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ABSTRACT Colon cancer remains a leading cause of cancer-related mortality globally, necessitating early
and accurate diagnosis to improve patient outcomes. Traditional diagnostic methods rely heavily on manual
interpretation by pathologists, which can result in inaccuracies and delays in treatment. This study proposes
an innovative, automated approach to colon cancer diagnosis by integrating advanced machine learning
techniques with deep learning architectures. We employed EfficientNet, a state-of-the-art convolutional
neural network, to extract intricate features from histopathological images, alongside the Non-dominated
Sorting Genetic Algorithm II for optimal feature selection. This hybrid approach significantly enhances
diagnostic performance while reducing computational complexity. The model was evaluated using five
diverse datasets: Colon Cancer Histopathological Images, Kvasir, Kvasir-SEG, Hyper-Kvasir, and Endotect.
The results indicate that our method outperforms traditional models such as CNN, AlexNet, ResNet, and
GoogleNet, achieving an accuracy of 99.97% on the Colon Cancer Histopathological Images dataset.
These findings suggest that this novel approach can substantially enhance early detection and diagnosis
of colon cancer, providing a scalable solution to current diagnostic challenges. Ultimately, our study lays
the groundwork for future advancements in automated cancer diagnostics, contributing to improved patient
outcomes and more efficient healthcare delivery. The code and dataset for reproducing these results are
publicly accessible at https://github.com/Noushin-Saba/ColonCancerDetectionandDiagnosis.

INDEX TERMS CNN, Colon Disease, Cancer, EfficientNet, EfficientNet-NSGA-II, NSGAII

I. INTRODUCTION

CANCER remains one of the most prevalent and complex
diseases worldwide, affecting millions of lives each

year. Early detection is crucial for improving survival rates,
particularly for cancers like colon cancer, where treatment
is more effective when the disease is identified at an early
stage [1]. However, conventional diagnostic methods, such as
biopsies carry health risks, including bleeding and infection,
and are not always ideal for detecting early-stage cancers.
Furthermore, thesemethods can be invasive, time-consuming,
and costly, underscoring the urgent need for alternative, non-
invasive diagnostic tools [2]. Colon cancer, characterized by

the uncontrolled growth of cells in the colon, poses a signif-
icant challenge to global health. It often results from genetic
instability and the accumulation of various molecular alter-
ations, including abnormal activation of genes that regulate
cell growth and mitosis. The delay in diagnosis and treatment
remains a critical issue, contributing to cancer surpassing
heart disease as the leading cause of death across all age
groups. According to the World Health Organization, colon
cancer is the second leading cause of cancer-related deaths
globally and the third most frequently diagnosed cancer. In
2020, over 1.9 million new cases were reported, resulting in
more than 930,000 deaths, accounting for 9.4% of all cancer-
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related fatalities. Projections indicate that by 2040, there will
be 3.2 million new cases and 1.6 million deaths annually [3].
In Pakistan, the incidence rate for colon cancer is 4.4 per
100,000men and 3.9 per 100,000women,making it the fourth
most common cancer in the country and a major contributor
to years of life lost adjusted for disability [4]. Figure 1 shows
the colon with cancer and without cancer.

FIGURE 1. (a) and (b) Images of colon cancer; (c) and (d) Images without
colon cancer.

While image processing techniques are pivotal in diagnos-
ing colon diseases, careful analysis is crucial as improper
handling, such as denoising, can degrade feature quality and
lead to inaccurate classifications. Filters used during prepro-
cessing may inadvertently remove essential features, thereby
reducing their effectiveness in diagnosis [5]. Current methods
for colorectal cancer detection, particularly those employing
machine learning and deep learning approaches, have made
strides but still suffer from notable gaps. Many existing tech-
niques, especially those relying on CNN architectures, face
challenges related to feature redundancy, high computational
costs, and the black-box nature of deep learning models,
which limits their interpretability in clinical settings. More-
over, there is a lack of optimization in the feature selec-
tion process, leading to suboptimal performance due to the
presence of irrelevant or redundant features. Existing studies
often focus on limited datasets, reducing the generalizability
and robustness of the proposed models across diverse clinical
environments. Additionally, many previous works fail to ade-
quately address the balance between achieving high accuracy
andmaintaining computational efficiency, which is crucial for
real-time clinical application. Therefore, there is a need for
advanced, automated methods that can enhance the accuracy

and efficiency of colon cancer diagnosis.
To address these challenges, this paper proposes an inte-

grated approach that combines machine learning with neural
network training to improve feature extraction and disease
detection. The proposed study aims to bridge these gaps by
introducing a novel approach that leverages the strengths of
EfficientNet, a state-of-the-art CNN architecture, for feature
extraction, and NSGA-II, a multi-objective genetic algorithm,
for optimal feature selection. By integrating these two pow-
erful techniques, the study not only enhances diagnostic ac-
curacy but also reduces computational complexity, making
the model more suitable for practical deployment in clinical
settings. This hybrid model addresses the limitations of exist-
ing approaches byminimizing feature redundancy, improving
interpretability, and delivering superior performance across
multiple datasets. The innovation lies in the combination
of EfficientNet’s efficient learning capabilities with NSGA-
II’s robust optimization framework, which together ensure
that the proposed system can generalize well across diverse
imaging conditions and provide reliable early diagnosis for
colorectal cancer. The main contribution of this paper is listed
below.

• Introduced an innovative approach that integrates Effi-
cientNet for advanced feature extraction and NSGA-II
for optimal feature selection, addressing challenges like
feature redundancy and high computational costs. This
hybrid model demonstrates a significant leap in colon
cancer detection performance.

• Achieved lower computational complexity compared to
traditional models, making the system more efficient
and suitable for clinical applications in colon disease
detection.

• Conducted extensive evaluations on five publicly avail-
able datasets (Colon Cancer Histopathological Im-
ages, Kvasir, Kvasir-SEG, Hyper-Kvasir, and Endotect),
showcasing the model’s scalability, generalizability, and
robustness across various imaging conditions.

• Provided a scalable and robust diagnostic tool, offering
a foundation for future research to improve model inter-
pretability and clinical acceptance.

II. LITERATURE REVIEW
In this section, we explore a range of feature extraction
and classification techniques. This includes both traditional
handcrafted methods and advanced deep learning algorithms
that have been employed for the classification of images in
the context of colon disease. Colorectal cancer is one of
the leading causes of cancer related mortality worldwide,
making its early detection crucial for reducing death rates.
Traditionally, physicians have relied on manual methods such
as visual inspection during colonoscopy, biopsy, histopatho-
logical examination, and fecal occult blood tests (FOBT)
to detect and diagnose colorectal cancer [6]. While these
methods remain the gold standard, they are highly dependent
on the expertise of the physician and are prone to errors due
to human fatigue, subjective interpretation, and variability
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among pathologists [7]. Moreover, traditional approaches of-
ten require invasive procedures, which can be uncomfortable
for patients and carry risks such as bleeding or perforation
[8]. These challenges have driven the demand for automated
and non-invasive techniques that offer high sensitivity and
specificity while reducing human error and improving the
consistency of results [9]. In response to the limitations of
conventional methods, computer-aided detection (CAD) sys-
tems have emerged as promising tools for enhancing the accu-
racy and efficiency of colorectal cancer screening. These sys-
tems leverage image processing algorithms to assist clinicians
in detecting and characterizing polyps more reliably. Among
these methods, Convolutional Neural Networks (CNNs) have
become particularly prominent due to their ability to auto-
matically learn complex features from large datasets, enabling
precise detection and classification of polyps in colonoscopy
images [10].

CNNs have revolutionized medical image analysis [11],
[12] by providing state-of-the-art performance in detecting
and segmenting polyps. For example, recent studies have
shown that CNNs can achieve higher accuracy in polyp de-
tection compared to traditional image processing methods by
learning robust features directly from data [13], [14]. How-
ever, CNNs are not without limitations: they require large
amounts of labeled data for training, are prone to overfit-
ting, and often suffer from high computational costs [15].
Moreover, interpreting the features learned by CNN models
remains a significant challenge, as these models are often
perceived as "black boxes," with limited transparency into
the decision-making process. The lack of interpretability can
undermine clinical trust and hinder the adoption of deep
learning-based approaches in medical practice [16]. Further-
more, current approaches do not effectively address the issue
of feature redundancy and irrelevant data, which can lead to
decreased model performance. Most deep learning models
extract a high number of features, some of which may not be
relevant for the classification task. The presence of redundant
or irrelevant features increases computational complexity,
reduces model interpretability, and can adversely impact the
accuracy and efficiency of the diagnostic process [17]. These
gaps underscore the need for an approach that leverages the
strengths of deep learning for feature extraction while incor-
porating robust feature selection techniques to enhancemodel
performance and clinical applicability.

Despite the progress made, existing CADx systems and
hybridmodels still face several challenges.Many studies have
been conducted on separate datasets, leading to difficulties
in directly comparing performance outcomes. Moreover, the
lack of standardized datasets can result in models that are not
generalizable across different patient populations or clinical
settings [18], [19]. In addition, there is often a lack of ex-
plainability in these systems, which hinders their acceptance
among healthcare professionals [20]. Previous approaches to
colorectal cancer detection have several notable limitations.
Many earlier methods depend on a fixed set of handcrafted
features, requiring an in-depth understanding of specific im-

age characteristics [21]. These approaches often utilize tex-
ture analysis, where a limited number of local descriptors
extracted from images are fed into classifiers such as Support
Vector Machines (SVM) or Random Forests. Although some
studies have achieved moderate accuracy, these techniques
generally suffer from poor generalization and limited trans-
ferability across different datasets, reducing their effective-
ness when faced with inter-dataset variability [22]. Addi-
tionally, many studies have tested their models on a narrow
range of classes or less diverse datasets, which diminishes
the robustness and applicability of their findings [23]. For
example, research by Smith et al. (2020) was conducted on
a dataset lacking sufficient diversity, limiting its generaliz-
ability to real-world scenarios. Furthermore, a considerable
number of existing algorithms rely heavily on endoscopic and
histological data, which can restrict their practical utility [24].
The reliance on histological data, in particular, is not al-

ways be feasible due to the invasive nature of the procedures
or the specific clinical context, further limiting the applica-
bility of these methods [25]. In recent years, several novel
approaches have been explored to address these challenges.
Oliveira et al. [26] proposed a hybrid model combining trans-
fer learning with optimization algorithms to enhance fea-
ture selection in colorectal cancer detection, demonstrating
improved accuracy and computational efficiency. Similarly,
Kumar et al. [27] introduces CRCCN-Net, a lightweight
convolutional neural network for automated classification of
colorectal histopathological images, achieving comparably
good performances. However, the model’s reliance on spe-
cific datasets may limit its generalizability to diverse clinical
settings, and its performance on out-of-distribution samples
requires further investigation. These studies highlight the in-
creasing focus on optimizing deep learning models to balance
accuracy and efficiency, particularly through the use of fea-
ture selection techniques and hybrid models. However, many
of these approaches still face limitations. For instance, while
Alboaneen et al. [28] showed improved results, their model’s
performance deteriorated when tested on highly imbalanced
datasets, a common issue in medical imaging. Additionally,
interpretability remains a significant barrier for clinical adop-
tion, as highlighted by recent work from Xu et al. [29], who
emphasized the need for transparency in AI-driven medical
systems.
Despite significant advancements, existing methods face

persistent gaps, including feature redundancy, computational
inefficiencies, and lack of interpretability, as highlighted in
studies like [24] and [28]. Furthermore, the reliance on limited
datasets, as observed in [27], often compromises generaliz-
ability. Building on these insights, proposed study addresses
critical limitations of existing models by introducing a hybrid
approach that combines EfficientNet with NSGA-II for opti-
mized feature extraction and selection. Unlike previous stud-
ies that have primarily focused on CNN-based approaches
without robust feature selection, our model reduces feature
redundancy, improves interpretability, and enhances clinical
applicability by selecting only the most relevant features
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throughNSGA-II.While prior research explored hybridmod-
els, few have incorporated evolutionary algorithms such as
NSGA-II to refine the feature selection process comprehen-
sively [30], [31]. This study also enhances model scalability
and efficiency, leveraging EfficientNet, which has demon-
strated superior performance to traditional CNNs in medical
imaging tasks. Additionally, incorporating NSGA-II allows
us to address feature relevance andmodel transparency, align-
ing with Fang et al.’s [32] recommendation for feature selec-
tion techniques that improve model interpretability in diag-
nostic contexts. By critically evaluating recent advancements
and challenges in colorectal cancer detection, this study ex-
tends the current body of knowledge by introducing a hybrid,
interpretable approach to deep learning. The presented model
not only aims to improve accuracy but also addresses gen-
eralizability and interpretability, responding to the broader
demand for clinically viable, AI-based diagnostic solutions
in colorectal cancer detection.

III. METHODOLOGY

In this study, a hybrid approach is proposed that com-
bines EfficientNet and the nondominated classification ge-
netic algorithm II (NSGA-II) for the early diagnosis of
colon cancer. Histopathological images from five diverse
datasets—Colon Cancer Histopathological Images, Kvasir,
Kvasir-SEG,Hyper-Kvasir, and Endotect—were processed to
extract complex features using EfficientNet, a state-of-the-
art convolutional neural network. These features were then
optimized via NSGA-II to reduce computational complexity
and improve model performance. The effectiveness of the
proposed method was evaluated against conventional models,
including CNN,AlexNet, ResNet, andGoogleNet, usingmet-
rics such as accuracy, precision, recall, F1 score, and AUC.

A. DATASETS

This study utilized five diverse datasets summarized in Ta-
ble 1, Lung and Colon Cancer Histopathological Images
[33], Kvasir Dataset [34], Kvasir-SEG Dataset [35], Hyper-
Kvasir Dataset [36], and Endotect Dataset [37] to com-
prehensively evaluate the performance of the proposed ap-
proach.These datasets, consisting of images generated by
different colonoscopy devices and prepared in various labora-
tories, provide a broad and varied foundation for assessment.
By training, validating, and testing the system on these het-
erogeneous image sets, the goal was to enhance its robustness
and ensure adaptability across a wide range of imaging con-
ditions.

TABLE 1. Summary of the datasets used in this study.

Dataset Images Classes Modality Data Source
Lung
and
Colon
Can-
cer

25,000 Lung benign
tissue, Lung
adenocarcinoma,
Lung squamous
cell carcinoma,
Colon
adenocarcinoma,
Colon benign tissue

Histopathological
Images

Histopathology
repositories

Kvasir
Dataset

8,000 Dyed lifted
polyps, Dyed
resection margins,
Esophagitis,
Normal cecum,
Normal pylorus,
Normal z-line,
Polyps, Ulcerative
Colitis

Endoscopic Im-
ages

Collected at
Vestre Viken
Health Trust,
Norway

Kvasir-
SEG
Dataset

1,000 Polyps Endoscopic Im-
ages

Collected at
Vestre Viken
Health Trust,
Norway

Hyper-
Kvasir
Dataset

110,079 Barretts, Bbps-0-1,
Bbps-2-3, Dyed
lifted polyps, Dyed
resection margins,
Hemorrhoids,
Ileum, Impacted
stool, Normal
cecum, Normal
pylorus, Normal z-
line, Oesophagitis-
a, Oesophagitis-b-
d, Polyp, Retroflex-
rectum, Retroflex-
stomach, Short-
segment-barretts,
Ulcerative-colitis-
0-1, Ulcerative-
colitis-1-2,
Ulcerative-colitis-
2-3, Ulcerative-
colitis-grade-1,
Ulcerative-
colitis-grade-2,
Ulcerative-colitis-
grade-3

Endoscopic Im-
ages

Collected at
Vestre Viken
Health Trust,
Norway

Endotect
Dataset

1,200 Polyps Endoscopic Im-
ages

Images from
Hyper-Kvasir

1) Lung and Colon Cancer Histopathological Images
The dataset [33] used in this study consists of 25,000
histopathological images across five classes, with each class
containing 5,000 images. The images are 768 x 768 pixels in
size and are in JPEG format. Originally, the dataset included
750 validated and HIPAA-compliant images of lung tissue
(250 benign, 250 adenocarcinomas, and 250 squamous cell
carcinomas) and 500 images of colon tissue (250 benign and
250 adenocarcinomas). To expand the dataset, the Augmentor
package was employed, increasing the total number of images
to 25,000. The five classes in the dataset are: lung benign
tissue, lung adenocarcinoma, lung squamous cell carcinoma,
colon adenocarcinoma, and colon benign tissue. For this
research, only the colon adenocarcinoma and colon benign
tissue classes were used for model training and evaluation.
Sample images of the data set, including benign tissue of
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the colon (denoted colonn) and adenocarcinoma of the colon
(denoted colonca), are displayed in Figure 2. These images
provide a visual representation of healthy versus cancerous
colon tissue, highlighting the key differences captured in the
histopathological analysis.

FIGURE 2. Sample histopathological images from the dataset. Colon
benign tissue (colonn) and Colon adenocarcinoma (colonca).

2) Kvasir Dataset
The dataset comprises 8,000 images categorized into eight
distinct classes, with 1,000 images per class. These images,
varying in resolution from 720x576 to 1920x1072 pixels, are
organized into folders based on their content. The data set
includes both anatomical landmarks and pathological find-
ings, along with images related to the removal procedures of
the lesion. Anatomical landmarks such as the Z-line, pylorus,
and cecum are featured, while pathological findings include
esophagitis, polyps, and ulcerative colitis. In addition, lesion
removal images, such as "dyed and lifted polyps" and "dyed
resection margins", are also provided. Sample images from
the dataset are shown in Figure 3, illustrating the variety of
content and image quality.

3) Kvasir-SEG dataset
The Kvasir-SEG dataset, with a total size of 46.2 MB, com-
prises 1,000 polyp images along with their corresponding
ground truth annotations sourced from the Kvasir Dataset v2.
The images vary in resolution from 332x487 to 1920x1072
pixels and are encoded in JPEG format to facilitate efficient
online browsing. Each image and its associated mask are
organized into separate folders, with identical filenames to
ensure easy reference. Sample images from the dataset are
shown in Figure 4.

4) Hyper-Kvasir Dataset
The Hyper-Kvasir dataset, publicly available and developed
using Olympus and Pentax imaging devices at Vestre Viken
Hospital Trust, Norway, comprises 110,079 images and 374
videos. Verified by Vestre Viken Hospital, the Cancer Reg-
istry of Norway, and Karolinska University Hospital in Swe-
den, this comprehensive dataset includes a broad collection
of images categorized into four distinct parts: labeled im-
age data, unlabeled image data, segmented image data, and

FIGURE 3. Sample images from the Kvasir dataset. Anatomical
landmarks: Z-line, pylorus, and cecum. Pathological findings: esophagitis,
polyps, and ulcerative colitis. Lesion removal images: dyed and lifted
polyps, and dyed resection margins.

FIGURE 4. Sample images from the Kvasir-SEG dataset. Polyp images with
varying resolutions.

annotated video data. For this study, 800 images of polyps
were utilized, with expert review classifying them into hy-
perplastic and adenomatous categories. Although the dataset
does not include subclass information for polyps, it provides
segmentation masks for 1,000 polyp images, which were
also verified by experts. Sample images from the dataset are
shown in Figure 5, illustrating anatomical landmarks (cecum,
ileum, retroflex-rectum) and pathological findings (hemor-
rhoids, polyps, and ulcerative colitis).

5) Endotect Dataset
The dataset is divided into four distinct categories: labeled
image data, unlabeled image data, segmented image data, and
annotated video data. It includes 110,079 images and 373
videos, capturing a range of anatomical landmarks, as well
as pathological and normal findings. In total, the dataset en-
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FIGURE 5. Sample images from the Hyper-Kvasir dataset. Anatomical
landmarks: cecum, ileum, and retroflex-rectum. Pathological findings:
hemorrhoids, polyps, and ulcerative colitis.

compasses over 1.1 million images and video frames. Sample
images from the dataset are shown in Figure 6.

FIGURE 6. Sample images from the Endotect Dataset.

B. ARCHITECTURE OF PROPOSED SYSTEM
The proposed system introduces a novel hybrid approach
combining the strengths of EfficientNet for feature extraction
and NSGA-II for optimal feature selection, tailored specifi-
cally to the task of colon cancer detection. The process begins
with the input of histopathological images, which undergo a
comprehensive preprocessing stage. This involves converting
images to RGB format, resizing them to a standardized di-
mension of 244x244 pixels to ensure consistency across the
dataset, and converting them to tensor format. The images are
then normalized using the mean and standard deviation to en-
hance the model’s ability to learn meaningful patterns while
minimizing the effects of variability in the input data. Next,
the preprocessed images are fed into the EfficientNet model,
a highly efficient convolutional neural network architecture
known for its capability to achieve superior performance with
fewer parameters. EfficientNet is employed to automatically
extract high-level features that represent the complex texture,
structure, and morphological characteristics of both healthy
and cancerous colon tissues. This step is crucial for capturing
subtle differences that are essential for accurate classification.

To further enhance the classification accuracy, the NSGA-
II is employed for feature selection. NSGA-II is a robust
multi-objective evolutionary algorithm designed to select the
most relevant features while eliminating redundant or non-
informative ones. This step optimizes the feature set, im-
proving the classifier’s efficiency by reducing the dimen-
sionality of the data while maintaining its discriminative
power. The selected features are then processed by a SVM
classifier, which is chosen for its effectiveness in handling
high-dimensional data and its ability to maximize the margin
between different classes. The SVM classifier categorizes the
images into "Healthy" or "Colon Cancer" categories, provid-
ing an initial diagnosis based on the extracted and optimized
features. Finally, the performance of the proposed system is
evaluated using several critical metrics, including the confu-
sion matrix, accuracy, precision, recall, F1 score, area under
the curve (AUC) and receiver operating characteristic curve
(ROC). These metrics provide a comprehensive evaluation
of the system’s diagnostic capabilities, ensuring that it not
only achieves high accuracy but also performs consistently
across various test scenarios. The integration of EfficientNet
and NSGA-II within this architecture presents a promising
approach for early and accurate detection of colon cancer,
potentially enhancing clinical decision-making and patient
outcomes. Figure 7 shows the architecture of the proposed
system.

FIGURE 7. Architecture of the proposed system.

C. EFFICIENTNET
In this section, the proposed model’s approach to learning
and representing endoscopic features of colon diseases is
described. The EfficientNet architecture is utilized for feature
extraction in the proposed model, capitalizing on its ability
to capture intricate patterns and representations from images
without the need for fine-tuning. EfficientNet is renowned
for its highly efficient scaling and performance, achieved
through a compound scaling method that uniformly scales all
dimensions of depth, width, and resolution. In this approach,
the pretrained EfficientNet model, which has been trained
on a large dataset, is leveraged to extract features from the
endoscopic images of colon diseases. By using the output
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from the model before the final classification layer as feature
vectors, the rich, hierarchical representations learned during
its initial training are effectively utilized. The pretrained fea-
tures provide a sufficiently meaningful representation of the
images for this specific task, enabling effective classification
without necessitating additional fine-tuning. The Colorectal
Disease Classification Using EfficientNet-NSGA-II architec-
ture comprises seven blocks, which are fundamental com-
ponents of EfficientNet and are based on Mobile Inverted
Bottleneck Convolutions (MBConv). The process begins with
an initial convolutional layer that applies a 2D convolution
with 32 filters, a kernel size of 3x3, and a stride of 1. This
layer extracts initial low-level features from the image. The
subsequent step normalizes the output from the convolutional
layer to accelerate training and enhance stability. Finally, the
SiLU (Sigmoid Linear Unit) activation function is applied
to introduce non-linearity. The SiLU activation function is
mathematically defined as:

SILU(x) = x · 1

1 + e−x (1)

EachMBConv block is composed of several layers, includ-
ing depthwise separable convolutions, batch normalization,
activation functions, and Squeeze-and-Excitation (SE) layers.
Specifically, MBConv1 applies depthwise convolution with a
depthwise filter, which emphasizes spatial information. Due
to a stride of 2, the output size changes, and the feature maps
are normalized. The SiLU (Sigmoid Linear Unit) activation
function is then applied to the normalized output. Addition-
ally, the block adjusts channel weights through a squeeze
operation (global average pooling) followed by an excitation
step, which involves two fully connected layers with sigmoid
activation. The output of MBConv1 is thus refined through
these processes to capture essential features effectively.

Squeeze =
1

H ×W

H∑
i=1

W∑
j=1

X(i, j) (2)

Excitation = σ (W2 · ReLU (W1 · Z)) (3)

In these equations, H and W represent the height and
width of the feature maps, X(i, j) denotes the input feature
map, and W1 and W2 are the weights of the fully connected
layers. MBConv6 has a similar structure to MBConv1, but
includes a higher expansion ratio, using six times more filters
for depthwise convolution to capture more complex patterns.
The stride and kernel sizes are varied across layers to pro-
gressively reduce the spatial dimensions. The output feature
map generated by the model consists of 1,280 channels,
representing a high-dimensional feature space that captures
various learned attributes of the input image. This feature map
is then processed by the final 1×1 convolutional layer, which
reduces each spatial position across these channels into a sin-
gle vector. As a result, this layer consolidates the information,
producing a feature vector with 1,280 values. Thus, for each
input image, the model generates a 1,280-dimensional feature
vector, effectively summarizing the most critical aspects of

the image in a compact form. The detailed working of the
proposed EfficientNet architecture is presented in Figure 8.

FIGURE 8. The proposed architecture of EfficientNet.

D. NON-DOMINATED SORTING GENETIC ALGORITHM II
To achieve feature selection, the NSGA-II algorithm is em-
ployed to solve two mutually exclusive objectives: maximiz-
ing classification accuracy and minimizing the number of
features. This process helps to reduce the size of the feature
set from 1,280 to a more manageable 641 features, preserving
only the most significant features for the task.
The algorithm begins by initializing a population:

P(0) = {P(0,1),P(0,2), . . . ,P(0,N)} (4)

where N = 25 is the population size, and each individual
P0,i represents a random binary subset of the features F =
{F0,F1, . . . ,Fd} of dimensionality d .
Each P0 is represented as a binary string:

P(0,i) = {x(1,i), x(2,i), . . . , x(d,i)} (5)

where x(j,i) ∈ {0, 1},∀j = 1, 2, . . . , d .
The crowding distance for each individual to maintain

diversity is calculated using the following equation:

Dj =

2∑
m=1

fm(P(i,j+1))− fm(P(i,j−1))

f max
m − f min

m
(6)

where f max
m and f min

m are the maximum and minimum values
of the objective fm in the current front.
Pairs of individuals are selected based on their rank and

crowding distance, with the individual having a lower rank or
higher crowding distance being chosen.
Perform crossover to generate offspring:

Offspring(i,j) = Crossover(P(i,j),P(i,k)) (7)

where P(i,j) and P(i,k) are selected parents.
Mutate the offspring to introduce variability:

Offspring(i,j) = Mutate(Offspring(i,j)) (8)
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Each gene in the offspring has a small probability of flipping
from 0 to 1 or from 1 to 0.

Combine the parent population Pi and the offspring popu-
lation Qi and select the best N individuals based on rank and
crowding distance to form the new population P(i+1):

P(i+1) = Best(Pi ∪ Qi) (9)

The algorithm iterates through generations until a stopping
criterion is met (e.g., maximum number of generations or
convergence of the Pareto front).

The final Pareto front F∗ is obtained, containing the non-
dominated solutions:

F∗ = {P(i,j) | rank(P(i,j)) = 1} (10)

Choose the solution P(i,j) from the Pareto front F∗ that
provides the desired trade-off between classification accuracy
and feature subset size:

Fopt = arg max
P(i,j)∈F∗

(
λ · f1(P(i,j))− (1− λ) · f2(P(i,j))

)
(11)

where λ is a weighting factor reflecting the user’s preference
between accuracy and feature reduction.

E. PROPOSED ALGORITHM
The overall proposed approach, EfficientNet-NSGA-II algo-
rithm, is outlined below.

The proposed approach, as outlined in Algorithm, begins
with initializing the input tensor X of shape (B,H ,W ,C),
where B denotes the batch size, H the height, W the width,
and C the number of channels. The preprocessing stage in-
volves applying a stem convolution operation with k filters,
a kernel size of 3 × 3, and a stride of 2, followed by batch
normalization to stabilize and accelerate the training process.
Next, themodel applies a series ofMBConv blocks, which are
the core components of the EfficientNet architecture. Each
MBConv block performs depthwise separable convolution
and includes a Squeeze-and-Excitation (SE) layer to capture
both spatial and channel-wise features. These blocks are se-
quentially applied, with each block building upon the output
of the previous one. The application of scaling factors αi, βi,
and γi adjusts the width (number of filters), depth (number of
layers), and resolution (input image size), respectively. After
feature extraction, global average pooling is applied to the
final featuremapXlast to reduce its dimensionality, resulting in
a feature vector XGAP. This feature vector is then subjected to
feature selection using the NSGA-II algorithm. The NSGA-
II algorithm initializes a population with random subsets of
features, evaluates each individual based on classification
accuracy and feature count, and ranks the population based
on Pareto dominance and crowding distance. This process
involves selection, crossover, and mutation to create a new
population, iterating until convergence to find the optimal
feature subset. The optimal feature subset Fopt is then used to
train a SVM classifier with a polynomial kernel. The trained
SVM model predicts class labels based on Fopt. Finally, the

1: Initialize Input Tensor
2: X ← Input Tensor of Shape (B,H ,W ,C)
3: Perform Stem Convolution and Batch Normalization
4: Xstem ← Conv2D(X ,filters = k, kernel_size =

3, stride = 2)
5: Xstem ← BatchNorm(Xstem)
6: Apply MBConv Block with Depthwise Separable

Convolution
7: for each MobileNet block i in total layers do
8: Xi ← MBConv(Xi−1,filters, kernel_size, stride, expansion_factor,SE_ratio)
9: Xi ← Xi−1 + SE(Xi−1)
10: end for
11: Scaling Factors
12: width factor: αi (applied to filters)
13: depth factor: βi (applied to number of layers)
14: resolution factor: γi (applied to input image size)
15: Global Average Pooling
16: XGAP ← GlobalAveragePooling2D(Xlast)
17: Extract Feature Map
18: F ← XGAP

19: Apply NSGA-II
20: Initialize Population
21: P0 ← Initialize Population with Random Subsets of F
22: Evaluate Population
23: for each individual pi ∈ P0 do
24: Compute Objectives f1(pi), f2(pi), . . . , fm(pi)
25: end for
26: Non-dominating Sorting and Crowding Distance Cal-

culation
27: Rank population based on Pareto dominance
28: Compute crowding distance:

Dj =

2∑
m=1

fm(P(i,j+1))− fm(P(i,j−1))

f max
m − f min

m
(12)

29: Selection, Crossover, and Mutation
30: Create new population Pi+1 by performing selection,

crossover, and mutation
31: Iterate Until Convergence
32: Repeat evaluation and selection steps until convergence

criteria are met
33: Extract Optimal Feature Subset
34: Fopt ← Select optimal feature subset from the final Pareto front
35: Train SVM Classifier
36: Train a Support Vector Machine (SVM) classifier using

Fopt with a polynomial kernel
37: Prediction Using SVM
38: Y ← SVM.predict(Fopt)
39: Return Output
40: Return Y (predicted class labels)
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predicted class labels Y are returned as the output of the
proposed method.

F. NETWORK TRAINING
The experimental setup has been comprehensively detailed to
ensure reproducibility and clarity. All images were resized to
224×224 pixels and normalized using the mean and standard
deviation of the dataset. Augmentation techniques, including
rotation, flipping, and zooming, were applied to enhance
dataset diversity. The EfficientNet backbone was initialized
with pre-trained weights, using a batch size of 32, a learning
rate of 0.001, a weight decay of 0.00001, and a momentum
of 0.9. For NSGA-II, the population size was set to 25, with
25 generations, and crossover andmutation probabilities were
optimized for feature selection. The training utilized a 70/30
split, where 70% of the data was allocated for training and
validation, and 30% was reserved for testing. The evaluation
metrics included accuracy, precision, recall, F1-score, area
under the ROC curve (AUC), and computational complexity.

IV. RESULTS AND DISCUSSION
In this section, the performance of the proposed method is
compared with several established deep learning-based image
classification approaches, including CNN, AlexNet, ResNet,
GoogleNet, and LeNet. These approaches are commonly used
in the field of deep learning, although specific research tar-
geting colorectal diseases is limited. Thus, the comparison is
extended to related tasks within the field. Accuracy is a crit-
ical metric for evaluating a model’s reliability, as it indicates
the model’s effectiveness in classifying data accurately.

Table 2 presents the accuracies of the proposed method
alongside the comparative approaches across various
datasets.

TABLE 2. Accuracies for Proposed and Comparative Approaches on
Standard Datasets

Feature Extrac-
tion

Colon
Cancer
Histopatho-
logical
Images

Kvasir
Dataset

Kvasir-
SEG
Dataset

Hyper-
Kvasir
Dataset

Endotect
Dataset

CNN 85.10% 65.00% 58.33% 58.25% 63.00%
AlexNet 94.07% 80.67% 79.67% 79.94% 78.00%
ResNet 93.77% 81.67% 80.67% 79.61% 81.67%
LeNet 76.60% 58.00% 58.33% 70.23% 65.33%
GoogleNet 90.60% 83.33% 82.00% 80.26% 80.33%
Proposed
(EfficientNet
+ NSGA-II)

99.97% 90.67% 92.67% 88.67% 89.33%

The results demonstrate that the proposed method (Effi-
cientNet + NSGA-II) consistently outperforms the compar-
ative approaches across all datasets. Specifically, it achieves
an exceptional accuracy of 99.97% on the Colon Cancer
Histopathological Images, 90.67% on the Kvasir Dataset,
92.67% on the Kvasir-SEG Dataset, 88.67% on the Hyper-
Kvasir Dataset, and 89.33% on the Endotect Dataset. These
accuracies are notably higher compared to the other methods,
including AlexNet, ResNet, and GoogleNet, which also show

strong performance but do not match the accuracy levels
attained by the proposed approach. A clearer understanding
of this accuracy comparison is illustrated in Figure 9.

FIGURE 9. Accuracy comparison of proposed and comparative
approaches.

A. COMPUTAIONAL COMPLEXITY ANALYSIS

Computational complexity assesses the time and memory re-
sources an algorithm requires to solve a problem, determining
its efficiency [38]. Lower complexity means the algorithm
uses fewer resources, making it ideal for real-time or large-
scale applications [39]. Table 3 shows the analysis and com-
pares the computational complexity of various models ap-
plied to datasets, including Colon Cancer Histopathological
Images, Kvasir, Kvasir-SEG, Hyper-Kvasir, and Endotect.
The evaluation of various models, including CNN, AlexNet,
ResNet, LeNet, GoogleNet, and the proposed EfficientNet
combined with NSGA-II, highlighted significant differences
in computational complexity across datasets. In particular,
CNN exhibited relatively high complexity, ranging from 0.48
to 0.53 seconds for processing different datasets. AlexNet
demonstrated reduced complexity, with values between 0.31
and 0.38 seconds, suggesting a more efficient feature ex-
traction process. ResNet’s unique residual learning architec-
ture enabled it to achieve greater efficiency, with complexity
values ranging from 0.24 to 0.28 seconds, showcasing its
ability to maintain performance while minimizing compu-
tational demands. GoogleNet’s results were comparable to
those of ResNet, with complexity ranging from 0.34 to 0.38
seconds. LeNet, while traditional, still exhibited moderate
complexity, ranging from 0.41 to 0.47 seconds, which reflects
its limitations compared to the more advanced architectures.
In stark contrast, the proposed EfficientNet combined with
NSGA-II achieved the lowest complexity overall, with values
between 0.19 and 0.23 seconds. This notable reduction in
computational time across all datasets illustrates its superior
performance and efficiency, marking it as a promising ap-
proach in the realm of feature extraction for histopathological
images and other medical datasets.
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TABLE 3. Computational complexity of proposed and comparative
approaches in seconds.

Feature Extrac-
tion

Colon
Cancer
Histopatho-
logical
Images

Kvasir
Dataset

Kvasir-
SEG
Dataset

Hyper-
Kvasir
Dataset

Endotect
Dataset

CNN 0.48 0.50 0.49 0.53 0.51
AlexNet 0.31 0.35 0.34 0.38 0.37
ResNet 0.25 0.28 0.27 0.24 0.26
LeNet 0.42 0.44 0.41 0.43 0.47
GoogleNet 0.34 0.37 0.35 0.38 0.37
(EfficientNet +
NSGA-II)

0.19 0.21 0.20 0.23 0.22

The proposed method demonstrates the lowest computa-
tional time compared to alternative approaches, as evidenced
by our comprehensive comparison. This efficiency not only
enhances the practicality of the colon cancer detection pro-
cess but also provides significant benefits in terms of rapid
and accurate diagnosis. The reduced computational overhead
of proposed method ensures timely results, making it a highly
effective tool for early cancer detection and improving overall
diagnostic workflow. Figure 10 shows a clearer understanding
of proposed and comparative approaches along with their
computational time.

FIGURE 10. Computational complexity comparison of proposed and
comparative approaches.

B. PERFORMANCE METRICS COMPARISON
To gain deeper insights into the proposed study, a compre-
hensive comparison was conducted against several existing
approaches using key performance metrics: Precision, Recall,
F1 Score, and AUC. These metrics provide a detailed under-
standing of how effectively the models classify data, allowing
evaluation of their accuracy, sensitivity, and overall diag-
nostic capability. By examining these metrics, the strengths
and limitations of each method are assessed, highlighting
the superiority of the proposed model in detecting colon
disease. All experiments were conducted under consistent
conditions, maintaining identical parameters and using the

same quantity of augmented and validation datasets across
all models. While all architectures demonstrated comparable
performance, the proposed model EfficientNet + NSGA-II
emerged with the highest accuracy. Table 4 presents a detailed
view of performance metrics of comparative approaches on
different datasets.

TABLE 4. Performance Metrics of Comparative Approaches

Metric Colon
Cancer
Histopatho-
logical
Images

Kvasir
Dataset

Kvasir-
SEG
Dataset

Hyper-
Kvasir
Dataset

Endotect
Dataset

CNN
Precision 0.9090 0.6479 0.5663 0.5837 0.6599
Recall 0.7717 0.3651 0.9753 0.8095 0.6139
F1 Score 0.8348 0.4670 0.7166 0.6783 0.6361
AUC 0.9199 0.7013 0.7524 0.6562 0.6685

AlexNet
Precision 0.9904 0.8036 0.8061 0.8011 0.7987
Recall 0.9904 0.7143 0.8210 0.8393 0.7785
F1 Score 0.9904 0.7563 0.8135 0.8198 0.7885
AUC 0.9996 0.8834 0.8947 0.8854 0.8687

ResNet
Precision 0.9959 0.7795 0.8095 0.7933 0.8199
Recall 0.9993 0.7857 0.8395 0.8452 0.8354
F1 Score 0.9976 0.7826 0.8242 0.8184 0.8276
AUC 0.9999 0.8986 0.9048 0.8960 0.9108

LeNet
Precision 0.7894 0.0000 0.5787 0.7468 0.7143
Recall 0.7095 0.0000 0.8395 0.6845 0.5696
F1 Score 0.7473 0.0000 0.6851 0.7143 0.6338
AUC 0.8168 0.5360 0.6510 0.7264 0.6720

GoogleNet/Inception V1
Precision 0.9932 0.8333 0.8140 0.7861 0.7929
Recall 0.9986 0.7540 0.8642 0.8750 0.8481
F1 Score 0.9959 0.7917 0.8383 0.8282 0.8196
AUC 0.9999 0.9187 0.8968 0.8867 0.8981

Proposed (EfficientNet + NSGA-II)
Precision 0.9993 0.8889 0.9268 0.8634 0.8750
Recall 1.0000 0.8889 0.9383 0.9405 0.9304
F1 Score 0.9997 0.8889 0.9325 0.9003 0.9018
AUC 1.0000 0.9457 0.9623 0.9333 0.9360

The Table 4 presents a comprehensive comparison of
performance metrics Precision, Recall, F1 Score, and AUC
across several models, including CNN, AlexNet, ResNet,
LeNet, GoogleNet/Inception V1, and the proposed method
(EfficientNet + NSGA-II), evaluated on five datasets: Colon
Cancer Histopathological Images, Kvasir Dataset, Kvasir-
SEG Dataset, Hyper-Kvasir Dataset, and Endotect Dataset.
The results demonstrate that the proposed model consistently
outperforms all comparative approaches across all datasets.
For the Colon Cancer Histopathological Images dataset, the
proposed method achieves near-perfect scores with a Preci-
sion of 0.9993, Recall of 1.0000, F1 Score of 0.9997, and
AUC of 1.0000. Similarly, on the Kvasir Dataset, it maintains
a balanced performance with a Precision, Recall, and F1
Score of 0.8889 each, and an AUC of 0.9457, outperforming
othermodels. On theKvasir-SEG dataset, the proposedmodel
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continues to show superior results with a Precision of 0.9268,
Recall of 0.9383, F1 Score of 0.9325, and an AUC of 0.9623.
In the Hyper-Kvasir Dataset, it achieves a high Precision
of 0.8634, Recall of 0.9405, F1 Score of 0.9003, and an
AUC of 0.9333, demonstrating its robustness. Finally, for the
Endotect Dataset, the proposed method scores a Precision
of 0.8750, Recall of 0.9304, F1 Score of 0.9018, and AUC
of 0.9360. Overall, these results highlight that the proposed
method (EfficientNet + NSGA-II) consistently provides bet-
ter performance and reliability for detecting colon disease
than traditional models, proving its effectiveness for practical
medical applications.

The evaluation of the proposed model, which integrates
EfficientNet with NSGA-II, was performed using key per-
formance metrics across multiple datasets: Colon Can-
cer Histopathological Images, Kvasir, Kvasir-SEG, Hyper-
Kvasir, and Endotect. A 70:30 split between training and test-
ing data was used to ensure a balanced and thorough assess-
ment. The results show that the proposed model consistently
outperforms other comparative models (CNN, AlexNet,
ResNet, LeNet, and GoogleNet/Inception V1) across all
datasets. Figure 11 (a) and (b) presents the ROC curve and
confusion matrix for the Colon Cancer Histopathological
Images dataset, while (c) and (d) illustrates the training and
validation accuracy and loss. The confusion matrix reflects
strong classification performance, with a high number of
true positives (TP) and true negatives (TN), and minimal
false positives (FP) and false negatives (FN). The ROC curve
is near the top-left corner, indicating high sensitivity (true
positive rate) and low false positive rate. The area under the
ROC curve (AUC) approaches 1, demonstrating excellent
discrimination between the classes. This suggests that the
model effectively differentiates between positive and negative
cases, exhibiting robust convergence on this dataset.

 
(a) (b) 

(c)                                                                                                                                            (d) 

FIGURE 11. (a) and (b) present the confusion matrix and ROC curve for
the Colon Cancer Histopathological Images dataset, while (c) and (d)
illustrate the training and validation accuracy and loss, respectively.

Figure 12 (a) and (b) shows the ROC curve and confusion

matrix for the Kvasir dataset, while (c) and (d) depicts the
training and validation accuracy and loss. Performance on
this dataset is slightly lower compared to the Colon Cancer
dataset. The confusion matrix indicates an increase in FP
and FN values, suggesting some degree of misclassification.
Although the ROC curve leans toward the top-left corner,
it does not reach the ideal (1,1) point as closely as in the
Colon Cancer dataset. The AUC remains high but slightly
below 1, indicating good, though not perfect, discriminatory
power. The results suggest that while the model performs
well on Kvasir, it is less robust than for the Colon Cancer
dataset. For the Kvasir-SEG dataset, shown in Figure 13

 
(a) (b) 

(c)                                                                                                                                            (d) 

FIGURE 12. (a) and (b) present the confusion matrix and ROC curve for
the Kvasir dataset, while (c) and (d) illustrate the training and validation
accuracy and loss, respectively.

(a) and (b) with the ROC curve and confusion matrix, and
(c) and (d) with the training and validation accuracy and
loss, the confusion matrix shows a moderate increase in FP
and FN compared to the Kvasir dataset. The ROC curve is
good but shows a noticeable dip, reflecting slightly lower
sensitivity and specificity. Although the AUC remains high,
there is room for improvement in the model’s convergence
and generalization across the dataset. The performance on
this dataset demonstrates moderate convergence, with higher
variability than other datasets. Figure 14 (a) and (b) illustrates
the ROC curve and confusion matrix for the Hyper-Kvasir
dataset, and (c) and (d) the training and validation accuracy
and loss. The model exhibits strong performance on this
dataset, with a high number of correct classifications (TP and
TN) and fewer FP and FN compared to Kvasir and Kvasir-
SEG. The ROC curve approaches the top-left corner, and the
AUC is high, indicating strong model performance and good
convergence. Although performance slightly decreases com-
pared to the Colon Cancer dataset, the model still generalizes
well, with some misclassifications occurring. Finally, Figure
15 (a) and (b) presents the ROC curve and confusion matrix
for the Endotect dataset, with (c) and (d) showing the training
and validation accuracy and loss. The confusion matrix for

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3519216

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 
(a) (b) 

(c)                                                                                                                                            (d) 

FIGURE 13. (a) and (b) present the confusion matrix and ROC curve for
the Kvasir-SEG dataset, while (c) and (d) illustrate the training and
validation accuracy and loss, respectively.

 
(a) (b) 

(c)                                                                                                                                            (d) 

FIGURE 14. (a) and (b) present the confusion matrix and ROC curve for
the Hyper-Kvasir dataset, while (c) and (d) illustrate the training and
validation accuracy and loss, respectively.

Endotect reveals more FP and FN compared to Hyper-Kvasir,
indicating increased misclassifications. The ROC curve devi-
ates more from the ideal path, and the AUC is lower than for
the other datasets, reflecting weaker model performance on
Endotect. This suggests that the model encounters greater dif-
ficulty achieving convergence, likely due to higher variability
or more complex patterns in this dataset.

C. ABLATION STUDY
An ablation study has been included to evaluate the con-
tributions of the individual components in the proposed
EfficientNet-NSGA-II framework. The study assessed the
model in three configurations: using EfficientNet without
NSGA-II, applying NSGA-II to handcrafted features without

 
(a) (b) 

(c)                                                                                                                                            (d) 

FIGURE 15. (a) and (b) present the confusion matrix and ROC curve for
the Endotect dataset, while (c) and (d) illustrate the training and
validation accuracy and loss, respectively.

EfficientNet, and the complete hybrid framework integrat-
ing EfficientNet and NSGA-II. EfficientNet-only models ex-
tracted features directly and performed classification without
optimization, yielding an accuracy of 93.50% with an F1-
score of 0.90 and an AUC of 0.92 as shown in Table 5.
NSGA-II applied to handcrafted features achieved lower per-
formance, with an accuracy of 85.20%, an F1-score of 0.83,
and an AUC of 0.85, primarily due to the limitations of man-
ual feature engineering. The complete EfficientNet-NSGA-II
framework outperformed both configurations, achieving an
accuracy of 99.97%, an F1-score of 0.99, and an AUC of
1.00. These results underscore the complementary strengths
of EfficientNet for feature extraction and NSGA-II for feature
optimization, demonstrating that their combination signifi-
cantly enhances performance.

TABLE 5. Ablation Study Results for Model Components.

Model
Compo-
nent

Accuracy
(%)

Precision Recall F1-
Score

AUC

EfficientNet
Only

93.50 0.89 0.91 0.90 0.92

NSGA-II
Only

85.20 0.82 0.84 0.83 0.85

EfficientNet
+ NSGA-
II

99.97 0.99 1.00 0.99 1.00

V. DISCUSSION
The results of this study highlight a significant advancement
in the automated diagnosis of colon cancer through our pro-
posed approach that integrates EfficientNet with NSGA-II
for feature extraction and selection. This method effectively
addresses the limitations associated with both traditional di-
agnostic techniques and existing deep learning models. By
leveraging the strengths of convolutional neural networks
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(CNNs) alongside metaheuristic optimization algorithms, our
approach has yielded promising results that not only meet
but often exceed expectations set by prior research in the
field. The integration of EfficientNet, a leading neural net-
work architecture, has substantially enhanced feature ex-
traction capabilities. It adeptly captures complex patterns in
histopathological images that traditional models may over-
look, facilitating accurate differentiation between healthy and
cancerous tissues. This capability is particularly crucial when
analyzing datasets characterized by varied imaging condi-
tions, as it allows for greater diagnostic precision. Further-
more, the application of NSGA-II for feature selection has
optimized the feature set, effectively reducing redundancy
and computational complexity without compromising clas-
sification performance. This dual optimization strategy not
only elevates the model’s accuracy but also enhances its gen-
eralizability across diverse datasets. Our comparative anal-
ysis reveals that the proposed method consistently achieves
superior metrics—accuracy, precision, recall, F1 score, and
AUC—across all evaluated datasets. Notably, the proposed
study attained an impressive accuracy of 99.97% on the Colon
Cancer Histopathological Images dataset, significantly out-
performing other models, including AlexNet, ResNet, and
GoogleNet. This robust performance was maintained across
other datasets, including Kvasir, Kvasir-SEG, Hyper-Kvasir,
and Endotect, despite the variations in complexity and image
quality. While the results are encouraging, several limitations
must be acknowledged. Variability in performance on diverse
datasets, such as Endotect, highlights the need for refining
the feature selection process and employing additional model
training to enhance robustness across varied imaging condi-
tions. The black-box nature of EfficientNet also presents chal-
lenges in clinical settings, where interpretability is crucial.
Future work will integrate explainable AI techniques, such
as Grad-CAM and SHAP, to improve transparency and foster
clinical trust. Additionally, we will expand evaluations to
include a broader range of datasets with diverse demographics
and imaging protocols to ensure the generalizability and real-
world applicability of the approach.

VI. CONCLUSION
This study introduces a novel hybrid model that combines
EfficientNet for feature extraction with NSGA-II for feature
selection, presenting a highly effective approach for the early
detection and diagnosis of colon cancer. The results demon-
strate that this innovative methodology significantly outper-
forms existing techniques across multiple datasets, achiev-
ing an impressive accuracy of 99.97% on the Colon Cancer
Histopathological Images dataset, along with high precision,
recall, F1 score, and AUC values across all evaluated datasets.
The integration of advanced deep learning and metaheuristic
optimization not only enhances the model’s performance but
also its robustness in handling diverse imaging conditions,
thus broadening its applicability in real-world clinical set-
tings. However, the findings highlight variability in model
performance across certain datasets, particularly the Endotect

dataset, suggesting that further refinements are necessary to
ensure consistent accuracy in varied clinical scenarios. Ad-
ditionally, the study identifies the critical challenge of model
interpretability, which is essential for fostering clinical trust
and acceptance. Addressing this issue will be paramount in
enhancing the practical application of the proposed approach
in medical diagnostics.
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