

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Joint Optimization of Computation Offloading and
Task Scheduling using Multi-objective Arithmetic
Optimization Algorithm in Cloud-Fog Computing

Asad Ali a, Nazia Azim b, Mohamed Tahar Ben Othman c,*, (Senior Member IEEE), Ateeq Ur Rehman d,*,

(Senior Member IEEE), Masoud Alajmi e, Mosleh Hmoud Al-Adhaileh f, Faheem Ullah Khan g, Mamyrbayev

Orken h, and Habib Hamam I,j,k,l , (Senior Member IEEE)
a Department of Computer Science, Mardan Institute of Science and Technology, Mardan 23200, Pakistan; asad.ali@uetpeshawar.edu.pk
b Department of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; n.azim@awkum.edu.pk
c* Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia; maathaman@qu.edu.sa
d*School of Computing, Gachon University, Seongnam 13120, Republic of Korea; 202411144@gachon.ac.kr
e Department of Computer Engineering, College of Computers and IT, Taif University, Taif 21944, Saudi Arabia; ms.alajmi@tu.edu.sa
f Department of E learning and IT, King Faisal University, 31982 Al-Ahsa, Saudi Arabia; madaileh@kfu.edu.sa
g Department of Software Engineering, University of Science and Technology, Bannu, Pakistan; Cise42@gmail.com
h Department of Computer Science, Institute of Information and Computational Technologies, Almati, Kazakhstan; morkenj@mail.ru
I Faculty of Engineering, Uni de Moncton, Moncton, NB, E1A3E9, Canada; habib.hamam@umoncton.ca
j Department of Electrical and Electronic Engineering Science, School of Electrical Engineering, University of Johannesburg, Johannesburg 2006, South Africa
k Hodmas University College, Taleh Area, Mogadishu, Somalia
l Bridges for Academic Excellence, Tunis 1002, Centre Ville, Tunisia

Corresponding author: Mohamed Tahar Ben Othman (maathaman@qu.edu.sa) and Ateeq Ur Rehman (e-mail: 202411144@gachon.ac.kr).

ABSTRACT The exponential increase in the Internet of Things (IoT) has affected the cloud computing with increase transmission

latency and network overhead for real-time applications. Cloud-fog computing paradigm tackle these limitations by moving

computational services closer to the network edge i.e., fog nodes, enhancing the speed of real-time applications. This architecture,

with its dynamic computing environment and diverse IoT devices and tasks, demands a reliable and energy-efficient

communication network. Joint optimization of computation offloading and task scheduling is a primary challenge, as it involves

offloading tasks to optimal computational resources and scheduling them in an efficient order for operational efficacy. While

offloading tasks to fog nodes reduces delay but raises energy utilization, offloading them to cloud servers reduces energy usage

but raises computational costs and latency. Additionally, inefficient order of task execution (executing lower priority jobs before

higher priority tasks) can disrupt system stability and reliability. Therefore, an effective joint optimal computation offloading and

task scheduling strategy is essential. To this end, we propose a Multi-objective Arithmetic Optimization-based joint computation

offloading and task scheduling algorithm, aiming to minimize energy consumption and transmission latency. Extensive simulations

in MATLAB demonstrate the efficacy of the proposed algorithm in terms of designated optimization objectives.

INDEX TERMS— Task offloading, computation offloading, optimizing algorithms, cloud-fog computing, Arithmetic Optimization

I. INTRODUCTION

The revolution of Internet of Things (IoT) has been greatly

affected by the growth of telecommunication networks.

Telecommunication devices are continuously generating large

amounts of data which may require an instant response. Due to

the limited processing capabilities of the end-user devices, data

is forwarded to the cloud servers for processing, storing, and

analyzing [1]

Cloud computing is a modern technology that offers scalable,

flexible, reliable and dynamic computing infrastructure for

various applications. It provides virtualized resources (e.g.,

computations, memory and storage) as a service to

organizations and individuals via internet. Cloud computing

architecture consist of front-end interface and back-end

interface. The front-end interface contain users, mobile devices

and application that requires services (e.g., processing, memory

and storage) from the cloud servers. The client can access the

cloud computing services using front-end interface. The back-

end interface contain web servers, storage devices, network

management policies, data security mechanism, load balancing

strategies etc.[2],[3]

Although cloud computing can offers a plethora of resources,

however, it cannot effectively meet the requirements of delay-

sensitive and data-massive IoT applications. To address these

limitations, cloud-fog computing has emerged as a cutting-edge

hybrid computing paradigm that aims to process the diverse end

user requests having different needs and requirements like

bandwidth utilization, cost, delay, energy consumption and

makespan etc [4]. This strategy integrates the cloud servers and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:n.azim@awkum.edu.pk
mailto:maathaman@qu.edu.sa
mailto:ms.alajmi@tu.edu.sa
mailto:Cise42@gmail.com
mailto:morkenj@mail.ru
mailto:habib.hamam@umoncton.ca

fog nodes (located near to the network edge) for processing of

heterogeneous tasks, optimizing offloading delay, energy and

bandwidth utilization for improved operational efficacy.

However, due to the constrained wireless resources, dynamic

and intricate tasks setups, and enormous heterogeneous end-

user requests present significant challenges in computation

offloading and task scheduling within the cloud-fog computing,

necessitating the developments of effective strategies to

manage these complexities for operational efficacy[5-7].

Computation offloading entails directing jobs to the appropriate

computing resource based on task requirements while task

scheduling ensures that the jobs are executed in a manner to

optimize different performance metrics like delay, energy,

workload, bandwidth, cost and makespan. Joint optimization of

computation offloading and task scheduling is crucial to

escalate resource utilization, significant saving of energy

consumption, prevents resource bottlenecks, reduce

communication and offloading latency, and improve overall

system stability and reliability.

Computation offloading and task scheduling entails an

effective strategy due to trade-offs involved in offloading end-

user jobs to computational nodes (cloud servers and fog nodes).

While offloading tasks to fog nodes reduces delay but might

raises energy utilization, offloading them to cloud servers

reduces energy usage but raises computational cost and latency.

Additionally, in the realm of task scheduling, executing tasks in

a less efficient sequence (e.g., executing low priority jobs

before higher priority tasks) can disrupt overall system stability

and reliability. For instance, in a smart city infrastructure, the

traffic management system depends on timely data from IoT

devices to take prompt action regarding traffic lights and

congestion. If the management system is overloaded with non-

traffic jobs, and unable to handle real-time traffic related tasks,

this could cause congestion and increase the ratio of accidents.

Thereby, effecting the stability and efficiency of the smart city.

Therefore an effective joint optimal computation offloading and

task scheduling strategy is required to find an efficient trade-off

between energy efficiency and delay reduction. Research has

demonstrated that achieving a balanced workload allocation

between the computational nodes (fog node and cloud server)

can greatly escalate the network performance.

Joint optimization of computation offloading and task

scheduling is recognized as multi-objective NP-complete

optimization problem[8]. There exist various techniques for

identifying optimal strategy within a cloud-fog computing

network like brute force algorithms and dynamic programming.

Nevertheless, these algorithms are not always efficient in

obtaining optimal offloading and scheduling strategy. For

instance, the dynamic programming approach is not efficient

when dealing with enormous tasks and resources due to

exponential increase in the sub problems, making it

computational intensive and impractical for delay sensitive IoT

applications.

In recent years, many nature-inspired algorithms are utilized

to address the complexities of computation offloading and task

scheduling in cloud-fog computing like Genetic Algorithm

(GA)[9], Ant Colony Optimization (ACO)[10], Particle Swarm

Optimization (PSO)[11], Gray Wolf Optimization (GWO)[12]

and Harris Hawks Optimization (HHO)[13]. Their objectives is

to find an optimal job schedule to optimize designated

performance metrics (e.g., delay, energy, throughput, makespan

and cost etc.). Nevertheless, these algorithms suffer from

various challenges such as inefficient use of randomized

operators, computational intensive operations, and inefficient

trade-off between intensification and diversification phases,

resulting in local stagnation and reducing system efficiency.

Given that task offloading and scheduling is a multi-

objective optimization problem, we utilize Multi-objective

Arithmetic Optimization Algorithm (MoAOA) as a

mathematical model to optimize computation offloading and

task scheduling with an objective to reduce energy consumption

and offloading latency. AOA has proven its effectiveness in

tackling various optimization problems [14]. Its rich repertoire

of randomize operators and their efficient utilization enable the

algorithm to equalize different search strategies during both the

exploration and exploitation phase. Furthermore, the strategic

design of control variable allow candidate solution to engage in

exploration not just at the beginning of the iteration but also

towards the end of the iterations. This capability help the

algorithm in preventing local optima solution.

Our approach stands out due to its utilization of MoAOA to

address the multi-objective problem of task offloading and

scheduling in this domain. To the best of our knowledge, no

existing approach tackle this optimization problem using

MoAOA. The search process, based on AOA’s basic operators,

offers simplicity and computational efficiency which are

particularly important in cloud-fog environment where real-

time decision-making is necessary. The proposed algorithm

efficiently handle the heterogonous IoT tasks by offloading

computational intensive tasks to servers and delay-sensitive

tasks to nearby fog devices. Furthermore, it prioritize tasks

ensuring higher priority tasks are executed before lower priority

ones to maintain system stability, reliability and

responsiveness.

In the proposed approach, the search solutions are initialized

in the problem space along with the initialization of

prerequisites (e.g., IoT devices, fog nodes, MOA function and

cloud servers). Each search solution represent a unique strategy

of task offloading and scheduling which is evaluated using the

optimization function. This phase identifies the best search

solution with minimum energy consumption and offloading

delay. The subsequent solutions, converge towards the best

solution by repositioning search strategy using random

variables and MOA function value. Upon reaching the stopping

criteria, the optimal search solution obtained so for contains the

optimal strategy of task offloading and scheduling.

The experiments are performed in MATLAB and the results

are analyzed against the similar comparative algorithms like

MoGWO [12], Cloud-fog cooperation algorithm [15], Ant

Colony Optimization (ACO) [16], and Genetic Algorithm (GA)

[9] . The results demonstrate the efficacy of the proposed

approach in terms minimum energy consumption and

offloading latency. Moreover, the rich repertoire of stochastic

variables and strategic design of control parameter allow the

proposed algorithm to effectively distribute the workload across

different computational nodes. This ability improves network

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

stability and reliability. Thus the computing network is able to

handle massive range of heterogeneous tasks from IoT devices.

The novelty and contributions of the paper are given below:

 We integrate the multi-objective optimization capabilities

into AOA, unlocking the potential for simultaneous

optimization of offloading latency and energy

consumption.

 We design a multi-objective fitness function that

simultaneously optimizes designated objectives while

considering the priority of tasks to enhance system

stability and efficiency. The multi-objective function

generate better Pareto-front, offering diverse set of

optimal solutions.

 We designed a rigorous mathematical framework for

MoAOA, providing a solid foundation for joint

optimization of task offloading and scheduling.

 We pioneer an adaptive computation offloading and task

scheduling capabilities that empower the algorithm to

dynamically respond to heterogeneous tasks of different

requirement, ensuring optimal resource utilization and

performance.

 We introduced a collaborative task allocation scheme,

that intelligently distribute tasks between fog nodes and

cloud servers, maximizing system efficiency, minimizing

offloading delay, energy consumption and enhancing

overall system productivity.

 We strategically designed control variable to perform

random search strategies at each iteration to prevent local

optima solution.

 A comprehensive numerical analysis is performed with

the similar competitors to demonstrate the efficacy of the

proposed scheme.

The road map of the paper is given as follows: section 2

comprehensively analyze the literature review, section 3

contains the preliminaries i.e., introduced the basic architecture

of cloud fog computing network, the difference between AOA

and MoAOA and contain working operation of the proposed

algorithm. Section 4 contain the proposed solution, section 5

discuss the simulation results and section 6 conclude the paper

with future direction.

II. LITERATURE REVIEW

In the literature, several studies have addressed the problem

of computation offloading and task scheduling in a cloud-fog

computing environment. Computation offloading is a

primary concern of the research, particularly, in optimizing

various Quality of Service (QoS) parameters such as energy

consumption and communication delays. Numerous

optimization algorithms are designed for efficient task

offloading and resource allocation in cloud-fog

computing[17],[18].Mainly the algorithms are categorized into

four groups i.e., Mathematical Programming, Machine

Learning, Heuristic, and Meta-heuristic. The taxonomy of the

task offloading algorithm is given in Fig. 1.

Figure 1: Taxonomy of task offloading algorithm

A. MATHEMATICAL PROGRAMMING

Mathematical Programming (MP) is an optimization branch

used for real-world complex optimization problems by

formulating them as mathematical models with decision

variables, fitness function, and constraints[19, 20]. Various MP

techniques such as linear programming[21], mixed integer

linear programming[22], mixed integer non-linear

programming[23], and quadratic programming [24] etc. are

applied, specifically to address resource allocation in cloud-fog

computing. Nevertheless, exploring the entire solution space

for optimal solutions may increase the computational

complexity of the algorithm. Moreover, they lack in scalability

when dealing with heterogeneous tasks and computational

resources.

Optimal task offloading and resource allocation for fog

computing is proposed in [25]. The mathematical model of the

joint optimization problem is formulated using mixed integer

non-linear programming (MINLP). They introduced a relaxing

solution that converts the binary decision value into the real

value to return the most optimal solution. The tasks are

offloaded to any computational nodes i.e., for nodes or cloud

servers to reduce energy consumption while meeting the

requirements of delay-sensitive tasks.

Daneshfar et al. [26] proposed an ILP-based service

allocation algorithm for fog computing with the

objective to minimize the cost of service allocation. The tasks

generated from heterogeneous IoT devices are multi-casted to

multiple computational nodes to ensure the availability of

computational resources. .

B. MACHINE LEARNING

Machine Learning (ML) techniques also have been widely used

to tackle computational offloading, task scheduling, and

resource management in fog computing. There are numerous

techniques of ML such as reinforcement learning, fuzzy logic,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

neural networks, and Bayesian networks. Among others,

reinforcement learning and its variants (e.g., deep

reinforcement learning) are the most widely used techniques to

apply to resource management in cloud-fog systems. This

technique interacts with the unknown environment to learn the

policy to obtain a trade-off between diversification and

intensification [27, 28] .

Tang et al. [28] proposed a deep reinforcement learning-based

task offloading in fog computing. The focus of the study is to

tackle computation offloading and service placement in fog

computing with the objective of minimizing latency, migration

cost, and energy consumption. To this end, the optimization

problem is formulated as a multi-dimensional Markov decision

process.

Q-learning-based fragmented task offloading in fog computing

is proposed by Razaq et al. [29]. The goal is to offload the tasks

to the computational node while ensuring load balancing.

Incoming IoT tasks are partitioned into segments based on their

privacy level, completion time, and other real-time

requirements, the segments are offloaded to multiple fog nodes.

A deep neural network (DNN) based distributed computation

offloading in mobile fog computing is proposed in [30]. The

algorithm generates multiple offloading decisions using parallel

DNN. The performance of the DNN is improved using the

back-propagation method where cross-entropy is used as a loss

function.

C. HEURISTIC

Heuristics are another set of methods, widely used to solve

computationally expensive problems in an attempt to get a

feasible solution in a reasonable amount of time. However, they

may not be able to provide feasible solutions in some

cases as described in [19]. The shortcoming of most of the

heuristic techniques is local stagnation, providing a locally

optimal solution that results in a lack of efficiency. It uses pre-

defined rules to allocate tasks to the computational node.

Therefore, heuristic-based algorithms are more prone to

dynamic network.

The most common heuristic-based task offloading

algorithms are Dynamic Level Scheduling (DLS) [31],

Heterogeneous Earliest Finish Time (HEFT) [32], and

Dominant Predecessor Duplication (DPD) [33].

HEFT is a task-offloading algorithm specifically designed for

heterogeneous computational resources. In this algorithm, each

incoming task is assigned a priority value based on its finishing

time. Tasks with the shortest finishing times are given high

priority values and vice versa.

In [34], the authors proposed a heuristic computation offloading

algorithm in fog computing. The algorithm solves the

computation offloading problem using a two-stage method to

minimize energy consumption and communication costs.

A clustering-based task offloading algorithm is proposed in

[35]. The authors divide the incoming tasks into clusters based

on task similarities (e.g., completion time, memory, etc). Tasks

with the same requirements are grouped in one cluster and then

assigned to the computation node.

D. METAHEURISTIC

Metaheuristic algorithms are mostly inspired by the

biological evolution observed in nature such as food searching

maneuvers of birds and ants, the hunting strategies of animals,

and human social behavior, etc. It is a very challenging task to

get the global optimal solutions for multi-objective NP-

complex optimization problems[36, 37]. Metaheuristics are

designed with a framework that incorporates more stochastic

operators and has a dynamic and versatile nature that enables

them to get global optimal solutions. Due to random variables,

search agents can explore multiple solution spaces

simultaneously. These features enable the algorithm to tackle

computation offloading in computing networks [38].

Genetic Algorithm (GA) is a primary method to tackle task

offloading in fog computing to enhance system efficiency and

resource utilization [9]. GA optimizes task offloading by

initializing a set of chromosomes, representing tasks and their

allocation to the computation node. Another GA-based task

offloading algorithm for fog computing is proposed in [39].

The objective is to optimize communication and computation

cost and makespan.

Ant Colony Optimization (ACO) based task offloading for IoT

applications is proposed by Hussein et al. [16]. The objective is

to optimize response time and load balancing. The focus of the

study is to distribute the delay-sensitive IoT task to

computational nodes while meeting the QoS requirements.

Particle Swarm Optimization-based task offloading is

proposed in [40], with minimum energy consumption, low

communication latency, and minimum execution cost.

TABLE I

SUMMARY OF WELL-KNOWN COMPUTATION OFFLOADING ALGORITHMS

Ref Methods Application Objectives Advantage Limitation

[41] Metaheuristic General Minimization of task loss probability

and energy consumption
Improves resource utilization High complexity

[42] Metaheuristic IoT, smart cities

and healthcare

Minimize execution time and energy

utilization of user device

Enhanced user experience and improves

resource utilization

high complexity and

network overhead

[43] Metaheuristic Smart cities Minimize execution delay, energy
consumption and charging cost of

used resources

Improves resource utilization and QoS. Less scalable and
high network

overhead

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

In [55], the authors utilized the moth-flame optimization (MFO)

algorithm to efficiently allocate a set of tasks to computational

nodes while ensuring QoS requirements like communication

cost latency and energy consumption.

In [13], the authors employ the hunting strategy of hawks to

optimize task scheduling in cloud-fog

computing. The objective of the multi-objective optimization

is to obtain a trade-off between communication latency and

energy consumption.

Gray wolf optimization-based task offloading and resource

allocation algorithm is proposed in [12]. The optimization

objectives are energy consumption and communication latency

while ensuring efficient workload distribution and maximizing

resource utilization. Tasks are allocated based on their

requirements. [56, 57], also utilized GWO to schedule the tasks

to computational nodes in a computing network.

Although, numerous task offloading and scheduling algorithms

have been proposed to optimize the performance of fog

computing. Nevertheless, most of them are single objectives,

focusing only on either energy consumption or latency and

execution cost. Efficient performance of the computing

environment is based on multiple objectives and should

consider both optimization objectives (energy utilization and

delay). Additionally, the baseline comparative algorithm i.e.,

Cloud-fog cooperation algorithm [15] uses heuristic approach

to enhance the performance of the system by considering

predetermined delay threshold and queuing theory. The

algorithm employs static task allocation method and does not

address the dynamic computing environment with

heterogeneous IoT devices and tasks. This may not be adaptable

to real-time applications. Another baseline comparative

algorithm, MoGWO [12] utilizes the mathematical framework

of GWO algorithm efficiently allocate task to computing

resource with the objective to optimize energy utilization and

communication latency of the computing network. However,

the algorithm does not address the execution order of allocated

tasks. This may result in the execution of low priority tasks

before higher priority jobs. Consequently, the system efficiency

is reduced by obtaining suboptimal solution in terms of

designated objectives. Furthermore, the existing meta-heuristic

based offloading strategies fail to achieve a balanced trade-off

between multiple objectives due to the imbalance operation of

repositioning search phases, local stagnation, and less

stochastic variables, resulting in performance

degradation. This provides an opportunity to improve the

performance of computing by obtaining an efficient trade-off

between multiple objectives i.e., delay and energy utilization.

Table I contains the summary of the well-known computational

offloading algorithms.

III. PRELIMINARIES

[44] Metaheuristic IoT , Fog

computing

Minimize makespan cost, execution

time and energy utilization

Improves resource utilization Less scalable and

high complexity

[45] Mathematical

Programming

General Minimize latency Achieves shorter round trip times and

makespan

High complexity

[26] Mathematical
Programming

General Optimize deployment cost Reduce computational complexity Does not consider
latency in problem

formulation

[46] Mathematical
Programming

Image
Processing

Minimization of transmission delay Reduce computation complexity and
network overhead

Service processing
rate is unrealistic

[47] Mathematical

Programming

Healthcare,

smart cities

Minimization of energy

consumption and latency

Maximize resource utilization and improves

QoS

High computational

cost and less scalable

[48] Machine
Learning

Tracking Optimization of migration cost,
energy consumption and

transmission delay

High scalability due to consideration of
mobility and multi-objective optimization

High computational
complexity and

network overhead

[49] Machine
Learning

Mobile crowd
sensing

Quality of Service More processing is perform on fog nodes High computational
complexity

[50] Machine

Learning

General Quality of Service Improve Quality of service High training time

[51] Heuristic Smart cities Optimizing delay High scalability and reduces processing time Privacy of

confidential data is

compromised

[52] Heuristic Smart cities,

healthcare

Optimizing latency High scalability No realistic

simulation

[53] Heuristic Healthcare Optimizing energy consumption Improve resource utilization Mobility is not taken
into account

[54] Heuristics Smart homes Optimizing power consumption Achieved trade-off between energy

consumption and computational complexity

Not suitable for real-

case scenarios

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

In this section, we present an inspiration of AOA along with

the difference with its multi-objective variant i.e., MoAOA.

Furthermore, we discuss the fundamental principal of cloud-fog

computing architecture and the working operation of the

proposed solution.

A. CLOUD-FOG COMPUTING ARCHITECTURE

Numerous architectures for cloud-fog computing have been

proposed but mostly consist of a three-tier structure i.e., 1) IoT

tier; 2) fog tier; and 3) cloud tier. The tiers are connected via

wireless networks such as Wi-Fi, Bluetooth and LoRa, etc. The

IoT tier is the lowest layer and consists of mobile devices

incorporated with sensors to collect data from the environment

and send it to upper tiers for further processing. IoT devices

may generate delay-sensitive tasks that require immediate

response and computational-intensive jobs that require heavy

computational resources for processing. The generated task is

forwarded to the fog layer which is an intermediate tier

between the IoT layer and the cloud layer. The intermediate

tier consists of fog device FD and fog controller FC. FD is a

node with less storage capacity, communication capability, and

computation power to process relayed tasks, thereby

minimizing network overhead transmission delay. For jobs that

demand high computational power, more storage capacity, and

high communication capability, fog nodes forward these tasks

to the cloud data centers. FC is a specialized node that is

responsible for offloading, analyzing, estimating, and

scheduling tasks by deliberating factors such as processing time

and energy utilization. The proposed algorithm is installed

on FC to determine an optimal offloading decision based on

optimization objectives.

For computational-intensive tasks, FC forwards jobs to the

cloud tier which composed of multiple computational servers

with high computation power and storage capacity for

execution. After executing a task, the results are sent back

to FC to aggregate the results and then send a response to

IoT devices.

B. AOA AND MOAOA

The AOA is a mathematic-inspired swarm intelligence

optimization algorithm. Its inspiration is taken from the

distributive characteristics of arithmetic operators (e.g.,) that

guide the search solutions in diversification (exploration) and

intensification (exploitation) phases via math optimizer

accelerated function (MOA) [14]. The search process of AOA

starts with the random initialization of search solutions,

followed by exploration and exploitation search phases.

Exploration behavior globally investigates the problem space in

search of potential feasible solutions. The exploitation phase

involves investigating the obtained feasible locations in pursuit

of approaching the target optimal area.

AOA is computationally feasible and has a straightforward

implementation, this ability attracts researchers to tackle a wide

range of complex optimization problems like unimodal ,

multimodal, linear, and non-linear optimization problems not

only in the field of computer science but also in medical

science, engineering, electronics, and network security, etc.

Multi-objective AOA (MoAOA) is an alternative to AOA for

solving multi-objective optimization problems [58]. MoAOA

generates multiple solutions for multiple objectives,

which are then stored in an external archive as non-dominated

solutions. Non-dominated solutions are called Pareto optimal

solutions and form the Pareto front, representing a trade-off

relationship between designated optimization objectives. At the

end of each iteration, the solution that meets the requirements

of the fitness function is selected as the best optimal solution,

followed by a position updating mechanism around the best

solution obtained thus far.

Deterministic approaches are inefficient to solve multi-

objective optimization problems as they often generate a single

dominant solution, and are likely to get trapped in local optima.

Computation offloading and task scheduling within cloud-fog

computing is also a multi-objective problem, therefore we

utilize MoAOA to optimize multiple objectives i.e., energy and

latency.

C. WORKFLOW OF PROPOSED ALGORITHM

When IoT devices generate tasks to be processed, at first the

tasks are sent to the FD (step.1). FD forward the tasks to the FC

to analyze the requirements of each task and then assigns a

priority to each received task (step.2-6). Afterward, the FC

invokes the proposed algorithm to craft a binary offloading

matrix that indicates offloading of received tasks to

computational devices along with the schedule of tasks on

assigned computational devices (step.7-8). The dimension of

the matrix represents the number of search solution and the

count of computational resources. The optimization function

evaluates the search solution, followed by repositioning the

remaining search solutions around the optimal solution. The

best solution contains an optimal strategy of task offloading and

scheduling on computational resources. The tasks are then

assigned and executed according to the optimal strategy (step.9-

10). After the execution of tasks, the results are sent back to the

IoT devices (step 11-12). The working operation of the

proposed algorithm is given in Fig. 2.

Figure 2. Working operation of proposed algorithm

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IV. THE PROPOSED SOLUTION

In this section, we present details regarding the proposed

solution to tackle joint optimization of task offloading and

scheduling using a multi-objective arithmetic optimization

algorithm. Our objective in the proposed algorithm is twofold,

the first is to offload Tn independent tasks to different

computational nodes (fog node or cloud server) by considering

task requirements such as computational time, computation

energy, and data size, and the second objective is to schedule

the offloaded tasks on each assigned computational nodes (fog

node or cloud server) according to the tasks requirements. If

tasks are offloaded to the fog node then the proposed algorithm

schedules the tasks according to the computational time, and in

another case, the offloaded tasks are scheduled by considering

the computational energy of each task. The proposed algorithm

aims to execute tasks with minimal completion time,

and energy consumption and balance the workload on each

computational node. The proposed optimization algorithm

encompasses five phases i.e., i) search space initialization ii)

solution creation iii) solution evaluation using objective

function iv) update location vector, and v) termination criteria.

The symbols used in formulas and algorithms are described in

Table II.

A. SYSTEM MODEL

The system model consist of fog nodes represented as FN =

{FN1, FN2, FN3,….., FNn }, heterogeneous cloud servers

denoted as CS = { CS1 , CS2 , CS3 ……, CSn }, IoT devices

represented as ED = { ED1 , ED2 , ED3…….. EDn}, number of

search agents denoted as SA = {SA1 , SA2 , SA3,.... SAn,} and

number of tasks i.e., T = {T1 , T2 , T3 ……… Tn} . We make an

assumption that the energy consumption 𝐸𝐸𝐷
𝐶𝑃𝑈 and CPU

capacity (𝐶𝐸𝐷
𝐶𝑃𝑈) of ED is less than the FN (𝐶𝐹𝑁

𝐶𝑃𝑈,𝐸𝐹𝑁
𝐶𝑃𝑈) and CS

(𝐶𝐶𝑆
𝐶𝑃𝑈,𝐸𝐶𝑆

𝐶𝑃𝑈), similarly the energy consumption and CPU

capacity of FN is less than CS. Mathematically, the CPU

capacity and energy consumption of each computational node

respectively, can be expressed as 𝐶𝐸𝐷
𝐶𝑃𝑈 < 𝐶𝐹𝑁

𝐶𝑃𝑈 < 𝐶𝐶𝑆
𝐶𝑃𝑈 and

𝐸𝐸𝐷
𝐶𝑃𝑈 < 𝐸𝐹𝑁

𝐶𝑃𝑈 < 𝐸𝐶𝑆
𝐶𝑃𝑈. The offloading and scheduling

decision of each incoming tasks is performed by the controller.

The controller assigns priority to each incoming task based on

their importance, required computational time and deadline.

The search agents are the candidate solutions that contain

different strategies for offloading and scheduling tasks. The

candidate solutions are evaluated with the optimization function

to obtain the best candidate solution. Subsequently,

the remaining candidate solutions change their location vector

by employing the exploration and exploitation phase to come

closer to the global optimal solution.

B. CREATION OF PROBLEM SPACE

In the proposed solution, at first, we create a problem space

with the random initialization of the search solution along with

the initialization of IoT devices, fog devices, and cloud

servers. Each search solution investigates the problem space for

an optimal solution using a Math Optimizer Accelerated

(MOA) function. MOA is a function that aids the proposed

algorithm in reaching the global optimal solution by employing

different search strategies. In each iteration, the value of

MOA is updated to maintain an equilibrium state between the

search strategies i.e., exploration and exploitation search phase.

MOA is calculated as follows:

 𝑀𝑂𝐴(𝑖𝑡𝑟𝑐) = 𝑉𝑚𝑖𝑛 + 𝑖𝑡𝑟𝑐 × (
𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

𝑖𝑡𝑟𝑚

) (1)

Where 𝑀𝑂𝐴(𝑖𝑡𝑟𝑐) indicate the function value at current

iteration. 𝑖𝑡𝑟𝑐 and 𝑖𝑡𝑟𝑚 represent the current and maximum

iteration respectively, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 represents the maximum

and minimum vale of the function respectively.

C. SOLUTION CONSTRUCTION

Each search solution is encoded as a binary offloading

matrix of T x C dimension where T denotes the count of

independent tasks and C represents the computational node i.e.,

for the device or cloud server. The binary matrix indicates the

offloading of incoming tasks to computational devices along

with the schedule of tasks on assigned computational devices.

The computational intensive tasks are offloaded to resource-

rich computational nodes i.e., cloud servers while the delay-

sensitive tasks are offloaded to fog nodes. Let A(i , j) refers to

the allocation of ith task to jth computational node. Then we can

expressed A(i , j) as follows:

𝐴(𝑖 , 𝑗)

= {
1 , ithtask to jth computational device

0 , Task is not yet assign to computational device
(2)

The offloading of tasks crafted by search solutions deliberates

factors such as the availability of computing resources,

maximum resources of the computing node, offloading

objectives, task requirements, and network conditions. The

controller offload

TABLE II

LIST OF SYMBOLS

Notations Meaning

𝛱𝐷𝑒𝑙𝑎𝑦 Total offloading delay

Յ𝐸𝑛𝑒𝑟𝑔𝑦 Total energy consumption

𝑊 Weight factor

𝜁𝐿 Input length of the task

𝜇 Service rate of IoT device

ℏ Length of the task queue

𝐴𝐶𝑂𝑇𝑆 Computation offloading and task scheduling matrix

ᵱ𝐼𝑂𝑇
𝑖 Power consumption of IoT device

𝑊𝐿 Workload

𝐶𝑜𝑚𝑝𝑁𝑜𝑑𝑒 Computing node

𝜂 Task arrival rate

ℏ Average length of a queue

Ѱ𝐼𝑜𝑇
𝑖 Task’s processing duration

𝑀𝐶𝑆
𝑘 Count of virtual machines server k

𝐼𝑡𝑟𝑁 Next iteration

U𝑏𝑗
 Upper bound value

𝐼𝑡𝑟𝐶 Current iteration

U𝑏𝑗
 Lower bound value

𝐼𝑡𝑟𝑀 Maximum iteration

Ϙ𝑘 Count of ON virtual machines

FitnessMatrix Fitness matrix of all candidate solution
BSolFitness Fitness value f best solution

OSolFitness Fitness value of best solution in current iteration

C𝑃 Control parameter

а Escalation parameter

ɣ𝑘 ON/OFF state of virtual machine on server k

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

𝜛 Assigned workload

𝑐1, 𝑐2, ւ constants

the task to a computing device only if the required resources of

the task are less than the available capacity of the computing

device. Moreover, while offloading a task, the search solution

must ensure that the computational node is not overloaded and

the workload is balanced across all computational nodes.

The offloaded tasks are scheduled on assigned computational

nodes according to the assigned priority. The priority of tasks is

based on their importance and deadline. A task with the shorter

deadline has high priority and must be executed before the task

with the higher deadline. To craft a solution, the candidate

solutions must adhere to the following constraints:

 The offloading must not overload the computational node.

 The workload across all computational devices must be

balanced

 The task must not be partitioned into sub tasks and must be

assigned as a whole to computing node.

The pseudo code of the solution construction phase is given in

Table III.

TABLE III
SOLUTION CONSTRUCTION

Algorithm 1. Binary Offloading Matrix

Function A(COTS)= OffloadingMatrix((T, CompNode,, SearchAgent)

1. Initialize the workload of all computational node to zero i.e., WL

(CompNode) = 0
2. For (i=1number of search agents) do {

3. i). Determine task requirements i.e., task type, required
4. memory, processing time, computation resources

5. and task’s deadline etc.

6. ii). Determine the capacity of computing node (fog device
7. or cloud

 server)

8. For (j=1number of tasks)
9. If (Tj == Delay_Senstive do {

10. i) Select kth fog device

11. if (WL (FNk) > CapMax) do {
12. i). FNk = Tj

13. ii). WL (FNk) = WL (FNk)+1

14. else

15. i). Find next suitable FNk

16. End if }

17. Elseif (Tj == Computation_Intensive do {
18. Select kth cloud server

19. if (WL (CSk) > CapMax) do {

20. i). CSk = Tj
21. ii). WL (CSk) = WL (CSk)+1

22. else

23. i). Find next suitable CSk

24. End if }

25. End if }

26. i). Determine the priority of each offloaded task
 based on their importance and deadline, and sort

 in ascending order

27. For (j=1number of tasks)
28. Schedule each offloaded task as per its priority level

29. End

30. End

31. End For

32. End Function

D. OPTIMIZATION FUNCTION

Search solutions are evaluated using the optimization

function. The optimization function plays a substantial role in

selecting the most suitable and optimal computational device

for offloading decisions based on objectives. Each candidate

solution employs a fitness function to compute the objective

values. We use a multi-objective function to achieve the aim of

minimizing both offloading delay and energy

consumption, given the nature of our study as a Multi-objective

Problem (MOP). We cannot compare the individual solutions

via the optimization function, the optimal solution can be

obtained using Pareto optimal front. The multi-objective

optimization function is given below:

 𝑂𝐹𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑊 ∗ 𝛱𝐷𝑒𝑙𝑎𝑦 + (1 − 𝑊) ∗ Յ𝐸𝑛𝑒𝑟𝑔𝑦 (3)

Where Յ𝐸𝑛𝑒𝑟𝑔𝑦 and 𝛱𝐷𝑒𝑙𝑎𝑦 are total energy utilization and

offloading delay respectively, W ∈ {0 , 1} is the weight factors

that determine the priority of each objective. Here we assume

an equal priority for each objective i.e., an optimization

algorithm gives equal importance to each objective during the

optimization process.

To compute the fitness value of search solutions, we need to

calculate the offloading delay and energy consumption at each

level of devices i.e., IoT devices, fog devices, and

cloud servers.

1) DELAY MODEL

In this section, we explain the calculations of delay at

different levels of devices. IoT devices employ an M/M/1

queueing system to process incoming tasks. The tasks are

exponentially distributed across the system as per the defined

service rate. Additionally, task arrival from IoT devices adheres

to the Poisson process. The delay of the IoT device is

calculated as follows:

 𝐷𝐼𝑜𝑇
𝑖 =

𝜂

𝜇(𝜇 − 𝜂)
 (4)

Where 𝜂 is the arrival rate of each task generated by the IoT

device, 𝜇 is the service rate of IoT device. Eq. 4compute delay

a task experiences in the queue when there is congestion in the

system. Here, the arrival rate of task i.e., 𝜂 is the controllable

variable. This means the computing network can control the

number of offloaded tasks to computational resources (i.e., fog

node or cloud server).By adjusting the number of 𝜂, the system

can optimize the latency. For instance, managing the workload

across all devices by controlling 𝜂 is necessary to minimize

entire system delay.

The fog device j is modeled to have an M/M/C task queueing

system. Since the fog node is a computational node responsible

for computing tasks, therefore the offloading delay experienced

at the fog node can be expressed as a combination of

communication and computation delay. The computation

latency can be expressed as follows:

 𝐷𝐹𝐷(𝑐𝑜𝑚𝑝)

𝑗
= (

ℏ

𝜂
) . 𝜛𝐹𝐷(𝑐𝑜𝑚𝑝)

𝑗
 (5)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Where 𝜛 and ℏ are the assigned workload to FD j and average

length of the queue respectively. The communication latency

experienced at fog node j can be expressed as follows:

 𝐷𝐹𝐷(𝑐𝑜𝑚𝑚)

𝑗
= 𝑐1 ∗ 𝜁𝐿(𝑇) (6)

Where 𝑐1 is constant and 𝜁𝐿 denotes the input length of the task

T. The communication delay of fog node is related to the input

length of the task. So the total offloading delay experienced at

fog node j can be calculated as follows:

 𝐷𝐹𝐷
𝑗

= 𝐷𝐹𝐷(𝑐𝑜𝑚𝑝)

𝑗
+ 𝐷𝐹𝐷(𝑐𝑜𝑚𝑚)

𝑗
 (7)

Similarly, the cloud server k is modeled with an M/M/∞ task

queue, indicating an infinite capacity. Given the substantial

computational capacity of the server, the computation delay is

negligible. So communication delay experienced at the cloud

server is expressed as follows:

 𝐷𝐶𝑆(𝑐𝑜𝑚𝑚)

𝑘 = 𝑐2 ∗ 𝜁𝐿(𝑘) (8)

Where 𝑐2 is a constant and 𝜁𝐿(𝑘) indicate the input length of the

cloud server k. Now we can expressed the total delay as a

summation of all delays experienced at different level of

devices.

 𝛱𝐷𝑒𝑙𝑎𝑦 = 𝐷𝐼𝑜𝑇
𝑖 + 𝐷𝐹𝐷

𝑗
+ 𝐷𝐶𝑆(𝑐𝑜𝑚𝑚)

𝑘 (9)

2) ENERGY CONSUMPTION MODEL

In this section, we discussed the calculation of the energy

consumption of each device across different computational

devices. Since the task’s processing duration of each device is

different, the energy consumption associated with task

computation on IoT device i is calculated by multiplying the

energy consumption rate with the processing time of IoT device

i. Mathematically, it can be expressed as follows:

 𝐸𝐼𝑜𝑇
𝑖 = ᵱ𝐼𝑂𝑇

𝑖 ∗ Ѱ𝐼𝑜𝑇
𝑖 (10)

Where ᵱ𝐼𝑂𝑇
𝑖 and Ѱ𝐼𝑜𝑇

𝑖 denotes the energy of the IoT device i

and task’s processing duration of IoT device i respectively.

Task’s processing time is calculated using the service rate of

IoT device and the task arrival rate and expressed as follows:

 Ѱ𝐼𝑜𝑇
𝑖 =

1

𝜇 − 𝜂
 (11)

The energy consumption of a fog computational node is directly

proportional to the amount of workload it handles. This means

that if the volume of a task rises, the energy consumption of a

device also increases monotonically. Mathematically, the

energy consumption of a fog node is calculated as follows:

 𝐸𝐹𝐷
𝑗

= ⍺ ∗ 𝜛𝐹𝐷
𝑗2

+ 𝛽 ∗ 𝜛𝐹𝐷
𝑗

+ 𝜕 (12)

Where ⍺, 𝛽, 𝜕 are constant and must be greater than 0, 𝜛𝐹𝐷
𝑗

denotes the allocated workload to fog node j.

The energy utilization across all cloud servers is the same due

to an assumption of operating at an equal CPU processing

frequency. This homogeneity in CPU utilization across all

servers results in consistent energy consumption. However, the

actual energy consumption of a server k is influenced by the

individual CPU utilization of each computing virtual machine.

The correlation between energy consumption and offloaded

workload is directly proportional. This implies that upon

increasing the workload on server k, the utilization of energy on

server k also increases. During the period of reduced workload,

certain computing virtual machines on servers are turned off to

conserve energy. Mathematically, the power utilization of all

servers is expressed as follows:

 𝐸𝐶𝑆
𝑘 = ɣ𝑘 ∗ (Ϙ𝑘(а𝑘𝑀𝐶𝑆

𝑘 + 𝐶𝑘)) (13)

Where а𝑘 and 𝐶𝑘 are constant and their values must be greater

than 0, 𝑀𝐶𝑆
𝑘 is a count of virtual machine on cloud server k, Ϙ𝑘

is a count of ON virtual machines and ɣ𝑘 indicate the state of

virtual machine on server k i.e.,

 Ϙ𝑘 = {
1 , 𝑂𝑁

0 , OFF
 (14)

The total power consumption of the system can be expressed as

a summation of energy consumption of all devices at different

level. Mathematically,

 Յ𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸𝐼𝑂𝑇
𝑖 + 𝐸𝐹𝐷

𝑗
+ 𝐸𝐶𝑆

𝑘 (15)

For effective optimization of computation offloading and task

scheduling, it is required to have a minimum value of Յ𝐸𝑛𝑒𝑟𝑔𝑦

and 𝛱𝐷𝑒𝑙𝑎𝑦 . Likewise, all the search solutions are evaluated to

find out the energy consumption and delay of the system, and

the search solution with the minimum energy utilization and

delay is considered the optimal search solution.

E. NON-DOMINATED SOLUTION

The goal of multi-objective problems is to determine a group of

solutions where none is superior to the other in all objectives.

Particularly, one solution A dominates another solution B, if A

performs better than B across all objectives. Conversely, non-

dominated solutions or Pareto optimal solutions are the set of

solutions that do not dominate each other and no solution is

universally better across all objectives.

In each iteration, to store the non-dominated solution as the

Pareto optimal solution we used an external repository of the

same size as the number of search solutions. Within the

repository, some of the Pareto optimal solutions have the same

rank which needs to be eliminated to increase the diversity of

the non-dominated solution. Consequently, it is necessary to

update the repository to delete the same rank solution and to

reduce the exhaustive search for the best optimal solution.

To this end, we implement a crowding distance function to

update the external repository. It is a function that measures the

density of solutions around a particular solution. It calculates

the crowding distance of the neighboring solutions. High-

crowding distance solutions are less crowded and contribute

more to the diversity of the solution space and prevent local

optimality.

The fitness value of search solutions is sorted in descending

order to compute the crowding distance value. Upon reaching

the maximum size of the external repository, a less crowding

distance solution is replaced with a high crowding distance

solution. Mathematically, we can express the crowding distance

function below:

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

 𝐶𝑑𝑖𝑠𝑡 = (
𝐷𝑖𝑠𝑡𝑖

(𝐷𝑖𝑠𝑡𝑚𝑎𝑥 − 𝐷𝑖𝑠𝑡𝑚𝑖𝑛)
) (16)

Where 𝐷𝑖𝑠𝑡𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛 , 𝐷𝑖𝑠𝑡𝑖 is the maximum and minimum

distance between two solutions and distance value of the

neighboring solution, respectively. Table IV contain the pseudo

code of evaluation using optimization function.

TABLE IV

SOLUTION EVALUATION

Algorithm 2: Evaluation of Solution

1. Function FitnessMatrix = Fitnessfunc (ACOTS)
2. Initialize BSolFitness = Infinity

3. For (i = 1number of search agents)

4. i). Calculate the fitness value of search agent using

 𝑂𝐹𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = 𝑊 ∗ 𝛱𝐷𝑒𝑙𝑎𝑦 + (1 − 𝑊) ∗ Յ𝐸𝑛𝑒𝑟𝑔𝑦

5. ii) FitnessMatrix (i)= 𝑂𝐹𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

6. End
7. OSolFitness = min(FitnessMatrix)

8. if OSolFitness < BSol Fitness do {

9. i). BSolFitness = OSolFitness }
10. ii). BSolLoc = OSolLoc

11. End if

12. End Procedure

F. REPOSITIONING STRATEGY

The optimization function return the best search solution

which encompasses the optimal task offloading and scheduling.

Subsequently, other search solutions reposition their location

vector by employing arithmetic operators (e.g., multiplication

M “×”, division D “÷”, subtraction S “-“, and addition A “+”).

Repositioning process is performed by two search phases i.e.,

exploration and exploitation phase which guide the candidate

solutions to assess potential solution nearby optimal solution.

Transition between the search phases is conditioned by MOA

function which is linearly increasing from 0.2 to 0.9, therefore

it is vital to update the function value in each iteration using Eq.

1.

When the random value (ran1) is greater than MOA function

value, search solutions employs diversification phase to update

the location. Conversely, when ran1 is less than MOA function

value, the algorithm switches to exploitation phase to update the

location vector. The pseudo code of update position is given in

Table V.

TABLE V

REPOSITIONING STRATEGY

Algorithm 3: Repositioning Strategy

1. Function CSNewLoc= Repositioning(BSolFitness, BSolLoc)

2. Calculate MOA and MOP functions

3. Generate ran1, ran2, and ran3 between {0, 1}
4. If (ran1 ≤ MOA)

5. If (ran3 ≤ 0.5) do {

6. Use ‘+’ operator to update the ith solution location

7. Else

8. Use ‘- operator to update the ith solution location }

9. End if

10. Else

 If (ran2 ≤ 0.5) do {

11. Use ‘x’ math operator to update ith solution location

12. Else

13. Use ‘÷’ math operator to update ith solution location }

14. End if

15. End if

16. End Procedure

1) EXPLORATION PHASE

In arithmetic operation, operators “×” and “÷” are

deliberated as global search operators (exploration operator)

because of their high distributed and desperation values. Such

characteristics limit the ability of these operators in converging

towards the target. Exploration operators globally investigate

the problem space in search of potential feasible solutions via

multiplication search and division search strategy. Transition

between the searching strategies is conditioned by random

number ran2. The “÷” operator is activated to perform

stochastic searching when ran2 exceed 0.5. Conversely, when

ran2 falls below 0.5, “×” operator is engaged to perform

operation in an attempt to explore the search space for potential

feasible solutions. Mathematically, it is expressed as follows:

𝐿(𝑖,𝑗)𝐼𝑡𝑟𝑁 =

 {
𝑏𝑒𝑠𝑡(𝐿𝑗) ÷ (𝑀𝑂𝑃 + ւ) × ((U𝑏𝑗

− L𝑏𝑗
) × C𝑃 + L𝑏𝑗

) , 𝑖𝑓 𝑟𝑎𝑛2 ≤ 0.5

𝑏𝑒𝑠𝑡(𝐿𝑗) × 𝑀𝑂𝑃 × ((U𝑏𝑗
− L𝑏𝑗

) × C𝑃 + L𝑏𝑗
) , 𝑖𝑓 𝑟𝑎𝑛2 ≥ 0.5

 (17)

Where 𝑏𝑒𝑠𝑡(𝐿𝑗) is the location of best search solution, C𝑃 is a

control parameter to maintain a balance among different search

strategies within the search space, ւ is a constant, U𝑏𝑗
 , L𝑏𝑗

represent the upper bound and lower bound respectively and

MOP is a math optimizer probability and calculated as below:

𝑀𝑂𝑃(𝐼𝑡𝑟𝐶) = 1 − (
(𝐼𝑡𝑟𝐶)

1
𝑎

(𝐼𝑡𝑟𝑀)
1
𝑎

) (18)

Where 𝐼𝑡𝑟𝐶 , 𝐼𝑡𝑟𝑀 denotes current and maximum iteration

respectively. 𝑎 is escalation parameter used to improve the

intensification accuracy of the searching process. It help the

algorithm in converging towards the optimal area.

2) EXPLOITATION PHASE

Exploitation phase involves investigating the obtained

feasible locations in pursuit of approaching to the target optimal

area. In arithmetic operation, operators “ + ” and “ − ” are

deliberated as local operators (exploitative operators) because

of their low dispersion, high density results and quick

converging towards the target solution. The exploitation phase

consist of addition and subtraction search strategy and activated

when ran1 is less than MOA function value. Transition between

the searching strategies is conditioned by another random

number ran3. The “+” operator is activated to perform

exploitative searching when ran3 exceed 0.5. Conversely, when

ran3 falls below 0.5, “−” operator is engaged to perform

operation in an attempt to converge towards the near optimal

solution. Mathematically, it is expressed as below:

𝐿(𝑖,𝑗)𝐼𝑡𝑟𝑁 =

 {
𝑏𝑒𝑠𝑡(𝐿𝑗) + 𝑀𝑂𝑃 × ((U𝑏𝑗

− L𝑏𝑗
) × C𝑃 + L𝑏𝑗

) , 𝑖𝑓 𝑟𝑎𝑛3 > 0.5

𝑏𝑒𝑠𝑡(𝐿𝑗) − 𝑀𝑂𝑃 × ((U𝑏𝑗
− L𝑏𝑗

) × C𝑃 + L𝑏𝑗
) , 𝑖𝑓 𝑟𝑎𝑛3 ≤ 0.5

 (19)

It is necessary to thwart the searching strategies to getting stuck

in the local search area. To do this, we carefully designed C𝑃

parameter that help the proposed algorithm to perform

exploration stochastically not just at the beginning of iterations.

This aid the algorithm in preventing local stagnation

specifically in the last rounds.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

G. TERMINATION CRITERIA

The algorithm terminates when either of two conditions are

met.

 When the algorithm reaches to the maximum iteration

 When there is no improvement in the best fitness value

over predetermined number of consecutive iterations

H. PSEUDO CODE OF PROPOSED SOLUTION

The pseudo code of the proposed solution is depicted in Table

VI. The algorithm takes number of independent and

heterogeneous task, number of computing nodes and

computation time and resource of each task as input to the

system. Line # 1-3 initialize the candidate solution and

simulation parameters to their default values. Line # 4-7 is

another initialization related to location vector of best solution,

fitness value of best candidate solution and binary offloading

matrix. All of these parameters are initialized to their initial

values. Line # 8-15 creates task offloading and scheduling

matrix by considering distinct task requirements and

importance, evaluation of the matrix and determines the best

candidate solution as per the optimization function. Line #16-

22, the best candidate solution is stored in external archive as

Pareto optimal solution whose size is equal to the number of

candidate solution. To update the external archive with new

best candidate solution, the proposed algorithm employs

crowding distance value i.e., a solution with low crowding

distance value is replaced by high crowding distance value. In

line # 23-26, the proposed algorithm utilizes exploration and

exploitation searching strategies to update candidate solution

location. Line # 27-30, after repositioning new candidate

solutions are created, followed by re-evaluation. If the new

candidate solution is better than the previous solution, then the

previous solution is updated with the new one. Upon reaching

to termination criteria, the solution of the best candidate

solution contains an optimal strategy of task offloading and

scheduling.

TABLE VI

PROPOSED ALGORITHM

Algorithm 4: Proposed Algorithm

1. Start

2. Randomly initialize the candidate solution
3. Initialize all simulation parameters to their default values i.e.,

𝜇 (service rate),𝜂 (task arrival rate),

(average length of queue) and external archive etc.
4. For (Itr = 1  ItrMax) do {

5. ACOTS = {}

6. BSolFitness = Infinity
7. BSolLoc = {0,0}

8. For (i = 1  Number of candidate solution) do {

9. ACOTS = OffloadingMatrix(T, CompNode,, CSol)
10. FitnessMatrix = Fitnessfunc (ACOTS)

11. OSolFitness = min(FitnessMatrix)

12. if OSolFitness < BSolFitness do {
13. BSolFitness = OSolFitness

14. BSolLoc = OSolLoc }

15. End if

16. Store the Pareto optimal solution in archive

17. ExtArch = BSolFitness

18. if (ExtRep == Number of candidate solution) do {
19. Calculate DistCW

20. Update the archive and replace low DistCW with high

21. DistCW}

22. End if

23. End For

24. For (k=1 Number of search agents) do {

25. update candidate solution

26. CSNewLoc= Repositioning(BSolFitness, BSolLoc)}

27. End For

28. Create new binary offloading matrix

29. Evaluate the matrix using optimization function

30. Store the Pareto optimal solution in external archive
31. Select the best candidate solution i.e. BestCSol from the

 archive with best fitness value i.e., BSolFitness

32. Itr = Itr +1}

33. End For

34. Optimal task offloading & scheduling= BestCSol

I. IMPLEMENTATION OF ALGORITHM 4 IN CLOUD-FOG
COMPUTING NETWORK

The practical implementation of algorithm 4 in cloud-fog

computing network requires IoT devices, fog devices, cloud

servers, and network links. The IoT devices generate tasks with

varying requirements and priorities (e.g., computationally

intensive and delay-sensitive tasks). The tasks are queued at

the IoT devices and forwarded to the fog controller for task

analysis and prioritization. The fog controller creates a binary

offloading matrix that contains offloading and scheduling

configurations based on task requirements. The offloading and

scheduling decision is encoded into the solution of the search

agent i.e., candidate solution. For instance, if there are 30

candidate solutions, there will be 30 offloading and scheduling

decisions. The decisions are evaluated using the fitness

function. Afterward, the arithmetic operators are applied to find

the optimal offloading and scheduling configuration that

minimizes the optimization objectives. The system then uses

the best configuration for offloading and scheduling tasks

J. COMPUTATIONAL COMPLEXITY OF PROPOSED
ALGORITHM

The computational complexity of the proposed algorithm is

calculated for each phase and then combined to represent the

overall complexity.

Initialization: The initialization phase depends upon the swarm

size, if swarm size is N, then initialization phase takes O(N).

Solution construction: The solution construction phase,

creates a binary offloading metrics which represents the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

offloading and scheduling of tasks to computing nodes. If M

represent the number of tasks, then task offloading takes O(N)

to offload tasks, the allocated tasks are scheduled for execution

after determining the priority of each task. The tasks are sorted

in ascending order based on their priority. These steps takes O

(M.logM). So the overall complexity of solution creation phase

is O(N x (M+MlogM)) or O(N x M.logM).

Solution Evaluation: The complexity of solution evaluation

phase is mainly depends upon the fitness function and problem

dimension. This phase evaluates the solution of each search

agent, so it takes O(N).

Update Position: The repositioning strategy requires O(LxN)

to update the position vector of each search solution, where L

is number of iterations.

Overall Complexity: So the computation complexity of

proposed algorithm for one search solution and L iteration is

O(L(N + N x MlogM+ N+N) which collapse to O(L(N + N x

M.logM)), for N search solution, it becomes O(L.(N.(N + N x

M.logM))) which collapse to O(L.(N2. M.logM)).

The comparative analysis of the computational complexity of

similar benchmark algorithms is shown in Table VII. The

computational complexity highlights the efficacy of that

proposed algorithm in solving multi-objective optimization

problems because of its ability to balance multiple conflicting

objectives like energy, latency, and throughput. However, it has

slightly higher computational complexity due to archive sorting

which can slow down the performance of large computing

networks. ACO and GA have the same computational

complexity and are well-suited for single-objective

optimization problems. However, more iterations are required

to converge to the optimal solution. CTS has linear time

complexity and is well suited for single objective optimization

problems i.e., either energy consumption or latency, but suffers

from premature convergence.

TABLE VII

COMPARATIVE ANALYSIS OF COMPUTATIONAL COMPLEXITY

Scheme Time Complexity
1 search solution

Time Complexity
N search solution

Proposed O(L(N + N x M.logM)) O(L(N (N + N x M.logM)))

MoGWO O(L(N2 + M.logM)) O(L(N (N2 + M.logM))

ACO O(L(N +N2 x M))) O(L (N (N +N2 x M)))

GA O(L(N +N2 x M))) O(L (N (N +N2 x M)))
CTS O (L x M x N) O (L (N x M x N))

V. EXPERIMENTAL SETUP AND RESULT
DISCUSSION

The extensive experimental simulations were conducted using

MATLAB 2021a on a 64-bit Windows 11 machine with 16 GB

RAM and 2.5 GHz core i7 Intel processor. The simulation

environment consists of varying fog nodes (ranging from 5 to

40) and heterogeneous IoT tasks (ranging from 60 to 500). The

tasks were divided into delay-sensitive and computational-

intensive tasks. The performance of the proposed solution was

evaluated with the comparative approaches namely, MoGWO

and cloud-fog cooperation scheduling algorithm (CTS), Ant

Colony Optimization (ACO), and Genetic Algorithm (GA). The

baseline algorithms and proposed algorithm were implemented

under the same simulation parameters in Table 8 to ensure

fairness in the evaluation. The comparative algorithms were

implemented based on a standard approach with necessary

modifications to fit the same optimization problem. The results

demonstrate the operational efficacy of the proposed solution in

terms of minimizing energy consumption, transmission latency

while maximizing network throughput. Consequently, joint

optimizing task offloading and scheduling prolong the network

lifetime and improves the reliability, stability and scalability of

the computing network by finding an optimal task offloading

and scheduling strategy. This shows that the proposed solution

can efficiently handle large number of diverse requests from

various IoT devices, each with different requirements. The

proposed approach is implemented as per the algorithm

presented in Table VI.

The performance of the proposed solution was tested against

three performance metrics i) latency ii) power consumption and

iii) throughput. The study of these metrics was conducted under

various simulation parameters as shown in Table VIII.

TABLE VIII

SIMULATION PARAMETERS

Parameters Proposed Algorithm

Fog devices 5-40

Tasks count 60-500

Search solution 100

𝑉𝑚𝑎𝑥 1

𝑉𝑚𝑖𝑛 0.2

𝜇 (service rate) 4.6

𝜂 (Task Arrival rate) 3.2

Archive size 100

Maximum Iteration 150

W 0.5

ᵱ𝐼𝑂𝑇
𝑖 25

Simulation Run 10

𝑎𝑘 4.9

𝐶𝑘 53.2 x 10-20

Escalation parameter 5

Control Parameter 0.5
Dimension 2

A. LATENCY VERSUS NUMBER OF TASKS

 This simulation setup was designed to compute the combined

latency of all three tiers under varying workloads,

particularly with task counts varying as (60, 120, 150, 200, 250)

and fog devices ranging from 5 to 10. The simulation results

reveal the operational efficacy of the AOA-based task

offloading and scheduling algorithm in terms of obtaining

minimal transmission latency as compared to the state-of-the al

gorithms. The baseline scheduling algorithms offload and

execute the tasks without considering their significance and

priority which causes higher transmission latency. However,

the proposed algorithm used an efficient offloading and

scheduling strategy to process the tasks based on their

importance and priority, which minimize the transmission

latency of the system. Additionally, the delay-

sensitive tasks are executed and stored on the network

edge which reduces the distance between IoT devices and fog

nodes, thereby contributing to achieving minimum

transmission latency. We can see in Fig. 3, that the

transmission latency follows a monotonically increasing

behavior, indicating the transmission latency linearly increases

with the rise in workload. This verifies the stability and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Figure 3. Latency verses Number of tasks & Fog nodes =5

scalability of the proposed algorithm against substantial task

generation from various IoT devices, each with different

requirements.

The next simulation setup was designed to compute the same

performance metric but with increased workloads ranging from

300-500 tasks as shown in Fig. 4. This time, again the proposed

algorithm outer perform the similar competitors in terms of

optimizing communication delay.

Figure 4. Latency verses Number of tasks & Fog nodes =10

Referring to the results of Fig. 3 and Fig. 4, we conclude that

the proposed algorithm is useful for delay-sensitive IoT

applications.

B. ENERGY CONSUMPTION VERSUS NUMBER OF
TASKS

This performance metrics represent the collective energy

consumption of the devices at all three tiers. The power

utilization of a device mainly depends on the network

bandwidth and CPU frequency of a computing node. This

simulation was carried out to find the energy consumption of

devices relative to the number of tasks ranging from 60 to 250.

The simulation results in Fig. 5 reveals the effective

performance of the proposed algorithm in terms of optimizing

Figure 5. Tasks verses Energy Consumption & Fog nodes=5

the power consumption of the scarce computational devices.

Consequently, the resource utilization and lifetime of the

network is extended.

Figure 6. Task verses Energy Consumption & Fog nodes=10

In Fig. 6, we performed the same experiment but this time we

increased the workload, ranging from 300-500 tasks. Again, the

proposed algorithm outer perform the state of the art scheduling

algorithms. This indicates the stability and scalability of the

proposed solution, even when the number of tasks increases, the

algorithm remains efficient in achieving the global optimal

solution.

C. LATENCY VERSUS NUMBER OF FOG NODES

This experimental setup compute the transmission latency

against the number of fog nodes ranging from 5 to 40 while

keeping the workload constant i.e., 300 tasks. The simulation

results in Fig. 7 and Fig. 8, illustrate the efficient performance

of the proposed solution as compared to the competitors. Upon

increasing the number of fog devices, the workload is

effectively distributed across multiple computation devices,

thereby the response time is increased and collective

transmission latency is minimized.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Figure 7. Delay verses number of fog node & task counts=200

Figure 8. Delay verses number of fog node & task counts=300

D. ENERGY CONSUMPTION VERSUS NUMBER OF FOG
NODES

This simulation setup calculate the power consumption of

devices at each tier relative to the number of fog device varying

from , while the workload remains constant at a value of 300

and 400 tasks. The relationship between the number of fog

nodes and energy consumption is directly proportional to each

other i.e., when we increase the count of fog devices, the energy

consumption of the entire system also increases, because fog

devices requires energy for data transmission, operation and

communication. Nevertheless, the optimal resource allocation,

effective and balance workload distribution can efficiently

reduce the energy consumption of the system. The results in

Fig. 9 demonstrate the operational efficacy of the proposed

offloading and scheduling algorithm in terms of achieving

optimized energy consumption as compared to the comparative

resource allocation algorithms. The baseline resource

allocation algorithms do not achieve a trade-off between

offloading task to fog devices and cloud servers. However, the

proposed algorithm achieves an efficient trade-

 Figure 9. Energy Consumption verses Fog nodes (workload = 200 and 300)

off by intelligently determining a suitable computing device

for task offloading and execution. This results in a reduction of

energy consumption.

D. THROUGHPUT VS NUMBER OF TASKS

This experimental framework assess the performance of the

proposed solution concerning throughput relative to the

workloads ranging from 50-500 tasks, while the fog nodes are

maintained at a constant value i.e., 5 and 10. Throughput is

0

500000

1000000

1500000

5 10 15 20E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

s
(J

)

Fog Nodes

Fog Nodes Vs Energy Consumption

Tasks=200

Proposed Algorithm MoGWO ACO GA CTS Tasks

0

1000000

2000000

25 30 35 40

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J

)

Fog Nodes

Fog Nodes Vs Energy Consumption

Tasks = 300

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

measured by counting the number of successfully completed

tasks in a stipulated period of time. The analysis of the

performance metric is illustrated in Fig. 10, revealing efficient

performance of the proposed algorithm in terms of number of

successfully processed tasks as compared to the similar

competitors. This efficiency is attributed to the joint optimal

strategy of computation offloading and task scheduling that

efficiently utilize the capacity of the computing resources

without causing delays and avoiding unnecessary energy

utilization. Consequently, the network lifetime increases and

maximum throughput achieved in a less stipulated period of

time.

 Figure 10. Throughput verses Tasks (Fog Nodes 5 and 10)

The numerical and performance analysis of the proposed

solution in depicted Table IX and X respectively. The

numerical data indicate the efficient performance provided by

the proposed solution and performance enhancement up to a

25% in terms of better energy consumption and transmission

delay.

Fig 11, unfolds the convergence behavior of proposed

algorithm compared to the baseline approaches. The result

unveils the efficient performance of the proposed algorithm,

characterized by reliable and stable convergence behavior

toward best solution. Moreover, the proposed algorithm

achieves best fitness value at a faster convergence rate

compared to the state-of-the-benchmark algorithms.

Table XI unfolds the convergence performance of the proposed

and other comparative algorithms. The table has mainly three

variables regarding convergence behavior i.e., maximum

fitness value, best fitness value, and the standard deviation

(S.D). The convergence values of these variables are recorded

for workloads 200 and 400 tasks while the fog nodes remain

constant i.e., 5 and 10. S.D measures the amount of dispersion

in a set of values. A convergence behavior of an algorithm, it

Figure 11: Convergence behavior of proposed and baseline algorithms

0

500000

1000000

1500000

2000000

2500000

60 120 150 200 250

T
h

r
o

u
g

h
p

u
t

Number of Tasks

Tasks Vs Throughput

Fog Nodes =5

MoGWO ACO GA CTS Proposed Algorithm

0

1000000

2000000

3000000

4000000

5000000

300 350 400 450 500

T
h

ro
u

g
h

p
u

t

Number of Tasks

Tasks Vs Throughput

Fog Nodes =10

MoGWO ACO GA CTS Proposed Algorithm

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

provides insights into the reliability and stability of the

algorithm’s performance. When the SD of the fitness values is

relatively low, it reveals that the algorithm consistently

converges toward the optimal solution across multiple rounds.

We can see in Table X, that the best fitness value and SD of the

proposed algorithm is comparatively low, which indicates the

high stability and reliability of the algorithm’s performance in

obtaining optimal solution with less variations.

E. TASK COMPLETION RATE VERSUS NUMBER OF
TASKS

Task completion rate specifies the number of tasks

completed within a given deadline. This simulation setup

calculates the task completion rate against the total number of

tasks (60-500) generated by the IoT devices, while the

computational nodes i.e., fog devices and cloud servers are kept

constant i.e., 10. The simulation result in Fig 12, demonstrates

that the proposed algorithm achieves a high (up to 97%) task

completion rate compared to the baseline algorithms. As shown

in the result, with the increase in the number of tasks, the

completion rate begins to decline due to scarce computational

resources. However, the proposed algorithm still achieves

significant performance compared to benchmark algorithms,

especially under higher workloads.

Figure 12: Number of tasks versus Task completion rate

F. FAIRNESS INDEX VERSUS NUMBER OF TASKS

The fairness index determines how fairly computational

resources (e.g., bandwidth) are distributed among tasks. The

system must fairly distribute resources among tasks and prevent

resource starvation of low-priority tasks. The imbalance of

resource distribution can lead to task drop-offs and performance

degradation. The equation below is used to calculate the

fairness index:

 𝐹𝑖𝑛𝑑𝑒𝑥 =
(∑ 𝑥𝑘

𝑇
𝑘=1)2

𝑇 ∑ 𝑥𝑘
2𝑇

𝑘=1

 (20)

Where 𝑥𝑘represent the resource allocation to task k and T is the

total number of tasks. When a fairness index value is near to 1,

this indicates a fairness distribution of resources across all

tasks, while when it is close to 0, this represents that resources

are not evenly distributed among tasks.

Figure 13: Number of tasks versus Fairness Index

Fig. 13 demonstrates the results of the fairness index of

proposed and other comparative algorithms against the total

number of tasks (60-500). For the simulation, the number of

computational nodes is kept constant i.e., 10. The results show

that the proposed algorithm obtains a high fairness index value

compared to other baseline algorithms. It is observed that with

the increase in the number of tasks maintaining a high fairness

index value is more challenging. The results highlight the

efficiency of the proposed algorithm in distributing resources

evenly across all tasks, especially under higher workloads. This

minimizes the risk of resource bottlenecks and resource

starvation.

As a whole, we can safely infer that the proposed algorithm

efficiently solves the multi-objective NP-hard optimization

problem. This efficiency is attributed to the inherent

characteristics of MoAOA. Its rich repertoire of stochastic

operators and their efficient utilization enable the algorithm to

equalize different search strategies during both the

diversification and intensification phase. Additionally, the

strategic design of control variable allow candidate solution to

engage in exploration not just at the beginning of the iteration

but also towards the end of the iterations. This capability help

the algorithm in preventing local optima solution and providing

global optimal solution for complex multi-objective

optimization problem. Considering the efficient outcomes of

the proposed algorithm in terms of optimization objectives, we

can efficiently apply the proposed algorithm to real-world

applications. For example, in a smart healthcare system within

the Internet of Medical Things (IoMT), the proposed scheme

offers superior performance. The IoMT network consist of

wearable health sensors to measure important indicators like

blood pressure, heart beat and sugar level etc. These devices

generates massive amount of tasks with varying requirements

and priorities that needs to be processed accordingly. For

instance, an emergence alert message from a wearable sensor is

considered as latency-sensitive task and must be given higher

priority. These tasks are offloaded to nearby fog devices and

executed before the lower priority tasks to ensure that they meet

their deadlines. Since wearable sensors often have limited

energy and battery lifetime, therefore the proposed algorithm

could intelligently allocate computational-intensive tasks (e.g.,

medical image processing and genomic data analysis) to

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

powerful computing resources like server, resulting in better

energy management.

TABLE IX

NUMERICAL ANALYSIS

TABLE X

 PERFORMANCE ANALYSIS

Algorithms Performance

Latency

Performance

Energy Consumption

Performance

Throughput

Net Performance

Proposed 51.95% 84.35% 96.6% 77.64%

GA 23.62% 49.15% 49.66% 40.81%
ACO 27.56% 57.34% 52.54% 45.81%

CTS 19.66% 21.5% 36.09% 25.75%

MoGWO 32.92% 68.18% 58.99% 53.7%

TABLE XI

OBJECTIVE VALUES AND S.D OF PROPOSED AND COMPARATIVE ALGORITHMS

Algorithms Tasks/Fog Nodes Max Fitness Best Fitness S.D Tasks/Fog Nodes Max Fitness Best Fitness S.D

Proposed

400/10

3.40E+03 1.60E+03 239.30

200/5

3.42E+03 6.58E+02 222.21
MoGWO 8.39E+03 3.20E+03 584.92 8.28E+03 1.37E+03 1035.72

ACO 9.24E+03 3.52E+03 643.05 1.08E+04 1.78E+03 1346.44

GA 1.08E+04 4.09E+03 748.27 1.32E+04 2.17E+03 1646.82
CTS 1.91E+04 3.75E+03 1098.01 1.50E+04 1.40E+03 3502.82

VI. CONCLUSION

In this paper, we present a novel joint optimization of

computation offloading and task scheduling algorithm based on

MoAOA for cloud-fog networks. The proposed algorithm

classifies the incoming tasks based on their requirements and

importance and takes energy and delays efficient offloading

and scheduling decisions accordingly. The proposed algorithm

is implemented on the fog controller to estimate, analyze,

offload, and schedule tasks to the appropriate computing

resource. The optimization process starts with the initialization

of search agents within the problem space where all the search

agents cooperatively explore and exploit the problem space to

find a set of trade-off solutions via Pareto-optimality.

Extensive simulation is performed in MATLAB and the

results are compared with similar methodologies. The results

validate the streamlined functionality of the proposed algorithm

in terms of optimizing energy consumption, transmission

latency, and network throughput. Moreover, the results

demonstrate the stability and scalability of the proposed

solution, as it is growing steadily with the increase in the

workload.

In the future, we can explore other swarm intelligence

algorithms (e.g., Bat Optimization algorithm, whale

optimization algorithm, etc.) to investigate the multi-objective

task offloading and scheduling optimization problem to

optimize conflicting optimization objectives. Moreover, we can

also integrate machine learning models to optimize objectives

like transmission cost, security, privacy and load balancing, etc.

The proposed algorithm is computationally expensive for a

larger network size, as the network grows, the algorithm may

take longer optimization times. In the future, we can address

this limitation by exploring parallel processing techniques and

distributed computing frameworks to optimize computational

time.

CRedit Authorship Contribution Statement

Conceptualization, A.A. and N.A and M.T.B; methodology,

A.A and M.A, M.T.B and H.H; software, N.A, M.Al.A. A.R,

and H.H; validation, F.U.K., M.O and A.R.; formal analysis,

M.A, M.Al.A. and F.U.K.,; investigation, A.R. M.Al.A and

F.U.K; data curation, M.A, H.H. and M.O; writing—original

draft preparation, A.A, A.R, M.O; writing—review and editing,

All Authors.; funding acquisition, M.T.B, H.H, and A.R.

Acknowledgement Statements

The Researchers would like to thank the Deanship of Graduate

Studies and Scientific Research at Qassim University for

financial support (QU-APC-2024-9/1).

Declaration of conflict of interest

The authors declare that they have no known conflict of interest

to be reported in this paper.

References

1. Gai, K., et al., Blockchain meets cloud computing: A

survey. IEEE Communications Surveys & Tutorials,

2020. 22(3): p. 2009-2030.

2. Cao, K., et al., A survey on edge and edge-cloud

computing assisted cyber-physical systems. IEEE

Algorithms Delay

(ms)

Energy

(J)

Delay

(ms)

Energy

(J)

Throughput

Nodes/

Task

5-40

Node

5-40

Node

60-500

Tasks

60-500

Tasks

60-500

Tasks

CTS 181.41 1.25E+06 240.99 1.90E+06 9.03E+05

MoGWO 126.12 6.93E+05 201.23 8.18E+05 1.37E+06

GA 144.67 1.04E+06 229.13 1.23E+06 1.16E+06

ACO 133.62 7.96E+05 217.30 1.05E+06 1.22E+06
Proposed 88.83 3.82E+05 144.13 3.62E+05 2.36E+06

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Transactions on Industrial Informatics, 2021. 17(11):

p. 7806-7819.

3. Miao, Y., et al., Intelligent task prediction and

computation offloading based on mobile-edge cloud

computing. Future Generation Computer Systems,

2020. 102: p. 925-931.

4. Iftikhar, S., et al., HunterPlus: AI based energy-

efficient task scheduling for cloud–fog computing

environments. Internet of Things, 2023. 21: p. 100667.

5. Abd Elaziz, M., L. Abualigah, and I. Attiya, Advanced

optimization technique for scheduling IoT tasks in

cloud-fog computing environments. Future Generation

Computer Systems, 2021. 124: p. 142-154.

6. Guevara, J.C. and N.L. da Fonseca, Task scheduling in

cloud-fog computing systems. Peer-to-Peer

Networking and Applications, 2021. 14(2): p. 962-

977.

7. Sabireen, H. and V. Neelanarayanan, A review on fog

computing: Architecture, fog with IoT, algorithms and

research challenges. Ict Express, 2021. 7(2): p. 162-

176.

8. Rahbari, D. and M. Nickray, Task offloading in mobile

fog computing by classification and regression tree.

Peer-to-Peer Networking and Applications, 2020. 13:

p. 104-122.

9. Khiat, A., M. Haddadi, and N. Bahnes, Genetic-Based

Algorithm for Task Scheduling in Fog–Cloud

Environment. Journal of Network and Systems

Management, 2024. 32(1): p. 3.

10. Kishor, A. and C. Chakarbarty, Task offloading in fog

computing for using smart ant colony optimization.

Wireless personal communications, 2022. 127(2): p.

1683-1704.

11. Liu, Z., et al., A distributed algorithm for task

offloading in vehicular networks with hybrid fog/cloud

computing. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 2021. 52(7): p. 4388-4401.

12. Saif, F.A., et al., Multi-objective grey wolf optimizer

algorithm for task scheduling in cloud-fog computing.

IEEE Access, 2023. 11: p. 20635-20646.

13. Ali, A., et al., Multi-Objective Harris Hawks

Optimization Based Task Scheduling in Cloud-Fog

Computing. IEEE Internet of Things Journal, 2024.

14. Abualigah, L., et al., The arithmetic optimization

algorithm. Computer methods in applied mechanics

and engineering, 2021. 376: p. 113609.

15. Li, G., et al., Energy consumption optimization with a

delay threshold in cloud-fog cooperation computing.

IEEE access, 2019. 7: p. 159688-159697.

16. Hussein, M.K. and M.H. Mousa, Efficient task

offloading for IoT-based applications in fog

computing using ant colony optimization. IEEE

Access, 2020. 8: p. 37191-37201.

17. Bansal, S., H. Aggarwal, and M. Aggarwal, A

systematic review of task scheduling approaches in fog

computing. Transactions on Emerging

Telecommunications Technologies, 2022. 33(9): p.

e4523.

18. Hosseinzadeh, M., et al., Task scheduling mechanisms

for fog computing: A systematic survey. IEEE Access,

2023.

19. Salaht, F.A., F. Desprez, and A. Lebre, An overview of

service placement problem in fog and edge computing.

ACM Computing Surveys (CSUR), 2020. 53(3): p. 1-

35.

20. Liu, C., et al., Solving the multi-objective problem of

IoT service placement in fog computing using cuckoo

search algorithm. Neural Processing Letters, 2022.

54(3): p. 1823-1854.

21. Chang, Z., et al., Dynamic resource allocation and

computation offloading for IoT fog computing system.

IEEE Transactions on Industrial Informatics, 2020.

17(5): p. 3348-3357.

22. Wu, C.-g., et al., An evolutionary fuzzy scheduler for

multi-objective resource allocation in fog computing.

Future Generation Computer Systems, 2021. 117: p.

498-509.

23. Gu, L., et al., Cost efficient resource management in

fog computing supported medical cyber-physical

system. IEEE Transactions on Emerging Topics in

Computing, 2015. 5(1): p. 108-119.

24. Mukherjee, M., et al., Task data offloading and

resource allocation in fog computing with multi-task

delay guarantee. Ieee Access, 2019. 7: p. 152911-

152918.

25. Vu, T.T., et al., Optimal task offloading and resource

allocation for fog computing. arXiv preprint

arXiv:1906.03567, 2019.

26. Daneshfar, N., et al. Service allocation in a mobile fog

infrastructure under availability and qos constraints.

in 2018 IEEE Global Communications Conference

(GLOBECOM). 2018. IEEE.

27. Aazam, M., S. Zeadally, and E.F. Flushing, Task

offloading in edge computing for machine learning-

based smart healthcare. Computer Networks, 2021.

191: p. 108019.

28. Fan, W., et al., Joint task offloading and resource

allocation for accuracy-aware machine-learning-

based IIoT applications. IEEE Internet of Things

Journal, 2022. 10(4): p. 3305-3321.

29. Razaq, M.M., et al., Fragmented task scheduling for

load-balanced fog computing based on Q-learning.

Wireless communications and mobile computing,

2022. 2022.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

30. Yang, Z. and W. Bai, Distributed Computation

Offloading in Mobile Fog Computing: A Deep Neural

Network Approach. IEEE Communications Letters,

2021. 26(3): p. 696-700.

31. Yuan, L.-L., et al., Dynamic level scheduling based on

trust model in grid computing. CHINESE JOURNAL

OF COMPUTERS-CHINESE EDITION-, 2006.

29(7): p. 1217.

32. Mazrekaj, A., et al. The Experiential Heterogeneous

Earliest Finish Time Algorithm for Task Scheduling in

Clouds. in CLOSER. 2019.

33. Lai, K.-C. and C.-T. Yang, A dominant predecessor

duplication scheduling algorithm for heterogeneous

systems. The Journal of Supercomputing, 2008. 44: p.

126-145.

34. Li, K., Heuristic computation offloading algorithms

for mobile users in fog computing. ACM Transactions

on Embedded Computing Systems (TECS), 2021.

20(2): p. 1-28.

35. Kanemitsu, H., M. Hanada, and H. Nakazato,

Clustering-based task scheduling in a large number of

heterogeneous processors. IEEE Transactions on

Parallel and Distributed Systems, 2016. 27(11): p.

3144-3157.

36. Ali, A., et al., Harris hawks optimization-based

clustering algorithm for vehicular ad-hoc networks.

IEEE Transactions on Intelligent Transportation

Systems, 2023.

37. Gandomi, A.H., et al., Metaheuristic algorithms in

modeling and optimization. Metaheuristic applications

in structures and infrastructures, 2013. 1: p. 1-24.

38. Wu, B., et al., Optimal deploying IoT services on the

fog computing: A metaheuristic-based multi-objective

approach. Journal of King Saud University-Computer

and Information Sciences, 2022. 34(10): p. 10010-

10027.

39. Keshavarznejad, M., M.H. Rezvani, and S. Adabi,

Delay-aware optimization of energy consumption for

task offloading in fog environments using

metaheuristic algorithms. Cluster Computing, 2021:

p. 1-29.

40. Potu, N., C. Jatoth, and P. Parvataneni, Optimizing

resource scheduling based on extended particle

swarm optimization in fog computing environments.

Concurrency and Computation: Practice and

Experience, 2021. 33(23): p. e6163.

41. Yuan, H., J. Bi, and M. Zhou, Energy-efficient and

QoS-optimized adaptive task scheduling and

management in clouds. IEEE Transactions on

Automation Science and Engineering, 2020. 19(2): p.

1233-1244.

42. Li, J., et al., Multiobjective oriented task scheduling in

heterogeneous mobile edge computing networks.

IEEE Transactions on Vehicular Technology, 2022.

71(8): p. 8955-8966.

43. Hosny, K.M., et al., Optimized multi-user dependent

tasks offloading in edge-cloud computing using

refined whale optimization algorithm. IEEE

Transactions on Sustainable Computing, 2023.

44. Vispute, S.D. and P. Vashisht, Energy-efficient task

scheduling in fog computing based on particle swarm

optimization. SN Computer Science, 2023. 4(4): p.

391.

45. Skarlat, O., et al. Resource provisioning for IoT

services in the fog. in 2016 IEEE 9th international

conference on service-oriented computing and

applications (SOCA). 2016. IEEE.

46. Zeng, D., et al., Joint optimization of task scheduling

and image placement in fog computing supported

software-defined embedded system. IEEE

Transactions on Computers, 2016. 65(12): p. 3702-

3712.

47. Movahedi, Z., B. Defude, and A.M. Hosseininia, An

efficient population-based multi-objective task

scheduling approach in fog computing systems.

Journal of Cloud Computing, 2021. 10(1): p. 53.

48. Tang, M. and V.W. Wong, Deep reinforcement

learning for task offloading in mobile edge computing

systems. IEEE Transactions on Mobile Computing,

2020. 21(6): p. 1985-1997.

49. Li, H., K. Ota, and M. Dong, Deep reinforcement

scheduling for mobile crowdsensing in fog computing.

ACM Transactions on Internet Technology (TOIT),

2019. 19(2): p. 1-18.

50. Poltronieri, F., et al. Reinforcement learning for value-

based placement of fog services. in 2021 IFIP/IEEE

international symposium on integrated network

management (IM). 2021. IEEE.

51. Xia, Y., et al. Combining hardware nodes and

software components ordering-based heuristics for

optimizing the placement of distributed IoT

applications in the fog. in Proceedings of the 33rd

annual ACM symposium on applied computing. 2018.

52. Mahmud, R., K. Ramamohanarao, and R. Buyya,

Latency-aware application module management for

fog computing environments. ACM Transactions on

Internet Technology (TOIT), 2018. 19(1): p. 1-21.

53. Mahmoud, M.M., et al., Towards energy-aware fog-

enabled cloud of things for healthcare. Computers &

Electrical Engineering, 2018. 67: p. 58-69.

54. Gu, B., et al., A distributed and context-aware task

assignment mechanism for collaborative mobile edge

computing. Sensors, 2018. 18(8): p. 2423.

55. Abdel-Basset, M., et al., Multi-objective task

scheduling method for cyber–physical–social systems

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

in fog computing. Knowledge-Based Systems, 2023.

280: p. 111009.

56. Shukla, P. and S. Pandey, DE-GWO: a multi-objective

workflow scheduling algorithm for heterogeneous fog-

cloud environment. Arabian Journal for Science and

Engineering, 2024. 49(3): p. 4419-4444.

57. Abualigah, L., et al., Ts-gwo: Iot tasks scheduling in

cloud computing using grey wolf optimizer, in Swarm

intelligence for cloud computing. 2020, Chapman and

Hall/CRC. p. 127-152.

58. Dhal, K.G., et al., A comprehensive survey on

arithmetic optimization algorithm. Archives of

Computational Methods in Engineering, 2023. 30(5):

p. 3379-3404.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ASAD ALI received his BS degree in

Telecommunication and Networking (with
distinction) from COMSATS University Islamabad,

Attock campus and MS degree in Computer Science

(with distinction) from University of Engineering and
Technology, Peshawar in 2016 and 2020

respectively. Currently, working as a Lecturer in

computer science department of Mardan Institute of
Science and Technology affiliated with Abdul Wali

Khan University Mardan. He has over 8 years of

experience in teaching and research in computer science. His current research
interest includes VANET, Swarm Intelligence, Resource optimization, IoTs,

SDN, Fog Computing, Route optimization, Cybersecurity and 5G networking.

NAZIA AZIM received the M.S. degree in computer

science from Agricultural University Peshawar and

Ph.D. degree from Abdul Wali Khan University
Mardan in 2011 and 2021 respectively. She is

currently working as Lecturer at the department of

CS, Abdul Wali Khan University Mardan, Pakistan.
Her research interests include image processing,

bioinformatics, and computational modeling.

MOHAMED TAHAR BEN OTHMAN (Senior

Member, IEEE) received the Ph.D. degree in

computer science from the National Institute of
Polytechnic of Grenoble (INPG), France, in 1993,

the master’s degree in computer science from the
École Nationale Supérieure d’Informatique et de

Mathématiques Appliquées de Grenoble

(ENSIMAG), in 1989, and the Senior Engineer
Diploma degree in computer science from the

Faculty of Sciences of Tunis. He worked as a

Postdoctoral Researcher at the Laboratoire de Génie
Logiciel (LGI), Grenoble, France, from 1993 to 1995, and the Dean of the

Faculty of Science and Engineering, University of Science and Technology,

Sana’a, Yemen, from 1995 to 1997. He was a Senior Software Engineer with
Nortel Networks Corporation, Canada, from 1998 to 2001, and an Assistant

Professor with the Computer College, Qassim University, Saudi Arabia, from

2002 to October 2010, and also an Associate Professor. He has been a Professor
of computer science, since November 2017. His research interests include data

mining, artificial intelligence, information security, and bioinformatics.

ATEEQ UR REHMAN (Senior Member, IEEE)

received his BS Degree in Electrical

(Telecommunication) Engineering from COMSATS
Institute of Information Technology, Lahore,

Pakistan, in 2009 and MS degree in Electrical

Engineering with a specialization in
Telecommunications from the Blekinge Institute of

Technology (BTH), Karlskrona, Sweden in 2011. He

completed his Ph.D. degree in the College of Internet
of Things (IoT) Engineering, Hohai University

(HHU), Changzhou Campus, China, in 2022. Currently, he is an assistant

professor with the School of Computing, Gachon University, South Korea. He has
contributed to various international IEEE conferences and journals of repute. His

research interests include but are not limited to Biomedical Signal Processing,

Internet of Things (IoTs), Social Internet of Things (SIoTs), Big Data, and
Renewable Energy Technologies.

 MASOUD ALAJMI (Member, IEEE) received
the B.S. degree in electrical engineering from the

King Fahad University of Petroleum and Minerals

(KFUPM), in 2004, and the M.S. degree in
electrical engineering and the Ph.D. degree in

electrical and computer engineering from Western

Michigan University, Kalamazoo, MI, USA, in
2010 and 2016, respectively. He has over four years

of experience in industry. He was with Zamel and

Turbag Consulting Engineers, Al-Khobar, Saudi
Arabia, as an Electrical Engineer, for three months. Then, he was with Saudi

Electricity Company (SEC), Abha, Saudi Arabia, where he was a Pre-

Commissioning Engineer, from 2004 to 2008. During that period, he completed
many training programs in the technical and administrative fields with well-

known institutes. Also, he was assigned to be a commissioning leader of many

projects in Saudi Arabia. He was assigned to be the SEC Representative to
supervise factory acceptance tests for Siemens Company, Berlin, Germany, in

2007, and Hyundai Heavy Industries Company Ltd., Ulsan, South Korea, in

2008. From 2012 to 2015, he was a Teaching Assistant with the Electrical and
Computer Engineering Department, Western Michigan University. He is

currently an Associate Professor with the Computer Engineering Department,

Taif University, Taif, Saudi Arabia. He has involved in various technical
committees. He is the coauthor of about 30 papers in international journals and

conference proceedings. His research interests include signal processing,

biomedical image processing, image encryption, watermarking, steganography,
data hiding, machine learning, smart grids, and renewable energy. He received

the 2014–2015 Graduate Teaching Effectiveness Award from Western

Michigan University for excellent teaching skills

FAHEEM ULLAH KHAN received his PhD

degree from United Kingdom (UK). He is currently
working as Assistant Professor at Department of

Software Engineering, University of Science and

Technology, Bannu, Pakistan. His research interests
include cybersecurity, medical image processing,

and machine/deep learning, the Internet of Things

(IoT), distributed computing and computer vision

MOSLEH HMOUD AL-ADHAILEH received

the Ph.D. degree in computer science (AI). He is
currently the Director of e-learning and distance

education for operation with King Faisal
University. His current research interests include

artificial intelligence(AI), machine learning (ML),

natural language processing, robotics
programming, knowledge representation, and e-

learning strategies and technologies.

ORKEN MAMYRBAYEV received the B.S.

and M.S. degrees in information systems from Abai

University, Almaty, Kazakhstan, and the Ph.D.
degree in information systems from Kazakh

National Technical University named after K. I.

Satbayev. He was an Associate Professor with the
Institute of Information and Computational

Technologies, Kazakhstan. He has been a Senior

Researcher with the Laboratory of Computer
Engineering of Intelligent Systems, Institute of

Information and Computational Technologies. He

is currently the Deputy General Director and the Head of the Laboratory of
Computer Engineering of Intelligent Systems, Institute of Information,

Kazakhstan. He is also a member of the Dissertation Council “Information

Systems,” L. N. Gumilyov Eurasian National University in the specialties
computer sciences and information systems. He is the author of five books,

more than 130 articles, and more than 20 inventions and copyright certificates

for an intellectual property object in software. His main research interests
include machine learning, deep learning, and speech technologies.

HABIB HAMAM (Senior Member, IEEE)

received the B.Eng. and M.Sc. degrees in
information processing from the Technical

University of Munich, Germany, 1988 and 1992,

respectively, the Ph.D. degree in physics and
applications in telecommunications from

Université de Rennes I conjointly with France

Telecom Graduate School, France, in 1995, and
the Postdoctoral Diploma degree ‘‘Accreditation

to Supervise Research in Signal Processing and

Telecommunications’’ from Université de Rennes
I, in 2004. From 2006 to 2016, he was the Canada

Research Chair of Optics in Information and Communication Technologies, for

a period of ten years. He is currently a Full Professor with the Department of
Electrical Engineering, University of Moncton. His research interests include

optical telecommunications, wireless communications, diffraction, fiber

components, RFID, information processing, data protection, COVID-19, and
deep learning. He is a Senior Member of OSA and a Registered Professional

Engineer in New-Brunswick. He is among others the Editor-in-Chief of CIT-

Review and an Associate Editor of IEEE Canadian Review.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

