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ABSTRACT Downtime caused by failing equipment can be extremely costly for organizations. Predictive
Maintenance (PdM), which uses data to predict when maintenance should be conducted, is an essential
tool for increasing safety, maximizing uptime and minimizing costs. Contempoary PdM systems primarily
have sensors collect information about the equipment under observation. This information is afterwards
transmitted off the device for processing at a high-performance computer system. While this can allow high-
quality predictions, it also imposes barriers that keep some organisations from adopting PdM. For example,
some applications prevent data transmission off sensor devices due to regulatory or infrastructure limitations.
Being able to process the collected information right at the sensor device is, therefore, desirable in many
sectors - something that recent progress in the field of TinyML promises to deliver. This paper investigates the
intersection between PdM and TinyML and explores how TinyML can enable many new PdM applications.
We consider a holistic view of TinyML-based PdM, focusing on the full stack of Machine Learning (ML)
models, hardware, toolchains, data and PdM applications. Ourmain findings are that each part of the TinyML
stack has received varying degrees of attention. In particular, ML models and their optimisations have seen a
lot of attention, while data optimisations and TinyMLdatasets lack contributions. Furthermore, most TinyML
research focuses on image and audio classification, with little attention paid to other application areas such
as PdM. Based on our observations, we suggest promising avenues of future research to scale and improve
the application of TinyML to PdM.

INDEX TERMS Embedded AI, Embedded Machine Learning, Optimisation, Predictive Maintenance,
Resource-Constrained Systems, TinyML

I. INTRODUCTION

EQUIPMENT failure can cause extremely costly down-
time for organizations. In 2021, Amazon lost approx-

imately $2 million from lost sales because of a 13-minute
downtime [1], and a study by the Ponemon Institute found
that organizations, on average, lose $138.000 per hour of data
centre downtime [2]. Unsurprisingly, organizations are will-
ing to go to great lengths to reduce such downtime. According
to a 2000 article, some organizations spend up to 70% of
total production costs on maintenance [3]. Given such high
potential costs, it is paramount that organizations employ a
maintenance strategy that maximize equipment uptime while
also keeping maintenance costs low.

According to Ran et al. [2], there are three main categories
of maintenance strategies.

Reactive Maintenance: In reactivemaintenance, equipment

is replaced after a failure. While this avoids unnecessary
maintenance, it can lead to costly downtime.

Preventive Maintenance: In preventivemaintenance, equip-
ment is maintained according to a predefined schedule.
This strategy can be costly andwasteful as it may replace
perfectly working equipment. Preventive Maintenance
also provides no guarantee that failures do not occur
before the scheduled maintenance.

Predictive Maintenance: In PdM, equipment is monitored
using sensors to predict when maintenance is required.
Based on these metrics, it is often possible to predict
when the machine should be maintained to avoid failure
and costly downtime while keeping maintenance costs
low.

PdM clearly provides themost attractivemaintenance strat-
egy combining low failure rates and maintenance costs. Un-
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fortunately, it also comes with large upfront costs and is hard
to implement successfully due to its complexity. Because of
this, many organizations still employ reactive or preventive
maintenance today.

There are mainly three approaches to implementing PdM
systems [2]:
Knowledge-based: This PdM approach establishes rules or

physical models to predict failures. Establishing com-
prehensive rules or physical models for complex systems
can be challenging. Therefore, this approach is mainly
applied to simple systems.

Traditional Machine Learning (ML): This PdM approach
uses traditional ML models to predict failures. For ex-
ample, a decision tree or k-means. Traditional ML of-
ten rely on significant feature engineering to achieve
high predictive performance. Even so, traditional ML
approaches may not be suitable for complex problems
such as the classification of images.

Deep Learning: This PdM approach uses deep Neural Net-
work (NN) models to predict failures. Unlike traditional
ML, deep learning works well with unstructured data
and, thus, does not require significant feature engineer-
ing work. Deep learning often consumes more system
resources than traditional ML but can solve complex
problems where traditional ML struggles.

The output of PdM models can be of different forms [2]:
Classification: Outputs a classification of the PdM status

of the input data. For example a binary prediction of
whether there is an impending failure within an estab-
lished time frame.

Anomaly Detection: Outputs whether the input data is nor-
mal or abnormal, considering previous data. If the be-
haviour is abnormal, a maintenance team can be sent to
investigate the anomaly.

Regression: Outputs an estimate of the Remaining Useful
Life (RUL). A maintenance team can be sent when the
RUL approaches low levels.

A further distinction is possible in anomaly detection,
where anomalies can be split into three subcategories [4]:
Point Anomalies: An anomalous input data sample consid-

ering previously seen samples.
Contextual Anomalies: An input data sample that is anoma-

lous in its context. E.g. a high-temperature reading in
industrial machinery during downtime hours.

Collective Anomalies: A collection of input data samples
that are anomalous as a collective. E.g. a large amount
of failed login attempts on a website.

Today, most PdM systems are deployed in the cloud or on
powerful computers. However, the data that feeds into these
PdM models is almost exclusively generated by small sensor
devices. Therefore, data has to be sent over a network for
processing. This introduces several drawbacks, e.g.:
Energy Consumption: While on-device computation is en-

ergy efficient, sending data over a network consumes
a significant amount of energy. This can be a problem

for devices relying on batteries or energy harvesting for
operation [5].

Security and Privacy: Data sent over a network can be
compromised.While several techniques exist to alleviate
this problem, it is an inherent risk in network-based
solutions. This makes these solutions hard or impossible
to apply in highly regulated industries.

Latency: Network communication induces a non-zero and
often unpredictable latency. This can be intolerable in
some applications requiring real-time processing.

Reliability: A network-based system will be less reliable
than a standalone system, as it relies on a working
network connection and a responsive endpoint. This can
be especially problematic for systems deployed in rural
areas, at sea, or in space.

Based on these drawbacks, it is desirable, or even essential,
for some industries to deploy PdM systems directly on sensor
devices. These devices, unfortunately, lack the resources to
naively deploy complicated physical models, traditional ML
models and deep learning models.
The field of TinyML is dedicated to lowering the resource

requirements of traditional ML and deep learning models
and making them fit within resource-constrained devices [6].
This goal is pursued through different components of the
TinyML stack, with the layers illustrated in Figure 1. TinyML
can, therefore, help PdM overcome the above-mentioned
drawbacks and enable groundbreaking applications. Natu-
rally, making machine learning run under extreme resource
constraints introduces some challenges.

Limited Compute: Few Computational Resources are
available under the power limits enforced by TinyML.
Inference ofmodels, therefore, takes significantly longer
than in the cloud or desktops.

Limited Memory: Low-power devices contain an extremely
limited amount of memory, constraining the size of mod-
els deployable with TinyML.

No Operating System: Little or no resources in a TinyML
system can be spared for an operating system. Therefore
TinyML can not rely on standard operating system fea-
tures such as dynamic memory allocation.

Market Heterogeneity: There is a wide variety of low-
power devices on the market, and little to no interoper-
ability between them. Therefore, significant engineering
work is required to make well-working TinyML sys-
tems.

Additionally, in many industrial applications, most com-
putation and memory resources are already allocated to dedi-
cated tasks, leaving even less room for AI operations. A holis-
tic view of the TinyML stack seen in Figure 1 is necessary to
deliver well-performing systems under these challenges. This
review is dedicated to that task and considers optimisations
to hardware, ML models, toolchains and the datasets that
are required for successfully using TinyML for PdM. More
specifically, our contribution is to provide a comprehensive
perspective of the following aspects of the intersection of
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Hardware - Section III

Model - Section V

Toolchain - Section IV

Data - Section VI

Application - Section VII

FIGURE 1. The TinyML Stack (and following sections of the paper). Arrows
indicate that a part of the stack influences another part.

TinyML and PdM:

Hardware (Section III): We describe how various types of
hardware strike different trade-offs between energy effi-
ciency, flexibility, usability, and cost.

Toolchain (Section IV): We provide information about the
available toolchains for developing and deploying
TinyML models and their characteristics.

Model (Section V): We discuss various families of machine
learning models and their suitability for TinyML-based
PdM. Further, available TinyML optimisation tech-
niques are studied.

Data (Section VI): We elaborate on the importance of data
in TinyML systems and how it can be optimised for PdM
applications.

Application (Section VII): We introduce various objectives
of PdM systems alongside examples of application areas
for TinyML-based PdM.

This paper extends thework published in [7]. Table 1 shows
how this extension expands on the prior work.

The remainder of the paper is organised as follows: Sec-
tion II reviews the relevant literature on TinyML and PdM
surveys. The parts of the TinyML stack as seen in Figure 1
are reviewed through Sections III to VII. In section VIII, we
discuss promising avenues for future research in the field of
TinyML-based PdM. Finally, Section IX concludes the paper.

II. RELATED WORK
While the TinyML field is still in its infancy, it has received
significant attention in recent years. As shown in Table 1,
many papers concentrate on specific application areas of
TinyML. For instance, [16], [27] explore its application in
healthcare, while [18], [25] investigate the potential positive
impact of TinyML on environmental issues. [10] focuses on

its use in anomaly detection, and [15] examines the chal-
lenges encountered when deploying TinyML in Africa. On
the other hand, several other review papers adopt a more
general perspective on the field [13], [14], [17], [19]–[22],
[26], [29], [30], with some taking a systematic approach to
their reviews. Notably, [22], [29] provide relatively compre-
hensive overviews of the TinyML stack, although they pay
less attention to the data component. In [29], the authors
identify three primaryworkflows for TinyML solutions: ama-
chine learning-oriented workflow, a hardware-oriented work-
flow, and a combined workflow that incorporates aspects of
both. They further explore optimization techniques andmodel
types and conclude with a discussion on various hardware
options and toolchains. Similarly, [22] reviews comparable
topics using a different taxonomy while also expanding the
scope by covering four specific application areas of TinyML:
environment, healthcare, smart farming, and anomaly detec-
tion. Despite the existence of all these papers, at this time, no
survey has, in our opinion, holistically reviewed TinyML for
PdM.
It can, therefore, be challenging to use previous survey

literature for TinyML-based PdM, as it tends to focus on
standard supervised learning techniques and applications that
differ from PdM in especially two areas. Firstly, PdM datasets
are often imbalanced or unlabeled, in which case one must
often resort to unsupervised learning techniques. Many unsu-
pervised learning models have different characteristics than
supervised learning models and require other optimisations.
Secondly, PdM data is often of poor quality, which increases
the need for data-centric techniques to mitigate the effect of
this.
While not strictly surveys, a few books have been written

on TinyML. ‘‘TinyML: Machine Learning with TensorFlow
Lite on Arduino and Ultra-Low-Power Microcontrollers’’
[31] is a tutorial for deploying several ML applications on
ARM-based microcontrollers. The book contains a compre-
hensive overview of the background of TinyML and Optimi-
sation techniques.
‘‘The TinyML Cookbook’’ [32] is another book about

TinyML that focuses heavily on practical example applica-
tions. E̊ach chapter, except for the two introduction chapters,
is dedicated to an application area and a recipe for developing
a TinyML solution for that application area.
‘‘Machine Learning Systems with TinyML’’ [33] is a

community-driven book on everything from the fundamentals
of ML systems to advanced topics such as responsible and
sustainable ML. This book contains fewer practical examples
than other TinyML books, leaving space for a more compre-
hensive overview of the general field.

III. HARDWARE
At the bottom of the TinyML stack, we find the hardware on
which the rest of the system is built. So far, we have described
how TinyML systems have few resources. These resources
refer to the various resources provided by the hardware on
which the TinyML system is running. It can refer to the com-
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TABLE 1. TinyML Surveys (✓ = Covered in Survey | ~ = Partially Covered in Survey | ✗ Not Covered in Survey)

Name Hardware Toolchain Model Data
Predictive

Maintenance Publication

Tinyml-enabled frugal smart objects: Challenges and opportunities [8] ✗ ✓ ✗ ✗ ✗ 2020
Model Compression and Hardware Acceleration for Neural Networks: A Com-
prehensive Survey [9] ✓ ✗ ✓ ✗ ✗ 2020

Anomaly detection based on tiny machine learning: A review [10] ✗ ✗ ✓ ✗ ~ 2021
TinyML: Current Progress, Research Challenges, and Future Roadmap [11] ✓ ~ ✓ ✗ ✗ 2021
Tinyml Meets IoT: A Comprehensive Survey [12] ~ ✓ ✓ ✗ ✗ 2021
A primer for tinyml predictive maintenance: Input and model optimisation (Prior
Work) [7]

~ ~ ✓ ~ ✓ 2022

A review of TinyML [13] ✗ ✗ ✗ ✗ ✗ 2022
A review on TinyML: State-of-the-art and prospects [14] ✓ ✓ ✓ ✗ ✗ 2022
TinyML in Africa: Opportunities and challenges [15] ✗ ✗ ✗ ✗ ✗ 2022
A Review of Machine Learning and TinyML in Healthcare [16] ~ ~ ~ ✗ ✗ 2022
TinyML: A Systematic Review and Synthesis of Existing Research [17] ~ ~ ✗ ~ ✗ 2022
How TinyML Can be Leveraged to Solve Environmental Problems: A Survey
[18]

~ ✗ ~ ✗ ✗ 2022

A Review on the emerging technology of TinyML [19] ✓ ✓ ✓ ✗ ~ 2022
Tiny Machine Learning for Resource-Constrained Microcontrollers [20] ✗ ✓ ✓ ✗ ✗ 2022
Machine Learning for Microcontroller-Class Hardware: A Review [21] ✗ ✓ ✓ ✗ ~ 2022
A Comprehensive Survey on TinyML [22] ✓ ✓ ✓ ✗ ~ 2023
Intelligence at the Extreme Edge: A Survey on Reformable TinyML [23] ~ ✓ ✓ ✗ ~ 2023
Software Engineering Approaches for TinyML based IoT Embedded Vision:
A Systematic Literature Review [24] ✓ ✗ ✗ ✗ ✗ 2023
A Systematic Literature Review of TinyML
for Environmental Radiation Monitoring System [25] ~ ✗ ✗ ✗ ✗ 2023
Tiny Machine Learning: Progress and Futures [26] ✗ ✓ ✓ ✗ ✗ 2023
TinyML applications and use cases for healthcare [27] ✗ ✗ ✗ ✗ ✗ 2024
TinyML for low-power Internet of Things [28] ~ ✗ ✗ ✗ ✗ 2024
A Machine Learning-Oriented Survey on Tiny Machine Learning [29] ✓ ✓ ✓ ✗ ✗ 2024
TinyMLApplications, Research Challenges, and Future ResearchDirections [30] ~ ✗ ✗ ✗ ✗ 2024
A Holistic Review of the TinyML Stack for Predictive Maintenance (This work) ✓ ✓ ✓ ✓ ✓ 2024

putational power of the system, the amount of memory and
storage available in the system or even the sensing capabilities
that the hardware provides. In this section, we take a deep dive
into each of these resource categories and describe how each
can be optimised for TinyML.

Apart from the hardware resources available to the TinyML
system, an additional interesting aspect of the hardware is
its power source. For TinyML devices, this can be anything
from a coin-sized battery, the power grid or even an energy
harvesting device. In the latter part of the section, we give
examples of devices commonly used in TinyML and how they
relate to the previously described aspects.

A. COMPUTE
Choosing the computing unit to process TinyMLworkloads is
not as straightforward as it may seem.Many desirable aspects,
such as energy efficiency, flexibility, usability, and cost, are
often not achievable all at once, and an ideal trade-off must
be found for each application.

Below, we list typical aspects that are taken into account
when selecting a computing unit for a TinyML system. After-
wards, we discuss common classes of computing units and the
trade-offs they generally make between the presented aspects.

Energy Efficiency: A defining characteristic of TinyML
hardware is its energy efficiency. Without being energy
efficient, TinyML hardware could not be deployed in
many areas where a steady power supply is unavailable.

Flexibility: Another important characteristic is the hard-
ware’s flexibility, as the widerMLfield is rapidly invent-
ing new models. Consequently, state-of-the-art models
today may be outdated in just a few years. Having a
hardware platform that is inflexible to change will mean
that the platform will have to be replaced when new
models are needed.

Usability: An often-overlooked and hard-to-measure aspect
of TinyML hardware is usability, i.e., how easy it is to
use it. Great or poor usability often means the differ-
ence between a successful innovation and a forgotten
academic exercise.

Cost: An essential aspect of TinyML Hardware is its cost.
Embedded systems are generally deployed in huge quan-
tities; therefore, each unit must be cheap to deploy.

1) General-Purpose Microcontrollers
To a large extent, because of their flexibility, ease of use, and
cost, the current TinyML landscape is dominated by general-
purposemicrocontrollers containing a tinyCentral Processing
Unit (CPU). This CPU is often based on an ARM Cortex-M
architecture. ARM is a large provider of processor Intellectual
Property (IP), and their Cortex-M architecture is their most
energy-efficient processor architecture [34], which makes it a
natural choice as a general-purpose processor for TinyML.
The ARM Cortex-M architecture contains several varia-

tions, ranging from the smallest Cortex-M0 to the Cortex-
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M7, with the highest performance of any Cortex-M proces-
sor. Only some Cortex-M processors support computations
using floating point units [34], which are frequently used in
traditional ML and NNs. We discuss techniques to run NNs
in devices without floating point units in Section V.

Apart from their Cortex-M architecture, the Cortex-A ar-
chitecture from ARM is also often used in TinyML devices.
This architecture from ARM is more powerful but has a
significantly higher energy consumption than the Cortex-
M architecture [34]. Other non-ARM-based microcontrollers
are also in use. For example, many entries in the ESP32
microcontroller lineup use a CPU based on Xtensa IP [35].
Others use a CPU based on the RISC-V open-source proces-
sor architecture [36].

2) Hardware Accelerators
When an application demands better energy efficiency or
higher throughput than what can be provided by general-
purpose microcontrollers, hardware accelerators come into
play. Such Hardware accelerators come in many forms, from
more flexible Digital Signal Processor (DSP) and Field Pro-
grammable Gate Array (FPGA) architectures to custom-made
Application Specific Integrated Circuit (ASIC) architectures.
See Table 2 for a quick comparison between computing units.
Digital Signal Processors (DSPs): These are specialized

processing units that excel at processing multiple data
points in parallel in a computing method known as
Single Instruction Multiple Data (SIMD). Processing
multiple data points in parallel allows a DSP to reach
significantly higher throughput than a general-purpose
CPU. As a trade-off for being able to process data
in parallel, DSPs usually only supports a limited set
of instructions compared to a general-purpose CPU.
For ML workloads, this is not usually a problem, as
many ML algorithms rely on few instructions during
execution, for example, Multiply-Accumulate (MAC)
instructions for NNs. The increased parallelism in DSPs
also increases programming complexity, making the
platform significantly harder to use effectively.

Field Programmable Gate Arrays (FPGAs): These are
Integrated Circuit (IC) that can be reconfigured after
manufacture. This reconfigurability allows for the cre-
ation of heavily specialized architectures while main-
taining flexibility in the face of changing ML work-
flows. Using FPGAs comes with some amount of Non-
Recurring Engineering (NRE) costs associated with
developing the hardware description code for reconfigu-
ration. FPGAs are typically harder to use than both CPUs
and DSPs as they require both hardware design special-
ists and engineers capable of programming customized
hardware. Microsoft has been deploying FPGAs in its
data centres to accelerate ML workloads [37].

Application Specific Integrated Circuits (ASICs): This hard-
ware provides the fastest and simultaneously least flexi-
ble hardware acceleration. An ASIC is custom-designed
for a specific application and sacrifices much flexibility

TABLE 2. Comparison of Computing Unit Archetypes

Archetype Description Characteristics

CPU A general purpose
processor

Low Energy Efficiency
High Flexibility
Easy to Use
Low Cost

DSP

A processor optimised
for processing certain
operations at high
speeds and efficiency

Medium Energy Efficiency
Medium Flexibility

Hard to Use
Medium Cost

FPGA

A processor with
reprogrammable
logic gates, i.e.,
reprogrammable
hardware

High Energy Efficiency
High Flexibility
Very Hard to Use

High Cost

ASIC
A processor dedicated
to a specific applica-
tion

Very High Energy Efficiency
Little to No Flexibility

Hard to Use
Medium Cost

GPU
A processor originally
dedicated to process-
ing computer graphics

Medium Energy Efficiency
Medium Flexibility
Challenging to Use

Medium Cost

to achieve the highest possible performance. ASICs, like
FPGAs, are harder to use than CPUs. Because of its
highly specialized nature and the long supply chain of
manufacturing IC, theNRE costs of designingASICs are
significantly higher than other platforms. Experience has
shown that designing and manufacturing ASICs often
takes more than two years [33]. Such a long product
development time and the inherent inflexibility of ASICs
can mean that an ASIC can be outdated before it is fully
developed. Developing an ASIC is, therefore, a costly
and risky venture. An organization does, however, not
necessarily need to develop its own ASIC. Many ASICs
have already been developed for general ML systems.
Some are available as commercial products and thus
allow third parties to achieve the performance of ASICs
without the associated NRE costs. The ARM Ethos
product line [38], Google Coral product line [39] and
the Renesas DRP-AI [40] contains examples of TinyML
(although at very different power levels) devices using an
ASIC to accelerate the execution of NN based models.

Graphics Processing Units (GPUs): In traditional ML sys-
tems, Graphics Processing Units (GPUs) play an impor-
tant role, where the ML models are often trained and
executed on GPUs. In the TinyML space, Nvidia has
launched the Jetson Nano product line [41] of low power
GPUs for executing edge ML workloads. At a power
consumption of 5-10Watts, according to official figures,
it is debatable whether this can be considered a TinyML
device.

Researchers are currently investigating even more ways
to accelerate the computation of ML models. Particularly
promising avenues include near- and in-memory, neuromor-
phic, approximate, and analogue computing. The basic idea
behind near- and in-memory computing is that memory la-
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tency is the most significant bottleneck for ML hardware
performance. To reduce this latency, computation and mem-
ory units are moved as close as possible [42]. Neuromorphic
computing hardware attempts to replicate the computational
structure of the human brain. By doing so, it aims to achieve
computational efficiency unachievable by traditional hard-
ware architecture [43]. Approximate computing is a com-
puting paradigm that accepts some degree of error during
computation to reduce the computational complexity of a task
[44]. Analogue computing abandons the digital representa-
tion of values common in contemporary hardware to speed up
computation [45]. These new computing technologies are not
mutually exclusive and are often combined, e.g., neuromor-
phic hardware may be implemented using analogue circuits.

Comparing TinyML devices can be tricky, and lofty perfor-
mance promises made by manufacturers often fail to deliver
in the real world. To enable apples-to-apples comparisons
of TinyML hardware, researchers have created the MLPerf
Tiny benchmark. In this benchmark, the speed and energy
efficiency of participating TinyML devices is recorded while
executing certain models [46], [47].

B. MEMORY
The choice of memory, like the choice of hardware computing
unit, requires balancing competing parameters. While there
are many more, we will describe some of the more important
parameters in this subsection.

Memory capacity: The memory capacity of TinyML de-
vices is generally low. Typically, these devices have less
than 1 MB of low latency volatile memory and are in
the low MB ranges of higher latency persistent memory.
There are, however, TinyML devices that go far lower
than this boundary. The memory capacity is a significant
decider for which ML models it is possible to deploy on
TinyML devices.

Latency and Throughput: Different memory technologies
and their proximity to the computing unit can have
greatly different latency and throughput. TinyML hard-
ware, which includes hardware accelerators, often re-
quires low-latency high-throughput memory to achieve
the accelerator’s full performance. Low latency and high
throughput are often achieved by combining caches and
on-chip Static Random-Access Memory (SRAM) with
high bandwidth interconnect close to the hardware com-
pute units. Latency and throughput are typically less
important for persistent memory.

Power Consumption: As with the computing unit, the
power consumption of the memory must also be kept
low. One way this is achieved is to use SRAM instead
of Dynamic Random-Access Memory (DRAM), which
has a higher cost but a lower idle energy consumption.
Similarly, flash memory also consumes less power than
most other persistent memory technologies.

Cost: To create affordable TinyML systems, the cost of
memory units must also be kept low. This can be

achieved in several ways, e.g., by reducing memory
capacity or using cheaper DRAM instead of SRAM.

C. SENSING CAPABILITIES
Many TinyML applications involve sensing the environment
in which the TinyML system is placed and employing a
TinyMLmodel to understand the sensed data. For this reason,
some TinyML hardware contains built-in sensors. Others rely
on interfaces like General Purpose Input/Output (GPIO) pins
to connect to various sensors.
Built-in sensors may provide greater reliability, cost and

usability - however, they sacrifice the flexibility and re-
pairability of external sensors.
Whether the TinyML hardware relies on internal or ex-

ternal sensors, the sensors must live up to the application’s
requirements. The most common parameters to set require-
ments for include accuracy, sampling frequency, response
time, range, sensitivity and reliability.

Accuracy: The maximum difference between the actual
real-world value of the sensed parameter and what is
recorded by the sensor.

Sampling Frequency: How often a sensor can capture data.
Response Time: how long it takes for a sensor to record that

a change has happened in its environment.
Range: The range of values a sensor can capture about its

environment. For example, a temperature sensor may
have a minimum and maximum temperature that it can
record.

Sensitivity: How small a change in its environment that a
sensor can recognize.

Reliability: How probable it is that a sensor will perform
its functionality without failure. This can also include
which conditions the sensor can operate in.

D. ENERGY SOURCE
A TinyML device can be powered in several ways. The
most straightforward way is to power the device by directly
connecting it to the power grid. This way, the device can be
powered and work at full capacity as long as the power grid
supplies power. Directly connecting the TinyML device to
the power grid naturally requires that such a connection is
possible. For example, if a TinyML device is to be deployed
in a remote area or constrained space, such as a connection
may not be feasible.
A common alternative is to run the TinyML device on

battery power. In this case, there is no need for a power line,
and this configuration can thus be applied almost everywhere.
Batteries, however, have the downside that they can only
supply a limited amount of energy before needing recharging
or even replacement. Deploying battery-powered TinyML
devices on a large scale can, therefore, require significant
manual work to maintain batteries.
A less common alternative is to power the TinyML device

with an energy harvesting system. An energy harvesting sys-
tem is a system that harvests energy from its environment –
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for example, a solar panel. One of the many more creative ex-
amples is to power a TinyML device through photosynthesis
[48]. Combining a TinyML device and an energy harvesting
system can avoid the downsides of both a directly connected
and a battery-powered system. Unfortunately, predicting the
energy available in a system powered by energy harvesting is
challenging. Therefore, the system must use the energy avail-
able intelligently to fulfil its requirements. To our knowledge,
little research has considered using energy harvesting systems
for TinyML.

E. SUSTAINABILITY
As we shall discuss in Section VII, TinyML can contribute to
the United Nations (UN) sustainability goals in many ways.
Creating TinyML systems, however, has a non-negligible
impact on the climate and environment. These impacts have
been shown to be dominated by the production of TinyML
devices and their batteries [49].

Because of this, it is paramount for sustainable TinyML
to limit the production of new TinyML devices and batteries
to what is ultimately necessary. Flexible TinyML Hardware
can help alleviate this problem, as inflexible hardware may
have to be replaced with new hardware when changes occur
in other parts of the TinyML stack. If possible, TinyML
systems that are directly connected to the power grid or use
energy harvesting systems will also be more sustainable as
they reduce the demand for batteries.

F. EXAMPLES OF TINYML HARDWARE
There are a few devices that often appear in TinyML publica-
tions and projects. We list and describe some of them here.
Note that all systems can use whatever energy source can
provide their required power.
Arduino Nano 33 BLE Sense: Arguably, the most com-

monly used device is the Arduino Nano 33 BLE Sense.
This device features an ARMCortex-M4 processor with
support for floating-point operations. In terms of mem-
ory, the device has 256 kB of SRAM and 1MB of per-
sistent flash storage memory. It also includes a range of
internal sensors to sense proximity, temperature, motion,
humidity, pressure and audio. The device does, however,
not feature a camera, so it requires an external sensor for
visual sensing [50].

Sparkfun Edge: Another popular device is the Sparkfun
Edge. This device was designed in collaboration be-
tween its producer, Ambiq and TinyML engineers [31].
Like the Arduino, this device also uses an ARM Cortex-
M 4 processor with support for floating-point operations
[51]. With 384 kB of SRAM and 1MB of flash storage,
the memory characteristics of this device are also close
to that of the Arduino. The device has a built-in camera,
microphone and accelerometer [31].

ESP32-C6-DevKitC-1: This device is a part of the ESP32
series of low-power microcontrollers. The microcon-
troller does not use a processor from the ARM Cortex-
M series as the previously discussed devices and in-

stead uses two RISC-V processors. It contains modules
for Wi-Fi, Bluetooth Low Energy (BLE), Zigbee and
Thread, plus a temperature sensor [52]. With 512 kB
of SRAM and 8MB of flash storage, this device can
be used to deploy models larger than the previously
mentioned devices.

Google Coral Dev Board Micro: The Google Coral Dev
Board Micro is an example of a TinyML device contain-
ing an onboard hardware accelerator, namely the Coral
Edge TPU. Alongside the Edge TPU, the board has two
Cortex-M processors, a camera and a microphone for
general processing and sensing. To store data for this
system, the dev board has 64MB of DRAMand 128MB
of flash memory

Raspberry Pi 4 Model B: The Raspberry Pi 4 Model B
uses an ARM Cortex-A72 processor with four cores.
This processor also supports floating-point computa-
tions. With options for up to 8GB of DRAM, this
device is much more powerful and power-consuming
than some of the previous devices. The device has no
built-in sensors but provides a wide range of connectors,
including GPIO pins for external sensors. Unofficial
measurements have reported the power consumption of
the Raspberry Pi as around 2.2-4 W [53].

IV. TOOLCHAIN
Several toolchains aim to ease the development of TinyML
applications. This section will give an overview of the avail-
able toolchains while comparing them according to relevant
metrics. Many TinyML toolchains focus solely on NN mod-
els. See Table 3 for an overview.

A. NEURAL NETWORK FOCUS

TensorFlow Lite Micro (TFLM): This is an open-source
interpreter for NNs whose primary contributor is
Google. The interpreter is a lean implementation of the
TensorFlow (TF) interpreter, which can execute Ten-
sorFlow Lite (TFL) models on microcontrollers. The
aim of TFLM is not to provide the most optimized
implementation of all kernels but to offer a modular
and flexible framework that can be easily enhanced with
optimized kernels created by hardware vendors. Many
hardware vendors have contributed to this initiative,
making TFLM the most widely used TinyML library.
Generally, the TFLM library can be compiled by any
C++ compiler that supports C++17. Some of the sup-
ported hardware platforms with optimized kernel im-
plementations include ARMCortex-M-based microcon-
trollers, Renesas RA microcontrollers, and the ESP32
microcontroller [54].

Edge Impulse: This is a toolchain provided as a Software-
as-a-Service model. It was founded in 2019 and is based
on TFLM. It has since expanded to support more models
and devices. Edge Impulse is an end-to-end toolchain
providing a complete pipeline from data acquisition,
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labelling, model training, optimisation, and deployment.
It can either take in a dataset or use a pre-trained
model, which can be in formats such as TF, TFL, Open
Neural Network Exchange (ONNX), or XGBoost. The
toolchain can output a bag of C++ files, library files
for popular IDEs, or even compiled binaries that can be
flashed onto the device. The whole pipeline is supported
by a user-friendly web interface that makes it easy to
use, even for non-experts. Even though this platform is
not open-source, most of its features are free to use for
non-commercial projects [55].

Embedded Learning Library (ELL): This is another open-
source library for NNs. Microsoft is the primary con-
tributor to this one. Like TFLM, this library supports
running on ARM Cortex-M-based microcontrollers but
also the more powerful ARM Cortex-A architecture.
The Raspberry Pi is the primary focus of ELL, which
also supports several smartphones. The library generates
C++ code for microcontrollers based on pre-trained NN
models in the Microsoft Cognitive Toolkit (CNTK),
Darknet or the ONNX format [56].

ARM-NN: ARM themselves have also released a library for
running NNs on microcontrollers. This library only sup-
ports ARM Cortex-A, Mali, and Ethos-based processors
and is therefore targeted towards more powerful devices
than, e.g. TFLM. An operating system is necessary to
run the output model, as it cannot operate directly on
bare metal [56].

CMSIS-NN: For Cortex-M devices, Arm has released the
CMSIS-NN library. The CMSIS-NN library provides
efficient implementations of NN functions for ARM
Cortex-M-based systems [57].

STM32Cube.AI: Targeted towards its STM32 boards,
STMicroelectronics has developed the STM32Cube.AI
tool that can be used with STM32CubeIDE to develop
TinyML models. This tool can optimally convert TF,
Keras, PyTorch, and Matlab models to C code using
techniques like quantisation, graph optimisation, and
memory optimisation. Compared to TFLM, they claim
the possibility of getting up to 60% faster execution
and up to 20% save in flash and RAM space. A unique
feature that STM32Cube.AI offers is the possibility of
benchmarking the models on real STM32 boards avail-
able on their board farm. This allows prospective users
to find the best hardware for their specific application
[58].

Artificial Intelligence for Embedded Systems (AIfES):
The Fraunhofer Institute for Microelectronic Circuits
and Systems develops AIfES. The library uses a mixed
license, which is open-source for private and other open-
source projects but proprietary for commercial projects.
This library takes Keras or TF models that do not have
to be pre-trained and generate NNs compatible with a
range of GCC-compatible microcontrollers [56].

NanoEdge AI Studio: Another proprietary tool from STMi-
croelectronics is the NanoEdge AI Studio. At its core,

this tool functions as a search engine for four model
types: Anomaly Detection, Outlier Detection, Classifi-
cation, and Regression. Notably, the anomaly detection
model can be further trained directly on the device. The
generated models boast a minimal memory footprint,
requiring only 1-16 kB of RAM and less than 10 kB of
flash memory [59].

Ekkono: Ekkono is a Swedish company that develops a
proprietary library for running NNs and traditional ML
models on microcontrollers. Among the NN models,
the library supports Multi-Layer Perceptron (MLP) for
regression problems and can further train them on the
device. This toolchain requires the users to generate the
model in Ekkono’s environment and then deploy it to
the microcontroller. The output of the toolchain can be
understood by any C compiler that supports C99 [60].

e-AI Translator: While TinyML mainly focuses on ARM-
based microcontrollers, manufacturers of non-ARM-
based microcontrollers have also developed toolchains
for NN inference on their devices. e-AI Translator is an
example of this. The library generates C code compatible
with most families of Renesas MCUs from TF, Keras,
or PyTorch models. Although not open-source, this tool
is integrated into the Renesas e2 studio IDE and can be
used free of charge [61].

µTensor: µTensor is a library that takes TF models and
generates C++ code for microcontrollers. It runs on top
of the MBed operating system [62].

TinyMLgen: This library can convert trained TF Lite mod-
els to a plain C array for inference in microcontrollers
[63].

CMix-NN: Most toolchains so far have been developed by
enthusiasts or companies. This library is developed by
researchers from the University of Modena and Reggio-
Emilia and the University of Bologna. The library is an
inference library for running NNs on ARM Cortex-M
based systems [64].

FANN-on-MCU: Another library made by a research group
is the FANN-on-MCU library. This library takes models
made in the Fast Artificial Neural Network (FANN)
library and generates code that can run on ARM Cortex-
M or Parallel Ultra Low Power (PULP) processors [65].

microTVM: The microTVM library extends the Apache
TVM NN model deployment framework. It allows de-
ployment of, e.g., Tensorflow, PyTorch, and ONNX
models onto bare-metal microcontrollers. Its design
principles ensure that this library remains suitable for a
wide range of devices, offering numerous optimisations
while maintaining control and flexibility. However, op-
erating microTVM may require a more advanced user
expertise [66].

TinyEngine: This inference library was proposed alongside
TinyNAS to design tiny but accurate models. Contrary
to TFLM and CMSIS-NN, which work using an inter-
preter, TinyEngine creates compiled models that only
ship code that the model will execute. TinyEngine also
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uses an adaptive memory scheduling that seeks to fully
utilize its given memory throughout its computation
[67]. To our knowledge, it supports executing models
generated in TF Lite and PyTorch together with tiny-
NAS.

Neurona: This library is specific to Arduino and allows de-
ploying Artificial Neural Networks (ANNs) to Arduino
boards. The library has been tested on the Arduino Uno
and Arduino Mega boards [68].

B. TRADITIONAL MACHINE LEARNING FOCUS

MicroMLGen: While most toolchains focus entirely on
NNs, this library brings many traditional ML algorithms
to microcontrollers. The library ports models created in
Scikit-learn [69]. It primarily focuses on porting models
to the Arduino platform but creates C code that could be
compatible with other platforms [70].

sklearn-porter: This is another library that enables porting
traditional ML models created in Scikit-learn to micro-
controllers. It is not only focused on porting models
to microcontrollers but also to web and desktop appli-
cations. Apart from converting models to C code, the
library can also convert models to Java, JavaScript, Go,
Ruby and PHP. The library has not yet had its first major
release, so some estimators are unavailable for some
target languages [71].

m2cgen: Another alternative for porting Scikit-learn models
to microcontrollers is m2cgen. Like sklearn-porter, this
library converts models into native code, which enables
it to run on microcontrollers. It supports more languages
and models than sklearn-porter [56].

weka-porter: This library is a sister library to sklearn-porter.
As the name implies, this library ports models from
the Weka library instead of the Scikit-learn library. It
supports porting decision trees to C, Java or Javascript
[72].

EmbML: This library converts Scikit-learn or Weka mod-
els into C++ or C code. This library, contrary to, e.g.
sklearn-porter or m2cgen, focuses on making the con-
verted models run in resource-constrained hardware
[73].

Reality AI: Acquired by Renesas, Reality AI is an end-to-
end toolchain designed to take in data and generate C or
C++ code compatible with all Renesas microcontrollers.
By extracting hundreds of feature sets and testing nu-
merous models, Reality AI identifies the optimal pairs
for the given data, presenting users with detailed in-
formation to help them select the best option for their
application [74].

emlearn: The last library that we look at supports both NNs
and traditional ML models. It can port Scikit-learn or
Keras models to microcontrollers. It supports common
tree-based models, basic sequential NNs, Naive Bayes,
and Elliptic Envelope [75].

These projects vary significantly in size. TFLM and ELL,

for example, is created by two major Information Technology
(IT) companies. Other projects are developed by research
groups and small or medium-sized companies. Finally, some
projects are not much more than a hobby project for a devel-
oper. This discrepancy should be considered when deciding
on the library to use for a project.
Note that several of these projects overlap and have a

similar focus and that some toolchains use other toolchains
internally E.g. TFLM uses the CMSIS-NN library in its inter-
preter.
Many of the described toolchains follow an interpreter-

based approach, in which an interpreter reads and executes a
binary representation of the model. This approach makes the
development of the platform and the model execution easier
and more flexible. It also allows for the hot swapping of mod-
els, as only the model representation needs to be replaced, not
the entire firmware. The downside of this approach is that it
is usually slower than a compiled model and takes up more
memory.
An optimisation unique to the interpreter-based execution

of ML models is to remove unnecessary operations from
the interpreter. This leads to a smaller interpreter size in a
TinyML system [54]. For example, even though Edge Im-
pulse is based on TFLM, it manages the required opera-
tions automatically to minimize them and lower the memory
footprint. Its EON compiler goes further by integrating the
interpreter into the code, shifting the platform’s behaviour
from an interpreter-based approach to a compiled model-
based approach.
Most of the toolchainsmentioned in this section do not sup-

port on-device training and, therefore, expect a fully trained
model to be ported onto the TinyML hardware. Without on-
device training, models can not adapt to changes in their
environment. However, finding the extra resources required
for on-device training in typical TinyML hardware can be
challenging. Likewise, getting the feedback required for su-
pervised learning on the fly can be challenging.
Researchers have recently focused on improving this sit-

uation. A k-Nearest Neighbor (KNN) model can implement
on-device training by simply storing inputs in an on-device
database and using these saved inputs to cluster future inputs.
As each input needs to be saved on the TinyML device for
future inference, on-device training for KNN models can
consume a significant amount of memory [23].
For NNs, some research has suggested adding additional

output layers to the models. These layers are placed down-
stream from the original output layer of themodel. New layers
are necessary as the existing NNs are typically deployed as a
frozen graph that cannot be further modified. The TinyML
on-device training consists of training these additional output
layers online to adapt to changes in the environment [87]
[88]. It is interesting to note that this additional layer will not
consume much memory on a standard classifier. However,
it may be infeasible to add an additional full-size output
layer to, e.g. an autoencoder, as its original output layer is
already the size of the input layer. Other approaches suggest
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TABLE 3. A list of TinyML toolchains. Adapted and updated from [56]. See the reference next to library names for the source of each library.

Name Models Platform Related Toolchains Open Source On-Device Training

TFLM [76] NNs Multiple TF ✓ ✗

Edge Impulse [55] Mix Multiple TFLM, TF, ONNX,
XGBoost

✗ ✗

ELL [77] NNs ARM Cortex-M,
ARM Cortex-A

CNTK, Darknet,
ONNX

✓ ✗

ARM-NN [78] NNs ARM Cortex-A,
ARM Mali, ARM

Ethos

TF, Caffe, ONNX ✓ ✗

CMSIS-NN [79] NNs ARM Cortex-M TF, PyTorch, Caffe ✓ ✗

STM32 Cube.AI [58] NNs STM32 Keras, TF Lite,
Scikit, ONNX,
Matlab, PyTorch

✓ ✗

AIfES [80] NNs GCC compatible TF, Keras Mixed ✓

NanoEdge AI
Studio [59]

NNs ARM Cortex-M - ✗ ✓

Ekkono [60] NNs Multiple - ✗ ✓

e-AI Translator [61] NNs Renesas
Microcontroller Units

(MCUs)

✗ ✗

µTensor [62] NNs Mbed OS TF ✓ ✗

TinyML gen [63] NNs Multiple TF Lite ✓ ✗

CMix-NN [81] NNs ARM Cortex-M MobileNets ✓ ✗

FANN-on-MCU [82] NNs ARM Cortex-M,
PULP

FANN ✓ ✗

microTVM [66] NNs Multiple TF, PyTorch, ONNX ✓ ✗

TinyEngine [83] NNs Multiple TF Lite, PyTorch ✓ ✗

Neurona [68] NNs Arduino - ✓ ✗

MicroMLGen [70] Traditional ML Arduino Scikit-learn ✓ ✗

sklearn-porter [71] Traditional ML Multiple Scikit-learn ✓ ✗

m2cgen [84] Traditional ML Multiple Scikit-learn ✓ ✗

weka-porter [72] Traditional ML Multiple Weka ✓ ✗

EmbML [85] Traditional ML Multiple Scikit-learn, Weka ✓ ✗

Reality Artificial In-
telligence (AI) [74]

Traditional ML Multiple - ✗ ✗

emlearn [86] Mix Multiple Scikit-learn, Keras ✓ ✗

freezing NN weights and only update biases, which removes
the need to store intermediate activations [89]. Further inno-
vative approaches like quantisation-aware scaling or sparse
update strategies [90] have been proposed to increase training
effectiveness and reduce the memory footprint of on-device
training. Still, the field of on-device training is in its infancy,
and more research can be expected in the future.

V. MODEL
At the third layer of the TinyML stack, we find the ML
models themselves. These models process captured data to
provide intelligent predictions. Years of ML research have
produced many more models than what can be covered in a
single review. Therefore, wewill only covermorewidely used
models, with a particular emphasis on models used for PdM

systems.

A. MODEL TYPES
ML models for PdM are typically either supervised or un-
supervised. Supervised models can be further distinguished
by the type of data which they output. Models that output
categorical values accomplish a task known as classification,
whereas models that output a continuous value accomplish
a task known as regression. Other models are unsupervised
and can be trained on raw input data without specifying the
desired output.
Amongst the simpler ML models used for PdM, we see

linear regressions, decision trees, random forests, Support
Vector Machines (SVMs), KNNs.
Linear Regression: This model fits a linear equation be-
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tween input data and the value being predicted. A linear
regression model is a supervised ML model and is, as
the name implies, primarily used for regression.

Decision Tree: This model sets up a tree of decision nodes.
A prediction by a decision tree is made by reaching a leaf
node in the decision tree, each containing a prediction.
To reach a leaf node, a data sample is queried at nodes
throughout the tree, whichmakes a decision about which
child node to evaluate next based on the data sample. A
decision tree model is a supervisedMLmodel which can
be used both for classification and regression tasks.

Random Forest: This model is made up of several decision
trees. The random forest model makes predictions based
on the participating decision trees’ consensus or average
value. A random forest model is a supervised ML model
which can be used for both classification and regression
tasks.

Support Vector Machines (SVMs): This model makes pre-
dictions by constructing hyperplanes in a high-
dimensional space that separates data classes by the
largest possible margin. A SVM is a supervised ML
model for classification. A variant of the SVM called
Support Vector Regression can be used for regression
tasks.

K-Nearest Neighbor: This unsupervised learning model
makes predictions for a data sample based on its k
nearest neighbours - typically measured by the Euclidian
distance. The model can be used both for classification
and regression tasks.

The simplicity of these models is beneficial in TinyML
systems, as the models consume little resources to run.

Various versions of NNs often perform better for more
complicated tasks. The basic variant of a NN is the MLP,
which consists of layers of several neurons, with all neurons
of neighbouring layers being connected. Alternative variants
are Convolutional Neural Networks (CNNs), Recurrent Neu-
ral Networks (RNNs), and transformers consisting of con-
volutional layers, recurrent connections, and attention heads,
respectively. Convolutional layers train a filter to pass over
a tensor, usually an image, to extract features that help later
classification/regression. Recurrent connections are connec-
tions in NNs propagate from one input sample to the next.
Attention heads are special neural network structures that im-
itate natural cognitive attention [91]. Many other specialised
variants exist. One that is particularly interesting for PdM,
and more specifically anomaly detection, is the autoencoder.
The autoencoder NN takes an input, compresses it, and re-
constructs it. By training on normal samples, it learns to
reconstruct normal samples. It will, however, not be able to
reconstruct anomalous samples that it was not trained on -
thus making it usable as a model for anomaly detection.

Especially CNNs have seen a lot of TinyML research to
improve their efficiency. Here, we chronologically summa-
rize the main contribution of important CNN models to the
field of TinyML.

SqueezeNet: This network introduces fire modules to
achieve a more efficient architecture. Each fire module
consists of a squeeze layer, which employs 1x1 convo-
lutions, and an expand layer, which incorporates both
1x1 and 3x3 convolutions. The squeeze layer reduces the
number of input channels, allowing the expand layer to
process them with lower computational cost and fewer
parameters. To maintain high network performance, it is
recommended to downsample the feature maps later in
the network. This will increase the computational load
while keeping the number of parameters constant [92].

MobileNetV1: This network by Google proposed a new
CNN architecture optimized for mobile and embed-
ded devices. The key innovation of this architecture is
the replacement of standard convolutional layers with
depthwise separable convolutions, reducing the number
of parameters and the computational cost of the net-
work. Depthwise separable convolutions consist of two
stages: first, a depthwise convolution applies a single
convolutional filter to each input channel individually;
second, a pointwise convolution uses a 1x1 convolution
to combine these channels into new feature maps. This
architecture has been refined and employed in several
other networks, such as MobileNetV2 and EfficientNets
[93].

MobileNetV2: This network improves upon MobileNetV1
by introducing inverted residual blocks. These blocks are
similar to the depthwise separable convolutions used in
MobileNetV1 but are preceded by a 1x1 convolutional
layer. This layer merges information and increases the
number of channels, enabling the block to capture richer
features. Inspired by the ResNet architecture, a skip
connection is added to the block to enhance gradient
flow through the network [94].

MNasNet: With the spread of Neural Architecture Search
(NAS), researchers acquired a new method for design-
ing CNNs. MNasNet is one of the earliest attempts to
bring NAS to the realm of TinyML. Their reinforcement
learning search algorithm incorporates a combined loss
function that includes the network’s latency as a factor.
Instead of using a proxy for latency, they perform real-
time latency measurements on a Pixel phone to guide
the search. Another novelty of this work is dividing
the network into several blocks, allowing the algorithm
to search for the optimal architecture for each block
separately. This balance enables the search algorithm
to significantly modify the network’s architecture while
maintaining a manageable search space [95].

EfficientNet: This network proposes a compound scaling
method that uniformly scales the network’s depth, width,
and resolution. By systematically scaling these dimen-
sions, they demonstrated better performance on architec-
tures such as ResNet and MobileNets. Leveraging NAS,
they introduced EfficientNet-B0, the baseline model for
the EfficientNet family, which is more efficient than
previous state-of-the-art networks [96].
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Once For All (OFA): The novel idea behind this network
design is that a single large network can be trained
to encompass many subnetworks, each optimized for
different properties such as accuracy, latency, or model
size. Users can select the subnetwork that best fits their
specific application requirements, whether it be a micro-
controller, a smartphone, or even a server. This network
achieved new state-of-the-art results on the ImageNet
dataset with fewer than 600M MACs [97].

Others: While we have aimed to cover the most important
CNNmodels for TinyML, many other models have been
proposed. Some of these include ProxylessNAS [98],
MobileNetV3 [99], and MCUNets [67], [100]. The full
study of the evolution of CNN models can be a topic for
a separate review.

B. CHOOSING A MODEL
The choice of model for TinyML-based PdM depends on the
hardware and data available for the PdM application. If the
hardware resources are extremely limited, then a simple ML
model could be the right choice. In more powerful systems,
NNs might be the better choice, especially for complicated
tasks such as image processing.

Supervised learning approaches are likely the best choice
if the data includes impending failure labels or RUL labels.
Imbalanced data can, however, be an issue for supervised
learning approaches. If the imbalance is limited, over- or
under-sampling techniques can synthesise a balanced dataset.
Some literature also proposes to use generative models or
transfer learning to solve these problems [2].

If the data is unlabeled or extremely imbalanced, we must
turn to unsupervised learning. For PdM, this usually means
that we want to do anomaly detection. There are a few ML
models that are suitable for anomaly detection. Two of the
most popular models are KNN and autoencoders [2] [101].
A KNN model is a traditional ML model, which clusters
observations based on features derived from them. The idea
is that an anomalous sample will diverge from the cluster(s)
of normal observations and that it can thereby be identified
as an anomaly. The autoencoder model is explained earlier in
Section V. For both models, a loss threshold should be set for
classifying a sample as normal or abnormal [2].

As with other NNs, we can introduce convolutional lay-
ers to autoencoders to improve their capabilities in image
processing. In this case, we call the model a convolutional
autoencoder.

C. MODEL OPTIMISATION
The disadvantages of TinyML listed in Section I most stem
from microcontrollers being less powerful than larger com-
puters. Therefore, it is natural to apply optimisations to a
TinyML system to make it consume fewer resources. Note
that these optimisations often lead to a reduction in accuracy
compared to full-blown models. Therefore, which optimisa-
tions to apply to a system concerns finding the right balance
between multiple objectives. As explained in section IV, the

focus of TinyML research has primarily been on optimising
NN models. NNs typically also require more compute and
memory than traditional ML models. Therefore, this section
will focus on optimisations for these models. Overall, we
describe nine ways to optimise the performance of NN-based
models for TinyML. These are quantisation, pruning, cluster-
ing, neuron merging, knowledge distillation, cascading archi-
tectures, early exit networks, Automated Machine Learning
(AutoML), and compression.

1) Quantisation

By default, most NN toolchains represent their weights, bi-
ases and activations as 32-bit floating-point values. This de-
fault poses two problems when deploying their models on mi-
crocontrollers. Firstly, not all microcontrollers have hardware
support for floating-point units, in which case floating-point
operations are emulated in software. Such emulation can
cause significantly slower processing. Secondly, the many
32-bit values can take up a large part of the memory of
microcontrollers. For example, the Arduino Nano 33 BLE
Sense [50], mentioned in Section III, has 256 kB of RAM.
That leaves room for 64.000 weights, biases, and activations.
While that might sound like a lot, many modern NNs have
much more. E.g. AlexNet and Resnet-50 both contain more
than one million weights, biases and activations [102]. That
is, without considering the memory required for the model
structure, input data, and application.

Fortunately, research has shown that quantisingNNs is pos-
sible while retaining a goodmodel [103]. This ‘‘quantisation’’
process concerns two optimisations done simultaneously. The
first is to convert the floating-point values into fixed-point
values. Fixed point arithmetic is generally less complicated
than floating point arithmetic and requires less computation
on most devices. The second is to reduce the original bit to
a lower bit-width. A lower bit width reduces the memory
needed to store each value and requires less complex com-
puting hardware. Some hardware architectures can perform
multiple MAC operations per cycle on low-bit-width data,
significantly reducing execution time. Reducing the bit-width
to 8 bits is a typical configuration for quantisation, which has
experimentally shown to provide a good trade-off between
accuracy and resource consumption.

‘‘Uniform affine quantisation’’ is the most common form
of quantisation, also known as asymmetric quantisation [103].
Three parameters parameterise this form of quantisation: a
scale factor s, a zero-point z and a bit-width b. The scale
factor decides the size of a ‘‘step’’ in the floating point domain
corresponding to one step in the fixed point domain. The
zero point parameter maps the zero point of the floating point
domain to the fixed point domain. This parameter is needed to
ensure that common operations, e.g. zero padding or Rectified
Linear Unit (ReLU), do not introduce errors when quantised.
Finally, the bit-width decides the size of the fixed point grid.
Using these parameters, we can map from a floating point
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value x to a fixed point value xint using the equation 1:

xint = clamp(⌊x
s
⌉+ z; 0, 2b − 1) (1)

Where clamp is the function described in equation 2:

clamp(x; a, c) =


a, x < a,
x, a ≤ x ≤ c,
c, x > c.

(2)

A clipping error can occur if x is below 0 or above 2b − 1.
In this case, the floating point value is mapped to the lowest
or highest possible fixed point value, respectively. Increasing
the bit-width or scaling factor can reduce the clipping error.
Increasing the bit-width will increase memory and compute
consumption. Increasing the scaling factor will result in an
increased rounding error due to the rounding error being in
the range of [− 1

2 s,
1
2 s]. Therefore, the scaling factor can be

modified to achieve a trade-off between clipping and round-
ing errors [103].

After quantisation, multiplying or adding two fixed points
can quickly create an overflow situation. This overflow hap-
pens due to the minimum and maximum 32-bit floating-
point weights being mapped close to the minimum and maxi-
mum values for the fixed point. Consider that applying just
the smallest multiplication or addition to the largest 32-bit
floating-point weight after quantisation will result in an over-
flow. Therefore, some approaches only quantise weights and
biases (or onlyweights, as they grossly outnumber biases) and
let the remaining activations (and biases) stay as 32-bit floats.
A way to quantise activations is to compute the fixed point
computations and store the result in higher bit-width fixed
points. The result can then be scaled down to the original bit-
width for the following computation. Therefore, quantisation
can reduce themodel size, increase inference speed, andmake
the model run on a broader range of devices. The downside
is a potential loss in accuracy [10]. This potential accuracy
loss can be reduced using quantisation-aware training. In this
method, a model is trained with the knowledge that it will be
quantised later [104]. Note that a four times reduction in the
number of weights, biases and activations will make neither
AlexNet nor Resnet-50 fit in the Arduino we are considering.
To achieve that, we require further optimisations or smaller
models.

Researchers have even been looking into binarisation of
NNs, which can decrease the size of NNs by up to 32 times
and the inference time of the networks by up to 52 times [105].
We refer to [103] for a white paper exclusively about NN
quantisation.

2) Pruning
Pruning is an optimisation which seeks to remove parameters
in a NN to make the model more efficient. To do so, pruning
typically associates a score to each NN parameter and prunes
the parameters with the lowest scores either locally, e.g. per
layer, or globally for the whole network. Scoring is often
based on the absolute value of a parameter but can also be

based on contribution to activations, gradients or even trained
importance coefficients [106].
Pruning NN parameters in an unstructured way can often

lead to disappointing results, as the resulting NN is sparse.
Sparse NNs are not supported by many toolchains and hard-
ware, which can result in slower inference speeds and little
to no memory gains. Structured pruning recognizes this flaw
and applies pruning in a structured way to ensure that the re-
sulting NN model can still be executed and stored efficiently
[107]. Structured pruning approaches can, for example, prune
every parameter associated with a specific neuron, group of
neurons, filters or channels simultaneously [106].
New neural network accelerators are continuously being

designed to leverage more flexible pruning algorithms. For
example, NVIDIA’s A100 Tensor Core GPU supports 2:4
structured sparsity, which allows two out of every four ele-
ments in a weight tensor to be pruned [108].

3) Clustering
An approach that is closely related to both quantisation and
pruning is clustering. In this optimisation technique, weights
are clustered into groups, where all weights in one group are
assigned the same weight. This clustering allows one value in
memory to represent several weights. However, each weight
with this value needs to store a pointer to the value. Thus,
depending on the bit width of the weight values, this opti-
misation may yield more or less savings in memory. While
structured clustering, like structured pruning, can reduce the
memory consumption of a model, clustering does not directly
speed up computation. However, depending on the hardware,
the processor cache may experience fewer misses due to the
reuse of weight values. The paper that initially introduced
clustering claims that their approach reduced the size of a
NN by 27 to 31 times [109]. This reduction comes after
pruning has reduced the size by 9 to 13 times, as reported
in Section V-C2.

4) Neuron Merging
In an MLP, many neurons within the same layer of a trained
model often learn similar features [110]. By merging these
neurons, redundancy can be eliminated, thereby reducing the
model size and computational load [111]. This technique
also applies to other network types such as CNNs. Unlike
clustering or unstructured pruning, neuron merging directly
impacts performance without the need for additional software
or hardware support [112].

5) Knowledge Distillation
Larger NN models often perform better than smaller mod-
els on complicated datasets. However, deploying such large
models on TinyML devices might be infeasible. A solution
is to ‘‘distil’’ the knowledge of a large model into a smaller
model, which, due to its reduced resource consumption, can
be deployed on TinyML devices.
This technique is known as knowledge distillation. The

idea behind this method is to train a large model and then
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use the predictions generated by this model to train a smaller
model. Thus, the small model trains both using the ground
truths and the predictions generated by the large model [113].

Consider the following example. We want to create a small
model that can classify the contents of an image. Normally,
we train the network to make the same classification as the
ground truth labels. In knowledge distillation, we first train
a larger model on our data. We then have the larger model
classify all images in the dataset. Then, we train the small
classifier not just to classify the ground truth but also to make
similar classifications as the larger model. This training can
be achieved by altering the loss function of the smaller model.
Often, the larger model is referred to as the ‘‘teacher’’, and the
small model as the ‘‘student’’.

As knowledge distillation aims to remove parts of a larger
model that is not necessary to achieve some level of predictive
performance, it is closely related to ablation studies. In abla-
tion studies, tests are carried out on which model components
are necessary for the model’s predictive performance and
which components can be left out to reducemodel complexity
and resource consumption.

6) Cascading Architectures
In some cases, it may be infeasible to deploy a desired model
in a TinyML device due to not meeting the constraints of the
device or the use case. In these situations, it may be beneficial
to introduce smaller and less resource-consuming models that
decide when to engage the main model.

If the original model was infeasible for the TinyML device
due to its energy consumption, then deploying the models
onto the device in unison may be possible. This possibility is
due to executing the original model less frequently and thus
consuming less energy. The same could be true for a model
executing too slowly For example, a long processing time
may be okay in some cases but not for every input.

Another option is to deploy the smaller model on the
TinyML device and the original model on a networked de-
vice. Note that this compromises some of the advantages of
TinyML listed in Section I.

The latter option is, for example, used to power the Google
Assistant on many Android phones. In this system, a small
model runs locally on the smartphone, which listens for the
‘‘Hey Google’’ keywords. Once it detects these keywords, it
sends the remaining speech to a larger model in the cloud
to further process the request [31]. While cascading archi-
tectures are usually restricted to model type and structure,
research has looked into a cascading use of internal hardware
in a system [114].

7) Early Exit Networks
Early exit networks are NNs that provide some means for
inference to return a result without computing every layer.
Executing some parts of the model will not be needed in case
of an early exit, leading to a reduced inference time. However,
adding early exits to NNs can affect the final accuracy, as
some early layer weights adapt to the early exit instead of

the final exit. Thus, adding early exits to a NN results in a
tradeoff between inference time and accuracy. See the fol-
lowing research paper that also proposed early exit networks
for TinyML for a thorough discussion of how to alleviate this
effect [115].

8) AutoML
Designing TinyML models that perform well enough for a
given application can be challenging. Instead of manually
designing and testingmodels, it is possible to have a computer
automatically generate and test models through a variety of
techniques. These techniques all fall under the concept of
AutoML [116].
AutoML techniques include methods for structuring data

from raw formats, feature selection and extraction, model
selection and hyperparameter optimisation.
One of the most researched parts of AutoML is Neural

Architecture Search (NAS). A basic NAS searches for NN
models to optimise a single metric – often accuracy [117].
However, especially in TinyML, researchers have proposed
hardware aware NAS methods that optimise multiple met-
rics, e.g. both performance and resource metrics. A hardware
Aware NAS typically returns a collection of models that form
a Pareto frontier of models where each model is in some way
better than every other model [118]. Therefore, Hardware
Aware NASs can be used to generate near-optimal models for
some given resource constraints.
NAS algorithms are often driven by a discrete optimisa-

tion algorithm such as an evolutionary algorithm or a rein-
forcement learning model [119]. State-of-the-art large-scale
NAS algorithms are increasingly converting the discrete op-
timisation problem of selecting a neural architecture into
a continuous optimisation problem to apply gradient-based
optimisation of the architectures [120]. This trick speeds up
the NAS search, which can be extremely long for large-scale
models.

9) Compression
Another way to reduce the memory consumption of a model
is to apply a lossless compression algorithm to it, e.g. com-
pressing a ML model using Huffman encoding.
While this will reduce the memory consumption of the

model, it will also make the model slower to execute as it
will first have to be extracted before being executed [12].

VI. DATA
At the fourth layer of the TinyML stack, we find the data that
is fed into the rest of the TinyML system. We consider both
the data used to train the systems and the data on which the
system operates once it is operational.

A. DATASETS
TinyML applications often tackle unique challenges distinct
from those of traditional scale machine learning. Therefore,
many TinyML applications can not utilise the same datasets
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as traditional scale ML. This calls for specialized datasets for
TinyML.

Unfortunately, the current landscape of TinyML datasets is
scarcely populated, with only a handful of dedicated TinyML
datasets available. For the majority of the time that the field
has been active, it has been dominated by two datasets - Visual
WakeWords [121] and Google Speech Commands [122]. Re-
cently, researchers fromHarvardUniversity and the Technical
University of Denmark launched a push to create high-quality
TinyML datasets, starting the Wake Vision dataset [123].

Recent research suggests that TinyML models are less
robust to label errors than traditional scale ML models [123].
This further motivates that the field of TinyML can benefit
from specialized datasets that pay extra attention to minimiz-
ing the label error rate.

Visual Wake Words is a dataset containing images and as-
sociated labels of whether there is a person in an image.
This dataset is useful for an application known as person
detection, in which a TinyML system detects whether
there is a person in an image. The dataset contains
around 120.000 images derived from the COCO object
detection dataset [121]. Studies estimate that the Visual
Wake Words dataset has a label error rate of around 8%
[123], severely limiting the performance of the TinyML
systems that can be created using the dataset.

Google Speech Commands is a dataset containing audio
samples along with labels of what word is spoken in an
audio sample. The dataset is useful for keyword-spotting
applications, which are often used to wake up more
power-consuming systems, such as the digital assistants
that most of us have on our smartphones. Google speech
commands contain almost 100.000 audio samples and
their associated keywords. Some keywords are classified
as core words. These are the words that one can use
the dataset to classify. Other keywords are considered
auxiliary. Their function is to help a model distinguish
core words from other words [122].

Wake Vision is, like Visual Wake Words, a dataset contain-
ing images and person labels. In fact, Wake Vision is
designed to be a plug-in replacement for Visual Wake
Words.Wake Vision is derived from the Open Images v7
dataset and is around 100 times larger than Visual Wake
Words. In addition, the validation and test set of Wake
Vision has been manually corrected to push the label
error rate to 2.2%.With its increased size and lower label
error rate, Wake Vision aims to enable much higher-
quality TinyML research [123].

Three core datasets are not many for a field like TinyML,
which aims to imbue billions of devices with diverse appli-
cations with intelligence. Furthermore, neither of the datasets
focus on PdM. Therefore, we hope to see many more open
datasets emerge in the coming years to assist TinyML in
reaching many new applications. The Wake Vision paper
proposes several ways to speed up the creation of TinyML
datasets to aid in this goal [123].

TABLE 4. Overview of TinyML and PdM datasets

Dataset Size For PdM

Visual Wake Words [121] 123,287 Images ✗
Google Speech Commands [122] 99,720 Audio Samples ✗
Wake Vision [123] 5,760,428 Images ✗
ToyADMOS [124] >540 Hours of Audio ✓
MIMII [125] 32,157 Audio Samples ✓
Turbofan Engine
Degradation Dataset [126] 1416 RUL Trajectories ✓

Unfortunately for TinyML-based PdM, finding suitable
data for predictive maintenance is notoriously challenging.
One reason is that failures often lead to financial and repu-
tational loss, especially in industry. Organizations, therefore,
often go to great lengths to avoid failures – which is also the
goal of PdM. Even when a failure occurs, the data about the
failure is often not publicly released.
Although mostly toy datasets, we have identified three

datasets that can be used for TinyML-based PdM until a better
dataset is created.

ToyADMOS is a dataset which contains audio recordings
of toys in normal and anomalous operating conditions
[124]. The MLPerf Tiny benchmark, which, to our
knowledge, is the only current PdMbenchmark targeting
TinyML, uses a subset of the ToyADMOS dataset [46].

MIMII is another dataset consisting of audio recordings.
Unlike the ToyADMOS dataset, this dataset contains
audio recordings of actual industrial machines in normal
and anomalous operating conditions [125].

Turbofan Engine Degradation Dataset is a dataset of sen-
sor readings of simulated turbofan engines as they de-
grade towards failure [126]. Each sensor reading con-
tains information about the RUL of the turbofan engine
and can therefore be used to train a RUL estimation
model.

While these datasets provide a starting point for working
with TinyML-based PdM, they have various flaws that pre-
vent them from being used for high-quality TinyML-based
PdM research. The ToyADMOS dataset is based on audio
recordings of Toys, which can hardly be used for training
production grade PdM models. The MIMII dataset, while
consisting of audio recordings of actual industrial machinery,
is limited to a few hours of normal sound and only around 15
minutes of anomalous sounds. The Turbofan Engine Degra-
dation Dataset is specialized to a specific turbofan engine,
which can not be used to train general PdM models.
A problem plaguing many PdM datasets is an imbalance

of observations. By their nature, normal operating conditions
are more frequent than anomalous; thus, most datasets in-
cludemostly normal observations. In Section V, we described
methods to alleviate the imbalance problem. See Table 4 for
a quick comparison of TinyML and PdM datasets.
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B. INFERENCE DATA
Whereas TinyML models are almost always trained on larger
computers, inference takes place in resource-constrained de-
vices. As a result, the data captured and processed at infer-
ence time contributes to the total resource consumption of a
TinyML system. Therefore, it can be beneficial to consider
how data capturing and pre-processing can be optimized to
balance performance and resource consumption at inference
time. While much TinyML research has investigated ways to
reduce the resource consumption of models and toolchains
and increasing the resources provided by hardware, little
attention has been paid to reducing the resources consumed
by data processing and storage.

Research has shown that datasets are often collected and
used without efficiency in mind [127], [128], leaving room
for extensive optimisations. These optimisations can be done
manually [128]; however, recent work on a Data Aware NAS
proposes to search for optimal data granularities as a part of
a hardware aware NAS. In doing so, the authors hypothesise
that an optimal trade-off between resources dedicated to the
model and data can be found. Data granularity refers to the
concept that data can be captured and pre-processed in several
ways to balance performance and resource consumption. For
example, sound data can be collected at a reduced sample rate
or lower bit width per sample [129].

VII. PREDICTIVE MAINTENANCE APPLICATIONS
At the top of the TinyML stack, we find the applications.
With the focus of this review is PdM, we will primarily
focus on PdM related applications. TinyML, however, sees
applications in many other fields, including healthcare [16],
environmental control [25], and the transportation sector [8].

As described in Section I, PdM systems are deployed on
equipment to predict failures, so that maintenance can be
conducted in advance, focusing on different objectives [2].
Below, we elaborate on some common ways to measure the
performance of PdM systems [2].

Cost Minimization is a PdM objective that seeks to mini-
mize the cost incurred by an organisation by the com-
bination of failures and maintenance. Costs can include
direct and indirect losses incurred by maintenance and
failures, e.g., repair costs, lost production time or losses
from unfulfilled orders.

Availability Maximization as an objective aims to maxi-
mize equipment uptime.

Safety is an objective that seeks to quantify and minimize
the safety risks associated with equipment failure and
maintenance.

Combination: Many PdM systems combine several objec-
tives into a single goal for a PdM system. The individual
objectives are often weighted to calculate a total perfor-
mance score for the system.

Regardless of their objective, PdM finds applications in
many fields. Below, we provide a generalised overview of
application areas which are often referenced in the literature.

These application areas are broad and encompass a wide array
of subfields. While we can make general comments about
these application areas, there will certainly be subfields for
which these comments do not apply. For each application, we
discuss the advantages of TinyML-based PdM compared to
traditional cloud-based PdM. We also list publicly available
datasets relevant to the application area known to the authors
— if any. Finally, we discuss the typical resources available
in the application area, e.g., energy, time, and cost.

Manufacturing: Manufacturing is arguably the model ap-
plication area for PdM. This application area covers
organizations whose main purpose is the production of
goods. Much of the manufacturing relies heavily on
costly equipment. This means that it is both expensive to
replace failed equipment, and that equipment failures are
likely to cause costly downtime. Therefore, the industry
can benefit greatly from PdM efforts to reduce failures
[130].
TinyML Advantages: TinyML-based PdM allows for
the use of PdM in industries where it has previously
been infeasible to deploy such solutions. For exam-
ple, an organization that produces medicine may be
limited in what data they can transfer off-site due to
regulations. TinyML further allows for plug-and-play
PdM solutions that can be deployed by non-technical
personnel and in hard-to-reach places.

Publicly Available Datasets: Publicly available datasets
that contain data relevant to PdM in Manufacturing
include ToyADMOS [124] and MIMII [125].

Available Resources: Most manufacturing settings
have plenty of resources available. Resources can,
however, be significantly limited in battery-powered
scenarios.

Automotive: Contemporary vehicles capture an enormous
amount of data about their operating condition and en-
vironment. This, coupled with vehicles being a safety-
critical system, makes them an ideal candidate for PdM.
Several research papers have been published about auto-
motive PdM, ranging from tyre condition monitoring to
faults in air pressure systems [131].
TinyML Advantages: Vehicles often find themselves
in areas with little or no connectivity. While tradi-
tional cloud-based PdM systems can not work in these
conditions, it is not a problem for TinyML-based
PdM systems. Furthermore, TinyML-based PdM sys-
tems can provide deterministic response times and
increased reliability, which is essential in a safety-
critical system.

Publicly Available Datasets: Publicly available datasets
that contain data relevant to PdM in the automotive
industry is limited to ToyADMOS [124].

Available Resources: The energy available in the au-
tomotive industry is primarily limited by the power
generated by the engine for combustion vehicles or
the battery for electric vehicles. Strict limits may be
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present on the response time of a PdM system.
Aerospace: Failures in the aerospace industry can have fatal

consequences. Therefore, the industry is almost a perfect
candidate for PdM [132].
TinyML Advantages: TinyML-based PdM allow for
PdM systems to be deployed without a reliable
network connection, which is almost inevitable in
aerospace systems. Furthermore, TinyML-based PdM
systems can provide deterministic response times,
which are critical to the real-time systems used in
aerospace.

Publicly Available Datasets: Publicly available datasets
that contain data relevant to PdM in the aerospace in-
dustry is limited to the Turbofan Engine Degradation
Dataset [126].

Available Resources: The energy available in the
aerospace industry is limited, and quick response
times are essential. Costs are, however, less of an issue
due to the already high equipment costs.

Healthcare: Another safety critical sector in which PdM has
seen promising use is the healthcare industry. Medical
devices today are some of the most complex systems
in existence, and failures can bring catastrophic conse-
quences for individuals [133].
TinyML Advantages: Medical devices can benefit
from TinyML-based PdM as they need to be deployed
all over the world without assumptions on the avail-
able infrastructure. Wearables, in particular, can ben-
efit from the low energy consumption of TinyML-
based PdM. Furthermore, the privacy and security
provided by TinyML-based PdM is desirable in many
sensitive medical systems. Reliability and determin-
istic response times are further advantages that are
important in medical devices.

Publicly Available Datasets: Unfortunately, there are
no publicly available datasets containing data relevant
to PdM in the medical industry.

Available Resources: The resources available to medi-
cal PdM systems are heavily dependent on the type
of device and its location. That said, some medical
applications require low energy, response time and
cost.

Energy: The critically important energy sector sees heavy
use of PdM systems both during production and trans-
port [134].
TinyML Advantages: TinyML-based PdM can find
use in the energy sector as devices capable of func-
tioning independently from the power grid that they
are monitoring, e.g., by using batteries or energy har-
vesting techniques.

Publicly Available Datasets: Publicly available datasets
that contain data relevant to PdM in the energy indus-
try is limited to MIMII [125].

Available Resources: The energy resources available
to PdM in the energy sector depend heavily on the

source of the energy. Energy resources are not much
of a concern for systems powered by off-grid gener-
ators or large batteries. Systems powered by smaller
batteries or energy harvesting devices, however, need
to minimize their energy use.

In all of the above application areas, PdM can be used
to reduce the amount of critical failures that the equipment
under monitoring will experience. By doing so, PdM reduces
the number of equipment parts that must be replaced and, by
extension, how many equipment parts must be manufactured.
By reducing the number of parts which have to be manufac-
tured, PdM contributes positively to several UN sustainability
goals.

VIII. FUTURE RESEARCH DIRECTIONS
TinyML has received significant attention from the research
community in recent years. Most research so far has focused
on optimizing NN models to run in resource-constrained
systems and for image classification applications. This leaves
ample opportunity to contribute to the field of TinyML by
focusing on other parts of the TinyML stack or on alternative
applications. In this section, we shall discuss some future
research directions that we find particularly promising.

Benchmarking TinyML Toolchains: This paper presented
a comparison of TinyML toolchains in Section IV.
This comparison did, however, not include an experi-
mental evaluation of the resource requirements of the
toolchains. For future work, a comprehensive experi-
mental evaluation of the resource requirements and fea-
tures of TinyML toolchains will be helpful for people
getting started with TinyML. While most toolchains
provide estimates of their resource consumption and
capabilities, there is a significant risk that these promises
are biased.

Explainable AI for TinyML: A research topic currently re-
ceiving much attention in the conventional ML commu-
nity is Explainable AI (XAI). XAI for TinyML systems
has only received minor attention [135], and is therefore
an interesting future research direction for TinyML.

Datasets for TinyML-based PdM: As highlighted in Sec-
tion VI-A, the field of TinyML currently lacks many
high-quality datasets. This is especially the case for
PdM, where the current standard dataset is based on
audio recordings of toys [124]. It would be interesting
for new PdM datasets to incorporate multimodal data to
allow for high-quality research into multimodal TinyML
models.

Energy Harvesting and Intermittent Learning: As high-
lighted in Section III-E,battery-driven TinyML devices
are significantly less sustainable than their directly con-
nected or energy-harvesting counterparts. As it is often
not possible to connect TinyML devices directly to the
power grid, more research into energy harvesting for
TinyML is warranted. Energy harvesting systems can
not often guarantee a reliable source of power. Creating
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TinyML systems which work intermittently when power
is available should, therefore, be a focus of future re-
search.

New Computing Paradigms: Multiple new computing
paradigms are currently being investigated to improve
the performance and efficiency of TinyML systems.
We discussed many of these in Section III-A. Further
research into these new computing paradigms could
catapult the TinyML field to new heights.

Advancing TinyML NAS: NAS has already proven itself a
valuable tool for creating TinyML systems [67], [129],
[136]. Because of the manual labour required for ac-
tual deployment, current NAS systems often use unreli-
able proxies for hardware-specific metrics such as infer-
ence time, memory consumption and energy consump-
tion. Creating reliable tools to estimate these hardware-
specific metrics without deployment could significantly
improve the performance of NAS for TinyML.

Standardisation Efforts: One of TinyML’s biggest hurdles
is going from being used in research and hobby projects
to being used in large-scale professional deployments.
Standardisation efforts could contribute to this transition
by streamlining the deployment of TinyML solutions.
Such standardisation efforts are already ongoing in other
parts of the PdM field [137], [138]. As with all stan-
dardisation efforts, a balance must be found between
giving time for innovation and the benefits brought on
by standardisation. Some parts of the TinyML stack have
reached higher maturity levels than others and are, in
our opinion, ready to be considered for standardisation
efforts. In particular, TinyML models and their opti-
misation have been heavily researched, and thus, stan-
dardisation efforts into model formats (e.g., ONNX) and
optimisation methods (e.g., quantisation and pruning)
could prove beneficial.

IX. CONCLUSION
TinyML-based PdM is a promising technology that can en-
able many new PdM applications. This review has been
dedicated to presenting a holistic view of the field that can
help new practitioners or researchers rapidly get up to speed
with the latest developments in the field. Unlike many other
reviews/surveys of the field, this paper encompasses the en-
tirety of the TinyML stack from hardware to data and PdM
applications. We also discuss the sustainability of TinyML-
based PdM, particularly the impact of TinyML hardware and
the sustainability of PdM applications.

While this paper offers a comprehensive overview of
TinyML and PdM, it is important to acknowledge certain
limitations that suggest areas for further exploration. Specif-
ically, this paper has not discussed the deployment and up-
date of TinyML systems. Additionally, several key topics
closely related to TinyML—such as the Internet of Things
(IoT), Federated Learning, and Distributed Computing—are
not covered in detail. Finally, although a variety of tools and
toolchains were reviewed, the depth of available options and

their feature sets exceeded the scope of this work, leaving
room for further investigation of those tools in future studies.
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