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ABSTRACT Torsional vibration signal analysis is promising for diagnosing gear faults in planetary 

gearboxes. However, early-stage fault signatures are relatively-weak and may be ignored or wrongly 

identified in conventional demodulation analysis, especially under time-varying speed conditions. Two main 

contributions are made in this paper. Firstly, an analytical model of planetary gearbox torsional vibration 

signal is established, by jointly considering the gear mesh vibration, torsional resonance, and other time-

invariant components. The gear fault characteristics under time-varying speeds are accordingly revealed 

explicitly. Furthermore, inspired by the unique time-frequency structure of the torsional vibration signal, the 

multi-band torsional vibration amplitude demodulation method is proposed for gear fault feature extraction. 

The proposed method combines the gear fault features in multiple characteristic frequency bands in torsional 

vibration signal, so that the influences from adjacent carrier frequencies, independent frequency harmonics 

and random noises can be eliminated in amplitude demodulation. As a result, the obtained amplitude 

demodulated order spectrum outperforms conventional envelope order spectrum and narrow-band amplitude 

demodulated order spectrum in revealing relatively weak gear fault features. Both numerical simulation and 

laboratory experiments are conducted, to demonstrate the correctness of the established analytical model and 

the advantages of the proposed multi-band torsional vibration amplitude demodulation method. Localized 

fault on the sun, planet and ring gears are successfully diagnosed. 

INDEX TERMS Analytical model, fault diagnosis, planetary gearbox, resonance demodulation, torsional vibration.

I. INTRODUCTION 

Planetary gearboxes are extensively applied in various 

equipment in aerospace, mining, energy, and many other 

fields. Due to heavy load and volatile operating conditions, 

the gear teeth transmit large alternating torque and are 

prone to fault. The undetected planetary gearbox fault 

results in reduced efficiency, harsh noises, and even 

unscheduled shutdown of the whole equipment. Therefore, 

effective diagnosis of planetary gearbox fault is of 

significance for ensuring safe and smooth industrial 

activities [1]-[3]. Comparing with traditional fixed-shaft 

gearbox, planetary gearboxes have much more complex 

vibration response due to multiple gear pairs meshing under 

different phase angles and time-varying vibration 

transmission paths. The resulting joint amplitude 

modulation and frequency modulation structure leaves the 

fault feature extraction challenging. 

Torsional vibration analysis is promising for diagnosing 

planetary gearbox fault [4]-[6]. Since the damaged gear 

tooth leads to abnormality of the mesh stiffness, the 

magnitude of torsional vibration response changes when 

the damaged gear tooth meshes with the mating gear. 

Therefore, the amplitude envelope and instantaneous 

frequency of the torsional vibration signal periodically 

changes at the gear fault frequency. By detecting the fault-

related frequency components in the measured torsional 

vibration signal, different gear faults can be recognized and 

located. 

Furthermore, torsional vibration analysis has appealing 

merits over the commonly used transverse vibration 

analysis for planetary gearbox fault feature extraction. 
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Owing to the unique measuring method, torsional vibration 

signals are free from the modulation effects by time-

varying vibration transmission paths in transverse direction. 

When gear fault occurs on the sun gear or planet gear, the 

gear fault meshing locations revolves around the geometric 

center of the sun gear. Such unique gear motion leads to 

periodically changing vibration transmission paths between 

the gear fault meshing location and the fixed accelerometer 

on gearbox casing. As a result, the measured transverse 

vibration signal is additionally amplitude modulated by the 

revolving frequency [8]. On the contrary, the radial 

distance between the gear fault meshing location and the 

torque transducer connected to the rotating shaft remains 

unchanged. The revolving fault meshing locations therefore 

does not cause extra amplitude modulation on the measured 

torsional vibration signal, and the relatively simpler signal 

modulation structure facilitates the planetary gearbox fault 

feature extraction. 

However, inadequate attention has so far been paid on 

the research of torsional vibration-based planetary gearbox 

fault diagnosis. Available references mostly focus on 

discovering the fault characteristics in transverse vibration 

signals. Feng and Zuo [8] exploited the signal analytical 

modeling strategy to reveal the distribution of fault-induced 

frequency sidebands in transverse vibration signal. Lei et al. 

[9] analyzed the influence of unequally spaced planet gears 

on the planetary gearbox transverse vibration signals and 

found that additional frequency components may occur and 

further complicate the frequency structure. He et al. [10] 

interpreted the planetary gearbox transverse vibration 

signals with mathematical model, by studying the time-

varying transmission paths and meshing force direction. 

Nevertheless, the gear fault characteristics in measured 

transverse vibration signals may not be adaptable to the 

measured torsional vibration signals, because the vibration 

responses and vibration transmission paths in transverse or 

torsional direction are different.  

Besides, thorough understanding of torsional vibration 

characteristics in various frequency regions and under 

nonstationary operational conditions is still missing. 

Published works of torsional vibration-based planetary 

gearbox fault diagnosis mostly focus on fault 

characteristics in gear meshing frequency band under 

steady speed conditions. Feng and Zuo [11] extended the 

transverse vibration signal model of planetary gearbox to 

torsional direction, and analytically derived the fault 

modulation frequency features distributed around the gear 

meshing frequency. Xue and Howard [5] calculated the 

planetary gearbox mesh stiffness using the finite element 

method, and further integrated it with lumped parameter 

model to numerically simulated the torsional vibration 

response under fixed operating speed. These works provide 

valuable guidance for torsional vibration-based planetary 

gearbox fault diagnosis, yet only the time-invariant 

frequency characteristics in gear meshing frequency 

regions are discussed. The characteristic frequency 

sidebands around the torsional resonance frequencies also 

contain meaningful gear fault features [12], and proper 

utilization of fault characteristics in different frequency 

regions may improve the accuracy of planetary gearbox 

fault feature extraction. A more general mathematically 

interpretation of the measured planetary gearbox torsional 

vibration signal still deserves further research.   

Effective fault feature extraction from the measured 

torsional vibration signal is another essential topic for 

planetary gearbox fault diagnosis. The envelope spectrum 

analysis is one of the most widely used method for gear 

fault detection, since it is capable of directly revealing the 

amplitude modulation frequency components in relatively 

low frequency band [13-14]. Narrow-band amplitude 

demodulation analysis resembles envelope spectrum 

analysis, but it theoretically focuses on only one carrier 

frequency region [15-16], and other frequency features are 

filtered out beforehand for avoiding unwanted interferences. 

Xue and Howard [5] tried different demodulation 

frequency bands and found that the amplitude modulation 

features around the 4th gear meshing frequency harmonic 

are most sensitive to the analyzed gear faults. Wang [17] 

removed the gear meshing frequency harmonics and 

analyzed the residual resonance demodulation features for 

detecting gear teeth crack. Chen et al. [12] focused on the 

relatively high torsional resonance frequency band and 

identified the time-varying fault frequency sidebands.  

However, neither envelope spectrum analysis nor 

narrow-band amplitude demodulation analysis makes full 

utilization of the fault characteristics distributed in 

different frequency regions. Envelope spectrum analysis 

theoretically only fits for revealing amplitude modulation 

features of mono-component signals, and its performance 

deteriorates as the frequency structure of the analyzed 

signal becomes complex. For planetary gearbox torsional 

vibration signals, the fault modulation frequency 

components distribute around the gear meshing frequency 

harmonics, the torsional resonance frequency components, 

and probably other characteristic frequency components 

caused by the measurement devices. The differences 

between carrier frequencies or independent rotating 

frequency orders therefore may be misjudged as 

modulation frequencies. Besides, the narrow-band 

demodulation analysis essentially omits the existing fault 

features in the unselected frequency bands, and the 

universal criterion for selecting the optimal demodulation 

frequency band is still unavailable [16], especially under 

time-varying speed conditions.  

In summary, ambiguous fault feature distribution and 

inadequate utilization of the modulation details hinder the 

torsional-vibration-based planetary gearbox fault diagnosis 

under time-varying speed conditions. In this work, two 

main contributions are made to address the 

abovementioned issues. Firstly, the analytical model of 
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planetary gearbox torsional vibration signal under local 

gear fault condition is established. The scope of the 

proposed signal analytical model covers torsional vibration 

features in various frequency regions under time-varying 

speed conditions. The fault-modulated gear mesh vibration 

features, fault-modulated torsional resonance features, and 

other characteristic frequency components caused by the 

measurement devices are jointly considered and 

analytically derived to provide complete understanding of 

the torsional vibration characteristics. Secondly, the multi-

band torsional vibration amplitude demodulation method is 

proposed for gear fault extraction. Its novelty lies in joint 

utilization of fault features in different torsional vibration 

frequency regions and meanwhile suppress the random 

interferences. Comparing with the conventional envelope 

spectrum and narrow-band amplitude demodulation 

analysis, the proposed method enables clearer fault feature 

revelation for more accurate fault diagnosis.  

The remainder of this manuscript is structured as follows. 

In Section 2, the analytical model of the torsional vibration 

signal measured from a single-stage planetary gearbox is 

established. Based on the analytical interpretation of 

torsional vibration characteristics in different frequency 

regions, the multi-band torsional vibration amplitude 

demodulation method is proposed in Section 3. Numerical 

simulation analysis and laboratory experimental signal 

analysis are respectively conducted in Section 4 and 5, to 

validate the correctness of the established signal analytical 

model, and to demonstrate the merits of the proposed 

method. Conclusions are finally drawn in Section 6. 

II. Analytical Modelling of Torsional Vibration Signal 

In this section, the measured torsional vibration signal of a 

single-stage planetary gearbox is elaborated and analytically 

modeled. The ring gear of the planetary gearbox is set fixed, 

and the sun gear is used as the input. Without loss of generality, 

the operating speed is time-varying.  

A. Fault-modulated torsional gear mesh vibration 

The time-varying gear mesh stiffness of the sun-planet and 

planet-ring gear meshing pairs cause torsional vibration at gear 

meshing frequency fm(t). It can be calculated by 

 (r) (r) (r)

m c ssr c( ) ( ) Z [ ( ) ( )]Zf t tf f ft t= = − , (1) 

where Zr and Zs respectively indicates the number of teeth of 

the ring gear and the sun gear, fs(r)(t) and fc(r)(t) are the rotating 

frequencies of the sun gear and the planet carrier. The rotating 

frequency of planet gear (with number of teeth Zp) is denoted 

by fp
(r)(t) in the following. 

When localized gear fault occurs, the gear mesh stiffness 

changes once the faulty gear tooth meshes with its mating gear. 

The amplitude envelope of the generated torsional gear mesh 

vibration signal therefore periodically changes at the gear fault 

frequency. Besides, the instantaneous frequency of the 

torsional gear mesh vibration signal changes when abnormity 

occurs, and the gear mesh frequency reappears when the faulty 

gear tooth is no longer in mesh. Therefore, the torsional gear 

mesh vibration is jointly amplitude modulated (AM) and 

frequency modulated (FM) by the gear fault frequency. For 

simplicity, the sun gear fault frequency fs(t), planet gear fault 

frequency fp(t), and ring gear fault frequency fc(t) are 

uniformly written as gear fault frequency fg(t). Calculations of 

different gear fault frequencies can be found in [4]. 

Considering the harmonics of gear mesh frequency at order 

k=1, 2, 3···, the fault-modulated torsional gear mesh vibration 

signal Sm(t) can be cast as 

 
m m m m m m

1

( ) ( ) ( )cos[2π ( )d ( ) ]k k k k

k

S t t a t kf t t b tc 


=

= + +  , (2) 

where cmk(t) indicates the time-varying amplitude response, 

and amk(t), bmk(t) respectively stands for the amplitude and 

frequency modulation term, expanded as 

 
m mg g mg

0

( )=1+ ( ) cos[2π ( )d ]k kn kn

n

a t A t nf t t 


=

+  , (3) 

 
m mg g mg

0

( )= ( )cos[2π ( )d ]k kl kl

l

b t B t lf t t 


=

+  . (4) 

The modulation coefficients Amgkn(t) and Bmgkl(t) are 

determined by the gearbox dynamics and fault severity, and 

vary at different fault frequency harmonics at order n or l. 

ψmk, φmgkn and γmgkl are the corresponding initial phases. 

According to the identity of Bessel functions [18] 

 exp[ sin( )]= ( )exp( )q

q

jz J z jq 


=−

 , (5) 

the torsional gear mesh vibration can be rewritten as  

 


 

m m m mg

1 0

m g m mg

( ) ( ) ( ) [ ( )]

cos 2π [ ( ) ( )]d

k k q kl

k q l

k kl

S t t a t J B t

kf t qlf t

c

t q

  

= =− =

=

  + + +

  



, (6) 

and its frequency compositions include a summation of 

time-varying frequency components located at gear mesh 

frequency harmonics kfm(t), as well as their upper and lower 

frequency sidebands with interval of gear fault frequency 

fg(t), as |kfm(t)±hfg(t)| (h=0, 1, 2···). The amplitude APmgkh(t) 

of fault frequency component |kfm(t)±hfg(t)| can be estimated 

by  
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
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  + + 



, (7) 

where z denotes the number of integer arrays (h1, h2, h3) which 

fulfills h2h3±h1=h. It is worth noticing that the Bessel functions 

in (7) often have small value, so the amplitude of fault 
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frequency sideband depend much on the amplitude cmk(t) and 

amplitude modulation coefficient Amgkn(t).  

To avoid the identification of complex modulation 

sidebands, amplitude demodulation is often conducted to 

directly extract and analyze the time-frequency characteristics 

of the amplitude modulation term amk(t). According to (3), the 

time-varying gear fault frequency and its harmonics are 

expected in the amplitude envelope signal of the torsional gear 

mesh vibration. 

B. Fault-induced torsional resonance vibration 

The planetary gearbox torsional resonance characteristics 

have seldom been elaborated in available publications, 

especially when the rotating speed is time-varying. When local 

gear fault such as gear tooth crack exist, short-duration impact 

will occur once the faulty gear tooth gets into mesh. The 

impact excites structural resonance vibration in torsional 

direction, and convolutes the transfer function (i.e., the 

frequency response function). For a single faulty gear tooth 

mesh, the generated torsional resonance vibration signal Sr(t) 

can be modeled as [17] 

 
r rr r( ) ( )cos[2π ]S t c t f t = + , (8) 

where fr denotes the torsional resonance frequency, and ψr is 

the initial phase. cr(t) stands for the amplitude envelope of 

the resonant vibration, and is decided by the impulse 

response of the system. Since the dynamic characteristics of 

the planetary gearbox system is often complex and unknown, 

the fast-decaying characteristics of the amplitude envelope 

under damped condition is modeled as cr(t)=crexp{-2πβfnt}, 

where fn
2= fr

2/(1-β2), and β denotes the damping ratio.  

Under time-varying rotating speed conditions, the fault 

impacts are generated repeatedly at the gear fault frequency 

fg(t). Equation (8) is then rewritten as 

 
r r r

1

r ( ) ( )cos[2π ( ) ]i i i

i

S t c t t f t t 


=

= − − + , (9) 

where i denotes the index of fault impacts. As a result, the 

torsional resonance vibration theoretically covers the full- 

spectrum-band, but have amplified energy in the vicinity of 

the resonance frequency [19-20]. To directly reveal the fault 

signatures, the amplitude demodulation analysis is 

performed to focus on the characteristics of the amplitude 

envelope. According to (9), the time-varying gear fault 

frequency and its harmonics can be revealed in the amplitude 

envelope signal of the torsional resonance vibration. 

C. Other components in the measured signal 

In real-world measurements, electric signal components 

resulted from the measurement devices may exist in the 

measured torsional vibration signal. For example, if an active 

rotary torque transducer is used to measure the torque signal 

from a rotating shaft, the alternating voltage source added on 

the rotary transformer results in extra frequency components 

in the measured signal. Besides, the electric signal 

components from the power grid or inverter, as well as the 

related modulation sidebands, may also occur in the 

measured signal if the device is not properly grounded. The 

oscillating frequencies of these components are decided by 

their sources, and do not change under time-varying speed 

conditions. On the other hand, their amplitudes are affected 

by the structural behavior, and further be modulated by the 

fault-induced dynamic change [10]. Analyses of these fault 

characteristics also help diagnose the planetary gearbox fault. 

These carrier frequencies are denoted as fde (e =1, 2, 3···) in 

the following. The resulted signal components Sd(t) can be 

modeled in amplitude modulation form as 

 dg g dg

d

d

1 0

d d
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e e e
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  +
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where cde(t) stands for the time-varying amplitude, Adgeh(t) 

stands for the amplitude modulation coefficient, h denotes the 

harmonic order of fault frequency fg(t), and ψde, φdgeh are the 

corresponding initial phases. Equation (10) can further be 

expanded as (11). 
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Therefore, when gear fault occurs, time-varying fault 

modulation sidebands |fde±hfg(t)| (h=0, 1, 2···) are generated 

around the characteristic frequency fde. It is worth noticing that 

fde do not change with time, but their sidebands have time-

varying instantaneous frequency. Such property help locate 

these characteristic frequencies in frequency domain. To 

facilitate the fault feature identification, the amplitude 

demodulation analysis can be conducted, and the time-varying 

gear fault frequency components are directly revealed.  

Finally, considering all above factors, the measured 

torsional vibration signal is modeled as (12). 
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. (12) 
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III. Multi-band Amplitude Demodulation Analysis 

According to the derivations in Section 2, gear fault causes 

amplitude modulations on different carriers in the measured 

torsional vibration signal. Considering the fact that fault 

characteristics distribute in different frequency bands, the 

multi-band torsional vibration amplitude demodulation is 

proposed. Comparing with the conventional envelope 

spectrum analysis or narrow-band amplitude demodulation 

analysis, the proposed method can make full utilization of the 

fault characteristics distributed in different frequency bands, 

and meanwhile suppress random interferences for accurate 

fault recognition. 

A. Envelope spectrum analysis 

The envelope spectrum analysis directly reveals the amplitude 

modulation frequencies in relatively low frequency region, 

thus avoiding the identification of intricate fault modulation 

sidebands around the carrier frequency. However, it 

essentially only fits for analyzing mono-component signal 

with single carrier frequency, and interferences occur when 

the analyzed signal becomes more complex. 

For a simple synthetic signal x1(t) with carrier frequency 

fc1(t) and amplitude modulation frequency fa(t), as 

 
1 a c1( ) [1+0.2cos(2π ( )d )]cos[2π ( )d ]x t f t t f t t=   , (13) 

its amplitude envelope α1(t) is derived as  

 2 2

1 1 1 a( ) ( ) [ ( )]=1+0.2cos(2π ( )d )t x t x t f t t = +   , (14) 

where H(·) denotes the Hilbert transform. Therefore, the 

amplitude envelope signal composes of only the amplitude 

modulation frequency fa(t).  

For a synthetic signal x2(t) with two carrier frequencies fc1(t) 

and fc2(t), as  

 
2 a c1

a c2

( ) [1+0.2cos(2π ( )d )]cos[2π ( )d ]

+[1+0.2cos(2π ( )d )]cos[2π ( )d ]

x t f t t f t t

f t t f t t

=

  

 

 
. (15) 

Its amplitude envelope α2(t) is derived as  

 

 
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c1 c2

( ) 1+0.2cos(2π ( )d )

2+2cos 2π [ ( ) ( )]d ]

t f t t

f t f t t

  =
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   −




. (16) 

Therefore, more frequency components exist in the obtained 

envelope spectrum of x2(t), including the amplitude 

modulation frequency fa(t), the frequency harmonics of the 

difference between two carrier frequencies fc1(t)-fc2(t), as well 

as their combinations. 

For intuitive demonstration, we set fa(t)=20t+5, fc1(t)=30fa(t), 

fc2(t)=25fa(t), and the results of envelope order spectrum 

analysis of x1(t) and x2(t) are shown in Fig. 1 for comparison. 

Evidently, when more than one carrier frequencies exist in 

the analyzed signal, the frequency compositions of the 

amplitude envelope signal become more complex. As 

observed in Fig.1(a), the waveform of amplitude envelope 

signal α2(t) shows more complex periodical features than that 

of α1(t). These periodical details are further identified in the 

order spectrum plotted in Fig.1(b), as the integer harmonics of 

the difference between two carrier frequencies p[fc1(t)-fc2(t)] 

(p=1, 2, 3···), and their combinations with the amplitude 

modulation frequency p[fc1(t)-fc2(t)]±fa(t). Unfortunately, these 

extra components complicate the order spectrum in Fig. 1(b), 

leaving it more difficult to intuitively identify the amplitude 

modulation frequency fa(t).  

B. Narrow-band amplitude demodulation analysis 

The narrow-band amplitude demodulation analysis focuses on 

single carrier frequency region for fault feature extraction. Yet 

under time-varying speed conditions, the adjacent carrier 

frequencies or their frequency sidebands often overlap in 

frequency domain. As a result, when the frequency region 

centered around the carrier frequency fc1(t) is selected for 

demodulation analysis, the frequency sidebands centered 

around the adjacent carrier frequency, or the independent 

rotating frequency orders, may also be mistakenly retained in 

the narrow-band filtered signal. 

To study the interferences of independent frequency 

components in the narrow-band amplitude demodulation 

analysis, a synthetic signal x3(t) is constructed by adding a 

mono-component fb(t) to the synthetic signal x1(t), as  

 
3 a c1

b

( )=[1+0.2cos(2π ( )d )]cos[2π ( )d ]

cos[2π ( )d ]

x t f t t f t t

f t t  +

 


. (17) 

Its amplitude envelope α3(t) is then derived as 

 

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1/2

c1 b

( ) [1+0.2cos(2π ( )d )] +2[1+0.2cos(2π ( )d )]

cos 2π [ ( ) ( )]d ] +1

t f t t f t t

f t f t t

 =

 −

 


. (18) 

Clearly, when a single frequency component fb(t) is 

mistakenly retained in the narrow-band filtered signal, the 

obtained amplitude envelope signal α3(t) is more complex than 

the ideal case in (14). The extra frequency components relate 

to the carrier frequency fc1(t) and the added frequency fb(t), and 

 
(a)                                                           (b) 

FIGURE 1. Analysis of the synthetic signals x1(t) and x2(t). (a) waveforms 
of the amplitude envelope signal α1(t) and α2(t), (b) envelope order spectra 
of x1(t) and x2(t). 
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may hinder the intuitive identification of the amplitude 

modulation frequency fa(t). 

Set fa(t)=20t+5, fc1(t)=30fa(t), fb(t)=30.7fa(t), the results of 

amplitude demodulation analysis of x1(t) and x3(t) are shown 

in Fig.2 for comparison. In Fig.2(a), the waveforms of α1(t) 

and α3(t) both show periodical features. Yet more components 

can be observed in the amplitude demodulated order spectrum 

of x3(t) than that of x1(t), as exhibited in Fig.2(b). The extra 

frequency components correspond to p|fc1(t)-fb(t)| (p=1, 2, 3···) 

and fa(t)±|fc1(t)-fb(t)|. Besides, the frequency component |fc1(t)-

fb(t)| becomes dominant in the amplitude demodulated order 

spectrum of x3(t), whereas the amplitude modulation 

frequency fa(t) has lower amplitude. As a result, even a single 

unwanted frequency component fb(t) leads to negative 

influence on the narrow-band amplitude demodulation. 

C. Multi-band amplitude demodulation method for 
torsional vibration signal 

The multi-band torsional vibration amplitude demodulation 

method is proposed in this work, to overcome the 

abovementioned interferences caused by coexistence of 

multiple carrier frequencies or other unwanted frequency 

components. Its main idea is to combine the fault modulation 

features shared in different modulation frequency regions, and 

meanwhile weakening the various interferences. The 

procedures are shown in Fig.3.  

Essentially, a series of bandpass filters are designed and 

utilized for demodulation analysis within multiple frequency 

regions. The number of the demodulation frequency regions 

depends on the number of time-invariant frequency carriers. 

The bandpass frequency bands of the designed filters are 

decided based on central frequency and bandwidth. The 

central frequency is located as dominant peaks in the Fourier 

spectrum, since the resonance frequencies are time-invariant 

under time-varying speed conditions. The bandwidth is set as 

twice the largest fault frequency, to cover the time-varying 

fault modulation sidebands in frequency domain.  

The novelty of the proposed method lies in the combined 

use of torsional resonance frequency band and device-related 

characteristic frequency bands for amplitude demodulation 

analysis. The time-invariant property of the carrier frequencies 

help localizes these demodulation frequency bands, and only 

the shared fault frequency components are enhanced. Besides, 

these frequency bands with constant carriers are narrower than 

the gear mesh frequency band, and less interferences are 

retained in the demodulation analysis. Such method is 

applicable when the rotating machinery fault causes amplitude 

modulation on the measured signal. The amplitude 

normalization of each envelope spectrum help balances the 

fault strength in each modulation frequency bands, thus 

realizing the fault feature integration. The achieved merits 

over conventional methods are further validated by numerical 

simulation and laboratory tests in the following. 

IV. Numerical Simulation 

The numerical simulated signal S(t) of planetary gearbox 

torsional vibration is established according to the signal 

analytical model in (12). The gear mesh vibration, resonant 

vibration, and two extra components resulted from 

measurement device are considered in the simulation. Without 

loss of generality, only the fundamental frequencies are 

considered. The amplitude coefficients and modulation 

coefficients are set time-invariant for simplicity. All initial 

phases are set 0. ε(t) at signal to noise ratio -1dB is added to 

mimic background noises. The numerical simulated signal ε(t) 

is therefore written as  
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Measure the torsional vibration signal S(t) and the reference speed 

Locate the torsional resonance frequency fr and other time-invariant 

characteristic frequencies fde  

Obtain the band-pass filtered signals Si(t) of the measured torsional 
vibration signal, and i=1, 2, … 

Generate the amplitude envelope signals Ai(t) of each signal Si(t) 

Amplitude-normalize each envelope order spectrum  

Design a series of band-pass filters, by setting the center frequencies as 

the located carriers fr and fde. The half width of the passing frequency 

band is set as twice the largest fault frequency. 

Generate the order spectra of Ai(t) with the support of reference speed 

Multiply all the amplitude-normalized order spectra, and obtain the 
proposed multi-band amplitude demodulation order spectrum of S(t) 

 

FIGURE 3. Procedure of the proposed multi-band torsional vibration 
amplitude demodulation method.  

 
(a)                                                           (b) 

FIGURE 2. Analysis of the synthetic signals x1(t) and x3(t). (a) waveforms 
of the amplitude envelope signal α1(t) and α3(t), (b) amplitude demodulated 
order spectra of x1(t) and x3(t). 
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where D(·) denotes the Heaviside function, and ti stands for 

the time instance of fault impacts. The sun gear rotating 

frequency fs(r)(t)=-25t2+30, the gear mesh frequency 

fm(t)=11.39fs(r)(t), and fs(t)=2.63fs(r)(t). The torsional resonance 

frequency fr=250Hz, and two independent frequency are set as 

fd1=420Hz and fd2=820Hz. Other coefficients are listed in 

Table 1. 

The waveform and Fourier spectrum of the constructed 

numerical simulated signal S(t) are respectively plotted in 

Fig.4(a) and Fig.4(b). From the Fourier spectrum in Fig.4(b), 

we can observe the hillside-like spectral peak at around 250Hz, 

as well as two sharp spectral peaks at 420Hz and 820Hz. 

However, the fault-related modulation sidebands cannot be 

observed in Fig.4(b) due to the nonstationarity and noises. The 

time-frequency representation (TFR) of S(t) is further 

generated by short time Fourier transform, as displayed in 

Fig.4(c). From the TFR, the time-varying gear mesh frequency 

component fm(t), the torsional resonance frequency band, and 

two time-invariant characteristic frequencies are clearly 

observed. The fault-induced modulation sidebands are 

indiscernible due to relatively low amplitude and noise 

interferences. To avoid the identification of time-varying fault 

frequency sidebands and directly reveal the fault frequency 

components, the amplitude demodulation analysis is applied. 

To demonstrate the advantages of the proposed method, the 

envelope order spectra of both the original analyzed signal and 

the bandpass-filtered signals are firstly generated for 

comparison. Firstly, the waveform of the amplitude envelope 

of the simulated signal S(t) is generated as plotted in Fig.5(a). 

Taking the sun gear rotating frequency fs(r)(t) as the reference 

frequency, the envelope order spectrum is obtained as shown 

in Fig.5(b). In the order spectrum, the sun gear fault frequency 

fs(t) can be identified as order of 2.63. However, extra order 

component of 3.49 can also be observed with relatively high 

magnitude. According to Section 3, such interference results 

from the existence of more than one carrier frequencies in 

amplitude demodulation. 

Then, the band-pass filtering is conducted before amplitude 

demodulation. Four demodulation frequency bands are 

selected for comparison. For gear mesh frequency band, the 

time-varying gear mesh frequency fm(t) and its modulation 

sidebands fm(t)±fs(t), fm(t)±2fs(t) cover the range from 30Hz to 

500Hz. For the torsional resonance frequency band, the 

frequency range of [fr-2 fs(t)|max, fr+2fs(t)|max], i.e., [92, 408]Hz, 

are selected for bandpass filtering. For the rest 2 demodulation 

frequency bands, their center frequencies correspond to the 

two time-invariant characteristic frequencies 420Hz and 

820Hz, and their half bandwidths are set twice the maximum 

gear fault frequency 2fs(t)|max. Therefore, frequency regions of 

[262, 578]Hz and [662, 978]Hz are analyzed. 

TABLE I 

COEFFICIENTS USED IN NUMERICAL SIMULATION 

cm cr cd1 cd2 Amg Adg1 Adg2 Bmg β 

1 3 0.4 0.4 0.2 0.2 0.2 0.01 0.2 

 

 
(a)                                                           (b) 

 

(c) 
FIGURE 4. The numerical simulated signal S(t). (a) waveform, (b) Fourier 

spectrum, (c) TFR. 

 
(a)                                                           (b) 

FIGURE 5. Conventional envelope order spectrum analysis of S(t). (a) 
waveform of the amplitude envelope, (b) envelope order spectrum. 
 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

FIGURE 6. Order spectra of the simulated signal by amplitude 
demodulation within: (a) gear mesh frequency band of [30, 500]Hz, (b) 
torsional resonance frequency band of [92, 408]Hz, (c) characteristic 
frequency band of [262, 578]Hz, (d) characteristic frequency band of [662, 
978]Hz. 
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The 4 order spectra of the bandpass filtered signals with 

different demodulation frequency bands are generated, as 

plotted in Fig.6(a)-(d). It is found that the order component 

corresponding to the sun gear fault frequency fs(t) can be found 

in all these 4 order spectra, but various interferences occur in 

different cases. In Fig.6(a) and 6(b), extra order component of 

3.46 are observed at dominant magnitude. In Fig.6(c) and 6(d), 

the fault order component 2.63 has relatively low amplitude, 

and a series of weak spectral peaks can be misunderstood as 

meaningful components. According to the derivations in 

Section 3, these interference components result from more 

than one carrier frequency or extra frequency components in 

the demodulation frequency band. 

In comparison, the proposed method makes use of the fault 

signatures in multiple demodulation frequency bands. 

Following the procedure in Fig.3, three carrier frequencies are 

located from the Fourier spectrum in Fig.4(b), as fr =250Hz, 

fd1=420Hz, and fd2=820Hz. These frequency components do 

not vary with time under time-varying speed conditions, and 

are identified as carrier frequencies for multi-band amplitude 

demodulation. These carrier frequencies are set as the center 

frequencies of bandpass filters, and the half bandwidths are set 

twice the maximum gear fault frequency. The envelope order 

spectra of the obtained bandpass filtered signals are then 

generated and amplitude normalized. By multiplying the 

amplitude normalized envelope order spectra, the shared fault 

signatures are retained, whereas the various interferences 

components are suppressed. The obtained multi-band 

amplitude envelope order spectrum is exhibited in Fig.7. To 

quantitively evaluate the performance of fault signatures 

revelation, an indicator is designed as the magnitude of fault 

order 2.63 over the average magnitude of all the discrete order 

components from 0 to 10. Higher value of the indicator means 

more evident fault feature can be observed. The calculated 

indicators in different amplitude demodulation scenarios are 

shown in Fig.8 for comparison. Clearly, the indicator remains 

almost at same level even though different demodulation 

frequency bands are employed (scenario 1 to 5). By combining 

the fault signatures in multiple demodulation frequency bands 

(scenario 6), the fault order component can be prominently 

enhanced, whereas the interferences caused by complex 

frequency structure can be suppressed. In conclusion, the 

proposed method has potential use in revealing relatively 

weak gear fault signatures from complex nonstationary signals. 

V. Laboratory Experimental Verification 

The proposed multi-band demodulation method makes 

utilization of the fault modulation features in both gear mesh 

frequency region and the resonance frequency regions. To 

validate its effectiveness in diagnosing gear defects in 

planetary gearbox, laboratory experiments are further 

conducted.  

A. Experiment settings 

The experiments are conducted on a planetary gearbox test 

rig shown in Fig.9. The ring gear of the one-stage planetary 

gearbox is fixed, and the transmission ratio is 8.1 (take sun 

gear as the input). Other gear configurations are listed in Table 

2. A three-phase induction motor is connected to the input sun 

gear shaft to provide driving torque, and the output planet 

carrier shaft is connected to a magnetic powder brake to 

provide external load. To measure the torsional vibration, the 

PCB 4104-03A torque transducer is connected between the 

driving induction motor and the analyzed planetary gearbox. 

It is worth noticing that in real-world applications with limited 

mounting space, the motor current signals measured by current 

sensors may help support the torsional vibration evaluation 

[21-22]. The alternating voltage source at 3.24kHz is added on 

the torque transducer for signal measurement. The variable 

frequency drive is applied to realize the time-varying speed 

conditions.  

Four groups of tests are conducted. In baseline case, all 

gears are theoretically in perfect condition. In faulty cases, 

local gear tooth defects are respectively added on the sun, 

planet, and ring gear, as shown in Fig.10. In all these four tests, 

the motor speed is set fi(t)=t+5, and fixed load of 30 lb-in is 

added by the powder brake. The torsional vibration signals are 

measured by the torque transducer within 20 seconds at the 

sampling rate of 20kHz. Thus, the gear mesh frequency of the 

planetary gearbox is cast as fm(t)= 11.39 fs
(r)(t), and the planet 

carrier rotating frequency is cast as fc
(r)(t) = 0.12fs

(r)(t). The 

accurate motor speed is measured via encoder. In industrial 

applications, the time-varying instantaneous speed can also be 

estimated by vibration-based signal processing methods [23]. 

The rotating frequencies and fault frequencies of each gear in 

planetary gearbox are calculated as listed in Table 3.  

 

FIGURE 7. The proposed multi-band amplitude demodulated order 
spectrum of the simulated torsional vibration signal S(t). 

 

FIGURE 8. Comparisons of the capability of fault feature revelation by 
different amplitude demodulation scenarios. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3513359

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

  

B. Baseline case 

The waveform and Fourier spectrum of the measured 

planetary gearbox torsional vibration signal in baseline case 

are respectively plotted in Fig.11(a) and Fig.11(b). The motor 

speed is simultaneously measured as plotted in Fig.11(c). 

Although the characteristic frequencies are time-varying and 

show wide-band features in the Fourier spectrum, several 

time-invariant characteristic frequencies can be recognized as 

dominant peaks. As pinpointed in Fig.11(b), these 7 

characteristic frequencies are identified as 44.5Hz, 144.9Hz, 

438.9Hz, 737.8Hz, 1037.1Hz, 3248.3Hz, and 6495.9Hz. Since 

the spectral peak at 44.5Hz is hillside-like in the Fourier 

spectrum, it is considered as the torsional resonance frequency 

fr. The 144.9Hz, 438.9Hz, 737.8Hz, and 1037.1Hz spectral 

peaks have equal frequency interval of around 300Hz. These 

characteristic frequency components show as discrete spectral 

peaks, and are judged as the electric signal components fd1, fd2, 

fd3, and fd4. The 3248.3Hz and 6495.9Hz correspond to the first 

and second harmonic of the power frequency 3.24kHz of the 

torque transducer. They are judged as the characteristic 

frequency component fd5 and fd6.  

Taking the sun gear rotating frequency fs(r)(t)=fi(t) as the 

basic order, the conventional envelope order spectrum of the 

baseline signal is generated as shown in Fig.11(d)-(e). Taking 

the gear mesh frequency band [30, 416]Hz as the passing 

frequency band, the narrow-band amplitude demodulated 

order spectrum is generated as shown in Fig.11(e). In both 

spectra, only the harmonics of sun gear rotating frequency 

fs(r)(t) can be identified. In comparison, by combining the fault 

signatures in the detected 7 torsional vibration frequency 

bands, the order spectrum generated by the proposed multi-

band torsional vibration amplitude demodulation method is 

shown in Fig.11(f). Clearly, the interferences are prominently 

diluted, and the proposed spectrum provide clear order peaks 

for accurate feature extraction. Still, only the harmonics of sun 

gear rotating frequency fs(r)(t) and planet carrier rotating 

frequency fc(r)(t) are observed, and fault signatures are not 

detected. 

C. Sun gear fault diagnosis 

In the sun gear fault case, only the healthy sun gear is 

replaced with a faulty one shown in Fig.10(a). The waveform 

and Fourier spectrum of the measured planetary gearbox 

torsional vibration signal are plotted in Fig.12(a)-(b), and the 

TABLE II 

PLANETARY GEARBOX CONFIGURATIONS 

Gear Sun (input) Planet Ring (fixed) 

Number of gear teeth 13 38(3) 92 

Note: The number of planet gears is indicated in the parenthesis. 

 

TABLE III 
PLANETARY GEARBOX CHARACTERISTIC FREQUENCIES 

Gear Sun Planet Ring 

Rotation fs
(r)(t) = fi(t) fp

(r)(t) = 0.17fs
(r)(t) - 

Fault fs(t)= 2.63 fs
(r)(t) fp(t)= 0.29 fs

(r)(t) fr(t)= 0.37 fs
(r)(t) 

 

 

Induction 

motor 

Planetary 

gearbox 

Magnetic 

powder brake 

Torque-speed 

sensor 

 
FIGURE 9. Planetary gearbox test rig. 

 

    
  (a)                                    (b)                                     (c) 

FIGURE 10. Localized gear faults on: (a) sun gear, (b) planet gear, and (c) 
ring gear. 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

 
(e)                                                           (f) 

FIGURE 11. Order spectrum analysis of baseline signal. (a) waveform, (b) 
Fourier spectrum, (c) motor speed, (d) envelope order spectrum, (e) 
narrow-band amplitude demodulated order spectrum, (f) multi-band 
torsional vibration amplitude demodulated order spectrum. 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

 
(e)                                                           (f) 

FIGURE 12. Order spectrum analysis of sun gear fault signal. (a) waveform, 
(b) Fourier spectrum, (c) motor speed, (d) envelope order spectrum, (e) 
narrow-band amplitude demodulated order spectrum, (f) multi-band 
torsional vibration amplitude demodulated order spectrum. 
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motor speed is plotted in Fig.12(c). Similar with the baseline 

case, a series of time-invariant characteristic frequencies can 

be estimated from the Fourier spectrum, as pinpointed in Fig. 

12(b). Yet due to the time-varying characteristic frequencies, 

the fault signatures cannot be directly observed from the 

Fourier spectrum. 

The envelope order spectrum analysis and narrow-band 

amplitude demodulation analysis are firstly applied on the sun 

gear fault signal. According to the obtained envelope order 

spectrum in Fig.12(d), only the harmonics of sun gear rotating 

frequency fs
(r)(t) are prominent, whereas other features are 

masked under noises. By band-pass filtering the analyzed 

signal through the gear mesh frequency region, and 

performing envelope spectrum analysis on the resulted signal, 

the narrow-band amplitude demodulated order spectrum is 

generated as shown in Fig.12(e). Owing to the band-pass 

filtering, less harmonics of fs
(r)(t) are observed, and two sun 

gear fault-related frequency components can be identified as 

fs(t)+3fs
(r)(t) and fs(t)+9fs

(r)(t). 

The proposed multi-band torsional vibration amplitude 

demodulation analysis is then applied. Seven demodulation 

frequency bands centered at the detected time-invariant 

characteristic frequencies are utilized, and the obtained order 

spectrum is plotted in Fig.12(f). Clearly, the noise 

interferences are prominently eliminated since they have 

different frequency distributions in different torsional 

vibration frequency regions. Besides, the modulation 

frequency components shared in different frequency regions 

are enhanced and easier to be pinpointed. Owing to these two 

merits, the sun gear fault frequency fs(t) and its combinations 

with sun gear rotating frequency fs
(r)(t), i.e., fs(t)+3fs

(r)(t) and 

fs(t)-2fs
(r)(t) are intuitively presented in Fig.12(f). Comparing 

with the results in baseline case in Fig.11(f), the sun gear fault 

can be effectively diagnosed. 

D. Planet gear fault diagnosis 

Only one of the planet gears is replaced with a faulty one as 

shown in Fig.10(b), and other gears are theoretically healthy. 

The planetary gearbox torsional vibration signal and the motor 

speed are measured, as displayed in Fig.13(a)-(c). 

The envelope order spectrum and the narrow-band 

amplitude demodulated order spectrum of the planet gear fault 

signal are generated as shown in Fig.13(d)-(e). However, only 

the harmonics of sun gear rotating frequency fs
(r)(t) are 

discernible in both spectra, and other details are masked. In 

comparison, the order spectrum generated by the proposed 

multi-band torsional vibration amplitude demodulation 

method is plotted in Fig.13(f). The noise interferences are 

effectively removed to highlight the characteristic frequency 

details. As a result, the combination of the planet gear fault 

frequency fp(t) and fs
(r)(t), i.e., fs

(r)(t)±fp(t) are clearly identified. 

By comparing with the results in baseline case, the planet gear 

fault is successfully diagnosed. 

E. Ring gear fault diagnosis 

In ring gear fault case, one of the ring gear teeth is defected, as 

shown in Fig.10(c). The waveform and Fourier spectrum of 

the measured planetary gearbox torsional vibration signal are 

plotted in Fig.14(a)-(b), and the measured motor speed is 

plotted in Fig.14(c). 5 time-invariant characteristic frequencies 

are detected from the Fourier spectrum in Fig.14(b). To reveal 

the distribution of the time-varying modulation frequency 

features, the amplitude demodulation order spectrum analysis 

is then utilized.  

The envelope order spectrum of the ring gear fault signal is 

shown in Fig.14(d). However, due to the existence of multiple 

carrier frequencies, independent rotating frequency orders and 

the background noise, only the dominant harmonics of the sun 

gear rotating frequency fs
(r)(t) can be pinpointed. After band-

pass filtering the analyzed signal in gear mesh frequency 

region, the narrow-band filtered signal is generated, and its 

amplitude demodulated order spectrum is plotted in Fig.14(e). 

Although the harmonics of fs
(r)(t) are to some extent eliminated, 

other features are still masked under noise interferences. 

The proposed multi-band torsional vibration amplitude 

demodulated order spectrum is then generated and exhibited 

in Fig.14(f). Clearly, the unwanted noise interferences are 

effectively eliminated. Although the fault signatures are 

relatively unobvious, we can still detect the order peak 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

 
(e)                                                           (f) 

FIGURE 13. Order spectrum analysis of planet gear fault signal. (a) 
waveform, (b) Fourier spectrum, (c) motor speed, (d) envelope order 
spectrum, (e) narrow-band amplitude demodulated order spectrum, (f) 
multi-band torsional vibration amplitude demodulated order spectrum. 
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corresponding the ring gear fault frequency fr(t) in the 

zoomed-in view of Fig.14(f). Comparing with the results in 

baseline case, the ring gear fault is effectively diagnosed. 

VI. Conclusions 

Two contributions are made in this work for planetary 

gearbox fault feature extraction. Firstly, via analytical 

modeling of the planetary gearbox torsional vibration response, 

the gear fault modulation sidebands are revealed to distribute 

around not only the gear mesh frequency but also the torsional 

resonance frequencies. Secondly, by integrating the fault 

characteristics among various frequency regions, the proposed 

multi-band demodulation method outperforms conventional 

envelope spectrum and narrow-band amplitude demodulation 

spectrum in revealing relatively-weak fault features. The 

results of both numerical simulation and laboratory 

experiments validate the advantages of the proposed method 

in diagnosing sun, planet and ring gear faults under time-

varying speed conditions. Since the revelation of the time-

varying amplitude of the fault signatures cannot be realized in 

the proposed order spectrum, further studies in time-frequency 

domain are expected. Studies on adaptive optimization of the 

bandwidth will also be conducted in the future. 
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(a)                                                           (b) 
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