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ABSTRACT Although deep learning and computer vision based approaches have demonstrated success in
the field of cell counting and detection in microscopic images, they continue to have certain limitations.
More specifically, they experience an overall increase in false positives when dealing with cell populations
that show high density and heterogeneity. Existing approaches require the reselection of parameters for each
new dataset to improve the accuracy of cell counting. Therefore, it is necessary to revise the fundamental
models for each new microscopic image. This study introduces a novel neural network-based method that
eliminates the need for retraining by combining the pretrained Cellpose and Stardist models. The accuracy of
our proposed approach was evaluated on a variety of microscopic images. Despite variations in cell densities,
our proposed approach demonstrated a notably improved cell counting performance in comparison to solely
utilizing the Cellpose and Stardist models.

INDEX TERMS cell counting, cell detection, deep learning, ensemble learning

I. INTRODUCTION

THE traditional way of cell analysis in clinical practice in-
volves microscopic observation of a tissue sample. The

process allows us to classify different cellular characteristics
and evaluate the cellular structure precisely. The initial step
of such analysis usually requires cell segmentation [1]–[11],
cell detection [12], [13], or cell counting [14]. Although ex-
perts can extract limited information through counting cells,
it is still an acceptable approach in clinical practice due to
its practicality [15]. As one might expect, manual counting
of cells is a very time-consuming and labor-intensive task
with several potential drawbacks, including (i) risk of human
error, (ii) lack of objectivity, (iii) poor reproducibility, and
(iv) low throughput. In terms of human error, the issues
include misidentification and missed cells due to fatigue or
distraction. Moreover, it is subjective and dependent on the
expertise of the observer, resulting in differences between
the observers [16]. Reproducibility is another problem that
leads to variability between observers and differences across
different laboratories or studies. It is one of the critical con-
cerns in research, and several studies have highlighted the

variability in manual cell counting results [17]. Moreover,
manual cell counting may be impractical for large-scale stud-
ies or experiments requiring high throughput. Due to these
significant limitations, semi- or fully autonomous techniques
based on image processing and neural networks for automated
cell counting have been developed. The development of com-
puterized cell counting software will significantly impact bio-
logical research and clinical practice, facilitating faster, more
objective, and more standardized cell counting than manual
methods [18].

II. RELATED WORK
Conventional image processing-based techniques are straight-
forward methodologies that do not require labeled data and
can resolve a specific problem with fewer lines of code
compared to neural network-based methods [8], [9]. Nev-
ertheless, they are susceptible to hyperparameter settings
and necessitate manual adjustments when applied to diverse
datasets. Furthermore, when confronted with cell populations
exhibiting high density and heterogeneity, thesemethods gen-
erally tend to have a decline in precision or an increase in false
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positives [8], [19], [20]. Unlike traditional methods, state-of-
the-art cell detection techniques rely on training deep neural
networks [4]–[6], [13]. Achieving a high level of accuracy in
cell counting using neural network-based models demands
extensive and data-intensive training. Despite the need for
a substantial amount of data and comprehensive annotation,
Cellpose [4], [5] and Stardist [6] have demonstrated partic-
ularly promising outcomes and have garnered considerable
attention recently. Their popularity is primarily due to their
remarkable accuracy on specific datasets. Nevertheless, they
are resistant to interpretability, and the performance highly
depends on the quality and appropriateness of the training
dataset.

Despite being popular, Cellpose and Stardist are still sus-
ceptible to variations in cell density, shape, and size. For in-
stance, Kleinberg et al. [21] revealed that the Stardist trained
model showed greater precision in estimating cell counts
particularly in regions where cells were in close proximity
or even over-clumped, in comparison to Cellpose. However,
in situations where the cell distribution was sparse, Stardist
had a higher likelihood of producing inaccurately detected
cells, whereas Cellpose appeared to exhibit greater resilience
under such conditions. These findings suggest that utilizing
an ensembling technique can harness the strengths of indi-
vidual methods, leading to a substantial improvement in cell
detection performance.

Ensemble approaches are a sophisticated method for con-
structing multiple models with the goal of achieving im-
proved results [22]. There exists only a limited number of
studies on the subject of cell counting through an ensembling
approach [23]–[28]. For instance, [27] ensembles the output
of three models, where each model utilized the same archi-
tecture but trained on different image batches. As another
example, [28] uses an ensembling methodology to combine
the outputs of five models to segment cells from 3D volume.
Each model was trained with a different number of frames,
i.e., a model seeing one frame, a model seeing three frames,
etc. This way of ensembling helps eliminate low-confidence
markers and merge overlapping segmentations to detect and
count mimicked circulating tumor cells (mCTC). On the other
hand, all of these studies necessitate training or fine-tuning of
every model to enhance predictive accuracy, which is time-
consuming and laborious. Due to the challenges associated
with training, there exists a significant demand for a novel
approach, particularly in the context of ensemble approaches.

There are two main highlights of this study:
• We introduce a novel guided-ensembling technique that

leverages two state-of-the-art cell detection methods,
which have been trained with billions of cell images,
with no additional retraining or fine-tuning. Experiments
on three different cell counting datasets have shown
that the guided-ensembling approach outperformed the
separately used techniques.

• Contrary to most of the existing studies in this domain,
we compare the results in images with high congestion
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FIGURE 1. Top level view of the process.

diversity and tissue noise, which creates many artifacts
in sparse regions and causes vague segregation of cells in
congested regions. We show the effects of the heuristic
approach on these harder-to-process images.

III. METHODOLOGY
This approach involves the integration of state-of-the-art cell
segmentation models with a hard decision-making mecha-
nism that relies on the size of the cell clusters. Fig. 1 shows
the block diagram of the proposed approach. The objective
of the proposed approach is to take advantage of the need for
additional training by finding optimal regions for each model.
Due to variations in training sets and network structures
across models, each model is expected to show outstanding
detection performance for specific areas in a given image. To
maximize the performance of different models, the proposed
study attempts to solve the cell counting problem by imple-
menting a two-step approach. In the first phase, the algorithm
produces segmentation masks of an image. The next step
includes the utilization of Otsu’s algorithm to extract areas
containing cellular presence and then assigning each area to
a model based on cellular density.
For convenience, in the rest of the paper MCP, MSD, and

ME will denote three different detection methods, Cellpose,
Stardist, and the proposed guided ensembling methods, re-
spectively. The proposed approach will be explained compre-
hensively in the following sections.

A. CELL SEGMENTATION VIA CELLPOSE AND STARDIST
ForMCP, we used the pretrained "cyto" model, which predicts
the probability of a pixel being inside a cell and the flows
of pixels toward the center of a cell in X and Y for each
pixel. It utilizes a standard U-Net backbone with 32 layers
of blocks. Each block consists of 3x3 convolution and max
pooling (or upsampling). MCP was trained with 540 images
that have more than 70,000 cells.
As forMSD, we used the pre-trainedmodel "2D_versatile_fluo",

which was trained with a subset of the DSB2018 nuclei
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segmentation dataset [29]. It predicts for every pixel a star-
convex polygon for the cell instance at that position. On
top of the popular U-Net architecture [30], an additional 33
convolutional layer with 128 channels (and relu activations)
is added to avoid fight over features. Both methods accept a
grayscale image (R-channel for DORIG), I , as input.

B. GUIDED-ENSEMBLING APPROACH
The ensemble stage uses the original image I with the seg-
mentation masks SCP and SSD. Users can fine-tune the algo-
rithms’ decision-making mechanisms by adjusting two exter-
nal parameters, namely Pscale and Pthreshold . The variable Pscale
is a numerical valuewithin the interval [0,1], which represents
the scaling factor applied to the threshold value obtained
through Otsu’s algorithm, as utilized in Section III-B1. The
variable Pthreshold is a parameter that can assume any positive
integer value and serves to denote the threshold level for the
pixel area covered by a connected component. Sections III-B2
and IV-C provide an additional explanation of the utilization
of the parameters.

Guided-Ensembling Algorithm
1: Input: image I , area threshold Pthreshold , postscale for

otsu Pscale
2: Output: number of cells NoC
3: Initial: NoC ← 0
4: SCP ← GENERATE_CELLPOSE_MASK(I)
5: SSD ← GENERATE_STARDIST_MASK(I)
6: TH ← FIND_OTSU_THRESHOLD_VALUE(I)
7: /* TH: the value found by Otsu’s algorithm */
8: B← BINARIZE_IMAGE(I ,TH ∗ Pscale)
9: /* B: binary mask obtained by global thresholding */
10: REGIONS ← EXTRACT_REGION_AND_LABEL(B)
11: /* REGIONS: A list of connected components in B */
12: for each region in REGION do
13: if region.area < Pthreshold then
14: /* Add the number of markers overlapping with

region */
15: NoC += COUNT_MARKERS(region, SSD)
16: else
17: NoC += COUNT_MARKERS(region, SCP)
18: end if
19: end for

Initially, the algorithm produces a grayscale version of the
original image and then employs thresholding methodologies
to isolate areas that are densely occupied by cells. The con-
gested cell groups can be identified by the threshold algorithm
and indicated by each connected component produced by
the threshold algorithm. The presence of a significant cluster
is indicated by a large number of cells showing minimal
contrast variation with the surrounding background and being
near neighboring cells within the corresponding area. The
algorithm’s cell matching phase involves iterating through
each region and determining the cells to be included from the
input segmentation masks. The total number of cells in all
areas is then computed by adding up the counted cells.

Although the proposed methodology employs sophisti-
cated deep learning algorithms, its overall time complexity is
linear with respect to the number of parameters in the deep
learning architectures. The algorithm described consists of
three primary phases: pre-processing, ensembling, and post-
processing. In both the pre-processing and post-processing
phases, each method utilized demonstrates linear complexity
relative to the number of pixels in an image, denoted as O(n),
where n signifies the pixel count. As these methods are exe-
cuted sequentially, the overall complexity remains O(n). The
ensemble phase involves generating predictions using two
algorithms and subsequently integrating their outputs. Each
prediction requires a single forward pass through the Stardist
and Cellpose networks, characterized by a complexity of
O(m), where m represents the number of learner parameters
within the networks. The integration of results is constrained
by the pixel count, resulting in the complexity of the ensemble
phase being O(max(n, m)). Therefore, the comprehensive
complexity of the algorithm is O(max(n, m)).

1) Binary Mask Generation and Region Extraction
At first, the ensembling procedure will determine a threshold
value by means of Otsu’s algorithm. Then, this value will be
adjusted proportionally using an external parameter denoted
as Pscale. The threshold value needs to be adjusted to include
cells that have lower brightness values. This procedure results
in the creation of certain insignificant artifacts that are related
to tissue noise. The algorithm prevents artifacts by eliminat-
ing regions that do not meet the minimum size threshold to be
categorized as cells. Following the generation of themask, the
region props tool in MATLAB is used to extract each region.

2) Matching and Counting Cells
The algorithm evaluates each region and determines the ap-
propriate segmentation mask to include the cells. The algo-
rithm analyzes the area size of each cell and then examines
the overlapping cells from SSD if the area size exceeds the
specified threshold parameter. If the value falls below the
specified threshold parameter Pthreshold , the algorithm pro-
ceeds to search for overlapping cells in SCP. For a cell to
be considered part of a given region, it is necessary that it
has a minimum overlap of 50%. This method additionally
assigns new labels to all cells obtained from the segmentation
masks and transfers them to an intermediary segmentation
mask. The algorithm provides the total number of cells of the
intermediate mask.

IV. EXPERIMENTS
This section presents the experimental findings for each
dataset.

A. DATASETS
Three datasets were used in the experimentation. The Broad
Bioimage Benchmark Collection website offers two pub-
licly accessible datasets, namely, BBBC004 [31], [32], and
BBBC039, as documented in [33]. Each of the mentioned
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datasets consists of images obtained through fluorescence
microscopy. From now on, the datasets shall be denoted as
DORIG

1, DC4, and DC39, respectively. Table 1 presents an
overview of the datasets mentioned.

Dataset Name Number of Images Image Resolution
DORIG 290 1924x2572
DC39 200 520x696
DC4 100 950x950

TABLE 1. Dataset names, number of images, and image resolutions.

The sample denoted as DORIG includes fish brain cells that
have been magnified by a factor of 20. Cells show significant
variability in terms of counts, congestion, and tissue noise.
The images provided have high resolution, measuring 2572
pixels in width and 1924 pixels in height. On average, the di-
ameter of the cells measures 20 pixels. All cellular structures
have uniform sizes and shapes. A total of 290 images have
been reported, each with a reported count of the total number
of cells in existence. A total of twelve images in the dataset
have point annotations.

The datasets denoted as DC4 and DC39 include fluorescent
microscopy images that are supported by annotations of the
cell count and foreground. These properties provide consis-
tency to the outcomes in relation to DORIG, thus enhancing
the reliability of the following comparisons. The images show
different cell congestion patterns that match the character-
istics of the DORIG dataset. The images obtained from DC4

and DC39 show comparatively lower levels of congestion and
tissue noise, making them easier to process using state-of-the-
art cell counting models in contrast to DORIG.
The dataset denoted by DC4 comprises artificially pro-

duced cellular images showing different levels of congestion
probabilities, namely 0%, 15%, 30%, 45%, and 60%. One
hundred images have been distributed into five subsets, each
showing distinct levels of congestion. Each image contains
a total of 300 individual units. Foreground segmentation can
also be obtained. The dimensions of each image are 950 pixels
for both width and height.

The dataset denoted by DC39 includes a total of 200 U2OS
cellular images. The resolution of each image is 520x696
pixels. The ground truth data related to foreground segmen-
tations, outlines, and cell counts are accessible.

B. RESULTS
This subsection provides an analysis of the results obtained
from the proposed approach. Trendlines are included in the
cell count plots for each method to enable a comprehensive
comparison. The results of the cell counts obtained by each
method for each manual cell count can be seen in Fig. 2.
Note that some images show identical manual cell counts,

1Bilkent University Local Animal Ethics Committee (HADYEK) ap-
proved the animal ethics protocols of this data with the following approval
dates and numbers: July 10, 2015, with protocol number 2015/31 and Febru-
ary 21, 2018, with protocol number 2018/4.

which allows for the possibility of a method that includes
multiple markers that are vertically aligned. Each method has
a trendline that fits its results. The trendline for the variable
ME shows a higher degree of closeness to the results of
manual counting, in contrast to the trendlines of MCP and
MSD. This implies that the accuracy ofME is better in general.
The values of Pscale and Pthreshold for the given dataset have
been set as 0.8 and 10, 000, respectively.
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FIGURE 2. Cell count results for DORIG. The X-axis denotes manual cell
counts, and Y-axis denotes calculated cell counts for images. Red
triangles indicate Stardist results. Blue squares indicate Cellpose results.
Green circles indicate ensemble results. The gold trendline indicates the
manual counts.
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FIGURE 3. Cell count results for DC39. The X-axis denotes manual cell
counts, and Y-axis denotes calculated cell counts for images. Red
triangles indicate Stardist results. Blue squares indicate Cellpose results.
Green circles indicate ensemble results. The gold trendline indicates the
manual counts.

The results of the calculated cell count for each manual cell
count are presented in Fig. 3. The graphical representation
shows characteristics identical to those of Fig. 2. The close-
ness between the green trendline (ME ) and the gold trendline
(manual counts) is visible. The present dataset has values of
0.8 and 10, 000 for Pscale and Pthreshold , respectively.
The performance of all methods for the DC4 dataset is

shown in Fig. 4. Given that the initial subset showed a con-
gestion probability of exactly 0%, all methods effectively
achieved cell segmentation. As the congestion rate increased,
all techniques showed a deviation from the ground truth
values. It is notable that the trendlines for ME and MCP

show a significant degree of overlap. Although the proposed
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FIGURE 4. Cell count results for DC4. The X-axis denotes each image in
the dataset, and Y-axis denotes calculated cell counts for images. Red
triangles indicate Stardist results. Blue squares indicate Cellpose results.
Green circles indicate ensemble results. The gold trendline indicates the
manual counts.

approach did not result in a statistically significant improve-
ment in this particular dataset, the results indicate that the
overall performance is limited by the benchmark methods.
The values of Pscale and Pthreshold for the given dataset have
been set as 0.8 and 10, 000, respectively.
The segmentation masks corresponding to each method are

represented by the green outlines in their respective segmen-
tation figures in Figs. 5, 6, 7, and 8. The blue outlines denote
segmentations that are problematic, covering cases of false
positives, over-segmentations, and under-segmentations.

The graph shown in Fig. 5 illustrates the point at whichMSD

begins to consider densely populated cells as a single unit,
whereasMCP ignores these regions entirely. The utilization of
MSD is intended to improve cell counts in densely populated
regions as the primary goal of this study.

Both Fig. 5 and Fig. 6 show false-positive cell detection in
low-intensity areas due to background interference. However,
the impact of these extra cells is negligible since they can be
readily eliminated through thresholding or similar method-
ologies.

The segmentation outcomes of all methodologies for the
DC4 dataset are shown in Fig. 7 and Fig. 8. Despite a few
variations in the count results, the segmentation results show
a high degree of similarities. It is challenging to make com-
parisons or observe enhancements as bothMCP andMSD show
near-perfect performance for images that are relatively simple
to process. Table 2 displays the error percentages for each
dataset. Although the benchmark datasets yield very similar
results, ME can deliver the advantages of both models when
dealing with more complex datasets.

Dataset (ME ) MCP MSD
DC4 10.17% 10.06% 13.28%
DC39 11.64% 11.74% 12.04%
DORIG 78.19% 87.30% 271.37%

TABLE 2. Cell count error percentages for each dataset and method.

FIGURE 5. A portion of the segmentation results for an image from DORIG
where both methodologies under-segment.

FIGURE 6. A portion of the segmentation results for an image from DORIG
where both methodologies over-segment.
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FIGURE 7. A portion of the segmentation results for an image with 15%
overlap probability in DC4.

FIGURE 8. A portion of the segmentation results for an image with 60%
overlap probability in DC4.

C. PARAMETER ANALYSIS
Despite the observations of enhancements across all datasets,
the proposed approach showed constraints for specific im-
ages. In the context of our experimentation, it was observed
that there were cases where the accuracy of the results ob-
tained fromME was comparatively lower than those obtained
from MCP and MSD. This section will discuss the external
parameters that we used and their effects on the ensemble
process.
As stated previously, the scaling factor Pscale is used to

reduce the value of Otsu’s threshold. This phenomenon im-
proves the ability ofME to detect cell clusters showing lower
brightness levels, thereby increasing the recall rate of the
algorithm. As a result, the proposed approach is expected to
improve the detection of a more significant number of cells
that also exist in the ground truth. Nonetheless, a lower scale
may increase the algorithm’s potential for tissue noise. Re-
gions with high background brightness (and a lower contrast
difference in the cells) are more responsible for generating
false positives. Fig. 10 shows the error percentage for differ-
ent Pscale values when the Pthreshold is set to 10, 000. The error
percentage is mostly stable for the Pscale values under 1. As
Pscale goes above 1, the error percentage starts to increase due
to information loss.

The usage rates of SCP and SSD are determined by the value
of Pthreshold . Selecting a threshold value that is either exces-
sively high or excessively low may result in the nullification
of the proposed approach’s effects, as the algorithmwill show
a preference for one segmentation result over the other. If the
value is set too high, the count results will converge to theMCP

results, whereas if it is set too low, the count results will con-
verge to the MSD results. When selecting a suitable Pthreshold ,
cell size (in terms of pixels) should be considered. Since this
parameter helps separate regions of different sizes, Eq. 1 can
help determine an approximate area threshold for regions. Fig
9 shows the error percentage for differentPthreshold values. The
variation of the error is mostly under 1% when the Pscale is
0.8. The stability of the error percentage in Fig. 10 and Fig. 9
indicates robustness to variations in our external parameters.
While these parameters influence the result, they don’t have
to be exact to produce near-optimal results.

Pthreshold = NOC× π × ACR2 (1)

where NOC and ACR denote the number of cells and average
cell radius, respectively.

V. CONCLUSION
Cellpose and Stardist are acknowledged as two of the most
sophisticated image segmentation models currently available,
providing robust solutions for a diverse array of research
applications. Despite their advanced capabilities, these mod-
els face substantial challenges when processing images with
densely populated cell clusters and interference from sur-
rounding tissue. Such complexities frequently result in seg-
mentation inaccuracies that are not easily remedied through
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10, 000 for DC4. The X-axis denotes different Pscale values, and the Y-axis
denotes the average error % of the dataset.

additional training. The primary impediment to further train-
ing is the prohibitive cost associated with the extensive anno-
tation procedures required to enhance model performance.

This study introduces an innovative approach by demon-
strating the efficacy of ensembling state-of-the-art models
to address these segmentation challenges. By integrating the
strengths of multiple models, the ensemble method signifi-
cantly reduces errors in cell counting assignments, particu-
larly in scenarios where further training is not feasible. This
novel technique not only enhances accuracy but also offers a
cost-effective alternative to traditional model retraining.

Our study relies on the integration of two state-of-the-art
segmentation models to enhance segmentation performance
without necessitating additional training. Consequently, the
efficacy of our approach is significantly contingent upon
these models. Prospective studies will explore the potential
for incorporating additional models via ensembling to refine
the accuracy of the results.

Another future direction could focus on optimizing en-
semble strategies to further improve segmentation outcomes.
Additionally, the development of adaptive algorithms that
can dynamically adjust to varying image complexities holds
promise for advancing the field. Exploring the integration
of other state-of-the-art machine learning techniques that

require minimal annotation could also provide valuable in-
sights, paving the way for more efficient and scalable solu-
tions in cell segmentation and detection.
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