

Lightweight Barcode Positioning Algorithm

Based on YOLO Model

CHAOCHAO LI1, QINGTAO ZENG1, and LIKUN LU 1
1School of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China

Corresponding author: Qingtao Zeng (zengqingtao@bigc.edu.cn)

This work was supported in part by Classification Development of Beijing Municipal Universities - Construction Project of Emerging Interdisciplinary

Platform for Publishing at Beijing Institute of Graphic Communication - Key Technology Research and Development Platform for Digital Inkjet Printing

Technology and Multifunctional Rotary Offset Press under Grant 04190123001/003 ；in part by the Operation and Maintenance Agreement for Pediatric

Teaching Audio-Video Database at Peking Union Medical College Hospital under Grant 11000301281; in part by the PhD Research Startup Fund - Research

on Concept Learning Methods for Symbolic Block Data under Grant 27170124012.

ABSTRACT With the advancement of Internet of Things (IoT) technology, barcode automatic identification

systems have played a crucial role. An improved YOLO-MCG barcode localization algorithm was proposed

to address the problems of interference, inefficiency, and poor real-time performance encountered by

traditional barcode detection methods in complex backgrounds and field environments. First, to reduce the

number of parameters and computational complexity, the MobileNetv3-small network is used to replace the

backbone network. Second, a Convolutional Attention Mechanism Module (CBAM) is introduced to enhance

the perception ability of target information and improve the detection performance of the model. In addition,

Generalized Intersection over Union (GIOU) and Focal Loss are used as loss functions to enhance the

localization precision of the model. The experiments show that the improved model achieves an mAP@0.5

of 97.8%, Precision of 96.4%, and Recall of 93.9%. The amounts of parameters are reduced to 35% of Yolov8,

the amount of computation load is reduced to 25% of Yolov8, and the FPS is 105. The improved model can

be used on resource-constrained mobile devices while meeting real-time requirements.

INDEX TERMS Barcode, positioning, YOLO, lightweight

I. INTRODUCTION

The development of the Internet of Things (IoT) [1]

technology has enabled the real-time collection of vast

amounts of data. However, the effective management and

utilization of these data presents a challenge. In this context,

the application of barcode detection technology has a

significant potential. By identifying barcodes on items, IoT

systems can benefit from convenient and reliable means of

identification, enabling rapid recognition, localization, and

tracking of items from production to sales to use,

facilitating automated data recording and management.

Furthermore, barcode detection contributes to reducing the

time required for data collection in various sectors such as

commerce, healthcare, transportation, and manufacturing,

enabling fast barcode recognition and localization on

embedded devices and mobile platforms. Moreover, the

advent of QR codes [2,3] has been inspired by the

development of barcodes. Both barcodes and QR codes

now coexist in various aspects of daily life. Currently, in

China, over 500,000 enterprises and more than 50 million

products are equipped with barcode labels, with a barcode

adoption rate exceeding 95% [4]. Therefore, ensuring that

automatic identification systems can quickly and

accurately read barcode information relies crucially on

precise and real-time barcode localization algorithms.

Camera-based barcode detection systems are primarily

applied in the IoT, and thus, they must be efficient and

accurate under all challenging environmental conditions

and complex scenarios. In complex environments, the

visibility of barcodes is significantly affected by different

lighting conditions such as strong light, shadows, and

reflections, as well as the varying materials carrying the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

barcodes [5]. Moreover, during transmission, barcodes

may experience geometric distortion, which can further

affect detection. For instance, when scanning barcodes

printed with ink on copper plate paper, bright light and the

paper’s texture may render parts of the barcode invisible,

resulting in incomplete or failed localization; in the

automated manufacturing of lithium battery electrodes,

barcodes are often printed on damaged or scratched

electrodes to record errors for subsequent processes.

However, when the barcode and the background color are

the same, the localization becomes difficult, making

decoding impossible. Therefore, an accurate barcode

localization solution is essential to address these issues.

In addition, another major challenge faced by barcode

localization is how to achieve fast and real-time

localization. Barcode localization algorithms are typically

applied in scenarios that require quick responses, such as

in automation systems on production lines, logistics

management, retail checkout, and more. In these scenarios,

real-time performance is crucial. If the algorithm is too

complex, the consumption of computational resources can

lead to processing delays, affecting system efficiency and

user experience. Additionally, many barcode detection

systems now run on embedded or mobile devices, which

typically have very limited computational resources. Using

traditional deep learning models may consume too many

computational resources, causing the device to run slowly

or even crash. Lightweight designs can enable efficient

barcode recognition on limited hardware resources. Many

existing barcode localization algorithms use deep learning

or traditional computer vision techniques, which often

require complex computational models and substantial

computational resources. This leads to bottlenecks in

processing speed and real-time performance, especially on

resource-constrained embedded devices such as mobile

platforms and industrial equipment.

In conclusion, this paper chooses the YOLO algorithm

as our baseline and proposes an improved lightweight

YOLO barcode localization model. The main contributions

of this algorithm are as follows:

1. We adopts the YOLO model as the basic framework

and replaces the backbone network with the MobileNetv3

network to reduce computational complexity and shorten

detection time.

2. The introduction of the Convolutional Attention

Mechanism Module (CBAM) improves the precision of

barcode recognition.

3. Using Generalized Intersection over Union (GIOU)

and Focal Loss as loss functions enhances the model's

localization precision.

The rest of the paper is organized as follows: Section 2

describes related work, Section 3 introduces the basic

theoretical model and improved model of this study,

Section 4 introduces experimental parameters and

evaluation metrics, Section 5 presents the experimental

results verifying the performance of the proposed

algorithm. Section 6 provides a discussion, and Section 7

concludes the paper.

II. Related work

Scholars, both domestically and internationally, have

proposed various solutions to the barcode localization

problem. The current barcode localization methods are

divided into those based on traditional digital image

processing and those based on deep learning. Image-

processing-based barcode localization algorithms typically

involve preprocessing the image using operations such as

grayscale conversion, binarization, and filtering to reduce

irrelevant information interference. Subsequently,

morphological operations are applied to enhance barcode

region features for coarse localization and obtain the

barcode's position. Finally, fine localization is achieved

using edge detection [6], Hough transform [7], or affine

transformation algorithms [8]. For example, Creusot et al.

[9] proposed a Maximum Stable Extremal Region (MSER)

[10] algorithm, which initially extracts stable extremal

regions using MSER technology from the image as

candidate barcodes. Then, these candidate regions are

clustered in the Hough space for barcode detection and

recognition. However, the algorithm's performance is poor

when the image is blurry. Creusot et al. [11] addressed the

blurring problem of the MSER algorithm by using the Line

Segment Detector (LSD) algorithm [12], thus improving

detection precision and real-time performance. Katona et al.

[13] proposed two methods for barcode localization: one

involves binary thresholding followed by template

matching, and the other uses edge detection followed by

distance transformation. However, these two methods can

only be used in specific scenarios. Yi et al. [14] proposed

a barcode localization method suitable for high-resolution

images with multiple barcodes. Firstly, edge features of the

barcodes are extracted, then the barcode regions are

annotated using bidirectional contour labeling. Finally,

barcode regions are extracted through affine transformation,

effectively improving the localization precision and speed.

However, the complex preprocessing, edge detection

algorithms, and feature matching processes make digital

image processing-based methods time-consuming and less

robust to changes in image background.

In recent years, neural networks have made remarkable

achievements in the field of computer vision, and

corresponding research has been conducted on barcode

detection algorithms based on deep learning [15]. Barcode

localization is performed within the scope of object

detection. Object detection methods can be divided into

two major categories: region proposal-based object

detection algorithms, such as faster region-based

convolutional neural network(Faster R-CNN)[16], which

first generate candidate regions or bounding boxes, and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

then classify these candidate regions and perform bounding

box regression, and single-stage object detection

algorithms, such as you only look once(YOLO) [17] and

single shot detection(SSD)[18], which directly complete

object detection within a single stage without explicitly

generating candidate regions. Convolutional neural

networks after being trained on large datasets can extract

robust features and have been applied in many important

fields. Guo et al. [19] proposed an algorithm based on

convolutional neural networks, which innovatively

introduced the bottleneck residual block (BRB), achieving

a higher recognition accuracy. Zhang et al. [20] used the

SSD detection framework to locate barcodes, performed

rotation correction, and then decoded them using a decoder,

solving the positioning difficulties caused by distortion,

dirt, and obstruction under harsh conditions. The above

work was conducted in a simple background without

considering background duplication. Li et al. [21] proposed

a method to train a barcode detection model using Faster

R-CNN framework in complex backgrounds and used an

adaptive manifold (AM) filter for deblurring, finally,

MSERs were used for barcode orientation detection. Qiao

et al. [22] proposed a one-dimensional barcode localization

method based on two deep learning models. Firstly, the

Faster R-CNN model was used to automatically detect

barcode regions, followed by using the ResNet-34 [23]

model for barcode orientation calibration. Wan et al. [24]

proposed a lightweight CenterNet network for 2D barcode

localization, which enables faster and more accurate

localization.

Compared to other models, the YOLO model offers

exceptionally high real-time performance, a simple

structure, and fast detection speed. Xiao et al. [25]

proposed a method that combines the YOLO object

detection algorithm with the LSD image processing

algorithm. They used LSD to precisely locate the barcodes

outlined by YOLO, removing complex backgrounds, and

achieved significant improvements in precision and speed.

Yue et al. [26] proposed a YOLO-SM algorithm, which

primarily addresses the barcode localization and detection

problem under single-class and multiple-deformation

conditions, achieving relatively good results. Do et al. [27]

introduced a computer vision-based supermarket product

management system using the YOLOv3[28] algorithm,

effectively alleviating the inefficiency of barcode

management in supermarkets. Robert et al. [29] combined

the YOLOv3-tiny3l algorithm with the U-Net network to

tackle issues with noisy, poorly exposed, and blurred

barcode images encountered during truck loading in real-

world scenarios.
Despite the significant performance of these methods,

their model size and inference speed limit their practical

application in the real world. In contrast, YOLO-based

models are faster, have smaller model sizes, and are

suitable for real-time inference. However, barcode

detection performance remains relatively low, which is still

an issue to be addressed. Therefore, we recreated a dataset

that includes potential problematic cases mentioned above

and modified the YOLO model to achieve a good balance

in model performance.

III. METHODOLOGY

A. YOLO MODEL

YOLO, short for "You Only Look Once," is an object

detection algorithm. It employs a single-stage detection

method by treating the entire detection process as a single

neural network inference, enabling real-time object detection.

Compared to two-stage detection methods, YOLO offers

faster speed and higher efficiency because it does not require

additional complex processing steps, making it more suitable

for barcode detection and recognition scenarios. YOLO

incorporates rotation, translation, concatenation, and other

data augmentation techniques in data processing, effectively

enhancing object detection performance. Compared to

YOLOv3 and YOLOv4[30], YOLO's structure is further

optimized for more accurate object detection. The YOLO

network achieves higher detection precision and faster

inference speed.

YOLO can be divided into four parts: Input, Backbone,

Neck, and Head.

In the Input part, YOLO employs Mosaic data

augmentation, adaptive anchor boxes, and adaptive image

scaling methods. Mosaic randomly selects four images,

chooses one of them as the background image, and then

stitches the four augmented images together based on random

scaling, cropping, and arrangement. Therefore, through

Mosaic data augmentation, YOLO can increase the diversity

of data during training, improve the model's robustness and

generalization ability, thus enhancing the performance of

object detection.

The backbone part is primarily responsible for extracting

features from input images. It utilizes the Focus module,

Cross-Stage Partial Network (CSPNet), and Spatial Pyramid

Pooling module (SPP). Before inputting the image into the

backbone, the Focus module slices and merges the image to

improve processing speed. CSPNet integrates gradient

information into feature maps, alleviating the gradient

vanishing problem. The SPP module addresses image

distortion in cropping and scaling operations by fusing

information from feature maps of different sizes.

The neck part is responsible for multi-scale feature fusion

of feature maps and passing these features to the prediction

layer. YOLO uses feature pyramid network (FPN) and path

aggregation network (PANet) for feature fusion. FPN merges

feature information through top-down up-sampling, while

PANet passes features from bottom to top. Through the

feature fusion of FPN and PANet, the representation

capability of features and the detection performance for

objects of different sizes are further improved. The network

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

architecture of YOLO is shown in Figure 1. The three boxes

at the bottom of the figure depict the details of the backbone,

neck, and detection head, representing the overall architecture

of the YOLO model. The remaining four images show the

details of the different colored blocks from the three sub-

figures below.

FIGURE 1. YOLO architecture diagram.

B. IMPROVEMENTS IN THE YOLO NETWORK

STRUCTURE

1) MOBILENETV3-SMALL

In order to achieve fast and accurate localization with limited

computational resources, and to meet the application

requirements in mobile devices and complex environments,

we replace the backbone network of YOLO with the

MobileNetv3-Small network [31]. MobileNetv3-Small,

released by Google in 2019, is a lightweight convolutional

neural network architecture. Through a more efficient network

structure and lightweight design, it significantly reduces the

computational load of the model, thereby enhancing real-time

detection speed. This improvement is necessary for

applications that require barcode recognition on embedded or

mobile devices. For instance, in warehouses, robots can

efficiently scan and identify goods without consuming

excessive computational resources.

The main architecture of MobileNetv3 consists of a series

of bneck blocks, which include depth-wise separable

convolution [32], inverted residual connection and channel

attention mechanism (SE) [33].

The depth-wise separable convolution consists of two

processes: depth-wise convolution, where each channel

corresponds to a convolutional kernel in the channel direction,

and pointwise convolution, where a normal 1x1 convolution

outputs the specified number of channels. Depth-wise

convolution can more effectively extract features, and

pointwise convolution can combine features from different

channels, enhancing feature representation. At the same time,

it reduces the number of parameters, lowering the risk of

overfitting. The implementation process of depth-wise

separable convolution is shown in Figure 2.

FIGURE 2. Implementation process of depth-wise separable

convolution. The left half of the figure represents the depthwise

convolution process, while the right half represents the pointwise

convolution process.

For the l-th layer of a network with a three-dimensional

input tensor
lx , the input to depth-wise separable

convolution is denoted as
l l ll H W Dx R   . Here, , ,l l lH W D

represent the height, width, and depth of the input,

respectively. Selecting an element (, ,)l l li j d from the input
lx , where (, ,)l l li j d specifies any specific triplet element

indicating it resides in the d-th channel at position (,)l li j . The

convolution is performed with D filters ,
lH W D Df f R    ,

each of size H W . According to reference [34], the

definition of depth-wise separable convolution is:

 1 1 1 1, ,, , , ,
0 0 0

l l l l

H W D
l

i j di j d i i j j d
i j d

y f x+ + + ++ +
= = =

=  (1)

where 1 1, ,l l

l

i i j j d
x + ++ +

refers to the elements of the input

1 1(, ,)l li i j j d+ ++ + .

SE mainly consists of two parts: Squeeze and Excitation,

which are used to enhance the model's focus on input features

for better differentiation between different targets and

backgrounds.
The features first undergo squeeze, which is a global

average pooling process, aggregating feature maps of the

input feature map , H W CU U R   across spatial dimensions

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

H W to generate channel-wise statistics , Cz z R . After

compression, the feature map is reduced to a 1 1 C  vector.

Essentially, the statistics
cz are generated by reducing the

spatial size of U along the channel dimension. According to

reference [33], The definition of squeezing is：

1 1

1
() (,)

H W

c sq c c

i j

z F u u i j
H W = =

= =


 (2)

where
cz refers to c-th statistic,

cu refers to feature map of the

c-th channel, with a size of H W , and (,)i j refers to value

at that position on the feature map.
The Excitation operation models the global descriptor

vector through two fully connected layers to learn the weights
for each channel. These weights are normalized by an
activation function to ensure their sum is 1. Then, they are

multiplied element-wise with the original feature map to
enhance the relevant features of each channel. According to

reference [33], the definition of Excitation is:

 2 1(,) ((,)) (())exs F z W g z W W W z  = = = (3)

where δ refers to ReLU activation function, and σ refers to

sigmoid activation function. 1 2,
C C

C C
r rW R W R
 

  ,these are the
weight matrices of two fully connected layers. r is the
dimensionality reduction factor. The final output of the block

is obtained by rescaling the transformation output U with the
activations, the implementation process of SE is as shown in
Figure 3. According to reference [33], the definition of Scale
is:

(,)c scale c c c cx F u s s u= = (4)

where 1 2| , ,..., |cx x x x= ,
cx is the feature map of a

certain feature channel in x , (,)scale c cF u s refers to

channel-wise multiplication between the feature map
H W

cu R  and the scalar cs .

FIGURE 3. SE conceptual diagram

The bneck block in MobileNet uses an inverted residual

structure, which means it first upsamples the dimensions using

a 1×1 convolution, then performs feature extraction using 3×3

depth-wise separable convolution, and finally downsamples

the dimensions using a 1×1 convolution. This structure is

opposite to the residual structure of Residual Network

(ResNet), hence it is called an inverted residual structure. The

specific implementation process of the MobileNetv3 bneck is

shown in Figure 4.

FIGURE 4. The bneck block in MobileNetv3-small.

2) CBAM

There are many irrelevant features in barcode images that can

affect the robustness of detection models. To help the model

focus better on the useful features in the image, we attempt to

apply weighting to the input feature map to enhance the

important regions. Therefore, we introduced the CBAM [35].

CBAM enhances the key information in the barcode image

(such as the black and white stripes of the barcode) by

weighting both the channels and the spatial dimensions of the

feature map, thereby improving the accuracy of barcode

recognition and preventing missed detections. CBAM is a

simple yet effective attention module, which consists of a

channel attention module (CAM) and a spatial attention

module (SAM). It can be seamlessly integrated into CNN

architectures and trained end-to-end. The structure of the

convolutional attention mechanism is shown in Figure 5.

FIGURE 5. CBAM structure diagram, consisting of the channel attention

(CA) module and spatial attention (SA) module.

The CAM mainly extracts features from the channels. The

channel attention module performs global average pooling

and global max pooling on the input features, reducing the

dimensionality across channels. Then, a shared multi-layer

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

perceptron generates the channel attention weights. This helps

the network focus more on important channels (such as

barcode lines, background noise, etc.), thereby extracting

more meaningful features. According to reference [35], the

specific calculation formula for the Channel Attention module

is：

1 0 1 0 max

() ((() (())))

((()) (()))

c

c c

avg

M F MLP AvgPool F MLP MaxPool F

W W F W W F





= +

= +

 (5)

where the input is a feature H W CF R   , σ refers to sigmoid

activation function, and MLP refers to a multi-layer

perceptron,
0 1,W W are two weight matrices,

/ /

0 1,C r C C C rW R W R   .

The SAM primarily performs feature extraction in the

spatial domain. The spatial attention module takes the results

from the channel attention module, applies max pooling and

average pooling to generate two channel descriptions of size

1×H×W, and then stacks the tensors together via a fully

connected operation. Finally, a convolution operation and

sigmoid activation function are used to obtain the weight

coefficients. This fusion of channel and spatial dimensions

helps better capture the position and spatial relationships of

the targets (focus on the area where the barcode is located and

suppress background noise). According to reference [35], the

specific calculation formula for the Spatial Attention module

is:

7 7

7 7

max

() (([(); ()]))

([;])

s

s s

avg

M F f AvgPool F MaxPool F

f F F









=

=

 (6)

where
7 7f 

represents a convolution operation with a filter

size of 7x7, and σ denotes the sigmoid function.

In the Neck layer of the YOLO model, the CBS module

downsamples the feature map by changing the stride of the

convolution operation, capturing low-level local features.

Additionally, during the FPN (top-down) upsampling

process, the resolution of the feature map is gradually

restored, maintaining a high resolution. In the PAN (bottom-

up) stage, after adding CBAM, the feature maps at each layer

are enhanced with high-level semantic information,

improving multi-scale object detection. By utilizing the

adaptive channel and spatial attention mechanism, CBAM

enhances the network's ability to express these low-level

features. Therefore, adding CBAM after CBS effectively

improves the model's understanding and representation of

high-level semantic information, which can reduce the

missed detection rate for barcodes that are farther from the

camera. This article adds CBAM modules to the four

branches of the neck network to help the model better

capture target features, thereby improving the model's

performance and robustness. The improved model is called

YOLO-MCG, and a simplified overview is shown in Figure

6.

3) IMPROVEMENT OF LOSS FUNCTION

FIGURE 6. YOLO-MCG architecture diagram (omitting description of

modules shared with YOLO model).

In the YOLO model, we use the GIOU loss function to

replace the original CIOU loss. Compared to CIOU, the

GIOU function solves the issue where IOU fails to correctly

reflect the intersection when the predicted box and the

ground truth box do not overlap. GIOU not only focuses on

the overlapping area but also considers other non-

overlapping regions. Therefore, GIOU can better reflect the

degree of overlap between the two, improving both the

training speed and inference accuracy. In this paper, we

propose a method that combines the GIOU loss function [36]

with focal loss [37] to replace the original CIoU loss function,

thus optimizing the bounding box loss.

According to reference [36], the definition of the GIOU

loss function as follows:

| |

| |

gt

gt

B B
IoU

B B


=



 (8)

| \ (|

| |

gtC B B
GIOU IOU

C


= −

 (9)

| \ |
1 1

| |

gt

GIoU

C B B
L GIoU IOU

C


= − = − +

 (10)

where (, , ,)gt gt gt gt gtB x y w h= is the ground-truth,

(, , ,)B x y w h= is the predicted box, and C is the minimum

enclosing box of B and gtB .

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

The use of the GIOU loss function enhances the accuracy

and robustness of the barcode localization algorithm. By

optimizing the relationship between the shape, size, and

position of the bounding boxes, GIOU improves the

localization accuracy, reduces interference from occlusion

and background, and also enhances the stability of training

and the model's convergence speed. For barcodes that may

be occluded or distant, GIOU can better adapt to these

characteristics, ensuring efficient and accurate localization

in various complex scenarios.

Focal Loss is a loss function designed to address the

problem of class imbalance, particularly in object detection

tasks. It aims to tackle the imbalance between a large number

of background class samples and a small number of target

class samples in object detection.

In the standard cross-entropy loss function, all samples are

weighted equally, which can cause the model to focus

excessively on easily classifiable background samples when

they are abundant, while neglecting the fewer target class

samples. Focal Loss adjusts the weights of the loss function to

prioritize difficult-to-classify samples, effectively addressing

the problem of class imbalance.

According to reference [37], the classic computation

formula for Focal Loss is:

 () (1) log()t tFL p p p= − − (11)

, 1

1 , 0
t

p y
p

p y

=
= 

− =

 (12)

where {1,0}y specifies the ground-truth class and [0,1]p

denotes the estimated probability for the class with label y =

1. γ is the tunable focusing parameter.

According to reference [38], we rewrite the formula for

Focal Loss as follows:

1

(,) (1 ()) log ()
K

FL i i i

i

L x y y q x q x

=

= − − (13)

where x is the input sample, y is the ground truth label, and

()iq x is the model's predicted probability for the input sample

x, representing the probability that sample xxx belongs to

class i. (1 ())iq x − is the scaling factor, where γ is the tunable

focusing parameter. log ()iq x is the cross-entropy loss for

class i. When γ= 0, the focal loss reduces to the traditional

cross-entropy loss
1

(,) log ()
K

CE i i

i

L x y y q x
=

= − . As γ

increases, the impact of the modulation parameter gradually
becomes larger. By combining GIOU with focal loss, the
model's detection performance can be more effectively
improved, and the accuracy of localization is enhanced,
especially in complex environments where barcodes may be
partially obscured or distorted due to perspective issues. For

example, in warehouse item stacking, barcodes may not be
fully visible, but the combination of GIOU and focal loss
ensures accurate localization and identification of barcodes

even in such situations. This makes the model suitable for

applications requiring precise localization and efficient
scanning, such as automated warehousing systems, smart
logistics, and unmanned retail.

4) OPTIMIZATION ALGORITHMS

The training process of deep learning models is an
optimization process aimed at finding optimal parameters that
minimize the loss function. Optimization algorithms
continuously adjust model parameters to gradually decrease
the loss function, thereby improving model performance.

Using appropriate optimization algorithms in YOLO can
accelerate convergence, reduce training time, and efficiently
find global optimal solutions to enhance detection accuracy
and training stability.

SGD (Stochastic Gradient Descent) is a gradient-based
optimization algorithm that updates parameters by computing

gradients for each sample or batch. However, SGD updates
using single samples or batches are prone to noise interference
and high fluctuations. Its stochastic nature can lead to getting
trapped in local minima, limiting its ability to escape them.

To address these problems, AdamW[39] is employed for
model optimization in this study. AdamW utilizes separate

adaptive learning rates for different parameters based on their
first and second moment estimates of gradients. It incorporates
momentum to accelerate gradient descent and independently
manages weight decay, applying it only to the model's weight
parameters. Compared to SGD, AdamW effectively balances
the speed and direction of parameter updates during model

training, mitigating the risk of local minima and significantly
improving convergence speed. Algorithm 1 provides a
detailed description of the construction process of the Adam
algorithm.

Algorithm 1 AdamW

Input: α(lr),
1 00.9,

2 00.999(exponential decay rate), ε0
810− ,λ(weight decay factor)

Initialize: t←0(time step), 0t = (parameter vector),

0 0tm =  (first moment vector),
0 0tv =  (second moment

vector), 0t = (schedule multiplier)

Repeat:

t←t+1

1 1() ()t t tf SelectBatch − − 

1()t t tg f  −

1 1 1 2(1)t tm m g − + −
2

2 1 2(1)t t tv v g − + −

1/ (1)t
t tm m  −

2/ (1)t
t tv v  −

()t SetScheduleMultiplier t 

1 1(/ ())t tt t t t tm v     − − − + +

until stopping criterion is met

return optimized parameters t

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IV. MATERIALS AND METHODS

A. DATASET AND ENVIRONMENT

The dataset in this study comprises an open-source barcode

dataset and a synthetic barcode dataset. The aim is to create a

barcode detection dataset under complex backgrounds. The

open-source dataset includes Muenster and Coco datasets.

Since the open-source Muenster dataset has a limited number

of barcode images that are not suitable for network learning, a

total of 5327 images were obtained by reorganizing the open-

source dataset and combining it with synthetic data. The

training set contains 3999 images, while the test set contains

1328 images. Use the labeling tool LabelImg to annotate the

dataset in YOLO format. The software and hardware

environment and parameters used in this experiment are

shown in Table 1.

TABLE I

Experimental platform

 Configuration

Operating System Windows11

CPU
Intel(R) Core (TM) i5-9700

CPU @3.10GHz *8

Device Memory 16.0GB

Graphics Processor GeForce GTX 3050

Experimental Language Python 3.10.13

Accelerated Environment CUDA 11.8

Deep learning Framework Torch 2.1.0

B. EXPERIMENTAL PARAMETER SETTINGS AND

EVALUATION METRICS

During training, the input images were resized to 640×640,

and AdamW was used as the optimization function for model

training. The training epochs were set to 300, with a batch size

of 16 and an initial learning rate of 0.01. The same data

augmentation algorithm as the original algorithm was used in

this experiment.

To validate the effectiveness of the improved algorithm, we

select several common metrics in object detection as

evaluation indicators for the model, according to reference

[40]. These include Precision, Recall, mean Average Precision

(mAP), and FPS. Precision(P) refers to the proportion of

actual positive samples among all samples predicted as

positive. It measures the accuracy of the model in barcode

detection, with higher precision indicating more correct

detections of barcodes. Recall (R) represents the proportion of

correctly predicted positive samples out of all actual positive

samples. It measures the comprehensiveness of the model in

detecting barcodes, ensuring that as many barcodes as

possible are correctly detected. mAP is the mean Average

Precision across all categories, used to evaluate the

performance of deep learning methods in object detection

tasks, rather than just a single aspect of performance. FPS

(Frames Per Second) measures the real-time processing

capability of the model. For barcode localization algorithms,

high FPS indicates that the model can locate each barcode at

a higher speed. According to reference [41], its calculation

formula as follows:

TP
P

TP FP
=

+
 (12)

TP
R

TP FN
=

+
 (13)

1

n

i

i

A P

mAP
n

==


 (14)

Where TP (True Positives) refers to the number of barcodes

correctly detected by the object detection model, FN (False

Negatives) refers the number of actual barcodes that were not

detected by the model, FP (False Positives) represents the

number of instances where the model incorrectly predicted the

presence of a barcode, AP (Average Precision) is the area

between the PR curve and the coordinate axis. These metrics

are effective for evaluating the accuracy, comprehensiveness,

overall performance, and processing speed of the barcode

localization algorithm. They provide valuable insights into the

performance of the lightweight model studied in this paper.

V. RESULTS

The YOLO model has five different versions ranging from n,

s, m, l, to x, with increasing depth and complexity. To

investigate the impact of different sizes on barcode detection,

P, R, mAP, and FPS are used as indicators for comparison.

Due to the excessive computational and parameter

requirements of x, it is not considered. The results are shown

in Table 2.

TABLE Ⅱ

Results of Four Different Networks.

Model P R mAP Params GFLOPs FPS

YOLOv5n 96.3% 92% 96% 1.76M 4.1 101

YOLOv5s 95.8% 93.4% 96.7% 7.03M 16.0 98

YOLOv5m 96.8% 93.8% 97% 20.86M 47.9 49.8

YOLOv5l 96.4% 94% 97.2% 46.11M 107.7 36.4

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

From Table 2, it can be seen that the increase from

YOLOv5n to YOLOv5l did not result in a gradual

improvement in detection accuracy. This is because larger

model complexity may lead to overfitting or insufficient

training, and the limited size of the custom dataset restricts the

improvement in model performance. Compared to YOLOv5n

and YOLOv5s, YOLOv5m and YOLOv5l achieve the highest

precision, recall, and mAP, however, their parameter and

computational costs are too high, and their FPS is lower,

lacking in lightweight and real-time characteristics. Among

YOLOv5n and YOLOv5s, YOLOv5s exhibits the highest

recall at 93.4% and also achieves the highest mAP at 96.7%.

As this study aims to build lightweight models, YOLOv5m

and YOLOv5l with their high parameter and computational

costs are not considered, and YOLOv5n did not yield the best

results. Therefore, YOLOv5s has been chosen as the base

model for this research.

Furthermore, to compare the impact of different loss

functions on barcode detection, we contrast the prevailing loss

functions: GIOU, EIOU, CIOU, and DIOU. Each loss

function has distinct effects, as illustrated in Table 3.

From Table 3, it can be observed that GIOU achieves the

highest precision at 95.8%. EIOU achieves the highest recall

rate and mAP, reaching 93.1% and 97.1% respectively.

However, EIOU has the lowest precision among them.

GIOU's mAP is close to that of EIOU, outperforming the

original loss function CIOU. Although the difference is small,

it is believed to enhance detection precision.

Figure 7 shows the precision-recall curve of the improved

YOLO model. It can be seen from the graph that the improved

model achieved excellent detection results for both classes of

objects, with a mAP value reaching a high value of 97.8%.

FIGURE 7. The Precision-Recall curve of the improved YOLO model.

The baseline network used in this paper is YOLO model,

which is improved upon. The baseline model and the

improved model are compared in terms of precision, recall,

and mAP. The comparison results are shown in Figure 8.

FIGURE 8. Comparison between the baseline YOLO model and the improved YOLO-MCG. (a), (b), and(c) depict comparisons in terms of precision,

recall, and mAP respectively.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

From Figure 8, it can be seen that the improved model

outperforms the original model in terms of precision, recall,

and mAP, demonstrating the effectiveness of the

improvement.

To verify the performance of the improved model, a series

of ablation experiments were designed based on the dataset,

and comparisons were made with the original YOLO model

as the baseline. To ensure lightweight network localization

performance, the following improvements were made: 1)

Original YOLO baseline model. 2) Replacing the YOLO

backbone network with MobileNetv3. 3) Adding CBAM to

the Neck of the YOLO model. 4) Replacing CIOU with

GIOU and Focal Loss. 5) After replacing the backbone

network with MobileNetv3, adding CBAM to the Neck

network. 6) After replacing MobileNetv3 and adding CBAM,

using GIOU and Focal Loss functions instead of the original

loss function. The detection results are shown in Table 4.

TABLE Ⅳ

Ablation experiment

No. YOLO MobileNet CBAM GIOU+Focal Loss P R mAP Params GFLOPs FPS

1 √ 95.8% 93.4% 96.7% 7.03M 16.0 98

2 √ √ 95.4% 92.6% 96.5% 3.9M 7.0 95.2

3 √ √ 96.0% 94.0% 97.8% 7.03M 15.8 120

4 √ √ 95.9% 94.5% 97.5% 7.03M 15.8 88

5 √ √ √ 96.2% 93.1% 97.5% 3.9M 7.0 90

6 √ √ √ √ 96.4% 93.9% 97.8% 3.9M 7.0 105

As shown in Table 4, firstly, after using CBAM, there is a

certain improvement in precision, recall, and mAP. The

precision increased by 0.2% compared to the baseline

network, recall increased by 0.6%, and mAP increased by

1.1%. Secondly, after introducing GIOU and Focal Loss, the

precision increased by 0.1%, recall improved by 1.1%, and

mAP increased by 0.8% compared to the baseline network.

The improved network structure incorporates the lightweight

MobileNetv3 network, which is designed to reduce model

size and computational complexity. Lightweight networks

often sacrifice some performance for these benefits. From

the ablation experiments, it can be observed that the

performance metrics indeed decrease after using the

MobileNet network. However, through all the improvement

methods applied, the accuracy and recall of the lightweight

network are maintained with minimal loss, while mAP is

improved. Moreover, achieving an FPS of 105 meets real-

time requirements. The experiments indicate that the

improvements made in this paper can enhance the barcode

detection results.

To validate the effectiveness of the optimization

algorithms used in this experiment, SGD, Adam, RMSprop,

and AdamW were compared in terms of loss function, with

the results shown in Figure 9.

Due to RMSprop's slow convergence and high loss

function values, it was not plotted in Figure 9. From Figure

9, it can be observed that AdamW converges the fastest and

achieves the best performance. To further validate the

impact of the improved optimization algorithm AdamW on

other evaluation metrics, it was compared with other

optimization algorithms in terms of accuracy, recall, and

mAP, as shown in Table 5.

FIGURE 9. Comparison of optimization algorithms in loss functions.

TABLE Ⅴ

Comparison of optimization algorithms

Model P R mAP

RMSprop 50.3% 26.1% 35.3%

SGD 96.2% 92.8% 97.6%

Adam 96.8% 92% 96.6%

AdamW 96.4% 93.9% 97.8%

From Table 5, it is evident that AdamW performs the best.
Compared to the RMSprop optimization algorithm,

precision improved by 46.1%, recall improved by 67.8%,

and mAP increased by 62.5%. Compared to SGD (the

optimization algorithm used in the baseline model),

precision increased by 0.2%, recall increased by 1.1%, and

mAP improved by 0.2%. Compared to Adam, precision did

not improve, but recall increased by 1.9% and mAP

improved by 1.2%. This is because AdamW demonstrates

significant effectiveness in training on large-scale datasets.

Additionally, AdamW handles weight decay separately,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

effectively preventing overfitting. By correctly controlling

the model's complexity, AdamW ensures better

generalization to unseen data, thereby enhancing P, R, and

mAP metrics.

To further validate the superiority of the proposed

algorithm in performance, the improved algorithm was

compared with YOLOv5n, YOLOv5m, YOLOv5l, YOLOv8s,

and SSD (where SSD uses VGG16 as the backbone network)

on the same dataset. Figures 10(a), 10(b), and 10(c) compare

precision, recall, and mAP respectively. The comparison

results are shown in Figure 10.

FIGURE 10. Performance comparison of different models. (a), (b), and (c) depict comparisons in terms of precision, recall, and mAP respe ctively. The

horizontal axis represents epochs, while the vertical axis represents the corresponding values of P, R, and mAP.

From the figure 10, it can be seen that the convergence

speed of different models is fast. The precision and recall of

the improved model are similar to YOLOv8, but its mAP

value is the highest, which further indicates the excellent

improvement effect.

To further demonstrate the superiority of the improvement

methods, an evaluation of the model's efficiency and

complexity was conducted. The improved model was

compared with the YOLO baseline model, SSD, Faster R-

CNN(resnet50) and YOLOv8s in comparative experiments.

Precision, recall, mAP value, parameter count, and GFLOPs

were used as evaluation metrics. The experimental results

are presented in Table 6.

TABLE Ⅵ

Comparative experiments

Model mAP Params GFLOPs FPS

SSD 92.8% 23.9M 55 54.3

Faster R-CNN(resnet50) 97.3% 137M 370.2 20

YOLOv5n 96% 1.76M 4.1 101

YOLOv5s 96.7% 7.03M 16.0 98

YOLOv5m 97% 20.8M 47.9 49.8

YOLOv5l 97.2% 46.1M 107.7 36.4

YOLOv8s 97.1% 11.3M 28.4 130

YOLO-MCG 97.6% 3.93M 7.0 105

From Table 6, it can be seen that the improved model has

the highest mAP compared to mainstream network models,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

with significantly reduced parameters and computational

complexity. The improved YOLO-MCG achieves a 4.8%

higher mAP than SSD, reduces parameter count to 56% of

the original model, and decreases to 35% of YOLOv8.

Computational complexity is reduced to 44% of the original

model and 25% of YOLOv8. Although Faster R-CNN has a

high mAP, its parameter count and computational cost are

too large, resulting in a low FPS, which makes it unsuitable

for real-time applications. Figure 11 illustrates the

superiority of the improved YOLO-MCG over different

models in terms of mAP, Params, GFLOPs, and FPS. In

scenarios requiring real-time performance, this method is

more suitable for fast and precision barcode detection.

FIGURE 11. Comparison of different models in terms of Params, GFLOPs, FPS and mAP.

This study proposes the YOLO-MCG algorithm based on

the YOLO model for barcode localization. To investigate the

detection performance of the improved model on barcodes,

several models were visually compared, and the detection

results are shown in Figure 12.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

FIGURE 12. Model detection results visualization. From top to bottom: YOLOv5n, YOLOv5m, YOLOv5l, YOLOv8s, baseline YOLO model, and improved

YOLO-MCG. From left to right: (a), (b), (c), and (d) represent four different scenarios.

In Figure 12, two types of barcodes are present: EAN13

and Code39. Figures 12(a) and 12(b) depict scenarios with

clear and large barcodes located close to the camera, while

Figures 12(c) and 12(d) show cases with smaller and blurred

barcodes located farther away. From the figures, it is

observed that each model successfully classifies and detects

the clear and large barcodes with high accuracy. However,

for the smaller and blurred barcodes (Figure 12(c) and 12(d)),

YOLOv5n, YOLOv5l, and the baseline YOLO model

(YOLOv5s) fail to correctly identify the Code39 barcodes,

misclassifying them as EAN13 barcodes. YOLOv5n and

YOLOv5l exhibit lower detection rates in these cases.

YOLOv5m, YOLOv8s, Faster R-CNN, and the improved

YOLO-MCG successfully identify these barcodes, with

Faster R-CNN and YOLO-MCG achieving the highest

detection rates. However, as seen from previous experiments,

Faster R-CNN has a large number of parameters and high

computational complexity, resulting in a very low FPS,

which cannot meet real-time requirements. In contrast, the

lightweight characteristics of YOLO-MCG further validate

the feasibility of the improved YOLO-MCG for use in

mobile devices and fast-paced production lines.

VI. Discussion

In this study, we propose a lightweight barcode

localization algorithm based on an improved YOLO model.

To address the issue of fast and efficient barcode localization,

a series of innovative improvements were implemented,

resulting in significant performance gains. First, we created

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

a custom barcode dataset that meets the requirements of deep

learning models in complex backgrounds. This dataset

consists of one-dimensional barcode images of two types:

EAN13 and Code39. These two types of barcodes represent

the most commonly used barcodes in daily life. Although

barcode localization and recognition have attracted

widespread attention from researchers, there are few

publicly available barcode datasets, and even fewer that meet

the requirements for deep learning, which requires large

volumes of images. Furthermore, these datasets need to cater

to the challenge of localizing barcodes in complex

backgrounds. Therefore, in this situation, we opted to create

a custom dataset to meet the research needs. Next, we

replaced YOLO’s backbone network with MobileNetv3,

significantly reducing the mode’s parameters and

computational load, thus enhancing its practicality for

deployment on embedded or mobile devices. We also

introduced the CBAM (Convolutional Block Attention

Module) attention mechanism, which helps the model focus

more on the barcode regions in the feature map, suppressing

the interference from irrelevant background information.

This effectively improved the model's robustness and

localization accuracy, significantly enhancing the distinction

between targets. We adopted the GIOU and Focal Loss

functions, which, when handling barcode detection

localization tasks, not only consider positional accuracy but

also increase attention to difficult-to-detect targets (such as

small or partially occluded barcodes). Focal Loss addresses

the class imbalance problem effectively, especially in

complex backgrounds, enabling the model to better handle

the contrast between barcodes and backgrounds, further

improving localization accuracy and stability.

A series of experiments (such as comparison experiments

and ablation studies) were conducted to validate the

performance of the improved model. The experimental

results showed that although the model size was significantly

reduced, it still maintained high localization accuracy. This

is crucial for the real-time requirements in barcode detection

scenarios. The improved YOLO-MCG model demonstrated

better detection performance and faster inference speed in

complex environments, making it suitable for deployment on

edge devices. This further confirms the feasibility and

superiority of the proposed algorithm and verifies the

effectiveness and practical application potential of the

method presented in this paper.

Future Work: Although this study has yielded good results,

there are still some limitations and room for improvement.

First, this paper focuses only on the localization of one-

dimensional barcodes and does not address other types of

barcodes, such as QR codes, which have significant

differences in shape and texture from one-dimensional

barcodes. Future work will focus on extending the existing

methods to develop an algorithm model that can efficiently

and simultaneously detect multiple types of barcodes in real

time.

Moreover, although GIOU and Focal Loss performed well

in this study, they may still be affected by different datasets

and environmental factors in practical applications. Future

work could involve conducting experiments with a wider

variety of datasets, further optimizing the loss functions, or

combining them with other advanced optimization methods

(such as adaptive loss functions) to enhance model

performance. In summary, the improved YOLO-MCG

model proposed in this paper provides a new solution for

barcode localization, and through further optimization and

expansion of the algorithm framework and datasets, it can

drive the practical application of barcode localization

technology in a broader range of use cases.

VII. Conclusion

This paper presents a barcode localization algorithm based

on the YOLO model to address the problem of fast and

efficient barcode localization. By replacing YOLO's

backbone network with MobileNetv3, the model size is

significantly reduced. The introduction of the CBAM

attention mechanism enhances the model's focus on the

target, improving its performance. At the same time, GIOU

and Focal Loss were adopted as loss functions suitable for

our dataset, effectively improving the model's localization

accuracy. The effectiveness and feasibility of this method

were validated through experiments. The experimental

results show that the improved YOLO-MCG model achieves

a maximum mAP of 97.6%, which is 0.9% higher than the

baseline model, with the number of parameters reduced to

56% and the computational load reduced to 44% of the

original model. This study focuses only on one-dimensional

barcodes and does not include various types of QR codes.

Future work will explore an algorithm model capable of

efficiently and simultaneously detecting multiple types of

barcodes in real time.

REFERENCES

[1] K. Liu, Y. R. Bi and D. Liu, “Internet of Things based acquisition

system of industrial intelligent bar code for smart city applications,”

Comput. Commun., vol. 150, pp. 325-333, 2020, doi:

10.1016/j.comcom.2019.11.044.

[2] S. H. Bach, P. B. Khoi, and S. Y. Yi, “Application of QR code for

localization and navigation of indoor mobile robot,” IEEE Access, vol.

11, pp. 28384-28390, 2023, doi:10.1109/ACCESS.2023.3250253.

[3] H. Zheng, Z. Y. Guo, C. Liu, X Li, T. Y. Wang, C. H. You, “Blind

deblurring of QR code using intensity and gradient prior of positioning

patterns,” Vis. Comput., vol. 40, pp. 441-455, 2024.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1109/ACCESS.2023.3250253

[4] H. P. Liu, “Improve the quality of barcode service inspection work,”

Bar Code Info. Sys., vol. 4, pp.36-37, May. 2023.

[5] Z. Y. Guo, S. Y. Wang, Z. H. Zheng, K. Sun, “Printer source

identification of quick response codes using residual attention network

and smartphones,” Eng. Appl. Artif. Intell., vol. 131, pp. 107822, 2024.

[6] H. Yang, L. Z. Chen, Y. F. Chen, Y. Lee, and Z. P. Yin, “Automatic

barcode recognition method based on adaptive edge detection and a

mapping model,” J. Electron. Imaging, vol.25, no. 5, Sep. 2016, doi:

10.1117/1.JEI.25.5.053019.

[7] E. I. Ershov, A. P. Terekhin, and D. P. Nikolaev, “Generalization of

the fast hough transform for three-dimensional images,” J. Commun.

Technol. Electron., vol. 63, pp. 626-636, 2018.

[8] Y. H. Xie, J. Shen, and C. D. Wu, “Robust Object Tracking Using

Affine Transformation and Convolutional Features,” IEEE Access,

vol.7, pp. 182489-182498, Dec. 2019.

[9] C. Creusot, A. Munawar, “Real-time barcode detection in the wild,”

in Proc. IEEE Winter. Conf. Appl. Comput. Vis. (WACV), Waikoloa,

HI, USA, Jan 2015, pp.239-245, doi:10.1109/WACV.2015.39.

[10] D. Kalpita, S. Ritesh, K. Mahantapas, N. Mita, and D. Nibaran,

“Natural scene text localization and detection using MSER and its

variants: a comprehensive survey,” Multimed. Tools Appl. Vol. 83, pp.

55773-55810, 2024.

[11] C. Creusot, A. Munawar, “Low-computation egocentric barcode

detector for the blind,” in Proc. IEEE Int. Conf. Image Process. (ICIP),

Phoenix, Arizona, USA, Sep 2016, pp.25-28,

doi:10.1109/ICIP.2016.7532881.

[12] L. Teplyakov, L. Erlygin, and E. Shvets. “Lsdnet: Trainable

modification of lsd algorithm for real-time line segment

detection,” IEEE Access, vol. 10, pp. 45256-45265, 2022,

doi:10.1109/ACCESS.2022.3169177.

[13] M. Katona, P. Bodnár, and L. G. Nyúl, “Distance transform and

template matching based methods for localization of barcodes and QR

codes,” Comput. Sci. Inf. Syst., vol. 17, no. 1, pp. 161-179, 2020,

doi:10.2298/CSIS181011020K.

[14] J. W. Yi, Y. B. Xiao, “Efficient localization of multitype barcodes in

high-resolution images,” Math. Prob. Eng., vol. 2022, pp. 1-10, Mar.

2022. doi:10.1155/2022/5256124.

[15] K. Alex, S. Ilya, and E. H. Geoffrey, “Imagenet classification with

deep convolutional networks,” in Proc. 25th Int. Conf. Neural Inf.

Process. Syst., Granada, Spain, Dec 2011, pp. 1097–1105.

[16] S. Q. Ren, K. M. He, R Girshick, and J. Sun, “Faster r-cnn: towards

real-time object detection with region proposal networks,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun.

2016, doi: 10.1109/TPAMI.2016.2577031.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: unified, real-time object detection,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, Nevada, USA,

May 2016, pp. 779-788, doi:10.1109/CVPR.2016.91.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and

A. C. Berg, “Ssd: single shot multibox detector,” in Proc. Eur. Conf.

Comput. Vis. (ECCV), Amsterdam, Netherlands, Dec. 2016, pp. 21-

37, doi:10.1007/978-3-319-46448-0_2.

[19] Z. Y. Guo, H. Zheng, C. H. You, X. H. Xu, X. B. Wu, Z. H. Zheng, J.

P. Ju, “Digital forensics of scanned QR code images for printer source

identification using bottleneck residual block,” Sensors, val. 20, no.

21, 2020.

[20] H. Zhang, G. L. Shi, L. Liu, M. Zhao, and Z. Liang, “Detection and

identification method of medical label barcode based on deep

learning,” in Proc. 2018 8th Int. Conf. Image Process. Theory Tools

Appl. (IPTA), Madrid, Italy, Nov. 2018, pp. 1-6,
doi:10.1109/IPTA.2018.8608144.

[21] J. J. Li, Q. Zhao, X. Tan, Z. X. Luo, and Z. Tang , “Using deep

convnet for robust 1D barcode detection,” Intell. Syst. Interact. Appl.:

Proc. 2nd Int. Conf. Intell. Interact. Syst. Appl. (IISA2017), Suzhou,

China, Nov. 2018, pp. 261-267, doi:10.1007/978-3-319-69096-4_36.

[22] L. C. Qiao, J. L. Wang, B. H. Gao, X. G. Yang, W. T. Feng, Y. X.

Zhang, Y. Wang, H. Liu, and W. Liu, “Efficient 1D barcode

localization method for imagery shipping label using deep learning

models,” in Proc. 2021 12th Int. Symp. Parallel Archit. Algorithms

Program. (PAAP), Xi'an, China, Dec. 2021, pp. 119-124,
doi:10.1109/PAAP54281.2021.9720443.

[23] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Las Vegas, Nevada, USA, Jun. 2016, pp. 770-778,

doi:10.1109/CVPR.2016.90.

[24] W. T. Wan, C. F. Li, H. B. Zhu, Y. R. Tao, “Two-dimensional barcode

positioning algorithm of lightweight CenterNet network,” J. Electron.

Meas. Instrum., vol. 36, no. 5, pp. 128-135, 2023.

[25] Y. Z. Xiao, J. X. Jiang, and K. Xu, “An integrated deep-learning and

geometric approach to 1D barcode,” in Proc. 4th Int. Workshop

Pattern Recognit., Nanjing, China, Jul. 2019, pp. 4-9,

doi:10.1117/12.2540364.

[26] X. B. Yue, L. Meng, “YOLO-SM: A Lightweight Single-Class Multi-

Deformation Object Detection Network,” IEEE Trans. Emerg. Topics

Comput. Intell., vol. 8, no. 3, pp. 2467 – 2480, June 2024,

doi:10.1109/TETCI.2024.3367821.

[27] H. T. Do, V. C. Pham, “Deep Learning Based Goods Management in

Supermarkets,” J. Adv. Inf. Technol., vol.12, no. 2, pp. 164-168, May

2021.

[28] J. Redmon, A. Farhadi, “Yolov3: An incremental improvement.

Computer Vision and Pattern Recognition,” in Proc. Comput. Vis.

Pattern Recognit. (CVPR), Salt Lake City, Utah, USA, Apr. 2018, pp.

1-6, doi:10.48550/arXiv.1804.02767.

[29] R. Brylka, U. Schwanecke, and B. Bierwirth, “Camera based barcode

localization and decoding in real-world applications,”in Proc. 2020

Int. Conf. Omni-Layer Intell. Syst., Barcelona, Spain, Aug. 2020, pp.1-

8, doi:10.1109/COINS49042.2020.9191416.

[30] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “Yolov4: Optimal

speed and precision of object detection,” in Proc. Comput. Vis.

Pattern Recognit. (CVPR), Seattle, USA, Jun. 2020.

[31] A. Howard, M. Sandler, B. Chen, W. J. Wang, L. C Chen, M. X.

Tan, G. Chu, V. Vasudevan, Y. K. Zhu, R. M. Pang, H. Adam, and Q.

Le, “Searching for mobilenetv3,” in Proc. IEEE Int. Conf. Comput.

Vis. (ICCV), South Korea, Oct. 2019, pp.1314-1324,

doi:10.1109/ICCV.2019.00140.

[32] F. Chollet, “Xception: Deep learning with depthwise separable

convolutions.” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Honolulu, HI, USA, July 2017, pp. 1251-1258.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://doi.org/10.1117/1.JEI.25.5.053019
http://doi.org/10.1117/1.JEI.25.5.053019
https://doi.org/10.1109/WACV.2015.39
https://doi.org/10.1109/TPAMI.2016.2577031
https://arxiv.org/search/cs?searchtype=author&query=Liu,+W
https://arxiv.org/search/cs?searchtype=author&query=Anguelov,+D
https://arxiv.org/search/cs?searchtype=author&query=Erhan,+D
https://arxiv.org/search/cs?searchtype=author&query=Szegedy,+C
https://arxiv.org/search/cs?searchtype=author&query=Reed,+S
https://arxiv.org/search/cs?searchtype=author&query=Fu,+C
https://arxiv.org/search/cs?searchtype=author&query=Berg,+A+C
https://ieeexplore.ieee.org/author/37657010100
https://ieeexplore.ieee.org/author/37086593351
https://ieeexplore.ieee.org/author/37986098300
https://ieeexplore.ieee.org/author/37086595635
https://ieeexplore.ieee.org/author/37086592276
https://doi.org/10.1109/IPTA.2018.8608144
https://link.springer.com/chapter/10.1007/978-3-319-69096-4_36#auth-Jianjun-Li
https://link.springer.com/chapter/10.1007/978-3-319-69096-4_36#auth-Qiang-Zhao
https://link.springer.com/chapter/10.1007/978-3-319-69096-4_36#auth-Xu-Tan
https://link.springer.com/chapter/10.1007/978-3-319-69096-4_36#auth-Zhenxing-Luo
https://link.springer.com/chapter/10.1007/978-3-319-69096-4_36#auth-Zhuo-Tang
https://ieeexplore.ieee.org/author/37089228966
https://ieeexplore.ieee.org/author/37089228347
https://ieeexplore.ieee.org/author/37089226347
https://ieeexplore.ieee.org/author/37089228624
https://ieeexplore.ieee.org/author/37089225424
https://ieeexplore.ieee.org/author/37089228548
https://ieeexplore.ieee.org/author/37089228548
https://doi.org/10.1109/PAAP54281.2021.9720443
https://ieeexplore.ieee.org/author/37085360867
https://ieeexplore.ieee.org/author/37088458974
https://ieeexplore.ieee.org/author/37085368998
https://ieeexplore.ieee.org/author/37407525400
https://doi.org/10.1109/CVPR.2016.90
https://www.spiedigitallibrary.org/profile/Yunzhe.Xiao-4204142
https://doi.org/10.1117/12.2540364
https://doi.org/10.1109/TETCI.2024.3367821
https://arxiv.org/search/cs?searchtype=author&query=Redmon,+J
https://arxiv.org/search/cs?searchtype=author&query=Farhadi,+A
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1109/COINS49042.2020.9191416
https://arxiv.org/search/cs?searchtype=author&query=Bochkovskiy,+A
https://arxiv.org/search/cs?searchtype=author&query=Wang,+C
https://arxiv.org/search/cs?searchtype=author&query=Liao,+H+M
https://ieeexplore.ieee.org/author/37086564953
https://ieeexplore.ieee.org/author/37265732100
https://ieeexplore.ieee.org/author/37086581992
https://ieeexplore.ieee.org/author/37085846482
https://ieeexplore.ieee.org/author/37085346404
https://ieeexplore.ieee.org/author/37087230954
https://ieeexplore.ieee.org/author/37087230954
https://ieeexplore.ieee.org/author/37088212167
https://ieeexplore.ieee.org/author/37086570082
https://doi.org/10.1109/ICCV.2019.00140

[33] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks.” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake

City, USA, June 2018, pp. 7132-7141.

[34] K. KC, Z. D. Yin, M. Y. Wu, and Z. L. Wu, “Depthwise separable

convolution architectures for plant disease classification,” Comput.

Electron. Agr., vol. 165, pp. 104948-104954, Oct. 2019.

[35] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “Cbam: convolutional

block attention module,” in Proc. Eur. Conf. Comput. Vis. (ECCV),

Munich, Germany, Sep. 2018, pp. 3-19, doi:10.1007/978-3-030-

01234-2_1.

[36] H. Rezatofighi, N. Tsoi; J. Y. Gwak, A. Sadeghian, I. Reid, and S.

Savarese, “Generalized intersection over union: a metric and a loss for

bounding box regression,” in Proc. Comput. Vis. Pattern Recognit.

(CVPR), Berkeley, California, USA, Jun. 2019, pp. 658-666,

doi:10.1109/CVPR.2019.00075.

[37] T. Y. Lin, P. Goyal, R. Girshick, K. M. He, and P. Dollár, “Focal loss

for dense object detection," in Proc. IEEE Int. Conf. Comput. Vis.

(ICCV), Venice, Italy, Aug. 2017, pp. 2980-2988.

[38] L. W. Tao, M. J. Dong, and C. Xu, “Dual focal loss for calibration,”
in Proc. Int. Conf. Mach. Learn. (ICML), Hawaii, USA, May 2023,

pp. 33833-33849.

[39] I. Loshchilov, F. Hutter, “Decoupled Weight Decay Regularization,”

in Proc. Int. Conf. Learn. Represent. (ICLR), New Orleans, USA,

May 2019.

[40] R. Wudhikarn, P. Charoenkwan, and K. Malang, “Deep learning in

barcode recognition: A systematic literature review,” IEEE Access,

vol. 10, pp. 8049-8072, Jan. 2022.

[41] K. Ravpreet, S. Sarbjeet, “A comprehensive review of object detection

with deep learning,” Digit. Signal. Process., vol. 132, pp. 103812-

103829, Jan. 2023.

CHAOCHAO LI received the B.S. degree

from Xinzhou Normal University, China, in

2022. She is currently pursuing the master’s

degree in information and communication

engineering at the Beijing Institute of Graphic

Communication, Beijing, China. She current

research interests include internet of things,

image processing.

QINGTAO ZENG received the Ph.D. degree

from Beijing University of Posts and

Telecommunications, China, in 2015. He is

currently a faculty member with the School of

Information Engineering, Beijing Institute of

Graphic Communication, and serves as the

Deputy Director of the Publication Data Asset

Evaluation Laboratory. His research interests

include variable information digital printing control systems and high-speed

printing image processing.

LIKUN LU received the Master's degree

from Beijing University of Technology,

China, in 2014. He is currently an

Associate Professor with the School of

Information Engineering, Beijing

Institute of Graphic Communication. His

research interests include inkjet digital

printing technology, information

processing technology, and embedded

systems.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://link.springer.com/chapter/10.1007/978-3-030-01234-2_1#auth-Sanghyun-Woo
https://link.springer.com/chapter/10.1007/978-3-030-01234-2_1#auth-Jongchan-Park
https://link.springer.com/chapter/10.1007/978-3-030-01234-2_1#auth-Joon_Young-Lee
https://link.springer.com/chapter/10.1007/978-3-030-01234-2_1#auth-In_So-Kweon
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://ieeexplore.ieee.org/author/37087010759
https://ieeexplore.ieee.org/author/37087231155
https://ieeexplore.ieee.org/author/37085703158
https://ieeexplore.ieee.org/author/37086284079
https://ieeexplore.ieee.org/author/37282640200
https://ieeexplore.ieee.org/author/37298502600
https://ieeexplore.ieee.org/author/37298502600
https://doi.org/10.1109/CVPR.2019.00075
https://arxiv.org/search/cs?searchtype=author&query=Lin,+T
https://arxiv.org/search/cs?searchtype=author&query=Goyal,+P
https://arxiv.org/search/cs?searchtype=author&query=Girshick,+R
https://arxiv.org/search/cs?searchtype=author&query=He,+K
https://arxiv.org/search/cs?searchtype=author&query=Doll%C3%A1r,+P
https://arxiv.org/search/cs?searchtype=author&query=Tao,+L
https://arxiv.org/search/cs?searchtype=author&query=Dong,+M
https://arxiv.org/search/cs?searchtype=author&query=Xu,+C
https://arxiv.org/search/cs?searchtype=author&query=Loshchilov,+I
https://arxiv.org/search/cs?searchtype=author&query=Hutter,+F

