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ABSTRACT In the domains of image processing and computer vision, the exploration of hexagonal image
processing systems has emerged as a fundamentally innovative yet nascent methodology that is motivated by
the occurrence of hexagonal structures in the human visual perception system and nature itself. However,
despite the possible benefits of hexagonal over conventional square approaches for image processing systems –
which commonly utilize square pixels – no known publicly available hexagonal image data sets exist that
would enable the evaluation of hexagonal approaches that have been developed within image processing
and computer vision for tasks such as object detection and classification. For this purpose, this contribution
proposes a foundation for hexagonal image data sets and their development: The Hexnet Hexagonal Image
Processing Data Set (short Hexnet Dataset), which is based on The Hexagonal Image Processing Framework
Hexnet (Hexnet Framework). As a baseline, three data subsets are introduced: (i) geometric primitives for the
evaluation of hexagonal structures, (ii) astronomical image processing, in which the descriptions of sensory
elements of hexagonal telescope arrays have been leveraged for the detection and classification of synthesized
atmospheric events, and (iii) conventional image data sets, which provides hexagonally transformed versions
of commonly evaluated square imagery.

INDEX TERMS Hexagonal Image Processing, Hexagonal Lattice, Hexagonal Sampling, Image Generation,
Data Set Generation

I. INTRODUCTION AND MOTIVATION

W ITH the rise of artificial neural networks (ANN) [1]–
[3], recent advancements have markedly elevated the

significance of image processing and computer vision in
various domains [4]. The increasing complexity of novel
problems, the emergence of innovative application areas, and
the expansion of data sets necessitates the development of
novel models and procedures [5]–[7]. Nowadays, approaches
such as deep neural networks (DNN) are at the forefront of
ongoing research in object detection and classification [8]–
[11].

In the fields of image processing and computer vision, the
exploration of alternative approaches to traditional square-
based systems is not only a technological pursuit but often an
attempt to mirror the underlying principles of nature itself
(Fig. 2). ANNs, for instance, are biologically inspired in
structure and function [12]–[14]. Yet, conventional square

image data formats used in recording and output devices
also present limitations [15]–[18]. The human visual system
offers an alternative that manifests itself with the sensory cells
of the human eye and its retina in the shape of hexagonal
arrangements [19], [20] (Fig. 1). Therefore, the use of hexago-
nal structures emerges as an evolutionary-inspired approach
[21] within image processing. The hexagonal lattice format
shows several advantages over its square equivalent (Fig. 1),
including its homogeneity, uniqueness of neighborhood, and
increased radial symmetry, leading to a 13.4% higher sampling
density [20], [22], [23], which can result in reduced computa-
tion times, less quantization errors, and an increased efficiency
in programming [16], [24]. However, a comprehensive design,
implementation, and evaluation of hexagonal imagery has yet
to be realized [20], [25], [26].
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Figure 1: (a,b) Segment of the retina of the human eye
(reprinted from [19], copyright AAAS). (c,d) Square and
hexagonal lattice format in comparison. (f,g) Square and
hexagonal imagery with (e) the test image Mandrill from the
USC-SIPI image database [27]. The hexagonal lattice format
features up to three axes, whereas the z-axis can be seen as an
additional means to addressing pixels.

A. RELATED WORK
In image processing, early explorations of hexagonal images
included comparisons of image quality between square and
hexagonal lattices using Bresenham’s line algorithm [28],
[29], noting fewer artifacts with hexagonal representations.
Overington [30] investigated hexagonal formats in computer
vision, discussing their limitations and potentials. Subse-
quently, hexagonal addressing schemes were developed for the
storage and visualization of hexagonal image representations
[20], [31], [32]. However, as true hexagonal images are,
in essence, non-existent, image transformation techniques
were crucial for converting square imagery into a hexagonal
representation [33], including image interpolation approaches
[31], [34].
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4David Hawgood / Hex. (mainly) at the Giant’s Causeway,cba 2.0, WC
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the north pole of Saturn5
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Figure 2: Exemplary overview of hexagons and hexagonal
lattice formats in nature as well as man-made applications.

In application, hexagonal structures have been developed for
tasks such as image segmentation [35], image sampling [36],
and atmospheric imaging [37], [38] (Fig. 4), extending to fields
of ecology [39], geodesic grid systems [40], sensor-based
image processing [36], [41], [42], medical imaging [43]–[45],
and image synthesis [46] (Fig. 3). Experimental applications
in supply-demand prediction [47] and atmospheric telescope
data analysis [48], [49] demonstrate the expanding scope of
hexagonal image processing. These aim to advance hexagonal
machine learning by addressing the limited integration of
hexagonal image processing principles in deep learning (DL),
specifically focusing on hexagonal DNNs [50]–[53].
More recent contributions have shown the performance of

hexagonal models in domains such as steganography (con-
cealed representation of information), where it resulted in an
improved image quality in comparison to its square counterpart
[54]. In face recognition, hexagonal approaches to gray level
co-occurrence matrices (GLCM), local binary patterns (LBP),
and local-holistic graph-based descriptors (LHGPD) have
shown improved accuracy compared to their square baseline
for face recognition [55]. In image segmentation, hexagonal
models show improved segmentation accuracies [56], [57],
which ‘‘better captures spatial relationships in medical images,
leading to improved segmentation performance with potential
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Figure 3: Related work on hexagonal image processing.

clinical applications’’ [57]. In remote sensing for grid mod-
eling, sampling, quantization, and storage [58], hexagonal
representations show improved image quality with reduced
sampling artifacts. With more fundamental research being
conducted, approaches to image representation [59], [60],
image transformation and sampling [61], [62], and image
filtering [63] are being further developed, demonstrating the
advantages of hexagonal imagery in terms of image quality
and feature detection.

B. CONTRIBUTION OF THIS WORK
Despite the recognized potential of hexagonal approaches in
image processing and computer vision [20], [52], the first step
towards the development of hexagonal image data sets has
yet to be taken. This contribution aims to bridge this gap by
proposing a baseline for the generation of hexagonal images.
For this purpose, the realized Hexnet Dataset and its image
generators are introduced, which feature hexagonal images
for geometric primitives, astronomical image processing,
and hexagonally transformed conventional image data sets.
Furthermore, the methodologies utilized in the data set’s

10CTA/M-A. Besel/IAC (G.P. Diaz)/ESO,cb 4.0, via Wikimedia Com-
mons
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Hexagonal
image data
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Hexagonal
image data

Figure 4: Cherenkov Telescope Array (CTA) illustration
showing different exemplary hexagonal telescope arrays.10

generation are detailed, enabling their reproducibility and
modification with varying parameters to foster their further
development.

The novel contributions and findings of this work are
summarized as follows:

1) The publication of hexagonal imagery in the form of
hexagonal image data sets and their generators, for
which common image file formats are utilized. These
include application areas and use cases for..

a) ..geometric primitives, such as lines, curves, el-
lipses, grids, and their combinations.

b) ..astronomical image processing with different
visualized atmospheric event classes.

c) ..conventional square image data sets, including CI-
FAR, CINIC, COIL, MNIST, and Tiny ImageNet.

2) Preliminary investigations on the possible benefits of
hexagonal imagery. It could be observed that hexagonal
imagery can results in..

a) ..improved storage requirements,
b) while showing an improved image quality.
c) ..improved model performance for tasks in appli-

cation, such as image classification.

3) The deployed generators’ functionality is detailed to
enable the further development of hexagonal image
data and their evaluation. To facilitate the generation
of hexagonal imagery, all data sets, generators, and
documentations are published.

For review purposes, the Hexnet Dataset is available via
the Chemnitz University of Technology11. It was generated
using The Hexagonal Image Processing Framework Hexnet
(Hexnet Framework). Our implementations can be found via
Hexnet’s project page and repository12.

11The Hexnet Dataset, https://tuc.cloud/index.php/s/mdsQY3RYgb7YCax
12The Hexagonal Image Processing Framework Hexnet , https://github.

com/TSchlosser13/Hexnet
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Figure 5: Storage of hexagonal image data.

C. SECTION OVERVIEW
The following sections give an overview of the fundamentals
and implementation of hexagonal image generation principles
(section II) and the Hexnet Dataset and its image generators
(section III). Subsequently, additional documentations on
hexagonal image generation and visualization are provided
(section A), including the Hexnet Dataset’s intended uses
(section B) and its hosting, licensing, maintenance, and ethics
considerations. Finally, further examples on image generation
are illustrated.

II. FUNDAMENTALS AND IMPLEMENTATION
To facilitate the generation, processing, storage, and visualiza-
tion of hexagonal images using the hexagonal lattice format
[64], it is essential to implement its underlying structure and
addressing scheme [59], [65], [66]. To enable a simplified
storage of hexagonal images, Fig. 5 shows our proposed im-
plementation, where a one-dimensional linewise architecture –
which is common for square images – is employed. With
this implementation, hexagonal images can be viewed using
Hexnet’s graphical user interface for visualization purposes.
The subsequent sections introduce our image generation

methodologies: (i) geometric primitives for the evaluation of
hexagonal structures and (ii) astronomical image processing
for atmospheric event detection and classification.

A. GEOMETRIC PRIMITIVES
The following sections give an overview of the relevancy of
generating hexagonal images and our related methodology
for the generation of geometric primitives with the hexagonal
lattice format.

1) Relevancy
To enable the assessment of hexagonal images, it is imperative
to establish a baseline data corpus that enables the evaluation of
hexagonal approaches to image operations. Given the current
lack of such hexagonal imagery, the TESTIMAGES archive
[67], [68] can be understood as a viable square alternative.
For the purpose of hexagonal image generation, a set of
basic geometric shapes and contours is defined, for which
image transformation techniques, particularly those employing
interpolation methods, facilitate the sampling process for
the approximation of hexagonal imagery. Within Fig. 6, our
underlying motivation is illustrated for the sampling of a test
object given both lattice formats. In the shown example, both

(a) Test object (b) Square approxima-
tion

(c) Hexagonal approxi-
mation

Figure 6: Exemplary sampling of a geometric primitive,
showcasing a favorable hexagonal approximationwith reduced
pixel count and possibly less approximation errors.

approximations highlight the potentially resulting advantages.
For instance, in a best-case scenario, a resulting hexagonal im-
age may reduce the number of required pixels while reducing
approximation errors.

2) Methodology
Our hexagonal image generation methodology involves rep-
resenting basic geometric primitives through mathematical
functions, which are then sampled using the square and the
hexagonal lattice format (Fig. 7). This process is governed by
different parameters:

• Mathematical functions. Mathematical functions and
their symbols that are utilized to visualize different
classes of geometric primitives such as lines, curves, and
ellipses.

• Figure sizes, step sizes, and linewidths. Image sizes,
step sizes for the sampling process, and sampling
linewidths.

• Rotations, function factors, and translations. Function
rotations, modifications such as function skewness, and
translations in order to enable further function modifica-
tions.

Illustrated in Fig. 8, the sequence of processing steps for
hexagonal image generation is delineated. Within Hexnet,
the handling and manipulation of mathematical functions
and symbols is realized using the SymPy computer algebra
(symbolic computation) library [69]. The sampling process
includes the parameters step size, linewidth, and a minimum
search radius of one pixel within the target image. For all
following investigations, a nearest-neighbor interpolation
kernel is utilized, for which binary images are generated.
However, it is also noted that further interpolation kernels
[31], [34] can be used to generate grayscale or even colored
images.

B. ASTRONOMICAL IMAGE PROCESSING
The following sections give an overview of the relevancy of
generating hexagonal images and our related methodology
for the generation of astronomical images with the hexagonal
lattice format.
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Figure 7: An exemplary linewidth of 0.05 determines the width
of the shown circular geometric primitive. In the background,
the square lattice format with its image dimension is displayed.
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Figure 8: Processing steps for geometric primitive generation.

1) Relevancy

In the field of astronomical image processing, the focus of ana-
lyzing atmospheric telescope data centers around the detection
and classification of atmospheric events [48], [49]. Projects
such as the Cherenkov Telescope Array (CTA)13, which are
often noted for their scientific potential in developing next-
generation gamma-ray detectors, are of central importance in
this domain. Previous research emphasized the importance of
distinguishing gamma rays from cosmic-ray (CR) particles due
to their direct dependence on the sensitivity of the instrument
[37]. In Fig. 4, such hexagonal telescope arrays are illustrated.
For effective gamma-ray-based event observation, notably in
the analysis of so-called shower areas, it is essential that the
resulting image data is amenable [37], [38], [49].

13Cherenkov Telescope Array, https://www.cta-observatory.org/
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Figure 9: Exemplary telescope array overview of the selected
hexagonal telescope arrays HESS-I (a), HESS-II (b), VERI-
TAS (c), Whipple109 (d), and Whipple151 (e).

2) Methodology

For image generation, we employ the Prototype CTA Pipeline
Framework (ctapipe)14, which is designed for prototyping
low-level data processing algorithms [70]. It facilitates the
simulation and generation of hexagonal images based on
various CTA telescope array layouts, including square and
hexagonal arrangements, each reflecting the characteristics of
their real-world counterparts. With their arrangements, differ-
ent telescope arrays feature varying sizes of sensory elements.
Specifically, five hexagonal telescope arrays – HESS-I, HESS-
II, VERITAS, Whipple109, and Whipple151 – were chosen
for their uniformly-sized sensory elements, enabling their
representation within a single hexagonal image (Fig. 9).

For simulation, different generators for photoelectron distri-
butions across telescope arrays can be applied. This includes
imaging functionality for Gaussian, skewed Gaussian, and
ring Gaussian distributions of shower areas (Fig. 11) [71],
for which image generation parameters such as the shower
area’s centroid, width, length, and orientation are determined.
In terms of distributions, Gaussian and skewed Gaussian
distributions can be used to generate general event images,
while ring Gaussian distributions models simplified muon
rings [72], [73]. Additional parameters include the resulting
image’s intensity (total number of photoelectrons) and the
night sky background’s (NSB) [74] distribution nsb_level_pe.

III. THE HEXNET DATASET: IMAGE GENERATION
Based on the previously discussed fundamentals of hexagonal
image generation, different data subsets for geometric primi-
tives and astronomical images are generated. For this purpose,

14ctapipe documentation, https://ctapipe.readthedocs.io/en/latest/
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Table 1: Shown are the proposed functions and parameters for
primitive generation, separated into figure sizes, step sizes,
linewidths, rotation degrees, function factors, and translations.
In parentheses, the number of resulting values per parameter
are denoted.

Parameter Functions / parameter range

Functions f1–f6 (6)

f1: {x}
f2: {

√
x}

f3: {1/4 · (2−
√
−3 + 16 · x − 16 · x2),

1/4 · (2 +
√
−3 + 16 · x − 16 · x2)}

f4: {−x + 1− 0.4,−x + 1− 0.3, . . . ,−x + 1 + 0.4}
f5: {−

√
x + 1− 0.4,−

√
x + 1− 0.3, . . . ,−

√
x + 1 + 0.4}

f6: Combinations of f1–f3

Figure sizes (4) {60× 60, 80× 80, 100× 100, 200× 200}
Step sizes (5) {0.001, 0.002, . . . , 0.005}
Linewidths (5) {0.01, 0.02, . . . , 0.05}

Rotation degrees (6) {0, 60, . . . , 300}
Function factors (2) {1.0, 1.2}
Translations (9) {(−0.25,−0.25), (−0.25, 0.0), . . . , (0.25, 0.25)}

different classes and their corresponding parameterizations
are proposed. In addition, hexagonally transformed versions
of commonly evaluated square image data sets are provided.

A. GEOMETRIC PRIMITIVES
Table 1 presents an overview of the parameter ranges desig-
nated for the image generation of geometric primitives. These
parameters encompass different base functions for the classes
lines (f1), curves (f2), ellipses (f3), line-based grids (f4), curve-
based grids (f5), and different combinations of f1–f3 (f6).
Additionally, the related specific mathematical base functions,
figure sizes, step sizes, linewidths, rotation degrees, function
modifiers, and translations employed are listed to facilitate the
generation and subsequent utilization of images sampled via
both formats.

An overview of the generated classes is provided in Fig. 10.
For the first three examples of the first row we obtain: x
(parameterization – step size: 0.001, linewidth: 0.01, rota-
tion: 0°),

√
x + 0.25 − 0.25 (same parameterization), and

{1/4 · (2 −
√

−3 + 16 · (x + 0.25)− 16 · (x + 0.25)2), 1/4 ·
(2 +

√
−3 + 16 · (x + 0.25)− 16 · (x + 0.25)2)} (same pa-

rameterization). 2 700 images have been generated per image
resolution and class, resulting in 64 800 total images.

B. ASTRONOMICAL IMAGE PROCESSING
Table 2 presents an overview of the parameter ranges desig-
nated for astronomical image generation using the distribution
functions Gaussian, skewed Gaussian, and ring Gaussian,
for which images without, single, and multiple shower areas
are distinguished. 1 000 images have been generated per
telescope array and class, resulting in 35 000 total images. The
parameters for each image sample were randomly selected
from the specified ranges given a uniform normal distribution.
To mitigate the effect of event overlap, minimum event dis-
tances of 0.125 (Gaussian and skewed Gaussian) and 0.3 (ring
Gaussian) are maintained. For an overview see Fig. 11. Finally,

(a) Exemplary samples visualized based on the square lattice format

(b) Exemplary samples visualized based on the hexagonal lattice format

Figure 10: Generated exemplary geometric primitive classes
with randomized samples for the classes lines, curves, ellipses,
line-based grids, curve-based grids, and lines, curves, and
ellipses (left to right) for an image resolution of 60× 60.

Table 2: Proposed parameter ranges for astronomical im-
age generation with different Gaussian distributions for the
sampling process. For further information on the underlying
concepts, see [71]–[74].

Distribution Parameter Parameter range

all centroid in meters (x, y) [−0.8, 0.8)

Gaussian and
skewed Gaussian

width in meters [0.05, 0.075)

length in meters [0.1, 0.15)

orientation ψ in radians [0, 2 · π)

skewed Gaussian skewness γ1 [0.1, 0.9]

ring Gaussian
outer radius in meters [0.1, 0.5)

inner radius σ in meters [0.05, 0.25)

Image generation

all
intensity [1000, 3000)

nsb_level_pe 5

to minimize the effects of image artifacts by the night sky
background noise, a common ctapipe-based postprocessing
pipeline is employed (Fig. 12).

C. CONVENTIONAL SQUARE IMAGE DATA SETS
The conventional square image data sets CIFAR-10 and
CIFAR-100 [75], CINIC-10 [76], COIL-20 [77], COIL-100
[78], MNIST [79], Tiny ImageNet [80], and the USC-SIPI
image database [27] have been hexagonally transformed, for
which a bilinear interpolation has been deployed. For all data
sets, hexagonally transformed and un-/scaled versions are
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Figure 11: Generated astronomical image classes. From left
to right, the shown classes are: no shower areas (1.); single
shower area with Gaussian (2.), skewed Gaussian (3.), and
ring Gaussian distribution (4.); and multiple shower areas
with Gaussian (5.), skewed Gaussian (6.), and ring Gaussian
distributions (7.).

Input image

Thresholding

Dilation mask

Cleaning

Output image

Figure 12: Postprocessing steps for astronomical image pro-
cessing. To reduce the night sky background’s added noise,
the input image is cleaned by applying image thresholding
and dilation operations.

introduced. For the basic transformed versions, the original
image resolutions have been reproduced as closely as possible.
These are summarized as follows (square image resolution→
hexagonal image resolution): CIFAR-10, CIFAR-100, and
CINIC-10 (32 × 32 → 30 × 34), COIL-20 and COIL-100
(128 × 128 → 119 × 137), MNIST (28 × 28 → 26 × 30),
Tiny ImageNet (64 × 64 → 59 × 69), and USC-SIPI
(256 × 256 → 238 × 275). For visualization purposes, the
hexagonal lattice format has been made visible.

IV. CONCLUSION AND OUTLOOK
In this contribution, we tried to expand the traditional bound-
aries of image data sets, introducing a baseline for hexagonal
imagery, The Hexnet Hexagonal Image Processing Data
Set (short Hexnet Dataset). Drawing inspiration from the
hexagonal structures in human vision and nature, this data set is
meant as a novel approach towards the generation of hexagonal
images. Featuring geometric primitives, astronomical image
processing, and hexagonally transformed conventional image
data sets, the Hexnet Dataset can be utilized in exploring
the possible advantages of hexagonal structures, for which

(a) CIFAR-10

(b) CIFAR-100

Figure 13: Hexagonally transformed conventional square
image data sets CIFAR-10 and CIFAR-100 [75].

Figure 14: Hexagonally transformed conventional square
image data set CINIC-10 [76].

common image file formats are used for data storage. However,
not only the data set itself but also the related methodologies
for generation are provided, enabling its adaptability and
further development to promote potentially more efficient
yet biologically-aligned computational approaches. For this
purpose, our data set is being continuously developed with
further parameterizations. Subsequently, further areas of ap-
plication for the generation of hexagonal images will have to
be investigated.

APPENDIX A
DOCUMENTATION
As a baseline, three data subsets are introduced: (i) geometric
primitives for the evaluation of hexagonal structures, (ii) astro-
nomical image processing, in which the descriptions of sensory
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(a) COIL-20

(b) COIL-100

Figure 15: Hexagonally transformed conventional square
image data sets COIL-20 [77] and COIL-100 [78].

Figure 16: Hexagonally transformed conventional square
image data set MNIST [79].

elements of hexagonal telescope arrays have been leveraged
for the detection and classification of synthesized atmospheric
events, and (iii) conventional image data sets, which provides
hexagonally transformed versions of commonly evaluated
square imagery. They are described in Tables 1 and 2. For data
storage, data set directories have been created, whereby our
data subsets have been structured given (i) its image resolutions
and geometric primitive classes, (ii) its telescope arrays and
shower area classes, and (iii) its corresponding conventional
image data sets. For formalization purposes, our data set is
described using the JSON-LD standard (JavaScript Object
Notation for Linked Data) with schema.org syntax.

Figure 17: Hexagonally transformed conventional square
image data set Tiny ImageNet [80].

For review purposes, the Hexnet Dataset is available via
the Chemnitz University of Technology15. It was generated
using The Hexagonal Image Processing Framework Hexnet
(Hexnet Framework). Our implementations can be found via
Hexnet’s project page and repository16.

A. IMAGE GENERATION
For hexagonal image generation, a documentation has been
created that includes different Jupyter notebooks, introduc-
ing hexagonal image processing principles for the gener-
ation, processing, storage, and visualization of hexagonal
imagery. For more information, see the documentation sec-
tion of Hexnet on hexagonal image generation (directory
doc/hexagonal_image_generation/).
For (i), 2 700 images have been generated per image reso-

lution and class, resulting in 64 800 total images. The classes
are the functions f1–f6 (Table 1). Our image resolutions are:
60 × 60, 80 × 80, 100 × 100, and 200 × 200. To ensure
reproducibility, all related parameters have been stored within
CSV files. Additionally, the number of generated pixels per
sample (called pixels in bound, short bip) is determined.
Dependencies for image generation are, e.g., SymPy [69],
Matplotlib17, and joblib18.
For (ii), 1 000 images have been generated per telescope

array and class, resulting in 35 000 total images. The classes
are: no shower areas (1.); single shower area with Gaussian
(2.), skewed Gaussian (3.), and ring Gaussian distribution
(4.); and multiple shower areas with Gaussian (5.), skewed
Gaussian (6.), and ring Gaussian distributions (7.) (Table 2).
The used telescope arrays are: HESS-I, HESS-II, VERITAS,
Whipple109, and Whipple151. To ensure reproducibility,
all related parameters have been stored within a CSV file.
Dependencies for image generation are, e.g., ctapipe [70] with
its dependencies, i.a., Astropy [81], eventio19, and sim_telarray
[82].

15The Hexnet Dataset, https://tuc.cloud/index.php/s/mdsQY3RYgb7YCax
16The Hexagonal Image Processing Framework Hexnet , https://github.

com/TSchlosser13/Hexnet
17Matplotlib, https://matplotlib.org/
18joblib, https://joblib.readthedocs.io/en/latest/
19eventio, https://pypi.org/project/eventio/
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(a) (b) Segment of (a)

Figure 18: Visualization via Hexnet’s GUI.

1 . / Hexnet −i t e s t s / t e s t s e t /USC / 4 . 2 . 0 3 . t i f f −d

Listing 1: Visualization via Hexnet’s GUI.

For (iii), no changes in terms of image classes, sample
counters, or image properties were made to the original image
data sets.

B. IMAGE VISUALIZATION
For the visualization of hexagonal images that have been
stored using conventional square image file formats, Hexnet’s
graphical user interface can be used (Fig. 18 and Listing 1).
Additionally, a visualization of hexagonal images via Hexnet’s
image visualization functionality is provided (Listing 2). For
more information, please refer to the descriptions of Hexnet’s
base system (root directory) and its machine learning module
(directory _ML/).

APPENDIX B
INTENDED USES
In this section, we would like to provide some observations
made during the creation of the Hexnet Dataset as well as its
possible utilization.

A. PIXEL REQUIREMENTS
A relevant observation stems from the sampling process of
the geometric primitives itself. In Table 3, we determined the
mean of the total number of pixels that have been sampled per
class and function using both lattice formats. With the assessed
functions f1–f6, it is observed that, at average, less pixels were

1 py thon _ML/ Hexnet . py \
2 −−model \
3 −−d a t a s e t $ d a t a s e t _ d i r e c t o r y \
4 −−v i s u a l i z e−d a t a s e t \
5 [−−v i s u a l i z e−hexagona l \ ]
6 [−−v i s u a l i z e−co lormap v i r i d i s \ ]
7 −−ou tpu t−d i r $ o u t p u t _ d i r e c t o r y

Listing 2: Visualization as raster / vector graphic.

required to sample these functions with the hexagonal lattice
format. This is reflected in the resulting reduction of needed
pixels, ranging from 0.53 % for ellipses to 4.10 % for lines.
Finally, for all generated samples, a mean reduction of needed
pixels of 2.47 % is obtained. We intend to discuss these obser-
vations in more detail in one of our follow-up contributions.
This will include considerations regarding image resolution,
image class, and model configuration, training, and testing.
Subsequently, further interpolation kernels [31], [34] can be
used to generate grayscale or colored images as illustrated in
section E.

B. CLASSIFICATION CAPABILITIES

Within the context of object detection and classification, the
proposed data subsets can be evaluated to assess the capabil-
ities of learning-based approaches such as hexagonal deep
neural networks [50]–[52]. As it is out of this contribution’s
scope to provide an introduction to hexagonal deep neural
networks and their evaluation, we instead would like to present
a simplified example. Here, square and hexagonal residual
neural networks (S-ResNet and H-ResNet) [83], [84], namely
ResNet v1 with three residual stacks with each three residual
blocks, have been assessed, for which square convolution
kernels of size 3× 3 have been replaced by hexagonal ones
of size 7 [52]. Consequently, different classification results
in incorrectly classified step sizes (a) and linewidths (b) have
been observed. Our preliminary results show that distinct
classification results for square and hexagonal images can be
obtained, whereas different synthesis parameters may result
in different advantages or disadvantages for hexagonal images
(Fig. 19).

C. IMAGE QUALITY

For the image quality of the square (Tq) and the hexagonal
image transformation (Th), hereinafter also referred to as
transformation efficiency T , the transformation efficiency
differences ∆T = Th − Tq are shown in Fig. 20 using the
peak signal-to-noise ratio (PSNR) and the structural similarity
(SSIM) metrics [52], [53], [61], [85]. These results were ob-
tainedwith theUSC-SIPI image database [27]. Each hexagonal
pixel was interpolated with its circumradius R, whereas the
square lattice format based image transformation was based
on the resulting hexagonal arrays’ resolution as the minimum
square image target resolution. Following [86], test images
that are most commonly characterized as natural images,
e.g., images (c–f), show evidently increased transformation
efficiencies. However, a counterexample can be observed for
the test images number 37 (f) and 38 (g), which can a priori not
be reliably approximated based on the hexagonal lattice format
due to the large number of occurring vertical and horizontal
structures. Furthermore, near the circumradius 1, a decline in
Th can be observed. This observation is explained in particular
by the resulting square pixel side length, which reaches the
image resolution of the original image, therefore resulting in
only minor square interpolation artifacts.
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Table 3: Mean total pixels sampled per class and function within (i). Shown are the mean total pixels sampled with the square
and the hexagonal lattice format. For both lattice formats, the same functions and image generation parameterization has been
used. When comparing square and hexagonal results, we can observe a reduction of needed pixels in favor of the hexagonal
lattice format, showing a mean reduction in pixels of 2.47 % (97.53 %).

Functions f1–f6 (6) Mean total pixels sampled [square] Mean total pixels sampled
[hexagonal]

Percentage of needed pixels
[hexagonal over square]

Lines (f1) 143.75 137.85 95.90

Curves (f2) 139.00 134.60 96.84

Ellipses (f3) 161.35 160.50 99.47

Line-based grids (f4) 1717.10 1675.90 97.60

Curve-based grids (f5) 1692.25 1656.25 97.87

Combinations of f1–f3 (f6) 410.40 400.15 97.50

Mean 97.53
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Figure 19: Incorrectly classified samples per synthesis parameter within (i) for an image resolution of 60× 60. Here, square
and hexagonal residual neural networks (S-ResNet and H-ResNet) [83], [84], namely ResNet v1 with three residual stacks
with each three residual blocks, have been assessed, for which square convolution kernels of size 3 × 3 have been replaced
by hexagonal ones of size 7 [52]. Both models have been trained for 2 epochs. Consequently, different classification results in
incorrectly classified step sizes (a) and linewidths (b) have been observed. Overall, the benefits of the hexagonal image data and
the hexagonal model are evident.

Following the evaluation of the USC-SIPI image database,
the square lattice format based image data sets CIFAR-10
[75], CIFAR-100 [75], CINIC-10 [76], COIL-20 [77], COIL-
100 [78], MNIST [79], and Tiny ImageNet [80] were further
investigated. For this purpose, Table 4 shows their results
overview with the obtained PSNR- (top) and SSIM-based
transformation efficiencies (bottom, respectively) in terms of
their minimum, maximum, mean, and median scores. Over
all results, it is evident that the hexagonal image transforma-
tion results in an overall increased transformation efficiency,
whereas only USC-SIPI and Tiny ImageNet show a greater
minimum than maximum in transformation efficiency. How-
ever, as highlighted before for USC-SIPI, these results are also
influenced by the occurrence of single images with prevalent
square structures.

D. FURTHER APPLICATION AREAS

Further application areas for (i) include tasks such as image
segmentation [35] and sampling [36]. Within (ii), our data
can be used for atmospheric event detection and classification
[37], [38], [48], [49], for which approaches such as hexagonal
deep neural networks can be employed [48]–[52]. Application
areas that have yet to be investigated regarding the generation
of hexagonal imagery include ecology [39], geodesic grid
systems [40], sensor-based image processing [36], [41], [42],
medical imaging [43]–[45], and image synthesis [46].

APPENDIX C
DISCUSSION

Hexagonal image processing offers advantages in terms of
sampling efficiency, neighborhood relationships, and image
quality. However, its widespread adoption is contingent upon
overcoming hardware limitations and further refining software
tools, such as the Hexnet Framework, to fully leverage the
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Figure 20: Square and hexagonal bilinear interpolation based image transformation comparison with the USC-SIPI image
database [27] utilizing the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) metrics in subpixel resolution.
Each hexagonal pixel was interpolated with its circumradius R of 0.1 to 5.0 in steps of 0.1, whereas the square lattice format
based transformation was based on the resulting hexagonal arrays’ resolution as the minimum square image target resolution.

benefits of hexagonal imagery in real-world applications. In
this section, we address further considerations regarding the
properties of hexagonal imagery and its benefits.

A. IMAGE STORAGE AND VISUALIZATION

For the storage of hexagonal imagery, common square image
file formats, such as Portable Network Graphics (PNG), are
used, which employ lossless compression algorithms such
as run-length encoding. These compression methods work
independently of the underlying lattice format, as pixel offsets
are ignored. Lossy compression algorithms are deliberately
avoided, as they could exacerbate compression artifacts due
to the distinct nature of hexagonal images compared to square
ones.
Common image viewers are unable to render graphics

with hexagonal sampling, as only specialized viewers, such
as Hexnet’s graphical user interface (GUI), are capable of

displaying hexagonally encoded images in their native form.
For visualization, Hexnet’s GUI leverages general-purpose
computing on graphics processing units (GPGPU) to optimize
the shader-based handling of these images. Users can choose
to visualize hexagonal images either in their native hexagonal
form via Hexnet or as square images through conventional
raster graphic viewers. With Hexnet, hexagonal images can
also be rendered as vector graphics, with all the necessary
information embedded in the image file to facilitate their
display through standard image viewers and processing tools.
For raster graphics, additional metadata files accompany the
Hexnet Dataset, providing further details on the hexagonal
specifics of the image generation process to ensure correct
decoding.

It is noted that although the raw data are accurately encoded,
typical image viewers may render hexagonal images as square
due to the inherent interpolation that occurs on standard
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Table 4: Square and hexagonal bilinear interpolation based
image transformation efficiency comparison utilizing the peak
signal-to-noise ratio (PSNR, top) and the structural similarity
(SSIM, bottom, respectively) metrics in subpixel resolution for
different conventional square lattice format based image data
sets. Shown are the resulting∆T values. Each hexagonal pixel
was interpolated with its circumradius R and the radii of 0.1
to 5.0 in steps of 0.1, whereas the square lattice format based
transformation was based on the resulting hexagonal arrays’
resolution as the minimum square image target resolution.

Data set Minimum Maximum Mean Median

CIFAR-10 [75] −4.633
−0.111

12.140
0.207

2.036
0.025

1.880
0.020

CIFAR-100 [75] −13.764
−0.312

13.433
0.461

2.122
0.022

1.972
0.017

CINIC-10 [76] −5.476
−0.103

12.476
0.364

2.134
0.026

1.999
0.020

COIL-20 [77] −10.201
−0.008

11.622
0.115

4.296
0.020

4.451
0.017

COIL-100 [78] −4.331
−0.008

13.603
0.130

4.836
0.022

5.174
0.019

MNIST [79] −9.851
−0.173

13.768
0.286

2.076
0.037

1.768
0.031

Tiny ImageNet [80] −14.461
−0.141

13.244
0.247

2.219
0.028

1.990
0.027

USC-SIPI [27] −23.961
−0.096

11.596
0.124

3.109
0.026

3.071
0.023

monitors, which is also true for square images when the display
resolution does not perfectly match the image resolution.
However, this discrepancy is not significant, as it only affects
the viewing experience and not the underlying image data.

B. IMAGE QUALITY AND HEXAGONAL SAMPLING
EFFICIENCY
The hexagonal grid offers several advantages in image quality
and sampling efficiency compared to the square grid. Hexag-
onal grids exhibit higher radial symmetry and homogeneity,
leading to a 13.4 % increase in sampling density, which allows
hexagonal grids to store more information with fewer sampling
points. Furthermore, the increased symmetry of hexagonal
grids minimizes image artifacts, particularly when aligning
along multiple orientations.
In nature, sharp lines and edges, or square structures, are

rare, with circular, ellipsoid, and curved forms being more
prevalent, contrasting with the sharp features often found in
rectangular-arranged structures and objects (e.g., industrial
manufacturing processes). Hexagonal grids offer increased
radial symmetry compared to square ones, which have only
2 axes and a perfect radial symmetry at 90 degrees, allowing
image artifacts to be minimized when aligning along 4 ori-
entations. In contrast, the hexagonal grid features 3 axes and
a perfect radial symmetry at 60 degrees, enabling alignment
along 6 orientations. This advantage suggests that, even when
a perfect line at 90 degrees is to be imaged, hexagonal
representations offer benefits when considering all possible

orientations. This may also explain the observations made in
Table 3, showing that fewer sampling points are required for
lines in hexagonal grids.

However, certain scenarios, such as imaging a square object
(e.g., a checkerboard surface) from above, may be better
suited to square sampling. Yet, when the perspective changes –
such as viewing the checkerboard from an angle where the
vanishing lines align closer to the 60 degrees symmetry axes –
hexagonal sampling could offer advantages even for square
objects, depending on their orientation and perspective. This
negative phenomenon is reflected in Fig. 20 (m, image 37),
demonstrating reduced transformation efficiency (∆T ) for
straight lines, particularly rectangles.

C. NEIGHBORHOOD RELATIONSHIPS AND SAMPLING
KERNELS
The neighborhood relationships within the square lattice
format can result in ambiguity, as two types of neighborhood
can be considered. These are denoted as direct and indirect or
4- and 8-neighborhood relationship. This ambiguity increased
the amount of neighborhood cases to be considered when,
for instance, border or line following algorithms are to be
utilized, such as Bresenham’s line algorithm [28], [29]. With
the hexagonal lattice format, a uniqueness of neighborhood is
inherent, which means that no differentiation between direct
and indirect neighborhood relationships has to be made, as
only direct neighboring pixels exist. Beyond the direct neigh-
borhood, different pixel distances result for both the square
and the hexagonal lattice format that have to be considered.

When considering image quality, previous work has shown
that hexagonal imagery can result in improved image quality,
which is, for instance, measured by the transformation effi-
ciency of square and hexagonal images [52], [53], [61]. For
example, Schlosser et al. [52], [53] and Fadaei and Rashno
[61] show that improved image quality can be quantified even
when subpixel image resolutions are being considered. For this
purpose, an investigation into image similarity is conducted
in Fig. 20 and Table 4. With an increasing circumradius R,
a stronger downscaling is realized, highlighting the hexago-
nal benefit in terms of image quality in comparison to the
original imagery. This observation may serve as a starting
point for further evaluations on sampling methods and their
parameterization (e.g., neighborhood definitions and sampling
distances).

D. HARDWARE AND SOFTWARE LIMITATIONS
Despite the theoretical and practical advantages of hexagonal
grids, the transition from square to hexagonal imagery is
hindered by the lack of hexagonal input and output hardware,
such as cameras and monitors [20], [25], [26]. While efforts
have beenmade in research and sensor-based image processing
[36], [41], [42], large-scale development of hexagonal devices
remains limited. Notable exceptions, such as the Cherenkov
Telescope Array, could catalyze the development of such hard-
ware. On the software side, the Hexnet Framework represents
a significant step forward in processing hexagonal image data.
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It provides a versatile framework for converting square images
to hexagonal formats and simplifies handling hexagonal grids
[52], [53]. Moreover, it provides further functionality on
specific image processing tasks from general image processing
and computer graphics, computer vision, as well as machine
learning and deep learning, which will be introduced as part
of our future work. As hexagonal sensors remain unavail-
able, techniques such as downsampling square sensor data
to hexagonal resolutions [59] offer a feasible workaround
for approximating hexagonal sensor performance, especially
when input resolution exceeds processing capabilities.

E. DATA GENERATION AND THE HEXNET DATASET
The generation of hexagonal images with the Hexnet Dataset
and its generators involves several mathematical functions
for producing geometric primitives and astronomical data.
The data set includes a variety of image generation kernels,
allowing for the creation of lines, curves, grids, and more
complex shapes, as well as conventional square image data sets
such as CIFAR and Tiny ImageNet. Preliminary results suggest
that hexagonal and square approaches exhibit no significant
performance differences in terms of image generation [52].
However, the geometric properties of both grids – such as
the number of white pixels or line thickness – directly influ-
ence computational complexity, with more complex functions
requiring longer generation times. Although comprehensive
evaluations of image generation kernels are beyond the scope
of this work, the provided documentation and illustrations (e.g.,
Listings 3 to 6 and Fig. 21 to 40) demonstrate how different
parameters affect image generation.

F. COMPARATIVE FRAMEWORKS AND THE FUTURE OF
HEXAGONAL IMAGE PROCESSING
To our best knowledge, no previous or current research
provides implementations that would enable the generation or
hexagonal imagery. Instead, their main focus often lies with
the underlying principles of hexagonal image processing itself
[47], [54]–[56], [58], [59].
However, in terms of general hexagonal image processing

frameworks, one alternative exists, the hexagonal image pro-
cessing framework HIP (HIP framework) [20]. It provides
functionality for the storage, processing, and visualization of
hexagonal imagery, including the square-to-hexagonal and
hexagonal-to-square image transformation, which is based on
image interpolation, as well as functionality to determine pixel
neighborhoods and their distances. However, since its concep-
tion, the HIP framework has been extended and optimized
[18], with previous work highlighting its limitations in terms of
image quality [18] and performance [18], [52] in comparison to
the Hexnet Framework [52]. The Hexnet Framework provides
this functionality as core functionality while providing further
functionality on specific image processing tasks from general
image processing and computer graphics, computer vision, as
well as machine learning and deep learning. However, it is
out of its scope to introduce the Hexnet Framework and its
evaluation, which will be a part of our future work.

APPENDIX D
HOSTING, LICENSING, MAINTENANCE, AND ETHICS
For data set hosting purposes, the file hosting platform of the
Chemnitz University of Technology will be used to provide
our data set. Additionally, we plan on publishing our data set
via the open access repository Figshare20 to be eligible to be
indexed by the Google Dataset Search21. We are, however,
also open to alternative suggestions regarding data hosting
possibilities. TheHexnet Dataset will be licensed viacb 4.0.
For its maintenance, a continuous maintenance with further
extensions of our data set, including further parameteriza-
tions and classes, is intended. Finally, we declare that this
submission is, to the best of our knowledge, free from ethical
implications, whereby it aligns with common ethical norms.

APPENDIX E
EXAMPLES
Listings 3 to 6 and Fig. 21 to 24 give an overview of our
realized functionality for the generation of geometric primi-
tives. Shown are examples for lines, curves, ellipses (circle),
and further functions (examples 1 to 4). Fig. 25 to 34 detail
the influence of the different image generation parameters,
including figure sizes, step sizes, linewidths, rotation degrees,
and function factors. Fig. 35 to 40 show additional atmospheric
event images generated with varying distributions, intensities,
and number of events for astronomical image generation.
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1 # Example " l i n e " : n e a r e s t n e i ghbo r i n t e r p o l . w i th co lormap " g ray "
2 p l o t _ f u n c t i o n _ a n d _ v i s u a l i z e _ h e x a r r a y (
3 # Func t i o n p l o t _ f u n c t i o n ( )
4 p l o t _ f u n c t i o n _ f u n c t i o n = p l o t _ f u n c t i o n _ h e x a g o n a l ,
5 f u n c t i o n _ s = [ ’ x ’ ] ,
6 symbol_s = [ ’ x ’ ] ,
7 f i g u r e _ s i z e = 60 ,
8 window_size = 1 ,
9 s t e p _ s i z e = 0 . 005 ,

10 l i n e w i d t h _ f a c t o r = 0 . 1 ,
11 rad_o = 0 . 6 3 ,
12 r o t a t i o n _ d e g r e e s = 0 ,
13 i n t e r p o l a t i o n = ’ n e a r e s t n e i ghbo r ’ ,
14 o u t p u t _ d i r = o u t p u t _ d i r ,
15 # Func t i o n v i s u a l i z e _ h e x a r r a y ( )
16 co lormap = ’ g ray ’ ,
17 v i s u a l i z e _ a x e s = True ,
18 show_hexa r ray = True )

Listing 3: Geometric primitive image generation example 1.
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Figure 21: Geometric primitive image generation example 1.

1 # Example " cu rve " : n e a r e s t n e i ghbo r i n t e r p o l . w i th co lormap " g ray "
2 p l o t _ f u n c t i o n _ a n d _ v i s u a l i z e _ h e x a r r a y (
3 # Func t i o n p l o t _ f u n c t i o n ( )
4 p l o t _ f u n c t i o n _ f u n c t i o n = p l o t _ f u n c t i o n _ h e x a g o n a l ,
5 f u n c t i o n _ s = [ ’ s q r t ( x ) ’ ] ,
6 symbol_s = [ ’ x ’ ] ,
7 f i g u r e _ s i z e = 60 ,
8 window_size = 1 ,
9 s t e p _ s i z e = 0 . 005 ,

10 l i n e w i d t h _ f a c t o r = 0 . 1 ,
11 rad_o = 0 . 6 3 ,
12 r o t a t i o n _ d e g r e e s = 0 ,
13 i n t e r p o l a t i o n = ’ n e a r e s t n e i ghbo r ’ ,
14 o u t p u t _ d i r = o u t p u t _ d i r ,
15 # Func t i o n v i s u a l i z e _ h e x a r r a y ( )
16 co lormap = ’ g ray ’ ,
17 v i s u a l i z e _ a x e s = True ,
18 show_hexa r ray = True )

Listing 4: Geometric primitive image generation example 2.
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Figure 22: Geometric primitive image generation example 2.

1 # Example " c i r c l e " : l i n e a r i n t e r p o l . w i th co lormap " i n f e r n o "
2 p l o t _ f u n c t i o n _ a n d _ v i s u a l i z e _ h e x a r r a y (
3 # Func t i o n p l o t _ f u n c t i o n ( )
4 p l o t _ f u n c t i o n _ f u n c t i o n = p l o t _ f u n c t i o n _ h e x a g o n a l ,
5 f u n c t i o n _ s = [ ’ 1/4∗(2− s q r t (−3+16∗x−16∗x ^2 ) ) ’ ,
6 ’ 1/4∗ (2+ s q r t (−3+16∗x−16∗x ^2 ) ) ’ ] ,
7 symbol_s = [ ’ x ’ ] ,
8 f i g u r e _ s i z e = 60 ,
9 window_size = 1 ,

10 s t e p _ s i z e = 0 . 005 ,
11 l i n e w i d t h _ f a c t o r = 0 . 2 ,
12 rad_o = 0 . 6 3 ,
13 r o t a t i o n _ d e g r e e s = 0 ,
14 i n t e r p o l a t i o n = ’ l i n e a r ’ ,
15 o u t p u t _ d i r = o u t p u t _ d i r ,
16 # Func t i o n v i s u a l i z e _ h e x a r r a y ( )
17 co lormap = ’ i n f e r n o ’ ,
18 v i s u a l i z e _ a x e s = True ,
19 show_hexa r ray = True )

Listing 5: Geometric primitive image generation example 3.
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Figure 23: Geometric primitive image generation example 3.

1 # Example " s i n e " : l i n e a r i n t e r p o l . w i th co lormap " i n f e r n o "
2 p l o t _ f u n c t i o n _ a n d _ v i s u a l i z e _ h e x a r r a y (
3 # Func t i o n p l o t _ f u n c t i o n ( )
4 p l o t _ f u n c t i o n _ f u n c t i o n = p l o t _ f u n c t i o n _ h e x a g o n a l ,
5 f u n c t i o n _ s = [ ’ 0.5∗ s i n (20∗x ) +0 .5 ’ ] ,
6 symbol_s = [ ’ x ’ ] ,
7 f i g u r e _ s i z e = 60 ,
8 window_size = 1 ,
9 s t e p _ s i z e = 0 . 005 ,

10 l i n e w i d t h _ f a c t o r = 0 . 1 ,
11 rad_o = 0 . 6 3 ,
12 r o t a t i o n _ d e g r e e s = 0 ,
13 i n t e r p o l a t i o n = ’ l i n e a r ’ ,
14 o u t p u t _ d i r = o u t p u t _ d i r ,
15 # Func t i o n v i s u a l i z e _ h e x a r r a y ( )
16 co lormap = ’ i n f e r n o ’ ,
17 v i s u a l i z e _ a x e s = True ,
18 show_hexa r ray = True )

Listing 6: Geometric primitive image generation example 4.
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Figure 24: Geometric primitive image generation example 4.
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Figure 25: Geometric primitive images in ascending figure
size: square.

(a) 0.001 (b) 0.01 (c) 0.03 (d) 0.05

Figure 26: Geometric primitive images in ascending step size:
square.

(a) 0.005 (b) 0.01 (c) 0.02 (d) 0.04

Figure 27: Geometric primitive images in ascending linewidth:
square.
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Figure 28: Geometric primitive images in ascending rotation
degree: square.

(a) 0.75 (b) 1.0 (c) 1.25 (d) 1.5

Figure 29: Geometric primitive images in ascending function
factor: square.
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Figure 30: Geometric primitive images in ascending figure
size: hexagonal.

(a) 0.001 (b) 0.01 (c) 0.03 (d) 0.05

Figure 31: Geometric primitive images in ascending step size:
hexagonal.

(a) 0.005 (b) 0.01 (c) 0.02 (d) 0.04

Figure 32: Geometric primitive images in ascending linewidth:
hexagonal.
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Figure 33: Geometric primitive images in ascending rotation
degree: hexagonal.

(a) 0.75 (b) 1.0 (c) 1.25 (d) 1.5

Figure 34: Geometric primitive images in ascending function
factor: hexagonal.
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(a) i = 1000 (b) i = 1200 (c) i = 1400 (d) i = 1600

(e) i = 1800 (f) i = 2000 (g) i = 2200 (h) i = 2400

Figure 35: Astronomical image generation images in ascend-
ing intensity (i): single shower area, Gaussian.

(a) i = 1000 (b) i = 1200 (c) i = 1400 (d) i = 1600

(e) i = 1800 (f) i = 2000 (g) i = 2200 (h) i = 2400

Figure 36: Astronomical image generation images in ascend-
ing intensity (i): single shower area, skewed Gaussian.

(a) i = 1000 (b) i = 1200 (c) i = 1400 (d) i = 1600

(e) i = 1800 (f) i = 2000 (g) i = 2200 (h) i = 2400

Figure 37: Astronomical image generation images in ascend-
ing intensity (i): single shower area, ring Gaussian.

(a) i = 1000 (b) i = 1200 (c) i = 1400 (d) i = 1600

(e) i = 1800 (f) i = 2000 (g) i = 2200 (h) i = 2400

Figure 38: Astronomical image generation images in ascend-
ing intensity (i): multiple shower areas, Gaussian.

(a) i = 1000 (b) i = 1200 (c) i = 1400 (d) i = 1600

(e) i = 1800 (f) i = 2000 (g) i = 2200 (h) i = 2400

Figure 39: Astronomical image generation images in ascend-
ing intensity (i): multiple shower areas, skewed Gaussian.

(a) i = 1000 (b) i = 1200 (c) i = 1400 (d) i = 1600

(e) i = 1800 (f) i = 2000 (g) i = 2200 (h) i = 2400

Figure 40: Astronomical image generation images in ascend-
ing intensity (i): multiple shower areas, ring Gaussian.
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