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ABSTRACT With the advancement of Internet of Things (IoT) technology, barcode automatic identification 

systems have played a crucial role. An improved YOLO-MCG barcode localization algorithm was proposed 

to address the problems of interference, inefficiency, and poor real-time performance encountered by 

traditional barcode detection methods in complex backgrounds and field environments. First, to reduce the 

number of parameters and computational complexity, the MobileNetv3-small network is used to replace the 

backbone network. Second, a Convolutional Attention Mechanism Module (CBAM) is introduced to enhance 

the perception ability of target information and improve the detection performance of the model. In addition, 

Generalized Intersection over Union (GIOU) and Focal Loss are used as loss functions to enhance the 

localization precision of the model. The experiments show that the improved model achieves an mAP@0.5 

of 97.8%, Precision of 96.4%, and Recall of 93.9%. The amounts of parameters are reduced to 35% of Yolov8, 

the amount of computation load is reduced to 25% of Yolov8, and the FPS is 105. The improved model can 

be used on resource-constrained mobile devices while meeting real-time requirements. 

INDEX TERMS Barcode, positioning, YOLO, lightweight 

I. INTRODUCTION   

The development of the Internet of Things (IoT) [1] 

technology has enabled the real-time collection of vast 

amounts of data.  However, the effective management and 

utilization of these data presents a challenge. In this context, 

the application of barcode detection technology has a 

significant potential. By identifying barcodes on items, IoT 

systems can benefit from convenient and reliable means of 

identification, enabling rapid recognition, localization, and 

tracking of items from production to sales to use, 

facilitating automated data recording and management. 

Furthermore, barcode detection contributes to reducing the 

time required for data collection in various sectors such as 

commerce, healthcare, transportation, and manufacturing, 

enabling fast barcode recognition and localization on 

embedded devices and mobile platforms. Moreover, the 

advent of QR codes [2,3] has been inspired by the 

development of barcodes. Both barcodes and QR codes 

now coexist in various aspects of daily life. Currently, in 

China, over 500,000 enterprises and more than 50 million 

products are equipped with barcode labels, with a barcode 

adoption rate exceeding 95% [4]. Therefore, ensuring that 

automatic identification systems can quickly and 

accurately read barcode information relies crucially on 

precise and real-time barcode localization algorithms. 

Camera-based barcode detection systems are primarily 

applied in the IoT, and thus, they must be efficient and 

accurate under all challenging environmental conditions 

and complex scenarios. In complex environments, the 

visibility of barcodes is significantly affected by different 

lighting conditions such as strong light, shadows, and 

reflections, as well as the varying materials carrying the 
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barcodes [5]. Moreover, during transmission, barcodes 

may experience geometric distortion, which can further 

affect detection. For instance, when scanning barcodes 

printed with ink on copper plate paper, bright light and the 

paper’s texture may render parts of the barcode invisible, 

resulting in incomplete or failed localization; in the 

automated manufacturing of lithium battery electrodes, 

barcodes are often printed on damaged or scratched 

electrodes to record errors for subsequent processes. 

However, when the barcode and the background color are 

the same, the localization becomes difficult, making 

decoding impossible. Therefore, an accurate barcode 

localization solution is essential to address these issues. 

In addition, another major challenge faced by barcode 

localization is how to achieve fast and real-time 

localization. Barcode localization algorithms are typically 

applied in scenarios that require quick responses, such as 

in automation systems on production lines, logistics 

management, retail checkout, and more. In these scenarios, 

real-time performance is crucial. If the algorithm is too 

complex, the consumption of computational resources can 

lead to processing delays, affecting system efficiency and 

user experience. Additionally, many barcode detection 

systems now run on embedded or mobile devices, which 

typically have very limited computational resources. Using 

traditional deep learning models may consume too many 

computational resources, causing the device to run slowly 

or even crash. Lightweight designs can enable efficient 

barcode recognition on limited hardware resources. Many 

existing barcode localization algorithms use deep learning 

or traditional computer vision techniques, which often 

require complex computational models and substantial 

computational resources. This leads to bottlenecks in 

processing speed and real-time performance, especially on 

resource-constrained embedded devices such as mobile 

platforms and industrial equipment. 

In conclusion, this paper chooses the YOLO algorithm 

as our baseline and proposes an improved lightweight 

YOLO barcode localization model. The main contributions 

of this algorithm are as follows: 

1. We adopts the YOLO model as the basic framework 

and replaces the backbone network with the MobileNetv3 

network to reduce computational complexity and shorten 

detection time. 

2. The introduction of the Convolutional Attention 

Mechanism Module (CBAM) improves the precision of 

barcode recognition. 

3. Using Generalized Intersection over Union (GIOU) 

and Focal Loss as loss functions enhances the model's 

localization precision. 

The rest of the paper is organized as follows: Section 2 

describes related work, Section 3 introduces the basic 

theoretical model and improved model of this study, 

Section 4 introduces experimental parameters and 

evaluation metrics, Section 5 presents the experimental 

results verifying the performance of the proposed 

algorithm. Section 6 provides a discussion, and Section 7 

concludes the paper. 

II. Related work 

Scholars, both domestically and internationally, have 

proposed various solutions to the barcode localization 

problem. The current barcode localization methods are 

divided into those based on traditional digital image 

processing and those based on deep learning. Image- 

processing-based barcode localization algorithms typically 

involve preprocessing the image using operations such as 

grayscale conversion, binarization, and filtering to reduce 

irrelevant information interference. Subsequently, 

morphological operations are applied to enhance barcode 

region features for coarse localization and obtain the 

barcode's position. Finally, fine localization is achieved 

using edge detection [6], Hough transform [7], or affine 

transformation algorithms [8]. For example, Creusot et al. 

[9] proposed a Maximum Stable Extremal Region (MSER) 

[10] algorithm, which initially extracts stable extremal 

regions using MSER technology from the image as 

candidate barcodes. Then, these candidate regions are 

clustered in the Hough space for barcode detection and 

recognition. However, the algorithm's performance is poor 

when the image is blurry. Creusot et al. [11] addressed the 

blurring problem of the MSER algorithm by using the Line 

Segment Detector (LSD) algorithm [12], thus improving 

detection precision and real-time performance. Katona et al. 

[13] proposed two methods for barcode localization: one 

involves binary thresholding followed by template 

matching, and the other uses edge detection followed by 

distance transformation. However, these two methods can 

only be used in specific scenarios. Yi et al. [14] proposed 

a barcode localization method suitable for high-resolution 

images with multiple barcodes. Firstly, edge features of the 

barcodes are extracted, then the barcode regions are 

annotated using bidirectional contour labeling. Finally, 

barcode regions are extracted through affine transformation, 

effectively improving the localization precision and speed. 

However, the complex preprocessing, edge detection 

algorithms, and feature matching processes make digital 

image processing-based methods time-consuming and less 

robust to changes in image background. 

In recent years, neural networks have made remarkable 

achievements in the field of computer vision, and 

corresponding research has been conducted on barcode 

detection algorithms based on deep learning [15]. Barcode 

localization is performed within the scope of object 

detection. Object detection methods can be divided into 

two major categories: region proposal-based object 

detection algorithms, such as faster region-based 

convolutional neural network(Faster R-CNN)[16], which 

first generate candidate regions or bounding boxes, and 
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then classify these candidate regions and perform bounding 

box regression, and single-stage object detection 

algorithms, such as you only look once(YOLO) [17] and 

single shot detection(SSD)[18], which directly complete 

object detection within a single stage without explicitly 

generating candidate regions. Convolutional neural 

networks after being trained on large datasets can extract 

robust features and have been applied in many important 

fields. Guo et al. [19] proposed an algorithm based on 

convolutional neural networks, which innovatively 

introduced the bottleneck residual block (BRB), achieving 

a higher recognition accuracy. Zhang et al. [20] used the 

SSD detection framework to locate barcodes, performed 

rotation correction, and then decoded them using a decoder, 

solving the positioning difficulties caused by distortion, 

dirt, and obstruction under harsh conditions. The above 

work was conducted in a simple background without 

considering background duplication. Li et al. [21] proposed 

a method to train a barcode detection model using Faster 

R-CNN framework in complex backgrounds and used an 

adaptive manifold (AM) filter for deblurring, finally, 

MSERs were used for barcode orientation detection. Qiao 

et al. [22] proposed a one-dimensional barcode localization 

method based on two deep learning models. Firstly, the 

Faster R-CNN model was used to automatically detect 

barcode regions, followed by using the ResNet-34 [23] 

model for barcode orientation calibration. Wan et al. [24] 

proposed a lightweight CenterNet network for 2D barcode 

localization, which enables faster and more accurate 

localization.  

Compared to other models, the YOLO model offers 

exceptionally high real-time performance, a simple 

structure, and fast detection speed. Xiao et al. [25] 

proposed a method that combines the YOLO object 

detection algorithm with the LSD image processing 

algorithm. They used LSD to precisely locate the barcodes 

outlined by YOLO, removing complex backgrounds, and 

achieved significant improvements in precision and speed. 

Yue et al. [26] proposed a YOLO-SM algorithm, which 

primarily addresses the barcode localization and detection 

problem under single-class and multiple-deformation 

conditions, achieving relatively good results. Do et al. [27] 

introduced a computer vision-based supermarket product 

management system using the YOLOv3[28] algorithm, 

effectively alleviating the inefficiency of barcode 

management in supermarkets. Robert et al. [29] combined 

the YOLOv3-tiny3l algorithm with the U-Net network to 

tackle issues with noisy, poorly exposed, and blurred 

barcode images encountered during truck loading in real-

world scenarios.  
Despite the significant performance of these methods, 

their model size and inference speed limit their practical 

application in the real world. In contrast, YOLO-based 

models are faster, have smaller model sizes, and are 

suitable for real-time inference. However, barcode 

detection performance remains relatively low, which is still 

an issue to be addressed. Therefore, we recreated a dataset 

that includes potential problematic cases mentioned above 

and modified the YOLO model to achieve a good balance 

in model performance. 

III. METHODOLOGY 

A. YOLO MODEL 

YOLO, short for "You Only Look Once," is an object 

detection algorithm. It employs a single-stage detection 

method by treating the entire detection process as a single 

neural network inference, enabling real-time object detection. 

Compared to two-stage detection methods, YOLO offers 

faster speed and higher efficiency because it does not require 

additional complex processing steps, making it more suitable 

for barcode detection and recognition scenarios. YOLO 

incorporates rotation, translation, concatenation, and other 

data augmentation techniques in data processing, effectively 

enhancing object detection performance. Compared to 

YOLOv3 and YOLOv4[30], YOLO's structure is further 

optimized for more accurate object detection. The YOLO 

network achieves higher detection precision and faster 

inference speed. 

YOLO can be divided into four parts: Input, Backbone, 

Neck, and Head. 

In the Input part, YOLO employs Mosaic data 

augmentation, adaptive anchor boxes, and adaptive image 

scaling methods. Mosaic randomly selects four images, 

chooses one of them as the background image, and then 

stitches the four augmented images together based on random 

scaling, cropping, and arrangement. Therefore, through 

Mosaic data augmentation, YOLO can increase the diversity 

of data during training, improve the model's robustness and 

generalization ability, thus enhancing the performance of 

object detection. 

The backbone part is primarily responsible for extracting 

features from input images. It utilizes the Focus module, 

Cross-Stage Partial Network (CSPNet), and Spatial Pyramid 

Pooling module (SPP). Before inputting the image into the 

backbone, the Focus module slices and merges the image to 

improve processing speed. CSPNet integrates gradient 

information into feature maps, alleviating the gradient 

vanishing problem. The SPP module addresses image 

distortion in cropping and scaling operations by fusing 

information from feature maps of different sizes. 

The neck part is responsible for multi-scale feature fusion 

of feature maps and passing these features to the prediction 

layer. YOLO uses feature pyramid network (FPN) and path 

aggregation network (PANet) for feature fusion. FPN merges 

feature information through top-down up-sampling, while 

PANet passes features from bottom to top. Through the 

feature fusion of FPN and PANet, the representation 

capability of features and the detection performance for 

objects of different sizes are further improved. The network 
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architecture of YOLO is shown in Figure 1. The three boxes 

at the bottom of the figure depict the details of the backbone, 

neck, and detection head, representing the overall architecture 

of the YOLO model. The remaining four images show the 

details of the different colored blocks from the three sub-

figures below. 

 

FIGURE 1. YOLO architecture diagram. 

B. IMPROVEMENTS IN THE YOLO NETWORK 

STRUCTURE 

1) MOBILENETV3-SMALL 

In order to achieve fast and accurate localization with limited 

computational resources, and to meet the application 

requirements in mobile devices and complex environments, 

we replace the backbone network of YOLO with the 

MobileNetv3-Small network [31]. MobileNetv3-Small, 

released by Google in 2019, is a lightweight convolutional 

neural network architecture. Through a more efficient network 

structure and lightweight design, it significantly reduces the 

computational load of the model, thereby enhancing real-time 

detection speed. This improvement is necessary for 

applications that require barcode recognition on embedded or 

mobile devices. For instance, in warehouses, robots can 

efficiently scan and identify goods without consuming 

excessive computational resources. 

The main architecture of MobileNetv3 consists of a series 

of bneck blocks, which include depth-wise separable 

convolution [32], inverted residual connection and channel 

attention mechanism (SE) [33]. 

The depth-wise separable convolution consists of two 

processes: depth-wise convolution, where each channel 

corresponds to a convolutional kernel in the channel direction, 

and pointwise convolution, where a normal 1x1 convolution 

outputs the specified number of channels. Depth-wise 

convolution can more effectively extract features, and 

pointwise convolution can combine features from different 

channels, enhancing feature representation. At the same time, 

it reduces the number of parameters, lowering the risk of 

overfitting. The implementation process of depth-wise 

separable convolution is shown in Figure 2. 

 

FIGURE 2. Implementation process of depth-wise separable 

convolution. The left half of the figure represents the depthwise 

convolution process, while the right half represents the pointwise 

convolution process. 

For the l-th layer of a network with a three-dimensional 

input tensor 
lx , the input to depth-wise separable 

convolution is denoted as 
l l ll H W Dx R   . Here, , ,l l lH W D  

represent the height, width, and depth of the input, 

respectively. Selecting an element ( , , )l l li j d  from the input 
lx , where ( , , )l l li j d  specifies any specific triplet element 

indicating it resides in the d-th channel at position ( , )l li j . The 

convolution is performed with D filters ,
lH W D Df f R    , 

each of size H W . According to reference [34], the 

definition of depth-wise separable convolution is: 

       1 1 1 1, ,, , , ,
0 0 0

l l l l

H W D
l

i j di j d i i j j d
i j d

y f x+ + + ++ +
= = =

=      (1) 

where 1 1, ,l l

l

i i j j d
x + ++ +

refers to the elements of the input

1 1( , , )l li i j j d+ ++ + .  

SE mainly consists of two parts: Squeeze and Excitation, 

which are used to enhance the model's focus on input features 

for better differentiation between different targets and 

backgrounds. 
The features first undergo squeeze, which is a global 

average pooling process, aggregating feature maps of the 

input feature map , H W CU U R   across spatial dimensions 
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H W to generate channel-wise statistics , Cz z R . After 

compression, the feature map is reduced to a 1 1 C   vector. 

Essentially, the statistics
cz are generated by reducing the 

spatial size of U along the channel dimension. According to 

reference [33], The definition of squeezing is： 

 

1 1

1
( ) ( , )

H W

c sq c c

i j

z F u u i j
H W = =

= =


        (2) 

where
cz refers to c-th statistic, 

cu refers to feature map of the 

c-th channel, with a size of H W , and ( , )i j refers to value 

at that position on the feature map. 
The Excitation operation models the global descriptor 

vector through two fully connected layers to learn the weights 
for each channel. These weights are normalized by an 
activation function to ensure their sum is 1. Then, they are 

multiplied element-wise with the original feature map to 
enhance the relevant features of each channel. According to 

reference [33], the definition of Excitation is: 

   2 1( , ) ( ( , )) ( ( ))exs F z W g z W W W z  = = =   (3) 

where δ refers to ReLU activation function, and σ refers to 

sigmoid activation function. 1 2,
C C

C C
r rW R W R
 

  ,these are the 
weight matrices of two fully connected layers. r is the 
dimensionality reduction factor. The final output of the block 

is obtained by rescaling the transformation output U with the 
activations, the implementation process of SE is as shown in 
Figure 3. According to reference [33], the definition of Scale 
is: 

( , )c scale c c c cx F u s s u= =           (4) 

where 1 2| , ,..., |cx x x x=  ,
cx  is the feature map of a 

certain feature channel in x  , ( , )scale c cF u s   refers to 

channel-wise multiplication between the feature map 
H W

cu R  and the scalar cs . 

 

FIGURE 3. SE conceptual diagram 

The bneck block in MobileNet uses an inverted residual 

structure, which means it first upsamples the dimensions using 

a 1×1 convolution, then performs feature extraction using 3×3 

depth-wise separable convolution, and finally downsamples 

the dimensions using a 1×1 convolution. This structure is 

opposite to the residual structure of Residual Network 

(ResNet), hence it is called an inverted residual structure. The 

specific implementation process of the MobileNetv3 bneck is 

shown in Figure 4.  

 

FIGURE 4. The bneck block in MobileNetv3-small. 

2) CBAM 

There are many irrelevant features in barcode images that can 

affect the robustness of detection models. To help the model 

focus better on the useful features in the image, we attempt to 

apply weighting to the input feature map to enhance the 

important regions. Therefore, we introduced the CBAM [35]. 

CBAM enhances the key information in the barcode image 

(such as the black and white stripes of the barcode) by 

weighting both the channels and the spatial dimensions of the 

feature map, thereby improving the accuracy of barcode 

recognition and preventing missed detections. CBAM is a 

simple yet effective attention module, which consists of a 

channel attention module (CAM) and a spatial attention 

module (SAM). It can be seamlessly integrated into CNN 

architectures and trained end-to-end. The structure of the 

convolutional attention mechanism is shown in Figure 5.  

 

FIGURE 5. CBAM structure diagram, consisting of the channel attention 

(CA) module and spatial attention (SA) module. 

The CAM mainly extracts features from the channels. The 

channel attention module performs global average pooling 

and global max pooling on the input features, reducing the 

dimensionality across channels. Then, a shared multi-layer 
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perceptron generates the channel attention weights. This helps 

the network focus more on important channels (such as 

barcode lines, background noise, etc.), thereby extracting 

more meaningful features. According to reference [35], the 

specific calculation formula for the Channel Attention module 

is： 

1 0 1 0 max

( ) ( ( ( ) ( ( ))))

( ( ( )) ( ( )))

c

c c

avg

M F MLP AvgPool F MLP MaxPool F

W W F W W F





= +

= +

  (5) 

where the input is a feature H W CF R   , σ refers to sigmoid 

activation function, and MLP refers to a multi-layer 

perceptron, 
0 1,W W are two weight matrices,

/ /

0 1,C r C C C rW R W R   . 

The SAM primarily performs feature extraction in the 

spatial domain. The spatial attention module takes the results 

from the channel attention module, applies max pooling and 

average pooling to generate two channel descriptions of size 

1×H×W, and then stacks the tensors together via a fully 

connected operation. Finally, a convolution operation and 

sigmoid activation function are used to obtain the weight 

coefficients. This fusion of channel and spatial dimensions 

helps better capture the position and spatial relationships of 

the targets (focus on the area where the barcode is located and 

suppress background noise). According to reference [35], the 

specific calculation formula for the Spatial Attention module 

is: 

    
7 7

7 7

max

( ) ( ([ ( ); ( )]))

( [ ; ])

s

s s

avg

M F f AvgPool F MaxPool F

f F F









=

=

   (6) 

where
7 7f 

represents a convolution operation with a filter 

size of 7x7, and σ denotes the sigmoid function.  

In the Neck layer of the YOLO model, the CBS module 

downsamples the feature map by changing the stride of the 

convolution operation, capturing low-level local features. 

Additionally, during the FPN (top-down) upsampling 

process, the resolution of the feature map is gradually 

restored, maintaining a high resolution. In the PAN (bottom-

up) stage, after adding CBAM, the feature maps at each layer 

are enhanced with high-level semantic information, 

improving multi-scale object detection. By utilizing the 

adaptive channel and spatial attention mechanism, CBAM 

enhances the network's ability to express these low-level 

features. Therefore, adding CBAM after CBS effectively 

improves the model's understanding and representation of 

high-level semantic information, which can reduce the 

missed detection rate for barcodes that are farther from the 

camera. This article adds CBAM modules to the four 

branches of the neck network to help the model better 

capture target features, thereby improving the model's 

performance and robustness. The improved model is called 

YOLO-MCG, and a simplified overview is shown in Figure 

6. 

3) IMPROVEMENT OF LOSS FUNCTION 

 

FIGURE 6. YOLO-MCG architecture diagram (omitting description of 

modules shared with YOLO model). 

In the YOLO model, we use the GIOU loss function to 

replace the original CIOU loss. Compared to CIOU, the 

GIOU function solves the issue where IOU fails to correctly 

reflect the intersection when the predicted box and the 

ground truth box do not overlap. GIOU not only focuses on 

the overlapping area but also considers other non-

overlapping regions. Therefore, GIOU can better reflect the 

degree of overlap between the two, improving both the 

training speed and inference accuracy. In this paper, we 

propose a method that combines the GIOU loss function [36] 

with focal loss [37] to replace the original CIoU loss function, 

thus optimizing the bounding box loss. 

According to reference [36], the definition of the GIOU 

loss function as follows: 

| |

| |

gt

gt

B B
IoU

B B


=



                 (8)    

| \ ( |

| |

gtC B B
GIOU IOU

C


= −

            (9)

| \ |
1 1

| |

gt

GIoU

C B B
L GIoU IOU

C


= − = − +

  (10) 

where ( , , , )gt gt gt gt gtB x y w h=   is the ground-truth, 

( , , , )B x y w h=  is the predicted box, and C is the minimum 

enclosing box of B and gtB . 
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The use of the GIOU loss function enhances the accuracy 

and robustness of the barcode localization algorithm. By 

optimizing the relationship between the shape, size, and 

position of the bounding boxes, GIOU improves the 

localization accuracy, reduces interference from occlusion 

and background, and also enhances the stability of training 

and the model's convergence speed. For barcodes that may 

be occluded or distant, GIOU can better adapt to these 

characteristics, ensuring efficient and accurate localization 

in various complex scenarios. 

Focal Loss is a loss function designed to address the 

problem of class imbalance, particularly in object detection 

tasks. It aims to tackle the imbalance between a large number 

of background class samples and a small number of target 

class samples in object detection. 

In the standard cross-entropy loss function, all samples are 

weighted equally, which can cause the model to focus 

excessively on easily classifiable background samples when 

they are abundant, while neglecting the fewer target class 

samples. Focal Loss adjusts the weights of the loss function to 

prioritize difficult-to-classify samples, effectively addressing 

the problem of class imbalance. 

According to reference [37], the classic computation 

formula for Focal Loss is: 

               ( ) (1 ) log( )t tFL p p p= − −          (11) 

               
, 1

1 , 0
t

p y
p

p y

=
= 

− =

               (12) 

where {1,0}y specifies the ground-truth class and [0,1]p

denotes the estimated probability for the class with label y = 

1. γ is the tunable focusing parameter. 

According to reference [38], we rewrite the formula for 

Focal Loss as follows: 

 

1

( , ) (1 ( )) log ( )
K

FL i i i

i

L x y y q x q x

=

= − −        (13) 

where x is the input sample, y is the ground truth label, and 

( )iq x is the model's predicted probability for the input sample 

x, representing the probability that sample xxx belongs to 

class i. (1 ( ))iq x − is the scaling factor, where γ is the tunable 

focusing parameter. log ( )iq x is the cross-entropy loss for 

class i. When γ= 0, the focal loss reduces to the traditional 

cross-entropy loss 
1

( , ) log ( )
K

CE i i

i

L x y y q x
=

= − . As γ 

increases, the impact of the modulation parameter gradually 
becomes larger. By combining GIOU with focal loss, the 
model's detection performance can be more effectively 
improved, and the accuracy of localization is enhanced, 
especially in complex environments where barcodes may be 
partially obscured or distorted due to perspective issues. For 

example, in warehouse item stacking, barcodes may not be 
fully visible, but the combination of GIOU and focal loss 
ensures accurate localization and identification of barcodes 

even in such situations. This makes the model suitable for 

applications requiring precise localization and efficient 
scanning, such as automated warehousing systems, smart 
logistics, and unmanned retail. 

4) OPTIMIZATION ALGORITHMS  

The training process of deep learning models is an 
optimization process aimed at finding optimal parameters that 
minimize the loss function. Optimization algorithms 
continuously adjust model parameters to gradually decrease 
the loss function, thereby improving model performance. 

Using appropriate optimization algorithms in YOLO can 
accelerate convergence, reduce training time, and efficiently 
find global optimal solutions to enhance detection accuracy 
and training stability. 

SGD (Stochastic Gradient Descent) is a gradient-based 
optimization algorithm that updates parameters by computing 

gradients for each sample or batch. However, SGD updates 
using single samples or batches are prone to noise interference 
and high fluctuations. Its stochastic nature can lead to getting 
trapped in local minima, limiting its ability to escape them. 

To address these problems, AdamW[39] is employed for 
model optimization in this study. AdamW utilizes separate 

adaptive learning rates for different parameters based on their 
first and second moment estimates of gradients. It incorporates 
momentum to accelerate gradient descent and independently 
manages weight decay, applying it only to the model's weight 
parameters. Compared to SGD, AdamW effectively balances 
the speed and direction of parameter updates during model 

training, mitigating the risk of local minima and significantly 
improving convergence speed. Algorithm 1 provides a 
detailed description of the construction process of the Adam 
algorithm. 

Algorithm 1 AdamW 

Input: α(lr),
1  00.9,

2  00.999(exponential decay rate), ε0
810− ,λ(weight decay factor) 

Initialize: t←0(time step), 0t =  (parameter vector), 

0 0tm =   (first moment vector),
0 0tv =   (second moment 

vector), 0t = (schedule multiplier) 

Repeat: 

t←t+1 

1 1( ) ( )t t tf SelectBatch − −   

1( )t t tg f  −  

1 1 1 2(1 )t tm m g − + −  
2

2 1 2(1 )t t tv v g − + −  

1/ (1 )t
t tm m  −  

2/ (1 )t
t tv v  −  

( )t SetScheduleMultiplier t   

1 1( / ( ) )t tt t t t tm v     − − − + +  

until stopping criterion is met 

return optimized parameters t  

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3511125

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 
 

IV. MATERIALS AND METHODS 

A. DATASET AND ENVIRONMENT 

The dataset in this study comprises an open-source barcode 

dataset and a synthetic barcode dataset. The aim is to create a 

barcode detection dataset under complex backgrounds. The 

open-source dataset includes Muenster and Coco datasets. 

Since the open-source Muenster dataset has a limited number 

of barcode images that are not suitable for network learning, a 

total of 5327 images were obtained by reorganizing the open-

source dataset and combining it with synthetic data. The 

training set contains 3999 images, while the test set contains 

1328 images. Use the labeling tool LabelImg to annotate the 

dataset in YOLO format. The software and hardware 

environment and parameters used in this experiment are 

shown in Table 1. 

TABLE I 

Experimental platform  

 Configuration 

Operating System Windows11 

CPU 
Intel(R) Core (TM) i5-9700 

CPU @3.10GHz *8 

Device Memory 16.0GB 

Graphics Processor GeForce GTX 3050 

Experimental Language Python 3.10.13 

Accelerated Environment CUDA 11.8 

Deep learning Framework Torch 2.1.0 

B. EXPERIMENTAL PARAMETER SETTINGS AND 

EVALUATION METRICS 

During training, the input images were resized to 640×640, 

and AdamW was used as the optimization function for model 

training. The training epochs were set to 300, with a batch size 

of 16 and an initial learning rate of 0.01. The same data 

augmentation algorithm as the original algorithm was used in 

this experiment. 

To validate the effectiveness of the improved algorithm, we 

select several common metrics in object detection as 

evaluation indicators for the model, according to reference 

[40]. These include Precision, Recall, mean Average Precision 

(mAP), and FPS. Precision(P) refers to the proportion of 

actual positive samples among all samples predicted as 

positive. It measures the accuracy of the model in barcode 

detection, with higher precision indicating more correct 

detections of barcodes. Recall (R) represents the proportion of 

correctly predicted positive samples out of all actual positive 

samples. It measures the comprehensiveness of the model in 

detecting barcodes, ensuring that as many barcodes as 

possible are correctly detected. mAP is the mean Average 

Precision across all categories, used to evaluate the 

performance of deep learning methods in object detection 

tasks, rather than just a single aspect of performance. FPS 

(Frames Per Second) measures the real-time processing 

capability of the model. For barcode localization algorithms, 

high FPS indicates that the model can locate each barcode at 

a higher speed. According to reference [41], its calculation 

formula as follows: 

TP
P

TP FP
=

+
                     (12) 

TP
R

TP FN
=

+
                   (13) 

1

n

i

i

A P

mAP
n

==


                   (14) 

Where TP (True Positives) refers to the number of barcodes 

correctly detected by the object detection model, FN (False 

Negatives) refers the number of actual barcodes that were not 

detected by the model, FP (False Positives) represents the 

number of instances where the model incorrectly predicted the 

presence of a barcode, AP (Average Precision) is the area 

between the PR curve and the coordinate axis. These metrics 

are effective for evaluating the accuracy, comprehensiveness, 

overall performance, and processing speed of the barcode 

localization algorithm. They provide valuable insights into the 

performance of the lightweight model studied in this paper. 

V. RESULTS 

The YOLO model has five different versions ranging from n, 

s, m, l, to x, with increasing depth and complexity. To 

investigate the impact of different sizes on barcode detection, 

P, R, mAP, and FPS are used as indicators for comparison. 

Due to the excessive computational and parameter 

requirements of x, it is not considered. The results are shown 

in Table 2. 

 

TABLE Ⅱ 

Results of Four Different Networks. 

Model P R mAP Params GFLOPs FPS 

YOLOv5n 96.3% 92% 96% 1.76M 4.1 101 

YOLOv5s 95.8% 93.4% 96.7% 7.03M 16.0 98 

YOLOv5m 96.8% 93.8% 97% 20.86M 47.9 49.8 

YOLOv5l 96.4% 94% 97.2% 46.11M 107.7 36.4 
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From Table 2, it can be seen that the increase from 

YOLOv5n to YOLOv5l did not result in a gradual 

improvement in detection accuracy. This is because larger 

model complexity may lead to overfitting or insufficient 

training, and the limited size of the custom dataset restricts the 

improvement in model performance. Compared to YOLOv5n 

and YOLOv5s, YOLOv5m and YOLOv5l achieve the highest 

precision, recall, and mAP, however, their parameter and 

computational costs are too high, and their FPS is lower, 

lacking in lightweight and real-time characteristics. Among 

YOLOv5n and YOLOv5s, YOLOv5s exhibits the highest 

recall at 93.4% and also achieves the highest mAP at 96.7%. 

As this study aims to build lightweight models, YOLOv5m 

and YOLOv5l with their high parameter and computational 

costs are not considered, and YOLOv5n did not yield the best 

results. Therefore, YOLOv5s has been chosen as the base 

model for this research. 

Furthermore, to compare the impact of different loss 

functions on barcode detection, we contrast the prevailing loss 

functions: GIOU, EIOU, CIOU, and DIOU. Each loss 

function has distinct effects, as illustrated in Table 3. 

From Table 3, it can be observed that GIOU achieves the 

highest precision at 95.8%. EIOU achieves the highest recall 

rate and mAP, reaching 93.1% and 97.1% respectively. 

However, EIOU has the lowest precision among them. 

GIOU's mAP is close to that of EIOU, outperforming the 

original loss function CIOU. Although the difference is small, 

it is believed to enhance detection precision. 

Figure 7 shows the precision-recall curve of the improved 

YOLO model. It can be seen from the graph that the improved 

model achieved excellent detection results for both classes of 

objects, with a mAP value reaching a high value of 97.8%. 

 

FIGURE 7. The Precision-Recall curve of the improved YOLO model. 

The baseline network used in this paper is YOLO model, 

which is improved upon. The baseline model and the 

improved model are compared in terms of precision, recall, 

and mAP. The comparison results are shown in Figure 8.

FIGURE 8. Comparison between the baseline YOLO model and the improved YOLO-MCG. (a), (b), and(c) depict comparisons in terms of precision, 

recall, and mAP respectively.
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From Figure 8, it can be seen that the improved model 

outperforms the original model in terms of precision, recall, 

and mAP, demonstrating the effectiveness of the 

improvement.  

To verify the performance of the improved model, a series 

of ablation experiments were designed based on the dataset, 

and comparisons were made with the original YOLO model 

as the baseline. To ensure lightweight network localization 

performance, the following improvements were made: 1) 

Original YOLO baseline model. 2) Replacing the YOLO 

backbone network with MobileNetv3. 3) Adding CBAM to 

the Neck of the YOLO model. 4) Replacing CIOU with 

GIOU and Focal Loss. 5) After replacing the backbone 

network with MobileNetv3, adding CBAM to the Neck 

network. 6) After replacing MobileNetv3 and adding CBAM, 

using GIOU and Focal Loss functions instead of the original 

loss function. The detection results are shown in Table 4. 

TABLE Ⅳ 

Ablation experiment 

No. YOLO MobileNet CBAM GIOU+Focal Loss P R mAP Params GFLOPs FPS 

1 √    95.8% 93.4% 96.7% 7.03M 16.0 98 

2 √ √   95.4% 92.6% 96.5% 3.9M 7.0 95.2 

3 √  √  96.0% 94.0% 97.8% 7.03M 15.8 120 

4 √   √ 95.9% 94.5% 97.5% 7.03M 15.8 88 

5 √ √ √  96.2% 93.1% 97.5% 3.9M 7.0 90 

6 √ √ √ √ 96.4% 93.9% 97.8% 3.9M 7.0 105 

As shown in Table 4, firstly, after using CBAM, there is a 

certain improvement in precision, recall, and mAP. The 

precision increased by 0.2% compared to the baseline 

network, recall increased by 0.6%, and mAP increased by 

1.1%. Secondly, after introducing GIOU and Focal Loss, the 

precision increased by 0.1%, recall improved by 1.1%, and 

mAP increased by 0.8% compared to the baseline network. 

The improved network structure incorporates the lightweight 

MobileNetv3 network, which is designed to reduce model 

size and computational complexity. Lightweight networks 

often sacrifice some performance for these benefits. From 

the ablation experiments, it can be observed that the 

performance metrics indeed decrease after using the 

MobileNet network. However, through all the improvement 

methods applied, the accuracy and recall of the lightweight 

network are maintained with minimal loss, while mAP is 

improved. Moreover, achieving an FPS of 105 meets real-

time requirements. The experiments indicate that the 

improvements made in this paper can enhance the barcode 

detection results. 

To validate the effectiveness of the optimization 

algorithms used in this experiment, SGD, Adam, RMSprop, 

and AdamW were compared in terms of loss function, with 

the results shown in Figure 9. 

Due to RMSprop's slow convergence and high loss 

function values, it was not plotted in Figure 9. From Figure 

9, it can be observed that AdamW converges the fastest and 

achieves the best performance. To further validate the 

impact of the improved optimization algorithm AdamW on 

other evaluation metrics, it was compared with other 

optimization algorithms in terms of accuracy, recall, and 

mAP, as shown in Table 5. 

 

 

FIGURE 9. Comparison of optimization algorithms in loss functions. 

TABLE Ⅴ 

Comparison of optimization algorithms 

Model P R mAP 

RMSprop 50.3% 26.1% 35.3% 

SGD 96.2% 92.8% 97.6% 

Adam 96.8% 92% 96.6% 

AdamW 96.4% 93.9% 97.8% 

From Table 5, it is evident that AdamW performs the best. 
Compared to the RMSprop optimization algorithm, 

precision improved by 46.1%, recall improved by 67.8%, 

and mAP increased by 62.5%. Compared to SGD (the 

optimization algorithm used in the baseline model), 

precision increased by 0.2%, recall increased by 1.1%, and 

mAP improved by 0.2%. Compared to Adam, precision did 

not improve, but recall increased by 1.9% and mAP 

improved by 1.2%. This is because AdamW demonstrates 

significant effectiveness in training on large-scale datasets. 

Additionally, AdamW handles weight decay separately, 
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effectively preventing overfitting. By correctly controlling 

the model's complexity, AdamW ensures better 

generalization to unseen data, thereby enhancing P, R, and 

mAP metrics. 

To further validate the superiority of the proposed 

algorithm in performance, the improved algorithm was 

compared with YOLOv5n, YOLOv5m, YOLOv5l, YOLOv8s, 

and SSD (where SSD uses VGG16 as the backbone network) 

on the same dataset. Figures 10(a), 10(b), and 10(c) compare 

precision, recall, and mAP respectively. The comparison 

results are shown in Figure 10. 

 

FIGURE 10. Performance comparison of different models. (a), (b), and (c) depict comparisons in terms of precision, recall, and mAP respe ctively. The 

horizontal axis represents epochs, while the vertical axis represents the corresponding values of P, R, and mAP. 

 

From the figure 10, it can be seen that the convergence 

speed of different models is fast. The precision and recall of 

the improved model are similar to YOLOv8, but its mAP 

value is the highest, which further indicates the excellent 

improvement effect. 

To further demonstrate the superiority of the improvement 

methods, an evaluation of the model's efficiency and 

complexity was conducted. The improved model was 

compared with the YOLO baseline model, SSD, Faster R-

CNN(resnet50) and YOLOv8s in comparative experiments. 

Precision, recall, mAP value, parameter count, and GFLOPs 

were used as evaluation metrics. The experimental results 

are presented in Table 6. 

 

 

TABLE Ⅵ 

Comparative experiments 

Model mAP Params GFLOPs FPS 

SSD 92.8% 23.9M 55 54.3 

Faster R-CNN(resnet50) 97.3% 137M 370.2 20 

YOLOv5n 96% 1.76M 4.1 101 

YOLOv5s 96.7% 7.03M 16.0 98 

YOLOv5m 97% 20.8M 47.9 49.8 

YOLOv5l 97.2% 46.1M 107.7 36.4 

YOLOv8s 97.1% 11.3M 28.4 130 

YOLO-MCG 97.6% 3.93M 7.0 105 

From Table 6, it can be seen that the improved model has 

the highest mAP compared to mainstream network models, 
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with significantly reduced parameters and computational 

complexity. The improved YOLO-MCG achieves a 4.8% 

higher mAP than SSD, reduces parameter count to 56% of 

the original model, and decreases to 35% of YOLOv8. 

Computational complexity is reduced to 44% of the original 

model and 25% of YOLOv8. Although Faster R-CNN has a 

high mAP, its parameter count and computational cost are 

too large, resulting in a low FPS, which makes it unsuitable 

for real-time applications. Figure 11 illustrates the 

superiority of the improved YOLO-MCG over different 

models in terms of mAP, Params, GFLOPs, and FPS. In 

scenarios requiring real-time performance, this method is 

more suitable for fast and precision barcode detection. 

 

FIGURE 11. Comparison of different models in terms of Params, GFLOPs, FPS and mAP. 

This study proposes the YOLO-MCG algorithm based on 

the YOLO model for barcode localization. To investigate the 

detection performance of the improved model on barcodes, 

several models were visually compared, and the detection 

results are shown in Figure 12. 
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FIGURE 12. Model detection results visualization. From top to bottom: YOLOv5n, YOLOv5m, YOLOv5l, YOLOv8s, baseline YOLO model, and improved 

YOLO-MCG. From left to right: (a), (b), (c), and (d) represent four different scenarios. 

In Figure 12, two types of barcodes are present: EAN13 

and Code39. Figures 12(a) and 12(b) depict scenarios with 

clear and large barcodes located close to the camera, while 

Figures 12(c) and 12(d) show cases with smaller and blurred 

barcodes located farther away. From the figures, it is 

observed that each model successfully classifies and detects 

the clear and large barcodes with high accuracy. However, 

for the smaller and blurred barcodes (Figure 12(c) and 12(d)), 

YOLOv5n, YOLOv5l, and the baseline YOLO model 

(YOLOv5s) fail to correctly identify the Code39 barcodes, 

misclassifying them as EAN13 barcodes. YOLOv5n and 

YOLOv5l exhibit lower detection rates in these cases. 

YOLOv5m, YOLOv8s, Faster R-CNN, and the improved 

YOLO-MCG successfully identify these barcodes, with 

Faster R-CNN and YOLO-MCG achieving the highest 

detection rates. However, as seen from previous experiments, 

Faster R-CNN has a large number of parameters and high 

computational complexity, resulting in a very low FPS, 

which cannot meet real-time requirements. In contrast, the 

lightweight characteristics of YOLO-MCG further validate 

the feasibility of the improved YOLO-MCG for use in 

mobile devices and fast-paced production lines. 

VI. Discussion 

In this study, we propose a lightweight barcode 

localization algorithm based on an improved YOLO model. 

To address the issue of fast and efficient barcode localization, 

a series of innovative improvements were implemented, 

resulting in significant performance gains. First, we created 
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a custom barcode dataset that meets the requirements of deep 

learning models in complex backgrounds. This dataset 

consists of one-dimensional barcode images of two types: 

EAN13 and Code39. These two types of barcodes represent 

the most commonly used barcodes in daily life. Although 

barcode localization and recognition have attracted 

widespread attention from researchers, there are few 

publicly available barcode datasets, and even fewer that meet 

the requirements for deep learning, which requires large 

volumes of images. Furthermore, these datasets need to cater 

to the challenge of localizing barcodes in complex 

backgrounds. Therefore, in this situation, we opted to create 

a custom dataset to meet the research needs. Next, we 

replaced YOLO’s backbone network with MobileNetv3, 

significantly reducing the mode’s parameters and 

computational load, thus enhancing its practicality for 

deployment on embedded or mobile devices. We also 

introduced the CBAM (Convolutional Block Attention 

Module) attention mechanism, which helps the model focus 

more on the barcode regions in the feature map, suppressing 

the interference from irrelevant background information. 

This effectively improved the model's robustness and 

localization accuracy, significantly enhancing the distinction 

between targets. We adopted the GIOU and Focal Loss 

functions, which, when handling barcode detection 

localization tasks, not only consider positional accuracy but 

also increase attention to difficult-to-detect targets (such as 

small or partially occluded barcodes). Focal Loss addresses 

the class imbalance problem effectively, especially in 

complex backgrounds, enabling the model to better handle 

the contrast between barcodes and backgrounds, further 

improving localization accuracy and stability.  

A series of experiments (such as comparison experiments 

and ablation studies) were conducted to validate the 

performance of the improved model. The experimental 

results showed that although the model size was significantly 

reduced, it still maintained high localization accuracy. This 

is crucial for the real-time requirements in barcode detection 

scenarios. The improved YOLO-MCG model demonstrated 

better detection performance and faster inference speed in 

complex environments, making it suitable for deployment on 

edge devices. This further confirms the feasibility and 

superiority of the proposed algorithm and verifies the 

effectiveness and practical application potential of the 

method presented in this paper. 

Future Work: Although this study has yielded good results, 

there are still some limitations and room for improvement. 

First, this paper focuses only on the localization of one-

dimensional barcodes and does not address other types of 

barcodes, such as QR codes, which have significant 

differences in shape and texture from one-dimensional 

barcodes. Future work will focus on extending the existing 

methods to develop an algorithm model that can efficiently 

and simultaneously detect multiple types of barcodes in real 

time.  

Moreover, although GIOU and Focal Loss performed well 

in this study, they may still be affected by different datasets 

and environmental factors in practical applications. Future 

work could involve conducting experiments with a wider 

variety of datasets, further optimizing the loss functions, or 

combining them with other advanced optimization methods 

(such as adaptive loss functions) to enhance model 

performance. In summary, the improved YOLO-MCG 

model proposed in this paper provides a new solution for 

barcode localization, and through further optimization and 

expansion of the algorithm framework and datasets, it can 

drive the practical application of barcode localization 

technology in a broader range of use cases. 

VII. Conclusion 

This paper presents a barcode localization algorithm based 

on the YOLO model to address the problem of fast and 

efficient barcode localization. By replacing YOLO's 

backbone network with MobileNetv3, the model size is 

significantly reduced. The introduction of the CBAM 

attention mechanism enhances the model's focus on the 

target, improving its performance. At the same time, GIOU 

and Focal Loss were adopted as loss functions suitable for 

our dataset, effectively improving the model's localization 

accuracy. The effectiveness and feasibility of this method 

were validated through experiments. The experimental 

results show that the improved YOLO-MCG model achieves 

a maximum mAP of 97.6%, which is 0.9% higher than the 

baseline model, with the number of parameters reduced to 

56% and the computational load reduced to 44% of the 

original model. This study focuses only on one-dimensional 

barcodes and does not include various types of QR codes. 

Future work will explore an algorithm model capable of 

efficiently and simultaneously detecting multiple types of 

barcodes in real time. 
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