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ABSTRACT The exponential increase in the Internet of Things (IoT) has affected the cloud computing with increase transmission 

latency and network overhead for real-time applications. Cloud-fog computing paradigm tackle these limitations by moving 

computational services closer to the network edge i.e., fog nodes, enhancing the speed of real-time applications. This architecture, 

with its dynamic computing environment and diverse IoT devices and tasks, demands a reliable and energy-efficient 

communication network. Joint optimization of computation offloading and task scheduling is a primary challenge, as it involves 

offloading tasks to optimal computational resources and scheduling them in an efficient order for operational efficacy.  While 

offloading tasks to fog nodes reduces delay but raises energy utilization, offloading them to cloud servers reduces energy usage 

but raises computational costs and latency. Additionally, inefficient order of task execution (executing lower priority jobs before 

higher priority tasks) can disrupt system stability and reliability. Therefore, an effective joint optimal computation offloading and 

task scheduling strategy is essential. To this end, we propose a Multi-objective Arithmetic Optimization-based joint computation 

offloading and task scheduling algorithm, aiming to minimize energy consumption and transmission latency. Extensive simulations 

in MATLAB demonstrate the efficacy of the proposed algorithm in terms of designated optimization objectives.

INDEX TERMS— Task offloading, computation offloading, optimizing algorithms, cloud-fog computing, Arithmetic Optimization   

 

I. INTRODUCTION 

The revolution of Internet of Things (IoT) has been greatly 

affected by the growth of telecommunication networks. 

Telecommunication devices are continuously generating large 

amounts of data which may require an instant response. Due to 

the limited processing capabilities of the end-user devices, data 

is forwarded to the cloud servers for processing, storing, and 

analyzing [1]  

Cloud computing is a modern technology that offers scalable, 

flexible, reliable and dynamic computing infrastructure for 

various applications. It provides virtualized resources (e.g., 

computations, memory and storage) as a service to 

organizations and individuals via internet. Cloud computing 

architecture consist of front-end interface and back-end 

interface. The front-end interface contain users, mobile devices 

and application that requires services (e.g., processing, memory 

and storage) from the cloud servers. The client can access the 

cloud computing services using front-end interface. The back-

end interface contain web servers, storage devices, network 

management policies, data security mechanism, load balancing 

strategies etc.[2],[3] 

Although cloud computing can offers a plethora of resources, 

however, it cannot effectively meet the requirements of delay-

sensitive and data-massive IoT applications. To address these 

limitations, cloud-fog computing has emerged as a cutting-edge 

hybrid computing paradigm that aims to process the diverse end 

user requests having different needs and requirements like 

bandwidth utilization, cost, delay, energy consumption and 

makespan etc [4]. This strategy integrates the cloud servers and 
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fog nodes (located near to the network edge) for processing of 

heterogeneous tasks, optimizing offloading delay, energy and 

bandwidth utilization for improved operational efficacy.  

However, due to the constrained wireless resources, dynamic 

and intricate tasks setups, and enormous heterogeneous end-

user requests present significant challenges in computation 

offloading and task scheduling within the cloud-fog computing, 

necessitating the developments of effective strategies to 

manage these complexities for operational efficacy[5-7].  

Computation offloading entails directing jobs to the appropriate 

computing resource based on task requirements while task 

scheduling ensures that the jobs are executed in a manner to 

optimize different performance metrics like delay, energy, 

workload, bandwidth, cost and makespan. Joint optimization of 

computation offloading and task scheduling is crucial to 

escalate resource utilization, significant saving of energy 

consumption, prevents resource bottlenecks, reduce 

communication and offloading latency, and improve overall 

system stability and reliability.   

Computation offloading and task scheduling entails an 

effective strategy due to trade-offs involved in offloading end-

user jobs to computational nodes (cloud servers and fog nodes). 

While offloading tasks to fog nodes reduces delay but might 

raises energy utilization, offloading them to cloud servers 

reduces energy usage but raises computational cost and latency. 

Additionally, in the realm of task scheduling, executing tasks in 

a less efficient sequence (e.g., executing low priority jobs 

before higher priority tasks) can disrupt overall system stability 

and reliability. For instance, in a smart city infrastructure, the 

traffic management system depends on timely data from IoT 

devices to take prompt action regarding traffic lights and 

congestion. If the management system is overloaded with non-

traffic jobs, and unable to handle real-time traffic related tasks, 

this could cause congestion and increase the ratio of accidents. 

Thereby, effecting the stability and efficiency of the smart city. 

Therefore an effective joint optimal computation offloading and 

task scheduling strategy is required to find an efficient trade-off 

between energy efficiency and delay reduction. Research has 

demonstrated that achieving a balanced workload allocation 

between the computational nodes (fog node and cloud server) 

can greatly escalate the network performance.  

Joint optimization of computation offloading and task 

scheduling is recognized as multi-objective NP-complete 

optimization problem[8]. There exist various techniques for 

identifying optimal strategy within a cloud-fog computing 

network like brute force algorithms and dynamic programming. 

Nevertheless, these algorithms are not always efficient in 

obtaining optimal offloading and scheduling strategy. For 

instance, the dynamic programming approach is not efficient 

when dealing with enormous tasks and resources due to 

exponential increase in the sub problems, making it 

computational intensive and impractical for delay sensitive IoT 

applications.  

In recent years, many nature-inspired algorithms are utilized 

to address the complexities of computation offloading and task 

scheduling in cloud-fog computing like Genetic Algorithm 

(GA)[9], Ant Colony Optimization (ACO)[10], Particle Swarm 

Optimization (PSO)[11], Gray Wolf Optimization (GWO)[12] 

and Harris Hawks Optimization (HHO)[13]. Their objectives is 

to find an optimal job schedule to optimize designated 

performance metrics (e.g., delay, energy, throughput, makespan 

and cost etc.). Nevertheless, these algorithms suffer from 

various challenges such as inefficient use of randomized 

operators, computational intensive operations, and inefficient 

trade-off between intensification and diversification phases, 

resulting in local stagnation and reducing system efficiency.  

Given that task offloading and scheduling is a multi-

objective optimization problem, we utilize Multi-objective 

Arithmetic Optimization Algorithm (MoAOA) as a 

mathematical model to optimize computation offloading and 

task scheduling with an objective to reduce energy consumption 

and offloading latency. AOA has proven its effectiveness in 

tackling various optimization problems [14]. Its rich repertoire 

of randomize operators and their efficient utilization enable the 

algorithm to equalize different search strategies during both the 

exploration and exploitation phase. Furthermore, the strategic 

design of control variable allow candidate solution to engage in 

exploration not just at the beginning of the iteration but also 

towards the end of the iterations. This capability help the 

algorithm in preventing local optima solution.  

Our approach stands out due to its utilization of MoAOA to 

address the multi-objective problem of task offloading and 

scheduling in this domain. To the best of our knowledge, no 

existing approach tackle this optimization problem using 

MoAOA.  The search process, based on AOA’s basic operators, 

offers simplicity and computational efficiency which are 

particularly important in cloud-fog environment where real-

time decision-making is necessary. The proposed algorithm 

efficiently handle the heterogonous IoT tasks by offloading 

computational intensive tasks to servers and delay-sensitive 

tasks to nearby fog devices. Furthermore, it prioritize tasks 

ensuring higher priority tasks are executed before lower priority 

ones to maintain system stability, reliability and 

responsiveness. 

In the proposed approach, the search solutions are initialized 

in the problem space along with the initialization of 

prerequisites (e.g., IoT devices, fog nodes, MOA function and 

cloud servers). Each search solution represent a unique strategy 

of task offloading and scheduling which is evaluated using the 

optimization function. This phase identifies the best search 

solution with minimum energy consumption and offloading 

delay. The subsequent solutions, converge towards the best 

solution by repositioning search strategy using random 

variables and MOA function value. Upon reaching the stopping 

criteria, the optimal search solution obtained so for contains the 

optimal strategy of task offloading and scheduling.  

The experiments are performed in MATLAB and the results 

are analyzed against the similar comparative algorithms like 

MoGWO [12], Cloud-fog cooperation algorithm [15], Ant 

Colony Optimization (ACO) [16], and Genetic Algorithm (GA) 

[9] . The results demonstrate the efficacy of the proposed 

approach in terms minimum energy consumption and 

offloading latency. Moreover, the rich repertoire of stochastic 

variables and strategic design of control parameter allow the 

proposed algorithm to effectively distribute the workload across 

different computational nodes. This ability improves network 
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stability and reliability. Thus the computing network is able to 

handle massive range of heterogeneous tasks from IoT devices. 

The novelty and contributions of the paper are given below: 

 We integrate the multi-objective optimization capabilities 

into AOA, unlocking the potential for simultaneous 

optimization of offloading latency and energy 

consumption.  

 We design a multi-objective fitness function that 

simultaneously optimizes designated objectives while 

considering the priority of tasks to enhance system 

stability and efficiency. The multi-objective function 

generate better Pareto-front, offering diverse set of 

optimal solutions.  

 We designed a rigorous mathematical framework for 

MoAOA, providing a solid foundation for joint 

optimization of task offloading and scheduling.  

 We pioneer an adaptive computation offloading and task 

scheduling capabilities that empower the algorithm to 

dynamically respond to heterogeneous tasks of different 

requirement, ensuring optimal resource utilization and 

performance. 

 We introduced a collaborative task allocation scheme, 

that intelligently distribute tasks between fog nodes and 

cloud servers, maximizing system efficiency, minimizing 

offloading delay, energy consumption and enhancing 

overall system productivity.   

 We strategically designed control variable to perform 

random search strategies at each iteration to prevent local 

optima solution. 

 A comprehensive numerical analysis is performed with 

the similar competitors to demonstrate the efficacy of the 

proposed scheme.  

The road map of the paper is given as follows: section 2 

comprehensively analyze the literature review, section 3 

contains the preliminaries i.e., introduced the basic architecture 

of cloud fog computing network, the difference between AOA 

and MoAOA and contain working operation of the proposed 

algorithm. Section 4 contain the proposed solution, section 5 

discuss the simulation results and section 6 conclude the paper 

with future direction.  

II. LITERATURE REVIEW 

In the literature, several studies have addressed the problem 

of computation offloading and task scheduling in a cloud-fog 

computing environment. Computation offloading is a 

primary concern of the research, particularly, in optimizing 

various Quality of Service (QoS) parameters such as energy 

consumption and communication delays. Numerous  

optimization algorithms are designed for efficient task 

offloading and resource allocation in cloud-fog 

computing[17],[18].Mainly the algorithms are categorized into 

four groups i.e., Mathematical Programming, Machine 

Learning, Heuristic, and Meta-heuristic. The taxonomy of the 

task offloading algorithm is given in Fig. 1.  

 
Figure 1: Taxonomy of task offloading algorithm 

A. MATHEMATICAL PROGRAMMING  

Mathematical Programming (MP) is an optimization branch 

used for real-world complex optimization problems by 

formulating them as mathematical models with decision 

variables, fitness function, and constraints[19, 20]. Various MP 

techniques such as linear programming[21], mixed integer 

linear programming[22], mixed integer non-linear 

programming[23], and quadratic programming [24] etc. are 

applied, specifically to address resource allocation in cloud-fog 

computing. Nevertheless, exploring the entire solution space 

for optimal solutions may increase the computational 

complexity of the algorithm. Moreover, they lack in scalability 

when dealing with heterogeneous tasks and computational 

resources.  

Optimal task offloading and resource allocation for fog 

computing is proposed in [25]. The mathematical model of the 

joint optimization problem is formulated using mixed integer 

non-linear programming (MINLP). They introduced a relaxing 

solution that converts the binary decision value into the real 

value to return the most optimal solution. The tasks are 

offloaded to any computational nodes i.e., for nodes or cloud 

servers to reduce energy consumption while meeting the 

requirements of delay-sensitive tasks.  

Daneshfar et al. [26] proposed an ILP-based service 

allocation algorithm for fog computing with the 

objective to minimize the cost of service allocation. The tasks 

generated from heterogeneous IoT devices are multi-casted to 

multiple computational nodes to ensure the availability of 

computational resources. .  

B. MACHINE LEARNING 

Machine Learning (ML) techniques also have been widely used 

to tackle computational offloading, task scheduling, and 

resource management in fog computing. There are numerous 

techniques of ML such as reinforcement learning, fuzzy logic, 
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neural networks, and Bayesian networks. Among others, 

reinforcement learning and its variants (e.g., deep 

reinforcement learning) are the most widely used techniques to 

apply to resource management in cloud-fog systems. This 

technique interacts with the unknown environment to learn the 

policy to obtain a trade-off between diversification and 

intensification [27, 28] .  

Tang et al. [28] proposed a deep reinforcement learning-based 

task offloading in fog computing. The focus of the study is to 

tackle computation offloading and service placement in fog 

computing with the objective of minimizing latency, migration 

cost, and energy consumption. To this end, the optimization 

problem is formulated as a multi-dimensional Markov decision 

process.  

Q-learning-based fragmented task offloading in fog computing 

is proposed by Razaq et al. [29]. The goal is to offload the tasks 

to the computational node while ensuring load balancing. 

Incoming IoT tasks are partitioned into segments based on their 

privacy level, completion time, and other real-time 

requirements, the segments are offloaded to multiple fog nodes.  

A deep neural network (DNN) based distributed computation 

offloading in mobile fog computing is proposed in [30]. The 

algorithm generates multiple offloading decisions using parallel 

DNN. The performance of the DNN is improved using the 

back-propagation method where cross-entropy is used as a loss 

function. 

C. HEURISTIC 

Heuristics are another set of methods, widely used to solve 

computationally expensive problems in an attempt to get a 

feasible solution in a reasonable amount of time. However, they 

may not be able to provide feasible solutions in some 

cases as described in [19]. The shortcoming of most of the 

heuristic techniques is local stagnation, providing a locally 

optimal solution that results in a lack of efficiency. It uses pre-

defined rules to allocate tasks to the computational node. 

Therefore, heuristic-based algorithms are more prone to 

dynamic network.  

The most common heuristic-based task offloading 

algorithms are Dynamic Level Scheduling (DLS) [31], 

Heterogeneous Earliest Finish Time (HEFT) [32], and 

Dominant Predecessor Duplication (DPD) [33].  

HEFT is a task-offloading algorithm specifically designed for 

heterogeneous computational resources. In this algorithm, each 

incoming task is assigned a priority value based on its finishing 

time. Tasks with the shortest finishing times are given high 

priority values and vice versa.  

In [34], the authors proposed a heuristic computation offloading 

algorithm in fog computing. The algorithm solves the 

computation offloading problem using a two-stage method to 

minimize energy consumption and communication costs.  

A clustering-based task offloading algorithm is proposed in 

[35]. The authors divide the incoming tasks into clusters based 

on task similarities (e.g., completion time, memory, etc). Tasks 

with the same requirements are grouped in one cluster and then 

assigned to the computation node.  

D. METAHEURISTIC 

Metaheuristic algorithms are mostly inspired by the 

biological evolution observed in nature such as food searching 

maneuvers of birds and ants, the hunting strategies of animals, 

and human social behavior, etc. It is a very challenging task to 

get the global optimal solutions for multi-objective NP-

complex optimization problems[36, 37]. Metaheuristics are 

designed with a framework that incorporates more stochastic 

operators and has a dynamic and versatile nature that enables 

them to get global optimal solutions. Due to random variables, 

search agents can explore multiple solution spaces 

simultaneously. These features enable the algorithm to tackle 

computation offloading in computing networks [38]. 

Genetic Algorithm (GA) is a primary method to tackle task 

offloading in fog computing to enhance system efficiency and 

resource utilization [9]. GA optimizes task offloading by 

initializing a set of chromosomes, representing tasks and their 

allocation to the computation node. Another GA-based task 

offloading algorithm for fog computing is proposed in [39]. 

The objective is to optimize communication and computation 

cost and makespan.  

Ant Colony Optimization (ACO) based task offloading for IoT 

applications is proposed by Hussein et al. [16]. The objective is 

to optimize response time and load balancing. The focus of the 

study is to distribute the delay-sensitive IoT task to 

computational nodes while meeting the QoS requirements.  

Particle Swarm Optimization-based task offloading is 

proposed in [40], with minimum energy consumption, low 

communication latency, and minimum execution cost. 

TABLE I 

SUMMARY OF WELL-KNOWN COMPUTATION OFFLOADING ALGORITHMS 

Ref Methods  Application Objectives Advantage  Limitation  

[41] Metaheuristic  General   Minimization of task loss probability 

and energy consumption  
Improves resource utilization High complexity 

[42] Metaheuristic  IoT, smart cities 

and healthcare  

Minimize execution time and energy 

utilization of user device 

Enhanced user experience and improves 

resource utilization  

high complexity and 

network overhead 

[43] Metaheuristic  Smart cities Minimize execution delay, energy 
consumption and charging cost of 

used resources 

Improves resource utilization and QoS. Less scalable and 
high network 

overhead 
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In [55], the authors utilized the moth-flame optimization (MFO) 

algorithm to efficiently allocate a set of tasks to computational 

nodes while ensuring QoS requirements like communication 

cost latency and energy consumption. 

In [13], the authors employ the hunting strategy of hawks to 

optimize task scheduling in cloud-fog 

computing. The objective of the multi-objective optimization 

is to obtain a trade-off between communication latency and 

energy consumption.  

Gray wolf optimization-based task offloading and resource 

allocation algorithm is proposed in [12]. The optimization 

objectives are energy consumption and communication latency 

while ensuring efficient workload distribution and maximizing 

resource utilization. Tasks are allocated based on their 

requirements. [56, 57], also utilized GWO to schedule the tasks 

to computational nodes in a computing network.  

Although, numerous task offloading and scheduling algorithms 

have been proposed to optimize the performance of fog 

computing. Nevertheless, most of them are single objectives, 

focusing only on either energy consumption or latency and 

execution cost. Efficient performance of the computing 

environment is based on multiple objectives and should 

consider both optimization objectives (energy utilization and 

delay). Additionally, the baseline comparative algorithm i.e.,  

Cloud-fog cooperation algorithm [15] uses heuristic approach 

to enhance the performance of the system by considering 

predetermined delay threshold and queuing theory. The 

algorithm employs static task allocation method and does not 

address the dynamic computing environment with 

heterogeneous IoT devices and tasks. This may not be adaptable 

to real-time applications. Another baseline comparative 

algorithm, MoGWO [12] utilizes the mathematical framework 

of GWO algorithm efficiently allocate task to computing 

resource with the objective to optimize energy utilization and 

communication latency of the computing network. However, 

the algorithm does not address the execution order of allocated 

tasks. This may result in the execution of low priority tasks 

before higher priority jobs. Consequently, the system efficiency 

is reduced by obtaining suboptimal solution in terms of 

designated objectives. Furthermore, the existing meta-heuristic 

based offloading strategies fail to achieve a balanced trade-off 

between multiple objectives due to the imbalance operation of 

repositioning search phases, local stagnation, and less 

stochastic variables, resulting in performance 

degradation. This provides an opportunity to improve the 

performance of computing by obtaining an efficient trade-off 

between multiple objectives i.e., delay and energy utilization. 

Table I contains the summary of the well-known computational 

offloading algorithms. 

III. PRELIMINARIES  

[44] Metaheuristic  IoT , Fog 

computing 

Minimize makespan cost, execution 

time and energy utilization 

Improves resource utilization  Less scalable and 

high complexity  

[45] Mathematical 

Programming  

General  Minimize latency Achieves shorter round trip times and 

makespan  

High complexity 

[26] Mathematical 
Programming  

General  Optimize deployment cost Reduce computational complexity  Does not consider 
latency in problem 

formulation  

[46]  Mathematical 
Programming  

Image 
Processing  

Minimization of transmission delay  Reduce computation complexity and 
network overhead  

Service processing 
rate is unrealistic  

[47] Mathematical 

Programming  

Healthcare, 

smart cities  

Minimization of energy 

consumption and latency  

Maximize resource utilization and improves 

QoS 

High computational 

cost and less scalable  

[48] Machine 
Learning  

Tracking  Optimization of migration cost, 
energy consumption and 

transmission delay  

High scalability due to consideration of 
mobility and multi-objective optimization 

High computational 
complexity and 

network overhead 

[49] Machine 
Learning  

Mobile crowd 
sensing  

Quality of Service More processing is perform on fog nodes  High computational 
complexity  

[50] Machine 

Learning  

General  Quality of Service Improve Quality of service  High training time  

[51] Heuristic  Smart cities Optimizing delay High scalability and reduces processing time  Privacy of 

confidential data is 

compromised  

[52] Heuristic  Smart cities, 

healthcare  

Optimizing latency  High scalability  No realistic 

simulation 

[53] Heuristic  Healthcare  Optimizing energy consumption Improve resource utilization  Mobility is not taken 
into account  

[54] Heuristics  Smart homes  Optimizing power consumption  Achieved trade-off between energy 

consumption and computational complexity  

Not suitable for real-

case scenarios  
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In this section, we present an inspiration of AOA along with 

the difference with its multi-objective variant i.e., MoAOA. 

Furthermore, we discuss the fundamental principal of cloud-fog 

computing architecture and the working operation of the 

proposed solution.  

A. CLOUD-FOG COMPUTING ARCHITECTURE 

Numerous architectures for cloud-fog computing have been 

proposed but mostly consist of a three-tier structure i.e., 1) IoT 

tier; 2) fog tier; and 3) cloud tier. The tiers are connected via 

wireless networks such as Wi-Fi, Bluetooth and LoRa, etc. The 

IoT tier is the lowest layer and consists of mobile devices 

incorporated with sensors to collect data from the environment 

and send it to upper tiers for further processing. IoT devices 

may generate delay-sensitive tasks that require immediate 

response and computational-intensive jobs that require heavy 

computational resources for processing. The generated task is 

forwarded to the fog layer which is an intermediate tier 

between the IoT layer and the cloud layer. The intermediate 

tier consists of fog device FD and fog controller FC. FD is a 

node with less storage capacity, communication capability, and 

computation power to process relayed tasks, thereby 

minimizing network overhead transmission delay. For jobs that 

demand high computational power, more storage capacity, and 

high communication capability, fog nodes forward these tasks 

to the cloud data centers. FC is a specialized node that is 

responsible for offloading, analyzing, estimating, and 

scheduling tasks by deliberating factors such as processing time 

and energy utilization. The proposed algorithm is installed 

on FC to determine an optimal offloading decision based on 

optimization objectives. 

For computational-intensive tasks, FC forwards jobs to the 

cloud tier which composed of multiple computational servers 

with high computation power and storage capacity for 

execution. After executing a task, the results are sent back 

to FC to aggregate the results and then send a response to 

IoT devices. 

B. AOA AND MOAOA 

The AOA is a mathematic-inspired swarm intelligence 

optimization algorithm. Its inspiration is taken from the 

distributive characteristics of arithmetic operators (e.g.,) that 

guide the search solutions in diversification (exploration) and 

intensification (exploitation) phases via math optimizer 

accelerated function (MOA) [14]. The search process of AOA 

starts with the random initialization of search solutions, 

followed by exploration and exploitation search phases. 

Exploration behavior globally investigates the problem space in 

search of potential feasible solutions. The exploitation phase 

involves investigating the obtained feasible locations in pursuit 

of approaching the target optimal area.  

AOA is computationally feasible and has a straightforward 

implementation, this ability attracts researchers to tackle a wide 

range of complex optimization problems like unimodal , 

multimodal, linear, and non-linear optimization problems not 

only in the field of computer science but also in medical 

science, engineering, electronics, and network security, etc. 

Multi-objective AOA (MoAOA) is an alternative to AOA for 

solving multi-objective optimization problems [58]. MoAOA 

generates multiple solutions for multiple objectives, 

which are then stored in an external archive as non-dominated 

solutions. Non-dominated solutions are called Pareto optimal 

solutions and form the Pareto front, representing a trade-off 

relationship between designated optimization objectives. At the 

end of each iteration, the solution that meets the requirements 

of the fitness function is selected as the best optimal solution, 

followed by a position updating mechanism around the best 

solution obtained thus far.  

Deterministic approaches are inefficient to solve multi-

objective optimization problems as they often generate a single 

dominant solution, and are likely to get trapped in local optima. 

Computation offloading and task scheduling within cloud-fog 

computing is also a multi-objective problem, therefore we 

utilize MoAOA to optimize multiple objectives i.e., energy and 

latency.  

C. WORKFLOW OF PROPOSED ALGORITHM 

When IoT devices generate tasks to be processed, at first the 

tasks are sent to the FD (step.1). FD forward the tasks to the FC 

to analyze the requirements of each task and then assigns a 

priority to each received task (step.2-6). Afterward, the FC 

invokes the proposed algorithm to craft a binary offloading 

matrix that indicates offloading of received tasks to 

computational devices along with the schedule of tasks on 

assigned computational devices (step.7-8). The dimension of 

the matrix represents the number of search solution and the 

count of computational resources. The optimization function 

evaluates the search solution, followed by repositioning the 

remaining search solutions around the optimal solution. The 

best solution contains an optimal strategy of task offloading and 

scheduling on computational resources. The tasks are then 

assigned and executed according to the optimal strategy (step.9-

10). After the execution of tasks, the results are sent back to the 

IoT devices (step 11-12). The working operation of the 

proposed algorithm is given in Fig. 2. 

 
Figure 2. Working operation of proposed algorithm 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



           

IV. THE PROPOSED SOLUTION 

In this section, we present details regarding the proposed 

solution to tackle joint optimization of task offloading and 

scheduling using a multi-objective arithmetic optimization 

algorithm. Our objective in the proposed algorithm is twofold, 

the first is to offload Tn independent tasks to different 

computational nodes (fog node or cloud server) by considering 

task requirements such as computational time, computation 

energy, and data size, and the second objective is to schedule 

the offloaded tasks on each assigned computational nodes (fog 

node or cloud server) according to the tasks requirements. If 

tasks are offloaded to the fog node then the proposed algorithm 

schedules the tasks according to the computational time, and in 

another case, the offloaded tasks are scheduled by considering 

the computational energy of each task. The proposed algorithm 

aims to execute tasks with minimal completion time, 

and energy consumption and balance the workload on each 

computational node. The proposed optimization algorithm 

encompasses five phases i.e., i) search space initialization ii) 

solution creation iii) solution evaluation using objective 

function iv) update location vector, and v) termination criteria. 

The symbols used in formulas and algorithms are described in 

Table II. 

A. SYSTEM MODEL  

The system model consist of fog nodes represented as FN = 

{FN1, FN2, FN3,….., FNn }, heterogeneous cloud servers 

denoted as CS = { CS1 , CS2  , CS3 ……, CSn }, IoT devices 

represented as ED = { ED1 , ED2 , ED3…….. EDn}, number of 

search agents denoted as SA = {SA1 , SA2 , SA3,.... SAn,} and 

number of tasks i.e., T = {T1 , T2 , T3 ……… Tn} . We make an 

assumption that the energy consumption 𝐸𝐸𝐷
𝐶𝑃𝑈  and CPU 

capacity (𝐶𝐸𝐷
𝐶𝑃𝑈) of ED is less than the FN (𝐶𝐹𝑁

𝐶𝑃𝑈,𝐸𝐹𝑁
𝐶𝑃𝑈) and CS 

(𝐶𝐶𝑆
𝐶𝑃𝑈,𝐸𝐶𝑆

𝐶𝑃𝑈), similarly the energy consumption and CPU 

capacity of FN is less than CS. Mathematically, the CPU 

capacity and energy consumption of each computational node 

respectively, can be expressed as 𝐶𝐸𝐷
𝐶𝑃𝑈 <  𝐶𝐹𝑁

𝐶𝑃𝑈 <  𝐶𝐶𝑆
𝐶𝑃𝑈 and 

𝐸𝐸𝐷
𝐶𝑃𝑈 <  𝐸𝐹𝑁

𝐶𝑃𝑈 <  𝐸𝐶𝑆
𝐶𝑃𝑈. The offloading and scheduling 

decision of each incoming tasks is performed by the controller. 

The controller assigns priority to each incoming task based on 

their importance, required computational time and deadline. 

The search agents are the candidate solutions that contain 

different strategies for offloading and scheduling tasks. The 

candidate solutions are evaluated with the optimization function 

to obtain the best candidate solution. Subsequently, 

the remaining candidate solutions change their location vector 

by employing the exploration and exploitation phase to come 

closer to the global optimal solution.  

B. CREATION OF PROBLEM SPACE 

In the proposed solution, at first, we create a problem space 

with the random initialization of the search solution along with 

the initialization of IoT devices, fog devices, and cloud 

servers. Each search solution investigates the problem space for 

an optimal solution using a Math Optimizer Accelerated 

(MOA) function. MOA is a function that aids the proposed 

algorithm in reaching the global optimal solution by employing 

different search strategies. In each iteration, the value of 

MOA is updated to maintain an equilibrium state between the 

search strategies i.e., exploration and exploitation search phase. 

MOA is calculated as follows: 

       𝑀𝑂𝐴(𝑖𝑡𝑟𝑐) =  𝑉𝑚𝑖𝑛  +  𝑖𝑡𝑟𝑐  × (
𝑉𝑚𝑎𝑥  − 𝑉𝑚𝑖𝑛

𝑖𝑡𝑟𝑚

)                (1) 

Where 𝑀𝑂𝐴(𝑖𝑡𝑟𝑐) indicate the function value at current 

iteration. 𝑖𝑡𝑟𝑐 and 𝑖𝑡𝑟𝑚 represent the current and maximum 

iteration respectively, 𝑉𝑚𝑎𝑥 and 𝑉𝑚𝑖𝑛 represents the maximum 

and minimum vale of the function respectively. 

C. SOLUTION CONSTRUCTION 

Each search solution is encoded as a binary offloading 

matrix of T x C dimension where T denotes the count of 

independent tasks and C represents the computational node i.e., 

for the device or cloud server. The binary matrix indicates the 

offloading of incoming tasks to computational devices along 

with the schedule of tasks on assigned computational devices. 

The computational intensive tasks are offloaded to resource-

rich computational nodes i.e., cloud servers while the delay-

sensitive tasks are offloaded to fog nodes. Let A(i , j) refers to 

the allocation of ith task to jth computational node. Then we can 

expressed A(i , j) as follows:  

𝐴(𝑖 , 𝑗)

=  {
1 , ithtask to jth computational device 

0 , Task is not yet assign to computational device  
(2) 

The offloading of tasks crafted by search solutions deliberates 

factors such as the availability of computing resources, 

maximum resources of the computing node, offloading 

objectives, task requirements, and network conditions. The 

controller offload  

TABLE II 

LIST OF SYMBOLS 

Notations  Meaning 

𝛱𝐷𝑒𝑙𝑎𝑦  Total offloading delay  

Յ𝐸𝑛𝑒𝑟𝑔𝑦  Total energy consumption  

𝑊 Weight factor  

𝜁𝐿  Input length of the task 

𝜇 Service rate of IoT device  

ℏ Length of the task queue 

𝐴𝐶𝑂𝑇𝑆 Computation offloading and task scheduling matrix 

ᵱ𝐼𝑂𝑇
𝑖  Power consumption of IoT device 

𝑊𝐿 Workload 

𝐶𝑜𝑚𝑝𝑁𝑜𝑑𝑒  Computing node  

𝜂 Task arrival rate 

ℏ Average length of a queue 

Ѱ𝐼𝑜𝑇
𝑖  Task’s processing duration 

𝑀𝐶𝑆
𝑘  Count of virtual machines server k 

𝐼𝑡𝑟𝑁 Next iteration  

U𝑏𝑗
 Upper bound value  

𝐼𝑡𝑟𝐶 Current iteration  

U𝑏𝑗
 Lower bound value 

𝐼𝑡𝑟𝑀 Maximum iteration  

Ϙ𝑘 Count of ON virtual machines  

FitnessMatrix Fitness matrix of all candidate solution 
BSolFitness Fitness value f best solution 

OSolFitness Fitness value of best solution in current iteration  

C𝑃 Control parameter 

а Escalation parameter 

ɣ𝑘 ON/OFF state of virtual machine on server k 
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𝜛 Assigned workload  

𝑐1, 𝑐2, ւ constants  

the task to a computing device only if the required resources of 

the task are less than the available capacity of the computing 

device. Moreover, while offloading a task, the search solution 

must ensure that the computational node is not overloaded and 

the workload is balanced across all computational nodes.  

The offloaded tasks are scheduled on assigned computational 

nodes according to the assigned priority. The priority of tasks is 

based on their importance and deadline. A task with the shorter 

deadline has high priority and must be executed before the task 

with the higher deadline. To craft a solution, the candidate 

solutions must adhere to the following constraints: 

 The offloading must not overload the computational node. 

 The workload across all computational devices must be 

balanced 

 The task must not be partitioned into sub tasks and must be 

assigned as a whole to computing node. 

The pseudo code of the solution construction phase is given in 

Table III.  

TABLE III 
SOLUTION CONSTRUCTION 

Algorithm 1.  Binary Offloading Matrix 

Function A(COTS)= OffloadingMatrix((T, CompNode,, SearchAgent) 

1. Initialize the workload of all computational node to zero i.e.,  WL 

(CompNode) = 0 
2. For (i=1number of search agents) do { 

3.          i).  Determine task requirements i.e., task type, required  
4.         memory, processing time, computation resources   

5.          and task’s deadline etc. 

6.           ii). Determine the capacity of computing node (fog device  
7.                 or cloud   

               server) 

8.          For (j=1number of tasks) 
9.                If ( Tj == Delay_Senstive do { 

10.                    i) Select kth fog device  

11.                            if (WL (FNk) > CapMax) do { 
12.                                i).   FNk = Tj   

13.                                ii).  WL (FNk) = WL (FNk)+1 

14.                            else  

15.                                i).  Find next suitable FNk  

16.                            End if   } 

17.                Elseif ( Tj == Computation_Intensive do { 
18.                        Select kth cloud server  

19.                              if (WL (CSk) > CapMax) do { 

20.                                  i).   CSk = Tj   
21.                                  ii).  WL (CSk) = WL (CSk)+1 

22.                             else  

23.                                   i).  Find next suitable CSk  

24.                             End if   } 

25.                 End if   } 

26.                i). Determine the priority of each offloaded task  
                             based on their importance and deadline, and sort  

                    in ascending order  

27.                 For (j=1number of tasks) 
28.                      Schedule each offloaded task as per its priority level  

29.                 End  

30.          End 

31.   End For  

32. End Function 

 

D. OPTIMIZATION FUNCTION 

Search solutions are evaluated using the optimization 

function. The optimization function plays a substantial role in 

selecting the most suitable and optimal computational device 

for offloading decisions based on objectives. Each candidate 

solution employs a fitness function to compute the objective 

values. We use a multi-objective function to achieve the aim of 

minimizing both offloading delay and energy 

consumption, given the nature of our study as a Multi-objective 

Problem (MOP). We cannot compare the individual solutions 

via the optimization function, the optimal solution can be 

obtained using Pareto optimal front. The multi-objective 

optimization function is given below: 

     𝑂𝐹𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑊 ∗ 𝛱𝐷𝑒𝑙𝑎𝑦 + (1 − 𝑊) ∗ Յ𝐸𝑛𝑒𝑟𝑔𝑦                 (3) 

Where Յ𝐸𝑛𝑒𝑟𝑔𝑦  and 𝛱𝐷𝑒𝑙𝑎𝑦  are total energy utilization and 

offloading delay respectively, W ∈ {0 , 1} is the weight factors 

that determine the priority of each objective. Here we assume 

an equal priority for each objective i.e., an optimization 

algorithm gives equal importance to each objective during the 

optimization process.  

To compute the fitness value of search solutions, we need to 

calculate the offloading delay and energy consumption at each 

level of devices i.e., IoT devices, fog devices, and 

cloud servers. 

1)  DELAY MODEL 

In this section, we explain the calculations of delay at 

different levels of devices. IoT devices employ an M/M/1 

queueing system to process incoming tasks. The tasks are 

exponentially distributed across the system as per the defined 

service rate. Additionally, task arrival from IoT devices adheres 

to the Poisson process. The delay of the IoT device is 

calculated as follows: 

                                         𝐷𝐼𝑜𝑇
𝑖 =

𝜂

𝜇(𝜇 − 𝜂)
                                (4)    

Where 𝜂 is the arrival rate of each task generated by the IoT 

device, 𝜇 is the service rate of IoT device. Eq. 4compute delay 

a task experiences in the queue when there is congestion in the 

system. Here, the arrival rate of task i.e., 𝜂 is the controllable 

variable. This means the computing network can control the 

number of offloaded tasks to computational resources (i.e., fog 

node or cloud server).By adjusting the number of 𝜂, the system 

can optimize the latency. For instance, managing the workload 

across all devices by controlling 𝜂 is necessary to minimize 

entire system delay. 

The fog device j is modeled to have an M/M/C task queueing 

system. Since the fog node is a computational node responsible 

for computing tasks, therefore the offloading delay experienced 

at the fog node can be expressed as a combination of 

communication and computation delay. The computation 

latency can be expressed as follows:   

                             𝐷𝐹𝐷(𝑐𝑜𝑚𝑝)

𝑗
= (

ℏ

𝜂
) . 𝜛𝐹𝐷(𝑐𝑜𝑚𝑝)

𝑗
                          (5)   

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3512191

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



           

Where 𝜛 and ℏ are the assigned workload to FD j and average 

length of the queue respectively. The communication latency 

experienced at fog node j can be expressed as follows: 

                                 𝐷𝐹𝐷(𝑐𝑜𝑚𝑚)

𝑗
= 𝑐1 ∗ 𝜁𝐿(𝑇)                         (6) 

Where 𝑐1 is constant and 𝜁𝐿  denotes the input length of the task 

T. The communication delay of fog node is related to the input 

length of the task. So the total offloading delay experienced at 

fog node j can be calculated as follows: 

                     𝐷𝐹𝐷
𝑗

=  𝐷𝐹𝐷(𝑐𝑜𝑚𝑝)

𝑗
+ 𝐷𝐹𝐷(𝑐𝑜𝑚𝑚)

𝑗
                         (7) 

Similarly, the cloud server k is modeled with an M/M/∞ task 

queue, indicating an infinite capacity. Given the substantial 

computational capacity of the server, the computation delay is 

negligible. So communication delay experienced at the cloud 

server is expressed as follows: 

         𝐷𝐶𝑆(𝑐𝑜𝑚𝑚)

𝑘 =  𝑐2 ∗ 𝜁𝐿(𝑘)      (8) 

Where 𝑐2 is a constant and 𝜁𝐿(𝑘) indicate the input length of the 

cloud server k. Now we can expressed the total delay as a 

summation of all delays experienced at different level of 

devices. 

                        𝛱𝐷𝑒𝑙𝑎𝑦 =  𝐷𝐼𝑜𝑇
𝑖  + 𝐷𝐹𝐷

𝑗
+ 𝐷𝐶𝑆(𝑐𝑜𝑚𝑚)

𝑘               (9) 

2) ENERGY CONSUMPTION MODEL  

In this section, we discussed the calculation of the energy 

consumption of each device across different computational 

devices. Since the task’s processing duration of each device is 

different, the energy consumption associated with task 

computation on IoT device i is calculated by multiplying the 

energy consumption rate with the processing time of IoT device 

i. Mathematically, it can be expressed as follows: 

                               𝐸𝐼𝑜𝑇
𝑖 =  ᵱ𝐼𝑂𝑇

𝑖 ∗ Ѱ𝐼𝑜𝑇
𝑖                            (10) 

Where ᵱ𝐼𝑂𝑇
𝑖  and Ѱ𝐼𝑜𝑇

𝑖  denotes the energy of the IoT device i 

and task’s processing duration of IoT device i respectively. 

Task’s processing time is calculated using the service rate of 

IoT device and the task arrival rate and expressed as follows: 

                                               Ѱ𝐼𝑜𝑇
𝑖 =

1

𝜇 −  𝜂
                              (11)  

The energy consumption of a fog computational node is directly 

proportional to the amount of workload it handles. This means 

that if the volume of a task rises, the energy consumption of a 

device also increases monotonically. Mathematically, the 

energy consumption of a fog node is calculated as follows:  

                         𝐸𝐹𝐷
𝑗

=  ⍺ ∗ 𝜛𝐹𝐷
𝑗2

+ 𝛽 ∗ 𝜛𝐹𝐷
𝑗

+ 𝜕             (12)       

Where ⍺, 𝛽, 𝜕 are constant and must be greater than 0, 𝜛𝐹𝐷
𝑗

 

denotes the allocated workload to fog node j.  

The energy utilization across all cloud servers is the same due 

to an assumption of operating at an equal CPU processing 

frequency. This homogeneity in CPU utilization across all 

servers results in consistent energy consumption. However, the 

actual energy consumption of a server k is influenced by the 

individual CPU utilization of each computing virtual machine. 

The correlation between energy consumption and offloaded 

workload is directly proportional. This implies that upon 

increasing the workload on server k, the utilization of energy on 

server k also increases. During the period of reduced workload, 

certain computing virtual machines on servers are turned off to 

conserve energy. Mathematically, the power utilization of all 

servers is expressed as follows: 

                              𝐸𝐶𝑆
𝑘 =  ɣ𝑘 ∗ (Ϙ𝑘(а𝑘𝑀𝐶𝑆

𝑘 + 𝐶𝑘))           (13) 

Where а𝑘 and 𝐶𝑘 are constant and their values must be greater 

than 0, 𝑀𝐶𝑆
𝑘  is a count of virtual machine on cloud server k, Ϙ𝑘 

is a count of ON virtual machines and ɣ𝑘 indicate the state of 

virtual machine on server k i.e.,  

                        Ϙ𝑘 =  {
1 , 𝑂𝑁 

0 , OFF  
                                     (14) 

The total power consumption of the system can be expressed as 

a summation of energy consumption of all devices at different 

level. Mathematically, 

                           Յ𝐸𝑛𝑒𝑟𝑔𝑦 =  𝐸𝐼𝑂𝑇
𝑖  +  𝐸𝐹𝐷

𝑗
+  𝐸𝐶𝑆

𝑘                     (15) 

For effective optimization of computation offloading and task 

scheduling, it is required to have a minimum value of Յ𝐸𝑛𝑒𝑟𝑔𝑦  

and 𝛱𝐷𝑒𝑙𝑎𝑦 . Likewise, all the search solutions are evaluated to 

find out the energy consumption and delay of the system, and 

the search solution with the minimum energy utilization and 

delay is considered the optimal search solution.  

E. NON-DOMINATED SOLUTION 

The goal of multi-objective problems is to determine a group of 

solutions where none is superior to the other in all objectives. 

Particularly, one solution A dominates another solution B, if A 

performs better than B across all objectives. Conversely, non-

dominated solutions or Pareto optimal solutions are the set of 

solutions that do not dominate each other and no solution is 

universally better across all objectives.  

In each iteration, to store the non-dominated solution as the 

Pareto optimal solution we used an external repository of the 

same size as the number of search solutions. Within the 

repository, some of the Pareto optimal solutions have the same 

rank which needs to be eliminated to increase the diversity of 

the non-dominated solution. Consequently, it is necessary to 

update the repository to delete the same rank solution and to 

reduce the exhaustive search for the best optimal solution.  

To this end, we implement a crowding distance function to 

update the external repository. It is a function that measures the 

density of solutions around a particular solution. It calculates 

the crowding distance of the neighboring solutions. High-

crowding distance solutions are less crowded and contribute 

more to the diversity of the solution space and prevent local 

optimality.  

The fitness value of search solutions is sorted in descending 

order to compute the crowding distance value. Upon reaching 

the maximum size of the external repository, a less crowding 

distance solution is replaced with a high crowding distance 

solution. Mathematically, we can express the crowding distance 

function below: 
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                          𝐶𝑑𝑖𝑠𝑡 = (
𝐷𝑖𝑠𝑡𝑖

(𝐷𝑖𝑠𝑡𝑚𝑎𝑥 − 𝐷𝑖𝑠𝑡𝑚𝑖𝑛)
 )                (16)  

Where 𝐷𝑖𝑠𝑡𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛 , 𝐷𝑖𝑠𝑡𝑖  is the maximum and minimum 

distance between two solutions and distance value of the 

neighboring solution, respectively. Table IV contain the pseudo 

code of evaluation using optimization function. 

TABLE IV 

SOLUTION EVALUATION 

Algorithm 2: Evaluation of Solution  

1. Function FitnessMatrix = Fitnessfunc (ACOTS) 
2.      Initialize BSolFitness = Infinity 

3.      For (i = 1number of search agents) 

4.            i).  Calculate the fitness value of search agent using  

                 𝑂𝐹𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) =  𝑊 ∗ 𝛱𝐷𝑒𝑙𝑎𝑦 + (1 − 𝑊) ∗ Յ𝐸𝑛𝑒𝑟𝑔𝑦 

5.            ii)  FitnessMatrix (i)= 𝑂𝐹𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) 

6.      End 
7.      OSolFitness = min(FitnessMatrix) 

8.       if OSolFitness < BSol Fitness do { 

9.              i).   BSolFitness = OSolFitness } 
10.              ii).  BSolLoc = OSolLoc 

11.     End if 

12. End Procedure 

F. REPOSITIONING STRATEGY 

The optimization function return the best search solution 

which encompasses the optimal task offloading and scheduling. 

Subsequently, other search solutions reposition their location 

vector by employing arithmetic operators (e.g., multiplication 

M “×”, division D “÷”, subtraction S “-“, and addition A “+”).  

Repositioning process is performed by two search phases i.e., 

exploration and exploitation phase which guide the candidate 

solutions to assess potential solution nearby optimal solution. 

Transition between the search phases is conditioned by MOA 

function which is linearly increasing from 0.2 to 0.9, therefore 

it is vital to update the function value in each iteration using Eq. 

1.  

When the random value (ran1) is greater than MOA function 

value, search solutions employs diversification phase to update 

the location. Conversely, when ran1 is less than MOA function 

value, the algorithm switches to exploitation phase to update the 

location vector. The pseudo code of update position is given in 

Table V. 

TABLE V 

REPOSITIONING STRATEGY 

Algorithm 3: Repositioning Strategy 

1. Function CSNewLoc= Repositioning(BSolFitness, BSolLoc) 

2. Calculate MOA and MOP functions 

3. Generate ran1, ran2, and ran3 between {0, 1} 
4. If (ran1 ≤ MOA) 

5.      If (ran3 ≤ 0.5) do { 

6.          Use ‘+’ operator to update the ith solution location  

7.      Else 

8.          Use ‘- operator to update the ith solution location }     

9.     End if 

10. Else  

              If (ran2 ≤ 0.5) do { 

11.           Use ‘x’ math operator to update ith solution location                        

12.      Else  

13.           Use ‘÷’ math operator to update ith solution location } 

14.      End if 

15. End if 

16. End Procedure  

1) EXPLORATION PHASE 

In arithmetic operation, operators “×” and “÷” are 

deliberated as global search operators (exploration operator) 

because of their high distributed and desperation values. Such 

characteristics limit the ability of these operators in converging 

towards the target. Exploration operators globally investigate 

the problem space in search of potential feasible solutions via 

multiplication search and division search strategy. Transition 

between the searching strategies is conditioned by random 

number ran2. The “÷” operator is activated to perform 

stochastic searching when ran2 exceed 0.5. Conversely, when 

ran2 falls below 0.5, “×” operator is engaged to perform 

operation in an attempt to explore the search space for potential 

feasible solutions. Mathematically, it is expressed as follows: 

𝐿(𝑖,𝑗)𝐼𝑡𝑟𝑁 =

 {
𝑏𝑒𝑠𝑡(𝐿𝑗) ÷ (𝑀𝑂𝑃 + ւ) × ((U𝑏𝑗

− L𝑏𝑗
) × C𝑃 + L𝑏𝑗

) , 𝑖𝑓 𝑟𝑎𝑛2 ≤ 0.5 

𝑏𝑒𝑠𝑡(𝐿𝑗) × 𝑀𝑂𝑃 × ((U𝑏𝑗
−  L𝑏𝑗

) × C𝑃 + L𝑏𝑗
 ) , 𝑖𝑓 𝑟𝑎𝑛2 ≥ 0.5

   (17) 

Where 𝑏𝑒𝑠𝑡(𝐿𝑗) is the location of best search solution, C𝑃 is a 

control parameter to maintain a balance among different search 

strategies within the search space, ւ is a constant, U𝑏𝑗
 , L𝑏𝑗

 

represent the upper bound and lower bound respectively and 

MOP is a math optimizer probability and calculated as below:  

𝑀𝑂𝑃(𝐼𝑡𝑟𝐶) = 1 − (
(𝐼𝑡𝑟𝐶)

1
𝑎

(𝐼𝑡𝑟𝑀)
1
𝑎

 )                   (18) 

Where 𝐼𝑡𝑟𝐶 , 𝐼𝑡𝑟𝑀 denotes current and maximum iteration 

respectively. 𝑎 is escalation parameter used to improve the 

intensification accuracy of the  searching process. It help the 

algorithm in converging towards the optimal area.  

2) EXPLOITATION PHASE 

Exploitation phase involves investigating the obtained 

feasible locations in pursuit of approaching to the target optimal 

area. In arithmetic operation, operators “ + ” and “ − ” are 

deliberated as local operators (exploitative operators) because 

of their low dispersion, high density results and quick 

converging towards the target solution. The exploitation phase 

consist of addition and subtraction search strategy and activated 

when ran1 is less than MOA function value. Transition between 

the searching strategies is conditioned by another random 

number ran3. The “+” operator is activated to perform 

exploitative searching when ran3 exceed 0.5. Conversely, when 

ran3 falls below 0.5, “−” operator is engaged to perform 

operation in an attempt to converge towards the near optimal 

solution. Mathematically, it is expressed as below: 

𝐿(𝑖,𝑗)𝐼𝑡𝑟𝑁 =

 {
𝑏𝑒𝑠𝑡(𝐿𝑗) + 𝑀𝑂𝑃 × ((U𝑏𝑗

− L𝑏𝑗
) × C𝑃 + L𝑏𝑗

) , 𝑖𝑓 𝑟𝑎𝑛3 > 0.5 

𝑏𝑒𝑠𝑡(𝐿𝑗) − 𝑀𝑂𝑃 × ((U𝑏𝑗
− L𝑏𝑗

) × C𝑃 + L𝑏𝑗
 ) , 𝑖𝑓 𝑟𝑎𝑛3 ≤ 0.5

   (19) 

It is necessary to thwart the searching strategies to getting stuck 

in the local search area. To do this, we carefully designed C𝑃 

parameter that help the proposed algorithm to perform 

exploration stochastically not just at the beginning of iterations. 

This aid the algorithm in preventing local stagnation 

specifically in the last rounds. 
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G. TERMINATION CRITERIA 

The algorithm terminates when either of two conditions are 

met. 

 When the algorithm reaches to the maximum iteration  

 When there is no improvement in the best fitness value 

over predetermined number of consecutive iterations 

H. PSEUDO CODE OF PROPOSED SOLUTION  

The pseudo code of the proposed solution is depicted in Table 

VI. The algorithm takes number of independent and 

heterogeneous task, number of computing nodes and 

computation time and resource of each task as input to the 

system. Line # 1-3 initialize the candidate solution and 

simulation parameters to their default values. Line # 4-7 is 

another initialization related to location vector of best solution, 

fitness value of best candidate solution and binary offloading 

matrix. All of these parameters are initialized to their initial 

values. Line # 8-15 creates task offloading and scheduling 

matrix by considering distinct task requirements and 

importance, evaluation of the matrix and determines the best 

candidate solution as per the optimization function. Line #16-

22, the best candidate solution is stored in external archive as 

Pareto optimal solution whose size is equal to the number of 

candidate solution. To update the external archive with new 

best candidate solution, the proposed algorithm employs 

crowding distance value i.e., a solution with low crowding 

distance value is replaced by high crowding distance value. In 

line # 23-26, the proposed algorithm utilizes exploration and 

exploitation searching strategies to update candidate solution 

location. Line # 27-30, after repositioning new candidate 

solutions are created, followed by re-evaluation. If the new 

candidate solution is better than the previous solution, then the 

previous solution is updated with the new one. Upon reaching 

to termination criteria, the solution of the best candidate 

solution contains an optimal strategy of task offloading and 

scheduling.  

TABLE VI 

PROPOSED ALGORITHM 

Algorithm 4: Proposed Algorithm 

1. Start 

2. Randomly initialize the candidate solution   
3. Initialize all simulation parameters to their default values i.e.,  

𝜇 (service rate),𝜂 (task arrival rate),

(average length of queue) and external archive etc. 
4. For (Itr = 1  ItrMax) do { 

5.       ACOTS = {} 

6.       BSolFitness = Infinity  
7.       BSolLoc = {0,0} 

8.       For ( i = 1  Number of candidate solution) do { 

9.            ACOTS = OffloadingMatrix(T, CompNode,, CSol) 
10.            FitnessMatrix = Fitnessfunc (ACOTS) 

11.            OSolFitness = min(FitnessMatrix) 

12.            if OSolFitness < BSolFitness do { 
13.                  BSolFitness = OSolFitness  

14.                  BSolLoc = OSolLoc } 

15.            End if 

16.            Store the Pareto optimal solution in archive 

17.            ExtArch = BSolFitness 

18.            if (ExtRep == Number of candidate solution) do { 
19.                  Calculate DistCW 

20.                  Update the archive and replace low DistCW with high  

21.                   DistCW} 

22.           End if 

23.     End For 

24.     For ( k=1 Number of search agents) do { 

25.           update candidate solution 

26.           CSNewLoc= Repositioning(BSolFitness, BSolLoc)} 

27.      End For  

28.      Create new binary offloading matrix 

29.      Evaluate the matrix using optimization function 

30.      Store the Pareto optimal solution in external archive 
31.      Select the best candidate solution i.e. BestCSol from the   

     archive with best fitness value i.e., BSolFitness 

32.      Itr = Itr +1} 

33. End For 

34. Optimal task offloading & scheduling= BestCSol 

I. IMPLEMENTATION OF ALGORITHM 4 IN CLOUD-FOG 
COMPUTING NETWORK 

The practical implementation of algorithm 4 in cloud-fog 

computing network requires IoT devices, fog devices, cloud 

servers, and network links. The IoT devices generate tasks with 

varying requirements and priorities (e.g., computationally 

intensive and delay-sensitive tasks). The tasks are queued at 

the IoT devices and forwarded to the fog controller for task 

analysis and prioritization. The fog controller creates a binary 

offloading matrix that contains offloading and scheduling 

configurations based on task requirements. The offloading and 

scheduling decision is encoded into the solution of the search 

agent i.e., candidate solution. For instance, if there are 30 

candidate solutions, there will be 30 offloading and scheduling 

decisions. The decisions are evaluated using the fitness 

function. Afterward, the arithmetic operators are applied to find 

the optimal offloading and scheduling configuration that 

minimizes the optimization objectives. The system then uses 

the best configuration for offloading and scheduling tasks 

J. COMPUTATIONAL COMPLEXITY OF PROPOSED 
ALGORITHM 

The computational complexity of the proposed algorithm is 

calculated for each phase and then combined to represent the 

overall complexity.  

Initialization: The initialization phase depends upon the swarm 

size, if swarm size is N, then initialization phase takes O(N).  

Solution construction: The solution construction phase, 

creates a binary offloading metrics which represents the 
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offloading and scheduling of tasks to computing nodes. If M 

represent the number of tasks, then task offloading takes O(N) 

to offload tasks, the allocated tasks are scheduled for execution 

after determining the priority of each task. The tasks are sorted 

in ascending order based on their priority. These steps takes O 

(M.logM). So the overall complexity of solution creation phase 

is O(N x (M+MlogM)) or  O(N x M.logM).  

Solution Evaluation: The complexity of solution evaluation 

phase is mainly depends upon the fitness function and problem 

dimension. This phase evaluates the solution of each search 

agent, so it takes O(N).  

Update Position: The repositioning strategy requires O(LxN) 

to update the position vector of each search solution, where L 

is number of iterations.  

Overall Complexity: So the computation complexity of 

proposed algorithm for one search solution and L iteration is 

O(L(N + N x MlogM+ N+N) which collapse to O(L(N + N x 

M.logM)), for N search solution, it becomes O(L.(N.(N + N x 

M.logM))) which collapse to O(L.(N2. M.logM)). 

The comparative analysis of the computational complexity of 

similar benchmark algorithms is shown in Table VII. The 

computational complexity highlights the efficacy of that 

proposed algorithm in solving multi-objective optimization 

problems because of its ability to balance multiple conflicting 

objectives like energy, latency, and throughput. However, it has 

slightly higher computational complexity due to archive sorting 

which can slow down the performance of large computing 

networks. ACO and GA have the same computational 

complexity and are well-suited for single-objective 

optimization problems. However, more iterations are required 

to converge to the optimal solution. CTS has linear time 

complexity and is well suited for single objective optimization 

problems i.e., either energy consumption or latency, but suffers 

from premature convergence. 

TABLE VII 

COMPARATIVE ANALYSIS OF COMPUTATIONAL COMPLEXITY 

Scheme Time Complexity  
1 search solution 

Time Complexity  
N search solution  

Proposed  O(L(N + N x M.logM)) O(L(N (N + N x M.logM))) 

MoGWO O(L(N2 + M.logM)) O(L( N (N2 + M.logM)) 

ACO  O(L(N +N2 x M))) O(L (N (N +N2 x M))) 

GA O(L(N +N2 x M))) O(L (N (N +N2 x M))) 
CTS O (L x M x N ) O (L (N x M x N )) 

 

V. EXPERIMENTAL SETUP AND RESULT 
DISCUSSION 

The extensive experimental simulations were conducted using 

MATLAB 2021a on a 64-bit Windows 11 machine with 16 GB 

RAM and 2.5 GHz core i7 Intel processor. The simulation 

environment consists of varying fog nodes (ranging from 5 to 

40) and heterogeneous IoT tasks (ranging from 60 to 500). The 

tasks were divided into delay-sensitive and computational-

intensive tasks. The performance of the proposed solution was 

evaluated with the comparative approaches namely, MoGWO 

and cloud-fog cooperation scheduling algorithm (CTS), Ant 

Colony Optimization (ACO), and Genetic Algorithm (GA). The 

baseline algorithms and proposed algorithm were implemented 

under the same simulation parameters in Table 8 to ensure 

fairness in the evaluation. The comparative algorithms were 

implemented based on a standard approach with necessary 

modifications to fit the same optimization problem. The results 

demonstrate the operational efficacy of the proposed solution in 

terms of minimizing energy consumption, transmission latency 

while maximizing network throughput. Consequently, joint 

optimizing task offloading and scheduling prolong the network 

lifetime and improves the reliability, stability and scalability of 

the computing network by finding an optimal task offloading 

and scheduling strategy. This shows that the proposed solution 

can efficiently handle large number of diverse requests from 

various IoT devices, each with different requirements. The 

proposed approach is implemented as per the algorithm 

presented in Table VI.  

The performance of the proposed solution was tested against 

three performance metrics i) latency ii) power consumption and 

iii) throughput. The study of these metrics was conducted under 

various simulation parameters as shown in Table VIII.  

TABLE VIII 

SIMULATION PARAMETERS 

Parameters Proposed Algorithm 

Fog devices 5-40 

Tasks count 60-500 

Search solution  100 

𝑉𝑚𝑎𝑥 1 

𝑉𝑚𝑖𝑛 0.2 

𝜇 (service rate) 4.6 

𝜂 (Task Arrival rate) 3.2 

Archive size 100 

Maximum Iteration  150 

W 0.5 

ᵱ𝐼𝑂𝑇
𝑖  25 

Simulation Run 10 

𝑎𝑘 4.9  

𝐶𝑘 53.2 x 10-20 

Escalation parameter 5 

Control Parameter 0.5 
Dimension 2 

A. LATENCY VERSUS NUMBER OF TASKS 

 This simulation setup was designed to compute the combined 

latency of all three tiers under varying workloads, 

particularly with task counts varying as (60, 120, 150, 200, 250) 

and fog devices ranging from 5 to 10. The simulation results 

reveal the operational efficacy of the AOA-based task 

offloading and scheduling algorithm in terms of obtaining 

minimal transmission latency as compared to the state-of-the al 

gorithms. The baseline scheduling algorithms offload and 

execute the tasks without considering their significance and 

priority which causes higher transmission latency. However, 

the proposed algorithm used an efficient offloading and 

scheduling strategy to process the tasks based on their 

importance and priority, which minimize the transmission 

latency of the system. Additionally, the delay-

sensitive tasks are executed and stored on the network 

edge which reduces the distance between IoT devices and fog 

nodes, thereby contributing to achieving minimum 

transmission latency.  We can see in Fig. 3, that the 

transmission latency follows a monotonically increasing 

behavior, indicating the transmission latency linearly increases 

with the rise in workload. This verifies the stability and  
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Figure 3. Latency verses Number of tasks & Fog nodes =5 

scalability of the proposed algorithm against substantial task 

generation from various IoT devices, each with different 

requirements.  

The next simulation setup was designed to compute the same 

performance metric but with increased workloads ranging from 

300-500 tasks as shown in Fig. 4. This time, again the proposed 

algorithm outer perform the similar competitors in terms of 

optimizing communication delay.  

 
Figure 4. Latency verses Number of tasks & Fog nodes =10 

Referring to the results of Fig. 3 and Fig. 4, we conclude that 

the proposed algorithm is useful for delay-sensitive IoT 

applications. 

B. ENERGY CONSUMPTION VERSUS NUMBER OF 
TASKS 

This performance metrics represent the collective energy 

consumption of the devices at all three tiers. The power 

utilization of a device mainly depends on the network 

bandwidth and CPU frequency of a computing node. This 

simulation was carried out to find the energy consumption of 

devices relative to the number of tasks ranging from 60 to 250. 

The simulation results in Fig. 5 reveals the effective 

performance of the proposed algorithm in terms of optimizing 

 

Figure 5. Tasks verses Energy Consumption & Fog nodes=5 

the power consumption of the scarce computational devices. 

Consequently, the resource utilization and lifetime of the 

network is extended.  

 

Figure 6. Task verses Energy Consumption & Fog nodes=10 

In Fig. 6, we performed the same experiment but this time we 

increased the workload, ranging from 300-500 tasks. Again, the 

proposed algorithm outer perform the state of the art scheduling 

algorithms. This indicates the stability and scalability of the 

proposed solution, even when the number of tasks increases, the 

algorithm remains efficient in achieving the global optimal 

solution.  

C. LATENCY VERSUS NUMBER OF FOG NODES 

This experimental setup compute the transmission latency 

against the number of fog nodes ranging from 5 to 40 while 

keeping the workload constant i.e., 300 tasks. The simulation 

results in Fig. 7 and Fig. 8, illustrate the efficient performance 

of the proposed solution as compared to the competitors. Upon 

increasing the number of fog devices, the workload is 

effectively distributed across multiple computation devices, 

thereby the response time is increased and collective 

transmission latency is minimized. 
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Figure 7. Delay verses number of fog node & task counts=200 

 

Figure 8. Delay verses number of fog node & task counts=300 

D. ENERGY CONSUMPTION VERSUS NUMBER OF FOG 
NODES 

This simulation setup calculate the power consumption of 

devices at each tier relative to the number of fog device varying 

from , while the workload remains constant at a value of 300 

and 400 tasks. The relationship between the number of fog 

nodes and energy consumption is directly proportional to each 

other i.e., when we increase the count of fog devices, the energy 

consumption of the entire system also increases, because fog 

devices requires energy for data transmission, operation and 

communication. Nevertheless, the optimal resource allocation, 

effective and balance workload distribution can efficiently 

reduce the energy consumption of the system. The results in 

Fig. 9 demonstrate the operational efficacy of the proposed 

offloading and scheduling algorithm in terms of achieving 

optimized energy consumption as compared to the comparative 

resource allocation algorithms.  The baseline resource 

allocation algorithms do not achieve a trade-off between 

offloading task to fog devices and cloud servers. However, the 

proposed algorithm achieves an efficient trade- 

 

 
        Figure 9. Energy Consumption verses Fog nodes (workload = 200 and 300) 

off by intelligently determining a suitable computing device 

for task offloading and execution. This results in a reduction of 

energy consumption. 

D. THROUGHPUT VS NUMBER OF TASKS 

This experimental framework assess the performance of the 

proposed solution concerning throughput relative to the 

workloads ranging from 50-500 tasks, while the fog nodes are 

maintained at a constant value i.e., 5 and 10. Throughput is 
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measured by counting the number of successfully completed 

tasks in a stipulated period of time. The analysis of the 

performance metric is illustrated in Fig. 10, revealing efficient 

performance of the proposed algorithm in terms of number of 

successfully processed tasks as compared to the similar 

competitors. This efficiency is attributed to the joint optimal 

strategy of computation offloading and task scheduling that 

efficiently utilize the capacity of the computing resources 

without causing delays and avoiding unnecessary energy 

utilization. Consequently, the network lifetime increases and 

maximum throughput achieved in a less stipulated period of 

time. 

 Figure 10. Throughput verses Tasks (Fog Nodes 5 and 10)  

The numerical and performance analysis of the proposed 

solution in depicted Table IX and X respectively. The 

numerical data indicate the efficient performance provided by 

the proposed solution and performance enhancement up to a 

25% in terms of better energy consumption and transmission 

delay. 

Fig 11, unfolds the convergence behavior of proposed 

algorithm compared to the baseline approaches. The result 

unveils the efficient performance of the proposed algorithm, 

characterized by reliable and stable convergence behavior 

toward best solution. Moreover, the proposed algorithm 

achieves best fitness value at a faster convergence rate 

compared to the state-of-the-benchmark algorithms. 

Table XI unfolds the convergence performance of the proposed 

and other comparative algorithms. The table has mainly three 

variables regarding convergence behavior i.e., maximum 

fitness value, best fitness value, and the standard deviation 

(S.D). The convergence values of these variables are recorded 

for workloads 200 and 400 tasks while the fog nodes remain 

constant i.e., 5 and 10. S.D measures the amount of dispersion 

in a set of values. A convergence behavior of an algorithm, it  

 
Figure 11: Convergence behavior of proposed and baseline algorithms 
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provides insights into the reliability and stability of the 

algorithm’s performance. When the SD of the fitness values is 

relatively low, it reveals that the algorithm consistently 

converges toward the optimal solution across multiple rounds. 

We can see in Table X, that the best fitness value and SD of the 

proposed algorithm is comparatively low, which indicates the 

high stability and reliability of the algorithm’s performance in 

obtaining optimal solution with less variations. 

E. TASK COMPLETION RATE VERSUS NUMBER OF 
TASKS 

Task completion rate specifies the number of tasks 

completed within a given deadline. This simulation setup 

calculates the task completion rate against the total number of 

tasks (60-500) generated by the IoT devices, while the 

computational nodes i.e., fog devices and cloud servers are kept 

constant i.e., 10. The simulation result in Fig 12, demonstrates 

that the proposed algorithm achieves a high (up to 97%) task 

completion rate compared to the baseline algorithms. As shown 

in the result, with the increase in the number of tasks, the 

completion rate begins to decline due to scarce computational 

resources. However, the proposed algorithm still achieves 

significant performance compared to benchmark algorithms, 

especially under higher workloads. 

 
Figure 12: Number of tasks versus Task completion rate  

F. FAIRNESS INDEX VERSUS NUMBER OF TASKS 

The fairness index determines how fairly computational 

resources (e.g., bandwidth) are distributed among tasks. The 

system must fairly distribute resources among tasks and prevent 

resource starvation of low-priority tasks. The imbalance of 

resource distribution can lead to task drop-offs and performance 

degradation. The equation below is used to calculate the 

fairness index: 

                                𝐹𝑖𝑛𝑑𝑒𝑥 =
(∑ 𝑥𝑘

𝑇
𝑘=1 )2

𝑇 ∑ 𝑥𝑘
2𝑇

𝑘=1

                            (20) 

Where 𝑥𝑘represent the resource allocation to task k and T is the 

total number of tasks. When a fairness index value is near to 1, 

this indicates a fairness distribution of resources across all 

tasks, while when it is close to 0, this represents that resources 

are not evenly distributed among tasks. 

 

Figure 13: Number of tasks versus Fairness Index  

Fig. 13 demonstrates the results of the fairness index of 

proposed and other comparative algorithms against the total 

number of tasks (60-500). For the simulation, the number of 

computational nodes is kept constant i.e., 10. The results show 

that the proposed algorithm obtains a high fairness index value 

compared to other baseline algorithms. It is observed that with 

the increase in the number of tasks maintaining a high fairness 

index value is more challenging. The results highlight the 

efficiency of the proposed algorithm in distributing resources 

evenly across all tasks, especially under higher workloads. This 

minimizes the risk of resource bottlenecks and resource 

starvation. 

As a whole, we can safely infer that the proposed algorithm 

efficiently solves the multi-objective NP-hard optimization 

problem. This efficiency is attributed to the inherent 

characteristics of MoAOA. Its rich repertoire of stochastic 

operators and their efficient utilization enable the algorithm to 

equalize different search strategies during both the 

diversification and intensification phase. Additionally, the 

strategic design of control variable allow candidate solution to 

engage in exploration not just at the beginning of the iteration 

but also towards the end of the iterations. This capability help 

the algorithm in preventing local optima solution and providing 

global optimal solution for complex multi-objective 

optimization problem. Considering the efficient outcomes of 

the proposed algorithm in terms of optimization objectives, we 

can efficiently apply the proposed algorithm to real-world 

applications. For example, in a smart healthcare system within 

the Internet of Medical Things (IoMT), the proposed scheme 

offers superior performance. The IoMT network consist of 

wearable health sensors to measure important indicators like 

blood pressure, heart beat and sugar level etc. These devices 

generates massive amount of tasks with varying requirements 

and priorities that needs to be processed accordingly. For 

instance, an emergence alert message from a wearable sensor is 

considered as latency-sensitive task and must be given higher 

priority. These tasks are offloaded to nearby fog devices and 

executed before the lower priority tasks to ensure that they meet 

their deadlines. Since wearable sensors often have limited 

energy and battery lifetime, therefore the proposed algorithm 

could intelligently allocate computational-intensive tasks (e.g., 

medical image processing and genomic data analysis) to 
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powerful computing resources like server, resulting in better 

energy management.
 

TABLE IX 

NUMERICAL ANALYSIS 

 

 

 

 

 

 

 

 

 

 

   

TABLE X 

   PERFORMANCE ANALYSIS 

Algorithms Performance 

Latency 

Performance 

Energy Consumption  

Performance  

Throughput 

Net Performance 

Proposed 51.95% 84.35% 96.6% 77.64% 

GA 23.62% 49.15% 49.66% 40.81% 
ACO 27.56% 57.34% 52.54% 45.81% 

CTS 19.66% 21.5% 36.09% 25.75% 

MoGWO 32.92% 68.18% 58.99% 53.7% 

TABLE XI 

OBJECTIVE VALUES AND S.D OF PROPOSED AND COMPARATIVE ALGORITHMS 

Algorithms Tasks/Fog Nodes Max Fitness Best Fitness S.D Tasks/Fog Nodes Max Fitness Best Fitness S.D 

Proposed  
 

400/10 

 

3.40E+03              1.60E+03         239.30  
 

200/5 

3.42E+03 6.58E+02 222.21 
MoGWO 8.39E+03          3.20E+03          584.92 8.28E+03 1.37E+03 1035.72 

ACO 9.24E+03 3.52E+03 643.05 1.08E+04 1.78E+03 1346.44 

GA 1.08E+04 4.09E+03 748.27 1.32E+04 2.17E+03 1646.82 
CTS 1.91E+04 3.75E+03            1098.01 1.50E+04 1.40E+03 3502.82 

VI. CONCLUSION 

In this paper, we present a novel joint optimization of 

computation offloading and task scheduling algorithm based on 

MoAOA for cloud-fog networks. The proposed algorithm 

classifies the incoming tasks based on their requirements and 

importance and takes energy and delays efficient offloading 

and scheduling decisions accordingly. The proposed algorithm 

is implemented on the fog controller to estimate, analyze, 

offload, and schedule tasks to the appropriate computing 

resource.  The optimization process starts with the initialization 

of search agents within the problem space where all the search 

agents cooperatively explore and exploit the problem space to 

find a set of trade-off solutions via Pareto-optimality.  

Extensive simulation is performed in MATLAB and the 

results are compared with similar methodologies. The results 

validate the streamlined functionality of the proposed algorithm 

in terms of optimizing energy consumption, transmission 

latency, and network throughput. Moreover, the results 

demonstrate the stability and scalability of the proposed 

solution, as it is growing steadily with the increase in the 

workload.  

In the future, we can explore other swarm intelligence 

algorithms (e.g., Bat Optimization algorithm, whale 

optimization algorithm, etc.) to investigate the multi-objective 

task offloading and scheduling optimization problem to 

optimize conflicting optimization objectives. Moreover, we can 

also integrate machine learning models to optimize objectives 

like transmission cost, security, privacy and load balancing, etc. 

The proposed algorithm is computationally expensive for a 

larger network size, as the network grows, the algorithm may 

take longer optimization times. In the future, we can address 

this limitation by exploring parallel processing techniques and 

distributed computing frameworks to optimize computational 

time.  
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