in the learning phase
to make it a self-learning network. CNN achieves impressive
results in mammography for classifying the microcalcifica-
tions. Depending on the complexity of mammograms, fea-
tures are hidden locally in mammograms that exhibit similar
information, so it is tough to recognize abnormalities. The
changes made in the CNN architectures were mainly in the
input size, depth and size of kernels, activation functions,
surviving fractions of neurons in the drop-out layer, fully
connected layers’ specifications, and the decision layer.
In a study by Sahiner et al. [81], regions of interest are
extracted for CNN’s input. The back-propagation technique
is used to train the CNN. The area under the curve was
0.87, while 90% and 30% of TP and FP were reported in
this study. The results were computed on the test dataset
comprising 168 images. Moreover, MCP-CNN is classified
based on mass features extracted from mammograms [82].

The area under the ROC curve of 0.89 was reported when
taking 144 mammograms to evaluate the proposed model.
Fonseca et al. [83] presented CNN-SVM model for the breast
cancer classification and reported a Kappa value of 0.58.
Wu et al. [135] employed the convolution neural network
for the classification of microcalcifications into benign and
malignant categories. The pixel values of mammograms are
considered global features and fed to CNN. After testing the
methodology using 40 images, the sensitivity and specificity
score was 75% for each. Furthermore, TL and CNN were
used for the classification of the breast cancer dataset by
Huynh et al. [136]. For ensemble and analytical extracted
features, the AUC (ROC) was 0.86 and 0.81 respectively.
The study used 219 mammograms for the evaluation of the
methodology. Jiao et al. [85] combined intensity featurtes
and deep features for classification of the original images.
The accuracy of 96.7% and 97.0% were achieved for CNN
and VGG-based models using the DDSM dataset for the
training and testing process. A hybrid approach was proposed
by Arevalo et al. [86] to classify mammograms. Upon using
736 mammographic images, the area under the ROC curve
of 0.89 was achieved. Jadoon et al. [88] used the IRMA
dataset for their experimentation. For testing, 2796 ROI
patches from mammograms were used and achieved accuracy
scores of 81.83% and 83.74% from CNN-DW and CNN-CT
respectively. Another study used CNN to focus on semantic
regions and the Recurrent Neural Network (RNN) was used
to classify breast cancer. The study was performed by Wang
et al. [91] and reported an accuracy of 89% using 763 images
from the Breast Cancer Digital Repository. Gastounioti et al.
[92] used Lattice-based techniques to extract texture feature
maps and fed them to the multichannel CNN. Upon using 106
cases for evaluation, an accuracy score of 90% was reported.
Jaffar [89] used CNN for feature extraction and an SVM
was applied for the classification of Mini-MIAS and DDSM
datasets. An accuracy of 93.35% and sensitivity of 93.00%
were achieved. In another research by Chakravarthy and Ra-
jaguru [137], the ResNet-18 was used for feature extraction
with the proposed improved crow-search optimized extreme
learning machine (ICS-ELM). The proposed framework was
experimented using DDMS, MIAS, and INbreast datasets.
The accuracy scores of 97.193, 98.137, and 98.266% were
obtained for DDSM, MIAS, and INbreast datasets respec-
tively. Ueda et al. [138] used VGG-16 on the IDC dataset
and reported a 61-70% accuracy score for the classification.
The DCNN system with autoencoder-genrative adversarial
network (A-GAN) was proposed for mammogram images by
Swiderski et al. [139] who leveraged the GAN architecture to
augment mammogram data by generating additional image
representations, enriching the analysis with more diverse
information. The generated images were combined with the
original mammograms and used as input for a CNN, serv-
ing as the final classifier. This DL system was designed to
classify mammograms into two categories: normal and ab-
normal. The results showed that this approach outperformed
existing methods for mammogram recognition, highlighting
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its potential for improved diagnostic accuracy. The detection
rate was reported at 89.71% for breast masses. Xu et al. [140]
used a Multi-Scale Attention-Guided Network (MSANet)
and achieved an AUC (ROC) as 0.94 when experimenting
DDSM dataset. Furthermore, AlexNet, DenseNet, and Shuf-
fleNet were experimented with using the INbreast dataset by
Huang et al. [141]. The accuracies for test partitions using
AlexNet, DenseNet, and ShuffleNet were 95.46%, 99.72%,
and 97.84%, respectively. Recently, to test the accuracy of
two large language models (LLMs), ChatGPT-4 and Gemini,
Haider et al. [142] created 50 real-life scenarios related to
breast health. They scored their responses from 0 to 2, where
0 meant incorrect, 1 meant partially correct, and 2 meant
completely correct. They compared their performance using
statistics. Gemini performed better overall, getting 98% of
the answers correct, while ChatGPT-4 got 71% correct. Both
models did well in two areas, but Gemini did better in three
other areas, including classifying breast tissue, breast shape,
and breast sagging.
Zebari et al. [143] worked on classification of benign and ma-
lignant tumors using mammograms. ROI was derived using
hybrid thresholding and ML method. It was then separated
into five blocks, and noise removal was carried out by apply-
ing wavelet transform. Multiple features were extracted us-
ing multifractal dimension approach and then features were
reduced using genetic algorithm. They used five classifiers,
and the final decision was made by fusing the results of all
the blocks. The model was evaluated on four mammography
datasets, and an accuracy of greater than 96% was achieved.
Recently, Nomani et al. [144] presented a breast cancer de-
tection model using ML based on particle swarm optimized
wavelet neural network (PSOWNN). Dimension reduction
was carried out through PCA, and each image was manually
cropped to obtain ROI. Features were extracted using a gray-
level co-occurrence matrix. The model was verified using a
published dataset, and it correctly classified 95.2% of the 905
images. Maqsood et al. [145] worked on a DL breast cancer
detection system for early diagnosis using an end-to-end
training strategy. Initially, a contrast enhancement method
was used to refine the edges of mammogram images. The
classification performance was enhanced using transferable
texture CNN (TTCNN) and energy layer employed to extract
texture features. The model consisted of three layers of con-
volution and one energy layer. Deep features were extracted.
and feature selection was carried out using firefly method
(entropy controlled). Three public datasets were used, and an
average accuracy of 97.49% was achieved.
Further, Lin et al. [146] developed a DL model for breast can-
cer diagnosis. Data classification was carried out using ANN
and SVM. TL-based DL architectures (ResNet101, AlexNet,
and InceptionV3) were analyzed using advanced statistical
techniques, like adaptive moment estimation with stochastic
gradient descent. The model was verified using a breast can-
cer risk factor dataset, and an average accuracy of 94.2% was
obtained. Mohapatra et al. [147] evaluated the performance
of various CNN architectures by training through weights

reset (from scratch) and others through TL (pretrained). A
small public mammography dataset was used for this study,
and data augmentation by rotation and zooming techniques
was applied to overcome overfitting. AlexNet and VGG16
showed an accuracy of 65%, while ResNet50 showed an
accuracy of 61%. Al-Tam et al. [148] developed a hybrid DL
framework for breast lesion detection. The backbone residual
DL network was utilized for feature extraction, while the
transformer was used for breast cancer classification. Two
publicly available datasets were used to verify the model,
and an accuracy of 100% for binary and 95.8% for multiclass
categorization was achieved using 5-fold cross-validation. In
their work, Kumar et al. [149] employed CNNs with four
distinct optimizers, utilizing input images sized at 299 ×
299 × 3. Feature mapping was achieved through a pretrained
InceptionResNetV2 model. Evaluation of a curated subset of
the DDSM mammogram dataset showcased superior perfor-
mance in sensitivity, specificity, accuracy, and AUC (ROC)
compared to previous DL and classical ML approaches.
Another study introduced a fully automated system for di-
agnosing breast cancer, utilizing an AlexNet and multiple
classifiers to attain heightened accuracy level. Validation
through testing on three Kaggle datasets confirmed its su-
perior performance, indicating its potential utility in aiding
medical professionals with precise diagnosis [150]. Marathe
et al. [151] introduced a quantitative method to differentiate
between benign and actionable amorphous calcifications on
mammograms. This method utilizes local textures, global
spatial relationships, and expert features. The approach,
trained and validated on 168 digital mammography exams,
demonstrated high sensitivity and positive predictive value
on a test set. Liu et al. [152] examined the effectiveness of
DL on full-field digital mammography in forecasting disease
progression of BI-RADS 4 microcalcifications. Their collec-
tive DL solution surpassed clinical and DL image models,
achieving high diagnostic accuracy. Moreover, it assisted ju-
nior radiologists in enhancing their performance. This study
underscores the potential of DL in improving malignancy
prediction in screening mammography and supporting clin-
ical decision-making. A study explored the use of CNNs
to predict whether patients diagnosed with pure atypical
ductal hyperplasia (ADH) could be safely monitored rather
than undergoing surgery. By analyzing 298 mammographic
images from 149 patients, the AUC (ROC) was found to be
0.86. The findings suggest the feasibility of distinguishing
ADH from DCIS [153].
Recently, Prodan et al. [154] explored DL methods, incor-
porating CNN and ViT architectures, to analyze mammo-
grams with the goal of enhancing classification accuracy.
They suggested an alternative data enhancement method us-
ing simulations to increase model accuracy and emphasized
the importance of careful data preprocessing. Furthermore,
their study combined interpretable AI techniques, like class
function mapping, to gain insight into the model decision-
making method. Beuke et al. [155] developed a DL algorithm
to detect and classify breast lesions in contrast-enhanced
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mammography (CEM) images. Collected retrospective dis-
ease data, trained DL, and handcrafted radiomic features
to distinguish between benign and malignant lesions were
developed. The results showed remarkable sensitivity in le-
sion detection and good diagnostic accuracy. Notably, the
combined DL and manual radiomics models achieved a re-
markable AUC (ROC), indicating an encouraging probability
for accurately detecting malignant lesions depicted in CEM
images. Pesapane et al. [156] developed an AI model to
detect and characterize microcalcifications in mammograms
and facilitate breast cancer screening. The model used three
networks (AlexNet, ResNet18, and ResNet34) to find im-
pressive sensitivity, specificity, and AUC for ROC curves
in microcalcification detection and classification tasks. The
results confirmed the exceptional performance of AlexNet,
while ResNet18 and ResNet34 also showed encouraging
results.
Similarly, Kumar et al. [157] focused on a DL-based model
for breast cancer detection. When model performance was
evaluated using metrics such as sensitivity, specificity, ac-
curacy, and F-measure on benchmark datasets. It was found
that the proposed models performed better than current meth-
ods, assisted radiologists with diagnostic and classification
accuracy, and highlighted potential improvements. Tsai et al.
[158] proposed a multitask DL algorithm to predict extensive
intraductal component (EIC) in breast cancer development.
Using mammograms from 2010-2019, the three-stage DL
model showed impressive performance, with AUC (ROC)
values of 0.76 and 0.77 for EIC prediction in imaging and
breast, respectively. This multitask paradigm facilitated the
simultaneous classification of imaging findings and predic-
tion of EIC, thereby showing the possibilities of DL algo-
rithms in improving breast cancer diagnosis via mammog-
raphy. A comprehensive comparison of evaluations of some
more DL-based techniques is illustrated in Table 6.

D. PROBLEMS IN CURRENT RESEARCH PROGRESS
Mammography is a crucial tool for breast cancer detection,
but despite its importance, there are limitations and chal-
lenges in the current research progress. Addressing these
issues is crucial to advancing mammography research. Mam-
mography may not detect cancer in its early stages when
it’s most treatable. Other problems include unnecessary biop-
sies (FPs) or missed detections (FNs) in case of incorrect
mammography performance scores [155]. Another problem
arises when different radiologists interpret the same mammo-
gram differently leading to inconsistent diag-nosis. Similarly,
less effective mammography for women with dense breasts
makes it harder to detect tumors. The ionizing radiation can
be harmful in case of high radiation doses [163], [164]. The
mammography equipment and expertise may not be readily
available in all regions, particularly in low-resource areas.
Integrating and analyzing data from various sources, such as
imaging and genetics, can be challenging. Over and above,
while AI and ML can enhance mammography, they also

have limitations and potential biases. Ensuring data privacy,
informed consent, and regulatory compliance are essential
but can be complex [164].

E. RESEARCH DIRECTIONS IN MAMMOGRAPHY
Artificial intelligence (AI) is expected to become an inte-
gral component of mammography screening, enabling ra-
diologists to leverage AI-driven insights for more accurate
and earlier detection of breast cancer, leading to improved
patient outcomes and enhanced personalized care. The in-
creased efficiency of radiologists using AI can result in
decreased turnaround times. AI can be utilized for breast
density assessment, which is associated with breast cancer
risk [165]. Changes in breast density over time can be evalu-
ated with AI and used as a biomarker for treatment response.
AI based breast density algorithms can be integrated with
other mammographic features, age, genetic data, and clinical
factors to develop a risk prediction model for risk stratifi-
cation, which can be incorporated into a clinical decision
support system. DL models that accurately exclude cancer
on mammograms can reduce radiologists’ workload and be
applied in underserved areas where breast imaging expertise
is limited [166]. The widespread acceptance of AI models
can be facilitated by demonstrating their generalizability and
validation on large, diverse populations, multiple vendors,
and imaging acquisition techniques in extensive retrospective
studies. The higher specificity of AI based computer-aided
detection (CAD) compared to older non-AI CAD models and
its potential to decrease recall rates, increase cancer detection
rates, and enhance overall performance by improving these
metrics [167].

IV. CONCLUSIONS
This study examines breast cancer detection via mammog-
raphy over a specific period, aligning with multiple UN
Sustainable Development Goals. Timely detection through
screening has decreased mortality rates and potentially saved
lives. Despite numerous review articles on mammographic
breast cancer screening, there remains a gap for a focused
review covering breast cancer detection from 1970 to 2023,
emphasizing IP, ML, and DL. While ML has laid the foun-
dation for image analysis in mammography, utilizing DL
architectures with multi-scale feature extraction that trans-
forms contextual information into feature data has yielded
exceptional outcomes. While DL algorithms for breast cancer
detection are increasingly being applied clinically, broader
integration into mammogram-based cancer detection in clin-
ical settings calls for additional clinical validation, enhanced
reliability, generalizability, and inter-pretability, among other
considerations.
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TABLE 4. A comparison of the evaluation of ML models for classification tasks using mammograms.

Reference Data ML Model/Algorithm AUC (ROC) Accuracy (%)
[54] A dataset of 75 images, 25

training and 50 test images
Nearest neighbor clustering algorithm
with nearest neighbor distance less than
5mm between calcifications

× 92.00

[63] The dataset of 40 images Multi-wavelet-based feature extraction
technique

× 85.00

[116] Experiments based on 70
images

Fractal-based Wolfe grade classifier × 84.51

[117] The dataset of 433 images Bayesian belief network (BBN) 0.87 80.00
[118] The data consisted of 180

images
k-NN classifier × 80.00

[119] The mammogram test set
included patients between
March 2017 and March
2019, while the validation
set was collected between
April 2019 and October
2019

Ensemble classifier 0.89 84.30

[120] Comprising 380 samples
of healthy tissue, 136 sam-
ples of benign microcalci-
fications, and 242 samples
of malignant microcalcifi-
cations

SVM, RF, and XGBoost 0.83, 0.85, 0.87
for healthy,
benign, and
malignant mi-
crocalcification,
respectively

74.00, 81.10, 82.40
for healthy, benign,
and malignant micro-
calcification, respec-
tively

[121] A database with
consecutive asymptomatic
women who underwent
breast cancer surgery
between (2016-2019)

LunitINSIGHT, MMG, Ver. 1.1.4.0 as a
diagnostic tool

× 72.00

[122] MIAS and DDSM public
mammography datasets

Neural network (NN), SVM, k-NN, and
DT models

0.95 - 0.98 94.30 - 96.40

[123] 3002 merged images from
1501 individuals (between
Feb-2007 and May-2015)

RF, DT, k-NN, logistic regression (LR),
linear SVM

× 96.49

[124] Training: 30 normal and
47 abnormal images Test-
ing: 100 normal and 39 ab-
normal images

Modified fuzzy decision tree > 0.90 ×

[125] 119 images from MIAS
and DDSM databases

Multi-window based statistical analysis
(MWBSA) for detection of microcalci-
fication clusters, and ANN

× 97.00

[126] 1872 micro-calcification
clusters (1199 benign and
673 malignant) from 753
patients

C4.5, RF, MLP, LR, NB, BNet, k-NN,
ADTree, LMT, AdaBoost, and SVM

0.82 (ADTree) 77.80 (C4.5)

[127] 260 ROIs extracted from
BCDR mammograms

RF binary classifier 0.98 (benign),
0.92 (malignant)

97.31 (benign), 88.46
(malignant)

[128] Mammographic, clinical,
and sonographic features
from 420 patients

XGBoost 0.93 84.00

[129] DDSM dataset ANN × 93.00
[130] 4810 mammograms with

6663 microcalcification le-
sions

ResNet50 for feature extraction, and
FasterRCNN for microcalcification de-
tection

0.80 72.37

[131] Nijmegen University
Hospital (Netherlands)
database

Sequential forward search (SFS) algo-
rithm on General regression neural net-
work (GRNN) and SVM

0.98 (SVM), 0.97
(GRNN)

×

[132] 216 mammograms from
the database of Girona
Health Area

CBR and GA × 78.57 (Max)

[133] 322 images of MIAS
dataset

Wavelet analysis, feature selection
method, k-NN, and SVM

× 87.50 (SVM best),
75.00 (k-NN best)

[134] MIAS dataset SNM, and ANN classifiers 0.79 (Nijmegen),
0.81 (MIAS)

×
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TABLE 5. . A comprehensive look at ML metrics for improved detection and classification of breast cancer.

Category Metric Value/Description Reference

General Metrics

AUC (Detection) RF: 0.859, SVM: 0.865, XGBoost: 0.854 [120]
AUC (Classification) RF: 0.921, SVM: 0.927, XGBoost: 0.933
Sensitivity (Detection) RF: 0.729, SVM: 0.783, XGBoost: 0.702
Sensitivity (Classification) RF: 0.931, SVM: 0.863, XGBoost: 0.909
Specificity (Detection) RF: 0.782, SVM: 0.794, XGBoost: 0.794
Specificity (Classification) RF: 0.781, SVM: 0.875, XGBoost: 0.750

Before and After CAD

Specificity (%) Before: 90.2, After: 87.2 (P < 0.001) [7]
Sensitivity (%) Before: 80.4, After: 84.0 (P = 0.32)
Positive Predictive Value (PPV) Before: 4.1, After: 3.2 (P = 0.01)
Biopsy Rate Before: 14.7, After: 17.6 (P < 0.001)
Cancer Detection Rate Before: 4.15, After: 4.20 (P = 0.90)
AUC Before: 0.919, After: 0.871 (P = 0.005)

Specific Scenarios

Sensitivity (Microcalcifications Only) SVM: 0.93, k-NN: 0.95 [8]
Specificity (Microcalcifications Only) SVM: 0.79, k-NN: 0.74
AUC (Microcalcifications Only) SVM: 0.85, k-NN: 0.84
Sensitivity (Breast Masses Only) SVM: 1.0, k-NN: 1.0
Specificity (Breast Masses Only) SVM: 0.26, k-NN: 0.21
AUC (Breast Masses Only) SVM: 0.60, k-NN: 0.57
Sensitivity (Microcalcifications + Masses) SVM: 0.95, k-NN: 0.94
Specificity (Microcalcifications + Masses) SVM: 0.78, k-NN: 0.76
AUC (Microcalcifications + Masses) SVM: 0.85, k-NN: 0.83

Confusion Matrix Overview

Irregular 96 (76%) detected [13]
Lobular 83 (71%) detected
Oval 26 (84%) detected
Round 16 (89%) detected

INbreast Dataset
AUC 0.95 (95% CI: 0.91–0.98) [15]
Sensitivity (Lesion Detection) 90%
False Positives 0.3 marks per image
Specificity (Mammography) Range: 89%–97%
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TABLE 6. A comparison of the evaluation of DL architectures for classification tasks using mammograms.

Ref. Data DL Architecture AUC (ROC) Accuracy (%)
[81] Manually extracted ROI’s

from 168 mammograms
CNN (4 conv.) with 2 input images, 3 image-
groups in the first hidden layer, 2 groups in
the second hidden layer, and one real-valued
output

0.87 ×

[82] 200 mammograms
selected from MIAS
database and BAMC
database

MCPCNN 0.86 (mean) ×

[83] Digital images obtained
from 1157 subjects (Lima,
Peru)

CNN (3 conv.) and SVM classifier × 73.05 (mean)

[136] 607 mammography im-
ages

An ensemble of SVM1 (TL-features using
AlexNet), SVM2 (analytically detected fea-
tures, TL-based classifier, and analytical fea-
ture extraction-based method)

0.81 ×

[85] 600 images from DDSM CNN (5 conv., 3 fc) × 97.00
[86] 736 film images CNN (2 conv., 1 fc, and a softmax layer) 0.82 ×
[88] IRMA dataset: 2796

patches of mammogram
images

CNN-discrete wavelet, and CNN-curvelet
transforms

× 81.83 (CNN-
DW), 83.74
(CNN-CT)

[89] MIAS: 332 images,
DDSM: 1800 images

CNN(3 conv., 1 fc) with SVM 0.93 93.35

[91] BCDR-F03: 736 film im-
ages

CNN with attention mechanism integrating
features by LSTM, and classification by
multi-view CNN

0.89 85.00

[92] 424 mammogram images CNN(2 conv., 1 fc) gives five features that
are fed to a logistic regressor

0.90 ×

[135] 80 ROIs selected from dig-
itized radiographs

CNN (1 conv.) with one hidden layer using
seven kernels

0.83 ×

[137] DDSM, MIAS, and IN-
breast datasets with 570,
322, and 179 mammo-
grams, respectively

ResNet-18 with ICS-ELM × 97.19, 98.14, and
98.27 for DDSM,
MIAS, and
INbreast datasets,
respectively

[138] IDC dataset (1119 images) VGG-16 × 61.00-70.00
[139] 11218 regions of interest

of mammographic images
from the DDSM

A-GAN plus CNN 0.94 89.71

[140] DDSM dataset with 2620
cases having four mammo-
grams each

Multi-Scale Attention-Guided Network
(MSANet)

0.94 ×

[141] INbreast dataset AlexNet, DenseNet, and ShuffleNet × 95.46,
99.72, 97.84,
respectively

[143] Mini-MIAS, DDSM, IN-
breast, and BCDR con-
tributing: 316, 981, 200,
and 736 mammograms, re-
spectively

ANN (Multilayer perceptron) × >96.00

[144] Mini-MIAS: 1824 images CNN (3 conv., 3 fc) × 95.20
[145] DDSM: 2620 images, IN-

breast: 410 images, MIAS:
326 images

CNN (3 conv., 2 fc) 0.97 (mean) 97.49 (mean)

[145] Breast cancer risk factor
assessment dataset: 88763
images

CNN (AlexNet, ResNet101, and Incep-
tionV3)

× 91.30
(InceptionV3)

[147] Mini-DDSM: 9752 mam-
mograms

CNN (AlexNet, VGG16, ResNet50) 0.86 (AlexNet) 65.89 (AlexNet)

[148] CBIS-DDSM: 6671 im-
ages, DDSM: 2620 images

CNN (12 conv., 4 dropout layers) 0.98 (mean) 100 (binary clas-
sification), 95.80
(multiclass)

[149] CBIS-DDSM CNN (four optimizers) 0.96 94.00
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Ref. Data DL Architecture AUC (ROC) Accuracy (%)
[150] CBIS-DDSM, and Breast

Cancer Wisconsin (BCW)
containing 3400 mammo-
graphic images

AlexNet, Fuzzy C-Means clustering algo-
rithm, and multiple classifiers

× 98.84

[151] 168 full-field digital mam-
mography exams (248 im-
ages from 168 patients)

Local features with an unsupervised k-means
clustering algorithm and LightGBM classi-
fier

0.73 (clustering) 53.00

[152] 384 patients with 414
pathologically confirmed
microcalcifications (221
malignant, 193 benign)

DL model with mammography and clinical
variables

0.91 ×

[153] 298 mammographic im-
ages from 149 patients

CNN (5 residual layers, 0.25 dropout) 0.86 86.70

[154] ADMANI dataset (28911
instances) by the Radio-
logical Society of North
America (RSNA)

CNNs and ViT architectures with data aug-
mentation techniques

0.88 89.00

[155] Contrast Enhanced Mam-
mography (CEM) images
of 1601 patients at Maas-
tricht UMC+, and 283 pa-
tients at Gustave Roussy
Institute

DL model and handcrafted radiomics-based
technique

0.95 ×

[156] 1000 patients, 1986 mam-
mograms with 389 malig-
nant, 611 benign groups of
microcalcification

AlexNet, ResNet18, and ResNet34 0.88-0.92 ×

[157] 348 radiomics images
(mammograms) and deep
features (X-ray) from the
Eindhoven Cancer Dataset

CNN with Transformer 0.91 92.00

[158] 200 cases of mammo-
grams from the BI-RADS
II

R-CNN model with DL radiomic features 0.89 87.50

[159] MIAS dataset KNN algorithm 0.96 ×
[160] 1181 mammogram images CNN and transfer learning with

DenseNet201, MobileNetV2, and
EfficientNetB7

0.92 ×

[161] 211 mammograms from
private dataset

InceptionV3 model and multiclass classifiers
(SVM, kNN)

0.94 96.80 (SVM)

[162] 3148 images, from DDSM RetinaNet, and VGG19 0.92 ×
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