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ABSTRACT The deflection of face angle is the most important factor affecting the accuracy in face
recognition, non-frontal faces make some face recognition systems lose their due functions,the existing
frontal face conversion methods often have the phenomenon of distortion and lack of identity. Aiming at
the above problems, this paper proposes an face-frontal network which combines heat map of key points of
face and improved attention mechanism. The network consists of a generator network and two discriminators
networks, and the thermal map of the key points of the frontal face is used as a priori condition to guide the
generation of the frontal face. In the generator part, the self-attention mechanism is introduced to obtain the
dependence between feature points and other position features, which enhances the illumination perception
ability of the network layer. At the same time, local attention is used in a discriminator to improve the local
detail generation ability of the network in the face. Compared with other advanced frontal face generation
methods, the proposed method has improved the accuracy of Rank-1 face recognition compared with other
methods. The recognition rate of Rank-1 on Multi-PIE data set with small angle deflection is higher than
other methods, and the average recognition rate of Rank-2 is 97.41%, which is higher than the advanced PIM
method. Experimental results show that the proposed method can generate positive faces with corresponding
identities from non-positive faces, which can be directly used in recognition tasks and has high recognition
accuracy.

INDEX TERMS Frontal face,Generation model,Attention mechanism,Face identification.

I. INTRODUCTION

THE generalization capability of face recognition models
is proportional to the scale of the training data [1].While

the accuracy is high for standard frontal faces, performance
declines in uncontrolled scenarios like profile faces, indicat-
ing that pose variation is a major factor affecting recogni-
tion rates. Current research on this issue can be categorized
into two main types. The first type involves directly extract-
ing pose-invariant facial features for recognition tasks [2],
[3]. These methods utilize metric learning to achieve pose-
invariant feature embeddings; however, the unbalanced nature
of pose variations complicates the attainment of ideal pose-
invariant features. Furthermore, multi-pose face recognition
requires retraining the model each time, adding to the com-

plexity of the process.

The second type of method synthesizes side-profile faces
into frontal standard faces for recognition tasks. Zhang et
al [4]. extracted local Gabor magnitude binary pattern fea-
tures from side-profile images to create feature histograms,
connecting corresponding mapping histograms to generate
frontal faces. 3D model-based methods [5]–[7] adjust facial
angles to some extent, but the synthesized faces exhibit no-
ticeable artificial artifacts, and images at high angles may lose
authenticity.

In recent years, Generative Adversarial Networks (GANs)
[8] have drawn considerable attention due to their powerful
image generation capabilities. Methods for generating facial
images based on generative models produce more realis-
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tic results than those generated by 3D methods, reducing
model complexity and computational load. Huang et al. [13]
proposed a Two-Pathway Generative Adversarial Network
(TP-GAN), which processes global facial contours and local
organ details through two distinct pathways. CAPG-GAN
[9] (Pose-Guided Photorealistic Face Rotation) employs pose
point embeddings and dual discriminators to guide the gen-
eration of faces from multiple angles. Xu Haiyue [28] intro-
duced a multi-pose face frontalization approach based on an
encoder-decoder architecture. The Unsupervised Normaliza-
tion Model (Face Normalization Model, FNM) [29] enhances
model generalization by utilizing a pre-trained face feature
extraction network and employs multiple local discrimina-
tors to increase penalties on the generator, generating frontal
faces with a uniform style. Xin Jingwei et al [30]. designed
a hierarchical representation integration inference network
that synthesizes frontal faces by combining low-level visual
information with high-level semantic information without
introducing prior knowledge.

However, the aforementioned methods based on encoder-
decoder structures or GANs struggle to capture global fea-
tures, as the nature of convolution can only capture local
information and fails to address long-range feature dependen-
cies. Additionally, a singular discriminator cannot effectively
supervise the generator’s output in greater detail. This paper
proposes a face frontalization model that combines pose point
guidance with a multi-attention mechanism, based on deep
learning and Generative Adversarial Networks (GANs). A
standard frontal facial coordinate map is selected as the pose
prior condition. The self-attention mechanism enhances the
generator’s ability to process global features, while the local
attention mechanism improves the discriminator’s supervi-
sory capability. The main contributions include: (1) Utiliz-
ing a standard single-channel frontal facial landmark map
as prior pose information, combined with a multi-attention
mechanism to guide the generation of frontal faces. (2) In-
corporating a self-attention module in the decoder to capture
long-range pixel dependencies, enhancing the generated im-
ages’ adaptability to lighting conditions and overall quality.
The discriminator employs a local attention mechanism to
supervise each local facial area separately, further improving
facial detail. (3) Training and testing results on the CAS-
PEAL-R1 and Multi-PIE datasets indicate that this method
can generate realistic frontalized faces for preprocessing in
profile face recognition, enhancing recognition capability.
Qualitative and quantitative experiments demonstrate that the
proposed method achieves excellent performance in facial
frontalization.

II. RELATED WORK
A. GENERATIVE ADVERSARIAL NETWORKS AND FACE
FRONTALIZATION
The GAN model proposed by Ian Goodfellow employs a
generator and a discriminator in adversarial learning, contin-
uously enhancing the learning capabilities of both until the
training concludes when the discriminator can no longer dis-

FIGURE 1. Generator of Model

tinguish between the generator’s outputs and the real inputs.
Mirza and Osindero [10] introduced conditional variables c
into GANs to control the direction of the generator’s outputs.
Arjovsky et al [11]. proposed WGAN to replace the original
Jensen-Shannon divergence, allowing the calculation of loss
even when the two image distributions do not overlap, thus
mitigating the vanishing gradient problem. To stabilize the
training process, Gulrajani et al [12]. introduced WGAN-
GP, which utilizes a gradient penalty term to constrain the
discriminator’s parameters, ensuring that the model satisfies
the Lipschitz condition.
GANs have also made significant advancements in gener-

ating frontal faces. The Two-Pathway GAN (TP-GAN) [13]
utilizes a dual-pathway architecture that combines global
facial contours and local information to generate frontal faces.
Zhao et al [14]. expanded upon TP-GAN by introducing
a domain adaptation strategy in the PIM model to address
facial recognition tasks under extreme poses. FF-GAN [15]
integrates 3D techniques with the GAN model, training on
3D models within the GAN framework to synthesize frontal
faces from non-frontal faces captured at extreme angles.

B. POSE POINT GUIDANCE AND ATTENTION
The TP-GAN and CAPG-GAN models utilize facial land-
mark maps to guide the generation of multi-pose faces. The
objective of this study is to generate frontal face views, so the
average positions of landmarks for frontal faces are taken as
the target pose guidance map. The MTCNN [24] is employed
to detect the positions of five key facial landmarks from the
input face, which are then output as a keypoint heatmap.
The attention mechanism attempts to learn from human

vision during the image perception process, where human
perception typically focuses on regions of interest. Attention
was first utilized in image classification with recurrent neural
networks [16] . Zhang et al [17]. were the first to incorporate
a self-attention mechanism into the GAN model, enhancing
the model’s ability to process global information and improve
image generation quality. The self-attention mechanism cap-
tures dependencies at different positions of a single sequence,
compensating for the limitations in feature correlation caused
by convolution operations. It has been shown to have a posi-
tive impact in computer vision. In this study, a self-attention
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FIGURE 2. Encoder and decoder of generator

FIGURE 3. Self-attention feature map process

FIGURE 4. Local discriminator structure

module is applied to optimize the generator, while a local
attention mechanism enhances the discriminator.

III. METHOD
The TP-GAN and CAPG-GAN models utilize facial land-
mark maps to guide the generation of multi-pose faces. The
objective of this study is to generate frontal face views, so the
average positions of landmarks for frontal faces are taken as
the target pose guidance map. The MTCNN [24] is employed
to detect the positions of five key facial landmarks from the

input face, which are then output as a keypoint heatmap.

The attention mechanism attempts to learn from human
vision during the image perception process, where human
perception typically focuses on regions of interest. Attention
was first utilized in image classification with recurrent neural
networks [16]. Zhang et al [17]. were the first to incorporate
a self-attention mechanism into the GAN model, enhancing
the model’s ability to process global information and improve
image generation quality. The self-attention mechanism cap-
tures dependencies at different positions of a single sequence,
compensating for the limitations in feature correlation caused
by convolution operations. It has been shown to have a posi-
tive impact in computer vision. In this study, a self-attention
module is applied to optimize the generator, while a local
attention mechanism enhances the discriminator.

A. GENERATOR NETWORK STRUCTURE

In this study, frontal keypoint heatmaps are utilized for syn-
thesizing frontal poses, using a face detector [24] to ob-
tain keypoint locations. Keypoints for profile faces and the
prepared standard frontal keypoints are collected, resulting
in two single-channel landmark heatmaps. These are then
combined with the input three-channel face image at the
channel level to form a five-channel feature map, which is
fed into the generator for training. As illustrated in Figure 1,
the original profile image I a, the original pose landmark map
Pa, and the frontal pose landmark map Pb are stacked along
the channel dimension before being input into the encoder to
obtain features. These features are then sent to the decoder to
generate the frontal image Î b.

The input and output function expressions of the generator
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FIGURE 5. (a) The local discriminator (b) Original discriminator

FIGURE 6. D2 discriminator process

are shown in Equations (1) and (2):

feature = Gencoder
(
I a + Pa + Pb

)
(1)

Î b = Gdecoder (feature) (2)

The generator consists of two parts: an encoder and a
decoder. The encoder extracts high-dimensional features of
the face, primarily for downsampling tasks. The decoder
reconstructs the frontal face corresponding to the identity
from the low-dimensional feature vectors. Skip connections
are used between the encoder and decoder to integrate multi-
scale features, effectively utilizing information from different
scales. The model components and network structure are
shown in Figure 2.

B. THE IMPROVED ENCODER SECTION
Due to the use of local filters in convolutional neural net-
works, their receptive fields are limited, making it difficult to
capture dependencies between distant pixels effectively. To
address this limitation, we incorporate self-attention before
the penultimate deconvolutional output layer in the decoder
section. The self-attention mechanism can directly compute
the relationships between any two positions in the feature
map, capturing global contextual information and enhancing
feature representation.

The core of the self-attention layer is to compute the de-
pendencies between pixels at distant positions in the feature
map and apply a nonlinear transformation. By introducing the
self-attentionmechanism, ourmodel can better capture global
features, enhancing the quality of the generated images. The
process for computing self-attention feature maps is illus-
trated in Figure 3. Non-local operations can directly compute

FIGURE 7. Results of different epoch on Multi-PIE training process

FIGURE 8. Frontalization of Faces at Different Angles for the Same Identity

the relationship between two positions in an image, ignoring
spatial position influences. The calculation is as follows:

yi =
1

c(x)

∑
∀j

f (xi, xj)g(xj) + xi (3)

Given an input image, the attention map is obtained by
multiplying it with the feature map. The weights of the feature
map are then normalized using the softmax function. Simul-
taneously, the original features are input into a convolutional
layer, reshaping the dimensions to yield a new feature map.
This new feature map is multiplied by the attention weights
and then standardized before being added to the original
feature map to produce the final result, where represents the
position of the feature map. In this paper, a self-attention layer
is added after the second-to-last deconvolution layer, dec3.
The output of dec3 is a 128×64×64 feature map. After the
self-attention layer, the original feature map is added to the
self-attention feature map to form the input of dec4, as shown
in the decoder section of Figure 2.

C. THE IMPROVED DISCRIMINATOR SECTION
The discriminator section also utilizes two models, D1 and
D2. Unlike the use of cross-entropy for loss calculation, this
paper employs the gradient penalty strategy ofWGAN-GP[9]
to optimize the discriminator, stabilizing the entire training
process. Considering the local specificity of facial data, we
introduce local attention improvements based on the whole
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FIGURE 9. Frontalization in smiling expression

FIGURE 10. Frontalization of CAS-PEAL-R1 data set

face. The input of discriminator D1 is divided into four local
regions: face, eyes, nose, and mouth, each fed into corre-
sponding local discriminator sections. The inputs and outputs
are depicted in Figure 5.

D1 is composed of four local discriminators, each con-
structed using the same neural network architecture. The
structure of each local discriminator is shown in Figure 4. The
network features three middle layers with Layer Normaliza-
tion (LayerNorm), followed by a fully connected layer that
outputs a score. The parameters of the fully connected layer
are determined based on the size of the cropped image.

The generated face Î b is cropped and fed into the corre-
sponding local discriminators, producing a score list for each
part. The scores in the list are then used to calculate the
loss function. The specific cropping dimensions depend on
the size of the generated image. The calculation process is
detailed in Figure 13.

Equation (4) is the calculation formula for the GP penalty
term, where x̃ is the generated image and x is the real image.

GP_Loss = E
x̃∽Pg

[D(x)]− E
x∽Pr

+[D(x)]+

λ E
x̃∽Px̃

[(||∇x̃D(x̃)|| − 1)
2
]

(4)

In D1, there areDface,Deyes,Dnose, andDmouth. In this study,
the face, eyes, nose, andmouth are cropped to sizes of 85×85,
41×101, 35×29, and 21×41, with dimensions H×W. After
inputting a real image X into D1, a segmentation function
crops the image into these four parts, which are then fed into

FIGURE 11. Different structures (attention mechanisms) generate results

FIGURE 12. Variation trend of generator loss

the corresponding local discriminators. Each discriminator,
following the network shown in Figure 4, outputs a scalar
value, or score. These four scalar scores form a score list st .
The average of these four scores is computed to obtain s1.
Similarly, the average score for the generated images is s2. By
applying the first part of Equation (4) to s1 and s2, the con-
ventional adversarial loss is determined. The second part of
Equation (4) is used to process the local positions separately
to obtain the gradient penalty term. These two components
are combined to yield the final GP_Loss, which is used to
update the parameters of the improved D1 discriminator. The
D2 discriminator retains its original structure, but the training
method also employs the gradient penalty (GP) strategy to
stabilize the training process.
Figure 6 illustrates the structure of the D2 discriminator,

which uses target pose embeddings as conditions. It pairs
target faces or generated faces as inputs to capture local
perceptual information. The input to the D2 discriminator
consists of a channel-wise overlay of frontal images and
keypoint heatmaps. This input is processed through a se-
ries of convolutional, normalization, and activation layers,
culminating in a sigmoid layer that produces a 6×6 single-
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FIGURE 13. local Discriminator train

FIGURE 14. Model training algorithm

channel probability map. Each position in the probability
map corresponds to a local region, capturing local perceptual
information effectively.

D. LOSS FUNCTION
We use a multi-scale pixel-level L1 loss to constrain content
consistency, formulated as follows:

Lpix =
1

S

3∑
S=1

1

WsHsC

Ws,Hs,C∑
w,h,c=1

∣∣∣Î bs,w,h,c − I bs,w,h,c
∣∣∣ (5)

TABLE 1. Rank-1 recognition rates on Multi-PIE dataset under Setting1

Method ±75° ±60° ±45° ±30° ±15° Avg
TP-GAN [18] 77.43 87.72 95.38 98.76 98.80 91.45
FF-GAN [20] 77.20 85.20 89.70 92.50 94.60 87.85
PIM1 [29] 92.50 96.60 98.60 99.30 99.40 97.28
PIM2 [29] 91.20 97.40 98.30 99.40 99.80 97.22
Our 88.26 94.30 98.97 99.70 99.87 96.84

TABLE 2. Rank-1 recognition rates on Multi-PIE dataset under Setting2

Method ±75° ±60° ±45° ±30° ±15° Avg
TP-GAN [18] 79.70 87.72 95.38 98.76 98.80 92.07
FF-GAN [20] 80.20 86.35 90.70 94.27 96.59 89.62
PIM1 [29] 92.60 96.72 98.63 99.41 99.50 97.37
PIM2 [29] 91.75 97.50 98.40 99.50 99.83 97.39
Our 91.00 97.20 99.24 99.72 99.91 97.41

S consists of 3 scales. In this study, feature maps are fused
at dimensions 32×32, 64×64, and 128×128. L1 pixel loss
is calculated separately for each of these scales. To integrate
prior knowledge of data distribution, reduce the smoothness
of synthetic images, and apply local attention, D1conditional
adversarial loss is used in the discriminator. The loss for
distinguishing local features of synthetic images is as follows:

LD1
adv = E

[
Dface

1

(
I b, Î b

)
+ Deye

1

(
I b, Î b

)]
+

E
[
Dnose

1

(
I b, Î b

)
+ Dmouth

1

(
I b, Î b

)] (6)

Each of the four local feature regions is discriminated sepa-
rately, and the parameters are updated based on the scores.
The loss for evaluating local structural reconstruction infor-
mation is as follows:

LD2
adv = E

[
logD2

(
I b,Pb

)]
+ E

[
log

(
1− D2

(
Î b,Pb

))]
(7)

This study uses the pre-trained Light-CNN29[23] to extract
facial features while preserving facial identity attributes. The
formula is as follows:

Lid =
∥∥∥Net (Î b)− Net

(
I b
)∥∥∥2

2
(8)

Net represents the identity extraction network. Î b and I b

denote the synthesized frontal face and the real frontal face,
respectively. ∥·∥2 is the L2 norm of their difference. Total
Variation (TV) regularization loss is responsible for removing
artifacts from the synthetic image, where C, H, W represent
the number of channels, image height, and width, respec-
tively.

Ltv =
C∑
c=1

W ,H∑
w,h=1

∣∣∣Î bw+1,h,c − Î bw,h,c
∣∣∣+ ∣∣∣Î bw,h+1,c − Î bw,h,c

∣∣∣ (9)

The overall loss is a weighted sum of the aforementioned
losses, with different loss weights controlled by their respec-
tive coefficients.

min
G

max
D1D2

L = λ1Lpix + λ2L
D1
adv + λ3L

D2
adv+

λ4Lid + λ5Ltv
(10)

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL SETUP
This study conducts experiments on two datasets. The first is
the widely used Multi-PIE [24] facial dataset, which includes
faces of 337 individuals captured from different angles and
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TABLE 3. Rank-1 recognition rates of different methods on CAS-PEAL-R1 dataset

Yaw Angle 0° ±15° ±30° ±45° Avg ±15° ±30° ±45° Avg 0 ±15° ±30° ±45° Avg
TP-GAN [18] 98.86 98.94 98.89 97.62 98.58 100.0 99.94 98.71 99.95 97.68 97.73 97.45 95.83 97.17
CR-GAN [26] 83.98 83.91 83.17 80.38 82.86 97.61 95.80 89.73 94.38 89.74 89.44 87.95 83.90 87.76
M2FPA [30] 99.38 99.42 99.30 98.53 99.16 100.00 99.94 99.36 99.77 98.60 98.69 98.58 97.84 98.43
Our 99.66 99.70 99.58 96.47 98.85 100.00 100.00 99.70 99.90 99.77 99.58 99.24 97.35 98.99

TABLE 4. Rank-1 recognition rate under different changes on Multi-PIE

Method ±75° ±60° ±45° ±30° ±15° Avg
Baseline 82.15 86.63 93.70 97.30 99.70 91.89
Local Attention 87.43 94.80 98.50 99.57 99.96 96.05
Self-Attention 86.35 93.88 97.85 99.21 99.92 95.44
Composite Attention 90.26 95.30 98.97 99.70 99.98 96.84

under various lighting conditions in a controlled indoor en-
vironment. In Setting 1, 250 individuals are used, with the
first 150 subjects’ faces for training and the remaining 100 for
testing. In Setting 2, all 337 individuals are involved, with the
first 200 used for training and the remaining 137 for testing.
The dataset includes samples at 11 angles ranging from -75°
to +75°. The second dataset is the CAS-PEAL-R1 [25], an
Asian facial dataset collected by the Chinese Academy of
Sciences. It contains various poses and lighting conditions
for 1,040 subjects. This dataset includes samples of both yaw
and pitch angles, enhancing the diversity of poses and training
samples. The first 500 subjects are used for the training set,
with the remaining 300 as the test set, ensuring no overlap.

The training method follows the standard GAN approach,
utilizing paired data for training, which includes a frontal face
and the corresponding profile face of the same identity I a, I b

. Let I a represent the frontal face and I b represent the profile
face. The generated frontal face Î b and the real frontal face I b

are both fed into the discriminator for evaluation. The training
procedure is outlined in Figure 14. All input face images
are aligned and cropped to a size of 128x128 pixels. Since
the faces in the CAS-PEAL-R1 dataset are grayscale images,
they are converted to RGB three-channel images using image
channel operations before being fed into the network. The net-
work model is implemented using the PyTorch deep learning
framework. The Adam optimizer is selected for training, with
the hyperparameters set as follows: learning rate = 2e-4, 1 =
0.5, and 2 = 0.999. The training process spans 50 epochs. The
weights of the loss function are set to: 1 = 10, 2 = 0.1, 3 = 0.1,
4 = 0.02, and 5 = 1e-4.

B. EXPERIMENTAL ANALYSIS
This section presents various frontal faces generated using
the improved model, trained and tested on the Multi-PIE
and CAS-PEAL-R1 datasets. For the Multi-PIE dataset, the
frontalization results for yaw angles are provided, while the
CAS-PEAL-R1 dataset also includes results for pitch angles.
Frontalization results are shown for faces with different an-
gles, identities, and expressions. The evaluationmetric used is
the Rank-1 recognition rate, demonstrating the effectiveness
of this frontalization method both qualitatively and quantita-

tively.
Results in Figure 7 show that after training for a certain

number of epochs, side faces can generate frontal faces that
preserve identity. In the early training stages, there may be
artificial artifacts and unrealistic traces in certain facial ar-
eas. For instance, the eye regions appear blurry in the first
and third rows of Figure 7(a). However, this issue improves
as training progresses. Figure 8 demonstrates frontalization
results for the same identity at different angles. The first
row shows four angles: -60°, -45°, -30°, and -15° from left
to right. It can be observed that even with large-angle devi-
ations, a frontal face view can be restored. Figure 9 shows
the frontalization results of faces with a smiling expression at
four different angles. It can be seen that the model effectively
corrects and maintains facial expressions in the frontal face.
Figure 10 presents the frontalization results for faces with
different pitch angles, in addition to yaw angles. Unlike the
Multi-PIE dataset, which only includes yaw variations, this
method successfully restores faces from the CAS-PEAL-R1
dataset to a standard frontal view, even from elevated angles.
This demonstrates the feasibility of frontalizing faces with
various poses and angles. This section tests the ability to
maintain identity after face frontalization, a key goal being
the consistency of identity between frontal and side views.
Pre-trained LightCNN is used to extract facial feature vectors
for comparison. As shown in Table 3, the proposed method
outperforms others at angles from +15° to ±45°. Although
PIM1 achieves the highest accuracy of 92.50% at +75°, our
method’s average accuracy is slightly lower than PIM due to
the impact of larger angle deviations. However, overall perfor-
mance is comparable to state-of-the-art methods. Analysis of
Table 4 indicates that under the setting-2 configuration, our
method performs exceptionally well, achieving an average
recognition rate of 97.41%. This improved performance is
attributed to the use of more training data in setting-2, en-
hancing the model’s capabilities. Table 5 presents the Rank-1
recognition rates of different models on the CAS-PEAL-R1
dataset. Our method achieves the highest average accuracy
for frontalization across different pitch angles.

C. ABLATION STUDY
In Figure 11, the input is a left-turned face at 60°. From left to
right, the columns represent the results with different atten-
tion mechanisms added. The second column is the baseline
model, the third column shows results with the discriminator
incorporating local attention, the fourth column adds only
self-attention, and the fifth column includes both attention
layers. The rightmost column is the ground truth. Table 6 lists
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the Rank-1 face recognition rates for different models. In this
study, methods with added attention mechanisms required
only 40 epochs to complete training, whereas those without
required 50, indicating that both attention mechanisms en-
hance learning speed. Figure 12 shows that the generator’s
total loss confirms stable convergence of the model.

V. CONCLUSION
This paper proposes a generative adversarial network com-
bining frontal pose keypoint guidance with attention mech-
anisms for generating frontal faces. The generator uses a U-
net encoder-decoder structure to integrate multi-scale facial
features. Input side-face images are overlaid with frontal pose
keypoints on the channel layer and fed into the generator
for feature extraction. To capture the global dependencies of
feature maps, a self-attention module is added to the decoder,
enhancing the network’s adaptability to lighting and other im-
age information. Two discriminators are used, one employing
local attention for supervised learning. The result is identity-
preserving frontal faces suitable for facial recognition and
other tasks like face editing and dataset expansion. Qualitative
and quantitative experiments confirm that combining pose
keypoints with attention mechanisms improves the quality of
generated images.
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