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ABSTRACT With the increasing demand for digitization, Optical Character Recognition (OCR) systems
play a vital role in digitizing physical manuscripts. Several methods have been successfully deployed in
the OCR domain. However, they often face challenges when dealing with low-resource regional scripts
because of the limited training data and complex structure of characters. In such a scenario, Siamese
Network (SN)meta-learning offers a promising solution for this problem by enabling quick adaptation to new
tasks with minimal training data. Despite the success of SNs in various classification tasks, the traditional
SN architecture seeks a compelling upgrade to improve its ability to distinguish between similar-looking
characters of regional scripts. In this research paper, we propose a novel Priority-Smart Network (PSN)
framework for traditional SN architectures, which can easily be incorporated into existing CNN backbone
and improve their ability to identify characters in low-resource regional scripts. Furthermore, we propose
the Enhanced Differential Edge Detection (EDED) preprocessing strategy explicitly designed for OCR tasks.
With rigorous investigation and evaluation of three benchmark low-resource script datasets, we establish the
effectiveness of our proposed techniques. Our experimentation results showcase significant advancements
in character recognition accuracy and robustness, emphasizing the potential of SN combined with the PSN
framework and EDED strategy for improving OCR systems in low-resource script.

INDEX TERMS Deep Learning, Low Resource Regional Languages, Meta-Learning, OCR, Priority-Smart
Network, Siamese Network.

I. INTRODUCTION

IN the ever-evolving terrain of technology, Optical Char-
acter Recognition (OCR) plays a pivotal role in con-

verting physical manuscripts into digital form [1]–[3]. With
the increasing demand for digitization, there is an urgent
need for OCR systems that can achieve superior accuracy
and adaptability across various regional scripts, languages,
and document formats. In India, 22 official languages and
over 121 regional languages exist, most are considered low-
resourced [4]. In this context, we refer to ‘‘low-resourced"
which lacks adequate labeled data, linguistic models, and

technological infrastructure [5], [6]. In such a scenario, OCR
faces challenges, especially when handling the LowResource
Regional Languages (LR-RL) due to regional scripts’ inher-
ent complexities and ambiguity [7].

Several methods have been successfully deployed in the
OCR domain, ranging from earlier feature-matching tech-
niques to more contemporary convolutional neural networks
(CNN) based approaches [2], [6], [8]. In the context of LR-
RL, these approaches encounter several challenges. Feature-
matching-based techniques struggle with the complex frag-
ments of these scripts, while current CNN-based approaches
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usually require vast amounts of training data. Furthermore,
conventional OCR methods often face significant difficulties
when dealing with LR-RL specailly Indian regional scripts,
primarily due to the presence of characters that closely re-
semble each other and the intricate shapes of these characters.
The absence of standard training datasetsmakes it even harder
for regular OCRs to operate on these regional scripts. In this
context, Siamese Meta Learning presents a promising solu-
tion, leveraging its proficiency in discerning similarities be-
tween entities. Moreover, the meta-learning aspect facilitates
rapid adaptation to new tasks, addressing conventional OCR
limitations in low-data scenarios and enhancing performance
in low-resourced script recognition. However, despite the
massive success of Siamese networks in various classifica-
tion tasks [9]–[11], the traditional Siamese architecture seeks
a compelling upgrade to improve its ability to distinguish
between similar-looking characters of LR-RL. Conventional
training methods of Siamese networks often lead to lagging
performance and sub-optimal outcomes, extending concerns
about their effectiveness.

To tackle the above-mentioned challenges, this work
proposes a Priority-Smart Network (PSN) framework for
Siamese networks. It’s smart, lightweight, and can easily
be incorporated into any existing CNN Siamese backbones,
making them more efficient. The PSN framework works like
an intelligent filter that pays more attention to important
features. Moreover, it ensures a sophisticated and fine un-
derstanding of the underlying input data by granting adaptive
priority to each extracted feature. By prioritizing and embed-
ding features hierarchically frommultiple levels of themodel,
our approach with PSN-incorporated models aims to tackle
the challenges posed by high inter-class similarity among
characters in LR-RL scripts.

The primary contributions through the outcomes of this
investigation include:

1) A novel methodology leveraging the Siamese network-
based meta-learning. It offers baseline accuracy in
few-shot classification, setting the foundation across
three LR-RL datasets: Olchiki, Assamese, and Meetei-
Mayek (Mapi) Script. This contribution invites re-
searchers to explore and advance this domain collab-
oratively.

2) We developed a novel PSN framework for few-shot
character classification. Unlike traditional approaches
using solely high-level features, PSN comprises hierar-
chical counts of features from multiple levels, improv-
ing the SN’s discriminating power.

3) We propose an effective preprocessing technique- En-
hanced Differential Edge Detection (EDED), fusing
Improved Binary Patterns (IBP) with dynamic his-
togram enhancement and Canny edge detection. It un-
covers and enhances the optical character’s edges and
hidden details.

4) We evaluated the performance of the proposed method

extensively on the three LR-RL datasets. Experimental
results shown that integrating PSN and EDED into the
SN results in substantial performance gains with the
state-of-the-art classical Siamese network.

The rest of the paper is organized as: Literature review in
Section II, Materials andMethod in Section III, Experimental
details in Section IV, Results and Discussion in Section V,
and Conclusion in Section VI.

II. LITERATURE REVIEW
Several studies emphasize challenges in utilizing traditional
OCR for Low-Resourced Regional Languages (LR-RL) [2],
[4], [7]. Early techniques, relying on template matching and
feature extraction strategies, have laid the basis for OCR.
Nevertheless, their efficacy decreases when faced with the
diverse and complex nature of Indian scripts. High inter-
class similarity, compounded by variability in font sizes and
styles, has proven to be a substantial limitation for these
traditional methods. This section discusses the related work
across three intriguing aspects: The Evolution of the OCR
system in Indian scripts, progress in OCR through Few-Shot
Meta-learning techniques, and progress in Siamese Network
Design for Few-Shot image classification.

A. THE EVOLUTION OF THE OCR SYSTEM IN LR-RL
SCRIPTS
Recent literature explores the development of OCR sys-
tems customized explicitly for Indian scripts, handling the
challenges of script intricacies and linguistic diversity [4].
This study briefly outlines the present character and nu-
meral recognition landscape in offline handwritten Indian
scripts, particularly for scripts like Assamese, Bangla, Malay-
alam, Oriya, Devanagari, Gurmukhi, and Tamil. Traditional
OCR techniques include feature-based methods [12], tem-
plate matching [13], statistical methods [14], neural networks
[8], and hybrid approaches. Template matching applies by
comparing predefined character templates against the input
images. Feature-based approaches extract relevant features
from input images, such as edges and textures; based on those
extracted features, this strategy aims to classify any input
image. Over the years, researchers developed OCR systems
using several statistical methods, namely, Hidden Markov
Models (HMM) and Conditional Random Fields (CRF), to
develop OCR systems. In HMM-based OCR systems, charac-
ters are described as a series of visual features, and the model
guesses the most probable sequence of characters based on
the input image. CRF extends the concept of HMM by in-
cluding contextual information to improve recognition accu-
racy. While neural networks, including Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN),
input images are fed through layers containing convolutional
filters to extract features, followed by dense layers for charac-
ter recognition. RNN-based OCR techniques process images
consecutively, treating each pixel column as a time step,
allowing them to grab contextual information and reliances
between two characters using recurrent relations. Hybrid
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approaches combine techniques like template matching and
feature-based methods. Despite these strategies, challenges
like variability in writing styles and limited training data
persist, requiring further research for practical solutions.

Traditional OCR approaches often rely on large amounts
of labeled data for training, which is scarce for low-resorce
scripts. Few-shot Meta-learning stratiges can be used to solve
this problem. This type of learning machanism stands out for
its adaptability, delivering a slight and effective means of han-
dling the challenges associated with low-resource regional
scripts in OCR applications.

B. PROGRESS IN OCR THROUGH FEW-SHOT
META-LEARNING TECHNIQUES
In recent years, a transformative shift has been observed in
the field of development of OCR by integrating meta-learning
techniques, especially emphasizing the power of few-shot
learning (FSL) [15]–[17]. Meta-learning, often anointed with
‘‘learning to learn," promotes a model’s adaptability to novel
tasks by disclosing it to diverse meta-tasks. Existing ap-
proaches fall into three types: metric-based (e.g., Matching
Networks, Siamese Networks) [9], optimization-based (e.g.,
Model-Agnostic Meta-Learning (MAML)) [18], and model-
based (e.g., Memory-Augmented Neural Network (MANN))
[19]. These methods facilitate quick learning on new tasks
with the tiniest data, symbolizing a crucial paradigm evo-
lution in machine learning for effective knowledge transfer.
This section investigates the latest developments in meta-
learning involved in OCR tasks, focusing on procedures that
leverage FSL paradigms to improve the efficiency and adapt-
ability of OCR systems.

[20] proposed Orc-Bert Augmenter, a novel strategy for
few-shot oracle character recognition. They incorporate self-
supervised learning into data augmentation, which addresses
the challenges of imbalance and narrow data. Using a pre-
trained self-supervised model, orc-Bert Augmentor gener-
ates augmented samples from unlabeled Chinese character
datasets and a few labeled oracle characters. [21] employed
double augmentation, applying standard transformations and
aConditional DeepGenerativeAdversarial Network (CGAN)
for ancient Korean character recognition. They evaluate the
results with the Lenet5 and Lenet8 network models. [22]
suggested a statistical model for High Character Recognition,
rendering multifarious image data based on character layout.
[23] proposed a one-shot rule learning strategy for Malay-
alam Character Recognition, leveraging OneShot Hypothesis
Derivation (OSHD), a logic schedule declarative bias for
meta-level reasoning that focuses on high-level properties of
the language. [24] propose an Adversarial Feature Learning
(AFL) model for handwritten character recognition (HCR)
that automatically comprises writer-independent semantic
characteristics and uses standard printed data as objective
primary knowledge. This approach achieves competitive re-
sults on MNIST and CASIA-HWDB datasets. [25] created a
Siamese CNN for Tamil Handwritten Character Recognition
acquiring optimal accuracy with tiniest shots. [26] applied a

Siamese architecture for one-shot author verification using
handwritten characters. They develop a novel CNN backbone
for a Siamese network with three Convolutional layers and
three fully connected layers; the model achieves an average
verification accuracy on unseen test data. [27] proposed a
Siamese network approach for handwritten Chinese charac-
ter recognition (HCCR) using template matching to manage
challenges such as fixed model size, raw data augmentation,
and zero-shot learning abilities, showcasing its significance
on ICDAR-2013 offline HCCR dataset.
While literature shows a narrow exploration of Indian

scripts via few-shot meta-learning, a significant prospect ex-
ists for using meta-learning strategies in the low-resourced
Indian script discipline. Notably, the extensively explored
Siamese network stands out as a favorable solution for few-
shot classification duties, offering a transformative strategy
for handling the challenges associated with these scripts.

C. PROGRESS IN SIAMESE NETWORK DESIGN FOR
FEW-SHOT IMAGE CLASSIFICATION
In the field of few-shot image classification, Siamese net-
works have grown immensely, addressing various challenges
and stretching the limits of performance [28], [29]. Note-
worthy works include [30] presenting a VGG-styled Siamese
network for one-shot image classification and [31] offering
a multi-resolution Siamese network. Contemporary innova-
tions concentrate on attention mechanisms [ [32], [33]], en-
hanced feature extraction [ [34], [35]], dynamic routing [36],
knowledge transfer [ [37], [38]], memory-enhanced methods
[39], and optimization strategies [40]. For example, the Co-
sine Siamese Network [41] acquired state-of-the-art perfor-
mance utilizing cosine similarity, while the Capsule Siamese
Network [42] presented capsule layers for pose-sensitive
components. These improvements collectively contribute to
developing Siamese network architectures, improving their
effectiveness in few-shot image classification jobs.
The literature review illustrates the progress in Siamese

networks in the field of few-shot image classification. These
insights motivate us to integrate Siamese Meta-Learning with
the proposed PSN framework to address the complicated
challenges of Optical Character Recognition (OCR) in LR-
RL scripts. By leveraging the improvement witnessed in
Siamese network architectures, our approach expects to offer
a targeted and valuable solution for improving OCR accuracy
in LR-RL scripts, filling a vital gap in the present state of OCR
technology by enabling context-aware feature extraction.

III. MATERIALS AND METHOD
A. FEW-SHOT LEARNING AND SIAMESE META-LEARNING
Few-shot learning (FSL) is a machine learning strategy that
enables models to learn new tasks with very small amount
of training data. It is also ideal for improving a model’s
generalization and adaptation to new and unseen tasks.
While Siamese networks are specialized architecture ex-

perts at determining the likeness between instances, these
models accomplish this by training on a support set holding
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FIGURE 1. Conceptual Architecture of Siamese Network.

only a few samples per class and a query set for testing or clas-
sification tasks. As illustrated in Figure 1, a Siamese network
incorporates twin sub-networks, referred to as Siamese twins,
serving as the network’s backbone. This network takes a pair
of images, denoted as (X ,Y ), and extracts feature embedding
for each image, represented as f (X) and f (Y ). The core
function of the network involves using a distance calculation
function to determine the similarity score between these input
pairs. Siamese meta-learning combines Siamese networks
with the meta-learning strategy to adapt to new tasks quickly.
The model learns a universal similarity metric during meta-
training, leveraging shared weights to capture commonalities
across various tasks. This allows rapid adaptation to new tasks
during the meta-testing phase, which is particularly practical
for FSL in multiple domains.

While Siamese networks have demonstrated remarkable
success in various tasks, a substantial structural challenge
appears in the classical Siamese network architecture. This
is particularly evident when classifying LR-RL utilizing a
few-shot learning strategy in meta-learning techniques. These
challenges are discussed below:

• High script similarity: LR-RL scripts show signifi-
cant visual similarity, making it difficult to differentiate
between them. Figure 2 illustrates two different char-
acter samples from the Gujarati script, showcasing re-
markable visual similarity despite belonging to separate
classes.

FIGURE 2. Two diffrent Gujarati characters with high visual similarity.

• Scripts share features: These scripts often share certain
standard features that confuse the model and complicate
the classification task.

• Classification difficulty: Siamese networks were ini-
tially crafted to compare similarities rather than stan-
dardize them into categories. To handle classification

with Siamese networks effectively, it might be essential
to integrate the networks with additional components.

• Data handling: Siamese networks generally require
diverse good-quality training data for efficient LR-RL
classification. Therefore, it is crucial to expose the net-
work to various script styles and employ different data
augmentation methods to enhance its performance.

Forming specific evaluation metrics that can capture the
fine similarities between scripts is essential to tackle these
challenges of the LR-RL classification task effectively. Our
research concentrates on utilizing Siamese networks for OCR
on LR-RL using three popular CNN architectures: ResNet
[43], DenseNet [44], and EfficientNet [45]. By leveraging
the capabilities of these architectures, we aim to attain good
results in LR-RL, thereby advancing the field of low-resource
script recognition.

B. FRAMEWORKS
We introduce the Priority-Smart Network (PSN) framework
to enhance the performance of three CNN architectures for
the Siamese network backbone: ResNet, DenseNet, and Ef-
ficientNet. We also systematically assess these architectures
in two configurations: their original form and in partnership
with the PSN framework. Our research offers a detailed
comprehension of the significant impact of the PSN frame-
work on performance metrics. Additionally, we introduce a
preprocessing technique, named Enhanced Differential Edge
Detection (EDED), specifically designed for Siamese net-
works in LR-RL character classification. EDED enhances
edge detection to unveil subtle intricacies within textual data.
The following two sections present a brief discussion on PSN
and EDED techniques.

1) Priority-Smart Network (PSN) framework

FIGURE 3. Architecture of PSN Framework.

The proposed Priority-Smart Network (PSN) framework
can integrate into existing CNN frameworks. It is specif-
ically designed to prioritize feature embeddings in OCR
applications. Moreover, it can also act as an adaptive feature
selector by dynamically highlighting important details. So,
with the incorporation of the PSN framework into Siamese
architectures, contextual attributes are emphasized, leading
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to context-aware feature extraction. Our approach integrates
the PSN framework at multiple levels within the model archi-
tecture and hierarchically collects the feature embeddings for
a rich and diverse feature representation. These embeddings
play a crucial role in computing losses for the Siamese net-
work, effectively mitigating challenges associated with high
intra-class similarity in text classification tasks. This strategy
ensures robust and accurate model performance, aligning
with our objective of enhancing character recognition by
preserving neighboring structures.

The building blocks PSN framework :
• Convolutional Layer: As shown in Figure 3, PSN

framework begins with a 2D convolution operation, ex-
pressed as:

Convout = Conv3×3(Input) (1)

where, Conv3×3 is a 3×3 convolution operation applied
to the inputted feature maps. It aims to capture spatial
information in the data.

• Batch Normalization: Then, the output is passed
through batch normalization, which can be represented
as:

BatchNormout =
Convout − µ√

σ2 + ϵ
(2)

where σ andµ are the standard deviation andmean of the
output, and ϵ is a small constant used to prevent division
by zero.

• Rectified Linear Unit (ReLU): A ReLU activation
function introduces non-linearity as:

ReLUout = max(0,BatchNormout) (3)

It enhances the network’s capability to capture complex
patterns, and the complete feature flow is as:

X = ReLU(BatchNorm(Conv3×3(Incoming_Features)))
(4)

• Enhanced Attention Mechanism: The core of the PSN
framework involves an enhanced attention mechanism,
incorporating two successive 1 × 1 convolutions and a
ReLU activation. Here, the first convolution operation
reduces the channel dimension by half, and then the
second convolution operation restores it, aiming to learn
spatial dependencies as:

Attentionout = Conv1×1(ReLU(Conv1×1(X))) (5)

This mechanism allows the network to concentrate on
specific feature channels, generating attention weights.

• Sigmoid Activation: To ensure that the attention
weights remain within the range of 0 to 1, a sigmoid
activation function is utilized as:

Channel_Weights = σ(Attentionout) (6)

• Learnable Channel Priorities: A key feature of the
PSN framework is the introduction of learnable scalar
priorities for each input feature channel. These priorities
are represented as parameters (i.e. channel priorities),
allowing the network to adaptively assign importance to
different channels by scaling the attention weights with
these channel priorities as:

Channel_modulated_Weights = Channel_Weights ⊙
Channel_Priorities

(7)

• FeatureCombination: The resulting attention-modulated
features
(Channel_modulated_Weights) are element-wise multi-
plied (dot product) with the processed input (X ), and the
original input (Incoming_Features) is then added back
to this product, promoting information flow and keeping
the original features as:

Final_Features = Incoming_Features

+ (X⊙ Channel_modulated_Weights)
(8)

This step ensures that crucial information is prioritized,
making the PSN framework a strong tool for various
applications.

2) Integration of PSN with Base Models
To tackle the challenge of OCR for LR-RL, we established
the accuracy baseline using three proven Siamese network
backbones: ResNet-18, DenseNet-169, and EfficientNet-B3.
These CNN architectures are derived from the ImageNet
contest. They have shown excellent recognition capability
to handle a wide range of 1000 classes, delivering a strong
foundation for our investigation.
To accommodate them into the complexities of LR-RL, we

modified the last fully connected layer of their architecture
from 1000 output nodes to 200. This architectural refine-
ment is now recalled as ResNet-Structured Feature Extractor
(RSFE), DensNet-Structured Feature Extractor (DSFE), and
EfficientNet-Structured Feature Extractor (ESFE).
Extending this foundation, we integrated the PSN frame-

work, a key element of our research, into the core of each
of those refined architectures: RSFE-PSN, DSFE-PSN, and
ESFE-PSN. This fusion was staged to evaluate the collec-
tive effective of PSN framework on LR-RL OCR tasks. The
architectural details of each three investigated models are
discussed below:

a: ResNet-Structured Feature Extractor (RSFE):
As shown in Figure 4, the initial architecture of our base
model, named ResNet-Structured Feature Extractor (RSFE),
follows the ResNet-18 framework and performs successively
to extract features from the input data. It begins with a 7×7
convolutional layer followed by batch normalization (BN)

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3509605

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Advancing Optical Character Recognition for Low-Resource Scripts: A Siamese Meta-Learning Approach with PSN Framework

FIGURE 4. Architecture of the RSFE.

and a ReLU activation. Subsequently, spatial dimension re-
duction is achieved via max-pooling, symbolized as:

Input → Conv2d(7×7)( ) → BN( ) →
→ ReLU() → MaxPool( ) →

(9)

The core of the architecture comprises four residual blocks:
Block One, Block Two, Block Three, and Block Four. Each
block has two sub-blocks with residual identity shortcuts:
Block ia and Block ib and each sub-block is comprised of two
consecutive 3×3 convolutions, followed by BN and ReLU
activation, and the structure is expressed as:

Block ia : {Input(X) → Conv2d(3×3)( ) → BN() →
→ ReLU() → Conv2d(3×3)( ) → BN() → ReLU()}

→ Y : {Block ia + X} →
Block ib : {Input(Y) → Conv2d(3×3)( ) → BN( ) →

→ ReLU() → Conv2d(3×3)( ) → BN( ) → ReLU()}
→ Z : {Block ib + Y} →

(10)

After feature extraction, an adaptive average pooling layer
decreases spatial dimensions to 1×1. The model ends with a
fully connected layer (FC) for classification, symbolized as:

→ AvgPool : AdaptiveAvgPool2d(1×1)( ) →
→ FC Layer → Output

(11)

This sequential arrangement allows the architecture to capture
abstract and discriminatory features efficiently.

b: RSFE incorporating PSN (RSFE-PSN) :
As shown in Figure 5, we integrate the PSN framework
followed by an average pooling layer and a fully connected
layer after each of the four Blocks (Block-1, Block-2, Black-
3, and Block4) of RSFE, Which helps prioritize deep features
and extract complex hierarchical features.

c: DensNet-Structured Feature Extractor (DSFE):
Our second base model architecture, named the DensNet-
Structured Feature Extractor (DSFE), follows the DensNet-
169 framework. Figure 6 illustrates the DSFE. DSFE com-
mences with a 7×7 initial Convolutional Layer with 64 output

channels. This layer is augmented by Batch Normalization
(BN) and ReLU activation function, forming the core struc-
ture:

Conv(7× 7, 64) → BN → ReLU (12)

Next, we place four Dense Blocks in DSFE. Each Dense
Block containins an ensemble of six Bottleneck Blocks (BB).
Each Bottleneck Block sequence includes Batch Normal-
ization (BN), ReLU activation, 1 × 1 convolution, optional
dropout with rate d , Sigmoid activation, 3 × 3 convolution,
and a concatenation operation at the end, symbolized as:

DB1 : [Bottleneck Block (BB)n]
6 (13)

Where each BB can be represented as:

BBn :[BN → ReLU → Conv(1× 1) → {Dropoutd} →
→ BN → σ → Conv(3× 3) → {Dropoutd}] →

→ Concatenate
(14)

The Transition Blocks follow the first three Dense Blocks,
handling spatial dimensions through Conv(1× 1) operations
and Average Pooling as:

Transition Blockn : [BN → ReLU → Conv(1× 1) →
→ {Dropoutd} → Avg Pool(2× 2)]

(15)

The DSFE model architecture is finalized with Batch Nor-
malization (BN), ReLU activation, Global Average Pooling,
and a Fully Connected (FC) Layer, represented as:

Input Features → DB1 → Transition Block1 →
→ DB2 : [Bottleneckn]12 → Transition Block2 →
→ DB3 : [Bottleneckn]32 → Transition Block3 →
→ DB4 : [Bottleneckn]32 → BN → ReLU →
→ Global Average Pooling → FC Layer

(16)

d: DSFE incorporating PSN (DSFE-PSN):
As presented in Figure 7, we integrate the PSN framework
followed by an average pooling layer and a fully connected
layer after each of the three Transition Blocks of DSFE.
Additionally, another PSN framework is added after the last
Dense Block(DB3) of DSFE, and this PSN framework is also
followed by an average pooling and a fully connected layer.
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FIGURE 5. Architecture of the RSFE-PSN.

FIGURE 6. Architecture of the DSFE.

FIGURE 7. Architecture of the DSFE-PSN.

e: EfficientNet-Structured Feature Extractor (ESFE):
The third architecture of our base model, named the
EfficientNet-Structured Feature Extractor (ESFE), adheres to
the EfficientNet-B3 framework. Figure 8 presents the ESFE.
ESFE begins with a 3 × 3 Convolutional Layer, followed
by Batch Normalization (BN) and the SiLU (Sigmoid Linear
Unit (σ)) activation function, represented as:

Xinput → Conv(3× 3) → BN → σ (17)

The architecture of ESFE is segmented into distinct seven
stages: stage 1 includes two Mobile Inverted Residual Bottle-
neck Convolution (MBConv) blocks with 1× 1 convolution,
both stage 2 and stage 3 encompasses three MBConv blocks
with 6×6 convolution, stages 4 and 5 consist of fiveMBConv
blocks with 6×6 convolution, stage 6 consists of sixMBConv
blocks with 6 × 6 convolution and stage 7 contains two
MBConv6 blocks with 6× 6 convolution.

Structure of MBConv Block: Each MBConv block exhibits
a similar structure, comprising the following sub-blocks:

• Expand Sub-Block: This sub-block incorporates a 1×1
Convolution layer followed by batch normalization (BN)
and the SiLU (σ) activation function as:

Xexp = σ(BN (Conv2d(Xin,Cin, 1, 1))) (18)

• Depthwise Sub-Block: This sub-block utilizes a depth-
wise separable convolution layer (DW), which is fol-
lowed by batch normalization and SiLU activation as:

Xdw = σ(BN (DW (Xexp, k, k))) (19)

• Squeeze-and-Excitation (SE) Sub-Block: This sub-
block facilitates channel-wise recalibration by employ-
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FIGURE 8. Architecture of the ESFE.

ing an adaptive average pooling layer (AvgPool) for
dimension reduction as:

Xse = AvgPool(Xdw) (20)

• A recalibration is further executed as:

Xr = σ(Conv2d(σ(Conv2d(Xse, θ, 1, 1)),

σ(Conv2d(Xse, ϕ, 1, 1))))
(21)

• Reduction Sub-Block: Defined as a 1× 1 Convolution
layer followed by batch normalization, this sub-block
utilizes an identity activation function as:

Xreduced = BN (Conv2d(Xr ,Cout, 1, 1)) (22)

• ADropSample operation is integrated to enhance infor-
mation flow and training efficiency.

After stage 7, we place a 1×1Convolution operation followed
by BN and the SiLU activation function:

Xhead = σ(BN (Conv2d(Xlast_stage,C , k, k))) (23)

To conclude the ESFE architecture, an adaptive average pool-
ing denoted as AvgPool, followed by flattening and a linear
(fully connected) layer with N output units is placed:

Xoutput = Linear(Flatten(AvgPool(Xhead)),N ) (24)

f: ESFE incorporating PSN (ESFE-PSN):
In Figure 9, we incorporate the PSN framework followed by
an average pooling layer and a fully connected layer after each
stage two, stage four, and stage six. Another PSN framework
is added after the last stage of ESFE, and this PSN framework
is also followed by an average pooling and a fully connected
layer.

3) Enhanced Differential Edge Detection (EDED)
We propose an image preprocessing technique termed En-
hanced Differential Edge Detection (EDED). EDED inte-
grates Improved Binary Patterns (IBP), Dynamic Histogram
Enhancement, and the well-established Canny edge detection
approach to enhance the detection and highlighting of edges
in images, amplifying minute elements and strengthening the
overall feature quality within the character sample. By in-
corporating IBP, EDED captures and represents local texture
information in image, while dynamic histogram enhancement

facilitates adaptive contrast refinement as well as local con-
trast enhancement. Additionally, the inclusion of Canny edge
detection improves precision in edge extraction. This fusion
within EDED significantly augments image preprocessing
and feature extraction processes, thereby substantially en-
hancing the capabilities of Optical Character Recognition
(OCR) systems in character recognition and extraction of rel-
evant information from images. The step-by-step algorithmic
process of EDED is illustrated in Algorithm 1.

Algorithm 1: Abstract step-by-step Process of En-
hanced Differential Edge Detection (EDED)
Data: image_path: Image path, radius:

Neighborhood radius, threshold: Threshold,
block_size: Histogram block size

Result: edge-enhanced image

Step 1: Initialization;
Load, grayscale, and resize image (100× 100),
Initialize ibp_image as an empty 2D array;

Step 2: IBP Calculation;

for EachPixel ∈ ResizedImage do
Compute binary pattern: BinaryPattern(p) ={

1, if |p− pc| ≥ threshold

0, otherwise
;

Equalize histogram:
EqualizedHistogram(H) =
HistogramEqualization(H ,block_size);

Calculate mean value: MeanValue =
1
N

∑N
i=1 i · EqualizedHistogram(i);

Weigh binary pattern to obtain IBP value:
IBPValue(p) =∑8

i=1 BinaryPattern(pi) · 2i;
Store IBP value in ibp_image;

Step 3: Canny Edge Detection;

Apply Canny edge detection:
Edges = Canny(ibp_image, σ = 1)

Step 4: Output;
Return edge-enhanced image;
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FIGURE 9. Architecture of ESFE-PSN.

4) Description of the Datasets
Our investigation employed multiple branch-mark datasets to
train and evaluate the proposed OCR system to ensure its
robustness and applicability.

a: Training Dataset
We use the Omniglot dataset to train all the models in our
investigation. The Omniglot dataset is specially created for
few-shot meta-learning or meta-training purposes, offering
our models vast and varied examples to learn data insights.
The structural components include:

• Classes:A comprehensive collection of 1623 characters
spanning 50 distinct alphabets, collected form unique
contact of multiple contributors via Amazon’s Mechan-
ical Turk. Each of the 1623 characters has 20 distinct
samples.

b: Testing Dataset
To evaluate our strategy, we used three benchmark LR-RL
OCR datasets, each depicting a unique linguistic context:

1) Assamese Script: A dataset of online handwritten As-
samese characters, collaboratively gathered by 45 writ-
ers.

• Classes: A vast collection comprising 183 classes
containing 52 primary characters, 121 conjunct
consonants, and 10 Assamese numerals.

2) Manipuri Meetei-Mayek Script: This dataset con-
tains more than 5000 handwritten Manipuri Meetei-
Mayek character samples across mixed demographics
inManipur. It includes characters from CheitapMayek,
Cheising Mayek, Mapi Mayek, Lonsum Mayek, And
Khutam Mayek.

• Classes: A vast collection comprising 60 classes.

3) OlChiki Script: OlChiki, one of India’s Scheduled
languages, was formed in 1940 by Pandit Raghunath
Murmu.

• Classes: A vast collection comprising 30 charac-
ters, 24 consonants, and six vowels.

IV. EXPERIMENTS
In this section, we discuss the complete training process
of Siamese networks of this investigation, leveraging state-
of-the-art CNN-based RSFE, DSFE, and ESFE as the fun-
damental building blocks, our investigation extends across
three phases: Base Model, Base Model with EDED, and Base
Model Incorporated with PSN framework and EDED.

A. PREPROCESSING AND DATA AUGMENTATION:
Like traditional deep-learning approaches, efficient prepro-
cessing is also critical in meta-learning. Our investigation
with the Siamese network includes the following standard
preprocessing strategy during the training of models:

• Resizing images to a uniform 100×100 resolution.
• Converting them to grayscale.
• Inverting colors for pattern accentuation.
• Transforming images into PyTorch tensors.

Further, we introduce Enhanced Differential Edge Detection
(EDED), specially designed to improve the discrimination
capabilities of the Siamese networks for OCR. To avoid the
overfitting and vanishing gradients, we use data augmentation
techniques. Arbitrary rotation introduces variability in image
orientation with ±10 degrees of random rotation. Arbitrary
Resized Crop diversifies image samples by random cropping
and resizing to 100×100 pixels, with a scale varying from
90. Color Jitter adds variety in color attributes via random
transformations, including brightness adjustments (up to 30).
These strategies virtually extend the training dataset, promot-
ing diverse and exhaustive model training.

B. TRAINING:
We train Siamese networks with RSFE, DSFE, and ESFE
as backbone models. These networks learn to differentiate
between negative and positive pairs randomly created from
the training dataset, preserving an approximately 50-50%
ratio balance. Each epoch or episode includes 5000 pairs,
delivering rich data for the network to refine its discrimination
capabilities. Vital hyper-parameters have a 30% dropout rate
for the regularization and the use of the Adam optimizer
with a learning rate of 0.0045 for efficient gradient-based
optimization. We utilize a learning rate scheduler with a step
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size of 50 epochs and a gamma of 0.1 to enhance adaptability
during training. The training transits 400 epochs, with model
selection based on acquiringminimal validation loss, assuring
peak generalization and performance.

a: Phase 1: Base Model Training with Standard
Preprocessing:
In the initial phase of our investigation, we trained RSFE,
DSFE, and ESFE on the training dataset for 400 epochs. We
utilized predefined standard preprocessing and augmentation
approaches during training, allotting 80% of the alphabet for
training and 20% for validation. The resultant training and
validation losses were documented and visualized in Figure
10, with a red dot denoting the minimum validation loss. This
course provides a concise understanding of the model’s per-
formance and the impact of preprocessing and augmentation.

b: Phase 2: Base Model Training with EDED
Preprocessing:
In the second phase, we conducted end-to-end training and
validation of RSFE, DSFE, and ESFE on the training dataset
for 400 epochs. Notably, we replaced the standard prepro-
cessing strategies with our proposed EDED preprocessing
technique. The training set contained 80% of the alphabet
(40), with the remaining 20% allocated for validation. We
recorded and visualized training and validation losses for
each epoch throughout the process. Figure 11 illustrates the
outcomes, with a red dot denoting the minimum validation
loss. This stage aims to evaluate the efficiency of EDED in
comparison to standard preprocessing approaches.

c: Phase 3: Base Model Incorporated with PSN
framework Training with EDED Preprocessing:
In the third phase, again we performed the 400-epoch training
and validation of RSFE-PSN, DSFE-PSN, and ESFE-PSN
models on the training dataset. The base model architectures
were significantly enhanced by incorporating our proposed
PSN framework. The EDED preprocessing approach was
consistently utilized. The training set contained 80% of the
alphabet, with the remaining 20% used for validation. Results
are visualized in Figure 12, with the red dot indicating the
epoch of minimum validation loss. This phase evaluates the
combined impact of the EDED preprocessing technique and
the PSN framework on the performance of the RSFE-PSN,
DSFE-PSN, and ESFE-PSNmodels.

V. RESULTS AND DISCUSSION
Our evaluation utilizes a K-WayN-Shot testing protocol. This
FSL protocol is designed to rigidly evaluate the impact of the
proposed PSN framework and EDED preprocessing strategy
with different Siamese network backbones in real-world LR-
RL OCR scenarios to identify the unknown character classes
with a few support samples. It allows us to precisely mea-
sure the model’s performance in bearing the character class’s
complexities, improving the reliability of models as potent

solutions for real-world OCR applications. The algorithm for
our K-Way N-Shot testing protocol is illustrated in Algorithm
2.

Algorithm 2: K-way N-shot Classification Test
Data: Dataset D, Model f , Evaluation Metric M
Result: Evaluation score M(Q)

Step 1: Data Splitting;
Let Dataset D, consisting of samples in (xi, yi), where
xi denotes an input and yi denotes corresponding
class label;

Splitting D into two subsets: Support Set (DS) and
Query Set (DQ);

S = {(xi, yi)|yi ∈ Ck , for k = 1 to K , i = 1 to N};
DQ = D− DS ;

*Support set consist of N examples from each of the
K classes

*Query set consist of the remaining examples for
testing

Step 2: Evaluation Metric;
Select an evaluation metric M , where M can be
precision, recall, accuracy, F1-score or any other
metric;

Step 3: Testing Loop;
for q ∈ Q do

Select a support set DSq, holding N examples
from each of the K classes, as DSq = {(xi, yi)|yi ∈
Ck , for k = 1 to K , i = 1 to N};
Construct a mini-classification task
Tq = (q,DSq);
Use the trained model f to make prediction for
query example q: f (q,DSq) = predicted_class;
Evaluate the prediction by comparing it with the
actual class label for q: δ(f (q,DSq), true_class);

Step 4: Calculate Metrics;
After iterating over all query examples, calculate the
selected evaluation metric M for the complete query
set Q;

M(Q) =
∑

q∈Q δ(f (q,DS q),true_class)
|DQ| , where q ∈ DQ;

A. PERFORMANCE EVALUATION, METRICS AND ANALYSIS
FOR TEST DATASET-1: ASSAMESE SCRIPT
This section evaluates the base models (RSFE, DSFE, ESFE)
and their enriched variants leveraging EDED preprocessing
and the PSN framework for Assamese script classification.
Consistent performance improvements are observed across
5-way, 8-way, and 12-way classifications with different shot
scenarios. Table 1 presents the results of our evaluation pro-
cess, where each data point is marked from 10 independent
testing assignments, and the table depicts the mean and stan-
dard deviation for resulting data points. The integration of
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FIGURE 10. Number of epoch vs. training and validation loss (A. RSFE with standard preprocessing, B. DSFE with standard preprocessing and C. ESFE with
standard preprocessing).

FIGURE 11. Number of epoch vs. training and validation loss (A. RSFE with EDED, B. DSFE with EDED and C. ESFE with EDED).

FIGURE 12. Number of epoch vs. training and validation loss (A. RSFE-PSN with EDED, B. DSFE-PSN with EDED and C. ESFE-PSN with EDED).

PSN into the base models, combined with EDED, consis-
tently outperforms the other models, showcasing the effec-
tiveness of our proposed methods in boosting classification
accuracy, recall, and precision for Assamese script classifica-
tion.

A performance growth analysis, as outlined in Table 2,
highlights the comparative accuracy improvements from base
models. In the five-way classification, the one-shot scenario
notices accuracy gains of 15.49%, 22.26%, and 28.32% with
EDED for RSFE, DSFE, and ESFE, respectively. Utilizing
PSN and EDED together further enhances these gains to
24.57%, 42.15%, and 45.62%. Similar accuracy improve-
ments were noticed across 5-shot, 10-shot, and 15-shot set-
tings, revealing impactful and consistent performance en-
hancements. In the eight-way classification, the one-shot
scenario shows accuracy growths of 31.78%, 21.27%, and
22.32% with EDED. Utilizing PSN and EDED together fur-
ther boosts these gains to 40.77%, 33.28%, and 36.64%. The

positive impact extends across 5-shot, 10-shot, and 15-shot
scenarios.
Expanding our analysis to the 12-way classification, the 1-
shot scenario gains accuracy growths of 21.79%, 22.03%,
and 19.80% with EDED for RSFE, DSFE, and ESFE, respec-
tively. Integrating PSN and EDED together further intensifies
these gains to 35.14%, 37.63%, and 47.56%. Consistent im-
provements are noticeable across 5-shot, 10-shot, and 15-shot
scenarios, highlighting the versatility and robustness of our
proposed strategies in improving classification performance.

B. PERFORMANCE EVALUATION, METRICS AND ANALYSIS
FOR TEST DATASET-2: OLCHIKI SCRIPT
This section evaluates the base models and their enhanced
variants (utilizing EDED preprocessing and the PSN frame-
work ) on the Olchiki script utilizing different ways (5, 8, and
12) and shot (1, 5, and 10) configurations. Table 3 presents
the performance metrics; each data point also derives from 10
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TABLE 1. Comparison of Classification Accuracy, Recall and Precision for Assamese Scripts Across Various Ways and Shots, with Respect to RSFE, DSFE
and ESFE.

RSFE RSFE +EDED RSFE-PSN+EDED DSFE DSFE +EDED DSFE-PSN+EDED ESFE ESFE +EDED ESFE-PSN+EDED

5-
w
ay

1-shot
Accuracy 65.00 ± 9.00 75.07 ± 6.36 80.97 ± 5.75 63.51 ± 12.31 81.70 ± 7.65 90.28 ± 4.70 57.67 ± 8.99 74.03 ± 5.14 83.98 ± 5.82
Recall 0.65 ± 0.09 0.75 ± 0.06 0.80 ± 0.05 0.64 ± 0.12 0.82 ± 0.08 0.90 ± 0.05 0.58 ± 0.09 0.73 ± 0.07 0.84 ± 0.06

Precision 0.66 ± 0.08 0.76 ± 0.06 0.82 ± 0.05 0.66 ± 0.12 0.84 ± 0.07 0.91 ± 0.05 0.60 ± 0.09 0.74 ± 0.11 0.86 ± 0.05

5-shot
Accuracy 74.86 ± 3.28 79.64 ± 4.41 86.86 ± 3.53 81.64 ± 6.68 89.00 ± 5.54 92.69 ± 4.05 74.75 ± 6.69 79.50 ± 6.96 88.12 ± 4.22
Recall 0.74 ± 0.03 0.79 ± 0.04 0.86 ± 0.03 0.82 ± 0.07 0.89 ± 0.06 0.93 ± 0.04 0.75 ± 0.07 0.79 ± 0.07 0.88 ± 0.04

Precision 0.77 ± 0.04 0.82 ± 0.04 0.88 ± 0.02 0.85 ± 0.04 0.91 ± 0.04 0.93 ± 0.04 0.79 ± 0.04 0.82 ± 0.06 0.89 ± 0.04

10-shot
Accuracy 79.02 ± 6.71 83.27 ± 4.36 88.98 ± 3.49 85.55 ± 3.64 91.29 ± 4.78 94.50 ± 3.88 78.73 ± 5.19 80.86 ± 6.24 89.86 ± 4.26
Recall 0.79 ± 0.06 0.83 ± 0.04 0.88 ± 0.03 0.86 ± 0.04 0.91 ± 0.05 0.95 ± 0.04 0.79 ± 0.05 0.81 ± 0.06 0.90 ± 0.04

Precision 0.82 ± 0.05 0.84 ± 0.04 0.90 ± 0.02 0.87 ± 0.04 0.92 ± 0.04 0.95 ± 0.03 0.80 ± 0.05 0.83 ± 0.05 0.91 ± 0.04

15-shot
Accuracy 80.76 ± 6.03 84.76 ± 3.84 91.52 ± 2.69 87.05 ± 3.69 93.25 ± 3.71 95.83 ± 3.75 78.75 ± 6.46 82.75 ± 5.93 91.33 ± 3.95
Recall 0.80 ± 0.06 0.84 ± 0.03 0.91 ± 0.02 0.87 ± 0.04 0.93 ± 0.04 0.96 ± 0.04 0.79 ± 0.06 0.83 ± 0.06 0.91 ± 0.04

Precision 0.81 ± 0.06 0.86 ± 0.02 0.92 ± 0.02 0.89 ± 0.03 0.94 ± 0.03 0.96 ± 0.03 0.80 ± 0.06 0.84 ± 0.03 0.92 ± 0.04

8-
w
ay

1-shot
Accuracy 50.60 ± 4.43 66.68 ± 8.34 71.23 ± 7.55 58.81 ± 11.21 74.70 ± 7.32 78.38 ± 6.29 49.64 ± 8.70 60.72 ± 3.03 67.83 ± 4.46
Recall 0.50 ± 0.04 0.66 ± 0.08 0.71 ± 0.07 0.59 ± 0.11 0.75 ± 0.07 0.78 ± 0.06 0.50 ± 0.09 0.61 ± 0.03 0.68 ± 0.04

Precision 0.50 ± 0.05 0.69 ± 0.08 0.73 ± 0.07 0.60 ± 0.12 0.77 ± 0.07 0.81 ± 0.05 0.52 ± 0.09 0.63 ± 0.04 0.70 ± 0.04

5-shot
Accuracy 67.48 ± 6.95 74.85 ± 4.93 78.27 ± 6.07 74.07 ± 5.19 82.93 ± 6.28 86.38 ± 4.73 61.00 ± 7.31 65.88 ± 3.79 74.60 ± 5.51
Recall 0.67 ± 0.06 0.74 ± 0.04 0.78 ± 0.06 0.74 ± 0.05 0.83 ± 0.06 0.86 ± 0.05 0.61 ± 0.07 0.66 ± 0.04 0.75 ± 0.06

Precision 0.69 ± 0.07 0.76 ± 0.05 0.80 ± 0.05 0.77 ± 0.04 0.84 ± 0.07 0.87 ± 0.05 0.62 ± 0.09 0.67 ± 0.04 0.76 ± 0.06

10-shot
Accuracy 70.71 ± 5.28 76.75 ± 5.12 80.42 ± 5.32 77.88 ± 4.71 84.16 ± 7.19 87.55 ± 5.00 64.06 ± 6.54 68.80 ± 3.93 76.63 ± 5.50
Recall 0.70 ± 0.05 0.76 ± 0.05 0.80 ± 0.05 0.78 ± 0.05 0.84 ± 0.07 0.88 ± 0.05 0.64 ± 0.07 0.69 ± 0.04 0.77 ± 0.06

Precision 0.74 ± 0.03 0.77 ± 0.04 0.81 ± 0.04 0.80 ± 0.04 0.85 ± 0.06 0.88 ± 0.05 0.65 ± 0.08 0.70 ± 0.06 0.78 ± 0.06

15-shot
Accuracy 73.35 ± 4.36 78.61 ± 4.86 81.60 ± 4.89 79.68 ± 3.95 85.90 ± 6.14 88.98 ± 4.21 64.70 ± 7.17 70.20 ± 4.23 78.37 ± 5.04
Recall 0.73 ± 0.04 0.78 ± 0.04 0.81 ± 0.04 0.80 ± 0.04 0.86 ± 0.06 0.89 ± 0.04 0.65 ± 0.07 0.70 ± 0.04 0.78 ± 0.05

Precision 0.75 ± 0.06 0.80 ± 0.04 0.83 ± 0.04 0.82 ± 0.04 0.87 ± 0.06 0.89 ± 0.04 0.66 ± 0.10 0.72 ± 0.05 0.80 ± 0.05

12
-w

ay

1-shot
Accuracy 49.83 ± 5.55 60.69 ± 3.36 67.34 ± 2.67 53.17 ± 7.82 68.19 ± 4.49 73.18 ± 4.25 41.32 ± 3.07 49.50 ± 4.18 60.97 ± 4.07
Recall 0.49 ± 0.05 0.60 ± 0.03 0.67 ± 0.02 0.53 ± 0.08 0.68 ± 0.04 0.73 ± 0.04 0.41 ± 0.03 0.49 ± 0.04 0.61 ± 0.04

Precision 0.51 ± 0.04 0.61 ± 0.04 0.70 ± 0.03 0.56 ± 0.08 0.70 ± 0.05 0.75 ± 0.04 0.43 ± 0.06 0.51 ± 0.04 0.64 ± 0.05

5-shot
Accuracy 63.40 ± 3.79 70.43 ± 3.11 74.74 ± 4.08 69.47 ± 5.72 81.02 ± 3.54 83.65 ± 2.32 53.80 ± 2.94 59.34 ± 2.74 71.86 ± 3.84
Recall 0.63 ± 0.03 0.70 ± 0.03 0.74 ± 0.04 0.69 ± 0.06 0.81 ± 0.04 0.84 ± 0.02 0.54 ± 0.03 0.59 ± 0.03 0.72 ± 0.04

Precision 0.67 ± 0.05 0.72 ± 0.04 0.76 ± 0.04 0.74 ± 0.06 0.82 ± 0.04 0.85 ± 0.03 0.56 ± 0.04 0.61 ± 0.04 0.74 ± 0.04

10-shot
Accuracy 67.57 ± 5.69 72.71 ± 2.80 76.87 ± 3.87 73.96 ± 4.72 82.86 ± 3.53 85.30 ± 2.41 57.73 ± 3.17 61.38 ± 2.96 74.25 ± 3.59
Recall 0.67 ± 0.05 0.72 ± 0.02 0.76 ± 0.03 0.74 ± 0.05 0.83 ± 0.04 0.85 ± 0.02 0.58 ± 0.03 0.61 ± 0.03 0.74 ± 0.04

Precision 0.70 ± 0.06 0.74 ± 0.03 0.78 ± 0.04 0.77 ± 0.04 0.84 ± 0.04 0.86 ± 0.03 0.60 ± 0.03 0.62 ± 0.04 0.76 ± 0.04

15-shot
Accuracy 69.81 ± 3.77 74.54 ± 2.63 78.61 ± 3.96 76.84 ± 3.90 84.12 ± 2.46 86.84 ± 2.50 59.97 ± 2.68 63.89 ± 3.45 75.55 ± 3.82
Recall 0.69 ± 0.03 0.74 ± 0.02 0.78 ± 0.03 0.77 ± 0.04 0.84 ± 0.02 0.87 ± 0.02 0.60 ± 0.03 0.64 ± 0.03 0.76 ± 0.04

Precision 0.73 ± 0.02 0.76 ± 0.02 0.80 ± 0.03 0.79 ± 0.04 0.85 ± 0.02 0.88 ± 0.02 0.61 ± 0.04 0.65 ± 0.05 0.77 ± 0.04

TABLE 2. Performance Gain Comparison with EDED and Integration of PSN for RSFE, DSFE, and ESFE on Assamese Script.

RSFE DSFE ESFE

EDED PSN+ EDED EDED PSN+ EDED EDED PSN+ EDED

5 - way Accuracy Gain (%)

1-shot 15.49 24.57 22.26 42.15 28.32 45.62
5-shot 6.39 16.03 8.27 13.54 6.35 17.89
10-shot 5.38 12.60 6.29 10.46 2.71 14.14
15-shot 4.95 13.32 6.65 10.09 5.08 15.97

8 - way Accuracy Gain (%)

1-shot 31.78 40.77 21.27 33.28 22.32 36.64
5-shot 10.92 15.99 10.68 16.62 8.00 22.30
10-shot 8.54 13.73 7.46 12.42 7.40 19.62
15-shot 7.17 11.25 7.24 11.67 8.50 21.13

12 - way Accuracy Gain (%)

1-shot 21.79 35.14 22.03 37.63 19.80 47.56
5-shot 11.09 17.89 14.26 20.41 10.30 33.57
10-shot 7.61 13.76 10.74 15.33 6.32 28.62
15-shot 6.78 12.61 8.65 13.01 6.54 25.98

independent testing assignments. Our approach consistently
evaluates accuracy, recall, and precision to demonstrate the
effectiveness of EDED and PSN in Olchiki script classifica-
tion.

An in-depth analysis of the performance improvement, as
outlined in Table 4, highlights accuracy growths in the one-
shot scenario for five-way classification with EDED, the base
models are acquired gains of 51.75%, 49.28%, and 5.86%
for RSFE, DSFE, and ESFE, respectively. Utilizing PSN
and EDED together further boosts these gains to 64.53%,
60.30%, and 40.20%. A similar accuracy improvments per-
sists across other shot scenarios. In the eight-way classifi-
cation, EDED returns one-shot gains of 58.62%, 66.69%,
and 4.21%, with PSN and EDED together further enhancing
to 91.58%, 77.08%, and 60.84%. However, some examples

of accuracy loss highlight the need for fair optimization in
our strategies. Expanding to the 12-way classification, one-
shot proceeds of 66.41%, 85.41%, and 5.99% accuracy gain
with EDED, which is further extended to 106.78%, 105.84%,
and 88.84% with PSN and EDED together. Despite a few
accuracy losses, the overall impact highlights the strength of
our approach.

C. PERFORMANCE EVALUATION, METRICS AND ANALYSIS
FOR TEST DATASET-3: MAPI SCRIPT:

This section evaluates base models and their refined ver-
sions, combining EDEDpreprocessing and our proposed PSN
model for Mapi script classification. Table 5 depicts signifi-
cant performance growths across 5-way, 8-way, and 12-way
classifications throughout diverse shot scenarios.
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TABLE 3. Comparison of Classification Recall and Precision for Olchiki Scripts Across Various Ways and Shots, with Respect to RSFE, DSFE and ESFE.

RSFE DSFE ESFE
RSFE RSFE +EDED RSFE-PSN+EDED DSFE DSFE +EDED DSFE-PSN+EDED ESFE ESFE +EDED ESFE-PSN+EDED

5-
w
ay

1-shot
Accuracy 48.52 ±7.69 73.63 ±8.51 79.83 ±10.03 54.38 ±6.30 81.18 ±9.34 87.17 ±9.08 56.44 ±6.28 59.75 ±6.95 79.13 ±9.07
Precision 0.51 ±0.09 0.76 ±0.10 0.82 ±0.10 0.57 ±0.06 0.82 ±0.09 0.88 ±0.09 0.59 ±0.09 0.62 ±0.06 0.80 ±0.09
Recall 0.49 ±0.08 0.74 ±0.09 0.80 ±0.10 0.54 ±0.06 0.81 ±0.09 0.87 ±0.09 0.56 ±0.06 0.60 ±0.07 0.79 ±0.09

5-shot
Accuracy 52.05 ±8.97 76.43 ±8.26 83.02 ±9.63 60.16 ±5.79 84.23 ±8.35 88.73 ±8.35 60.65 ±6.05 64.52 ±5.43 84.40 ±8.20
Precision 0.52 ±0.11 0.79 ±0.09 0.84 ±0.10 0.64 ±0.05 0.84 ±0.10 0.89 ±0.09 0.63 ±0.08 0.67 ±0.07 0.85 ±0.09
Recall 0.52 ±0.09 0.76 ±0.08 0.83 ±0.10 0.60 ±0.06 0.84 ±0.08 0.89 ±0.08 0.61 ±0.06 0.65 ±0.05 0.84 ±0.08

10-shot
Accuracy 54.57 ±8.41 78.10 ±7.71 83.83 ±9.45 63.68 ±5.69 85.30 ±8.23 89.60 ±8.60 62.62 ±5.24 65.88 ±5.49 85.59 ±8.41
Precision 0.54 ±0.10 0.80 ±0.08 0.85 ±0.10 0.66 ±0.07 0.86 ±0.08 0.90 ±0.09 0.65 ±0.06 0.71 ±0.07 0.86 ±0.08
Recall 0.55 ±0.08 0.78 ±0.08 0.84 ±0.09 0.64 ±0.06 0.85 ±0.08 0.90 ±0.09 0.63 ±0.05 0.66 ±0.05 0.86 ±0.08

15-shot
Accuracy 55.45 ±8.26 79.32 ±8.25 85.29 ±9.38 65.53 ±5.08 87.00 ±8.25 90.53 ±8.99 63.42 ±5.58 66.90 ±4.84 86.57 ±8.42
Precision 0.57 ±0.12 0.79 ±0.11 0.85 ±0.12 0.68 ±0.06 0.86 ±0.11 0.91 ±0.09 0.65 ±0.07 0.70 ±0.06 0.87 ±0.09
Recall 0.55 ±0.08 0.79 ±0.08 0.85 ±0.09 0.66 ±0.05 0.87 ±0.08 0.91 ±0.09 0.63 ±0.06 0.67 ±0.05 0.87 ±0.08

8-
w
ay

1-shot
Accuracy 37.65 ±5.32 59.72 ±5.12 72.13 ±4.85 45.90 ±5.56 76.51 ±7.40 81.28 ±7.08 45.58 ±7.85 47.50 ±3.09 73.31 ±6.18
Precision 0.39 ±0.07 0.63 ±0.05 0.73 ±0.07 0.49 ±0.06 0.79 ±0.07 0.84 ±0.07 0.48 ±0.09 0.49 ±0.03 0.75 ±0.06
Recall 0.38 ±0.05 0.60 ±0.05 0.72 ±0.05 0.46 ±0.06 0.77 ±0.07 0.81 ±0.07 0.46 ±0.08 0.47 ±0.03 0.73 ±0.06

5-shot
Accuracy 41.13 ±4.96 62.11 ±5.84 75.88 ±5.79 51.43 ±5.10 81.66 ±6.59 86.55 ±7.66 51.23 ±7.93 52.63 ±2.33 79.55 ±5.84
Precision 0.41 ±0.06 0.66 ±0.05 0.79 ±0.05 0.54 ±0.08 0.84 ±0.06 0.87 ±0.08 0.56 ±0.07 0.52 ±0.07 0.82 ±0.06
Recall 0.41 ±0.05 0.62 ±0.06 0.76 ±0.06 0.51 ±0.05 0.82 ±0.07 0.87 ±0.08 0.51 ±0.08 0.53 ±0.02 0.80 ±0.06

10-shot
Accuracy 42.83 ±4.90 63.42 ±5.63 78.35 ±5.81 54.48 ±4.96 83.58 ±6.32 88.10 ±6.55 53.93 ±7.34 55.51 ±2.66 82.24 ±5.64
Precision 0.40 ±0.06 0.68 ±0.04 0.80 ±0.06 0.59 ±0.05 0.84 ±0.08 0.89 ±0.06 0.57 ±0.08 0.55 ±0.06 0.83 ±0.06
Recall 0.43 ±0.05 0.63 ±0.06 0.78 ±0.06 0.54 ±0.05 0.84 ±0.06 0.88 ±0.07 0.54 ±0.07 0.56 ±0.03 0.82 ±0.06

15-shot
Accuracy 44.19 ±4.28 64.56 ±5.94 79.87 ±5.61 56.36 ±4.57 84.24 ±6.53 88.67 ±6.58 55.66 ±7.36 55.42 ±2.31 83.48 ±5.80
Precision 0.42 ±0.06 0.69 ±0.06 0.82 ±0.06 0.59 ±0.04 0.85 ±0.08 0.89 ±0.06 0.60 ±0.06 0.54 ±0.05 0.84 ±0.06
Recall 0.44 ±0.04 0.65 ±0.06 0.80 ±0.06 0.56 ±0.05 0.84 ±0.07 0.89 ±0.07 0.56 ±0.07 0.55 ±0.02 0.83 ±0.06

12
-w

ay

1-shot
Accuracy 28.19 ±2.31 46.91 ±6.12 58.29 ±6.77 34.76 ±2.99 64.45 ±4.18 71.55 ±4.99 32.07 ±3.52 33.99 ±3.80 60.56 ±5.23
Precision 0.31 ±0.04 0.49 ±0.07 0.60 ±0.06 0.38 ±0.04 0.67 ±0.04 0.74 ±0.04 0.35 ±0.04 0.36 ±0.03 0.63 ±0.05
Recall 0.28 ±0.02 0.47 ±0.06 0.58 ±0.07 0.35 ±0.03 0.64 ±0.04 0.72 ±0.05 0.32 ±0.04 0.34 ±0.04 0.61 ±0.05

5-shot
Accuracy 31.52 ±1.48 50.53 ±5.88 64.03 ±5.66 38.23 ±2.08 70.89 ±3.25 76.95 ±4.98 37.85 ±1.84 37.68 ±3.12 69.26 ±4.52
Precision 0.30 ±0.05 0.54 ±0.05 0.67 ±0.05 0.42 ±0.03 0.75 ±0.03 0.79 ±0.05 0.40 ±0.03 0.35 ±0.07 0.71 ±0.06
Recall 0.32 ±0.01 0.51 ±0.06 0.64 ±0.06 0.38 ±0.02 0.71 ±0.03 0.77 ±0.05 0.38 ±0.02 0.38 ±0.03 0.69 ±0.05

10-shot
Accuracy 33.19 ±2.27 51.94 ±6.43 66.38 ±5.93 40.55 ±1.89 72.71 ±3.17 77.86 ±5.29 39.91 ±2.22 40.52 ±1.81 71.10 ±4.57
Precision 0.33 ±0.05 0.55 ±0.07 0.69 ±0.06 0.44 ±0.04 0.74 ±0.06 0.79 ±0.05 0.42 ±0.04 0.35 ±0.04 0.73 ±0.05
Recall 0.33 ±0.02 0.52 ±0.06 0.66 ±0.06 0.41 ±0.02 0.73 ±0.03 0.78 ±0.05 0.40 ±0.02 0.41 ±0.02 0.71 ±0.05

15-shot
Accuracy 34.84 ±2.30 54.05 ±5.92 67.72 ±5.69 42.29 ±1.91 74.07 ±3.16 79.21 ±4.75 41.36 ±2.05 41.78 ±1.28 72.56 ±4.87
Precision 0.32 ±0.04 0.55 ±0.07 0.70 ±0.05 0.45 ±0.05 0.75 ±0.05 0.80 ±0.05 0.43 ±0.05 0.37 ±0.04 0.73 ±0.06
Recall 0.35 ±0.02 0.54 ±0.06 0.68 ±0.06 0.42 ±0.02 0.74 ±0.03 0.79 ±0.05 0.41 ±0.02 0.42 ±0.01 0.73 ±0.05

TABLE 4. Performance Gain Comparison with EDED and Integration of PSN for RSFE, DSFE, and ESFE on olchiki Script.

RSFE DSFE ESFE

EDED PSN+ EDED EDED PSN+ EDED EDED PSN+ EDED

5 - way Accuracy Gain (%)

1-shot 51.75 64.53 49.28 60.30 5.86 40.20
5-shot 46.84 59.50 40.01 47.49 6.38 39.16
10-shot 43.12 53.62 33.95 40.70 5.21 36.68
15-shot 43.05 53.81 32.76 38.15 5.49 36.50

8 - way Accuracy Gain (%)

1-shot 58.62 91.58 66.69 77.08 4.21 60.84
5-shot 51.01 84.49 58.78 68.29 2.73 55.28
10-shot 48.07 82.93 53.41 61.71 2.93 52.49
15-shot 46.10 80.74 49.47 57.33 -0.43 49.98

12 - way Accuracy Gain (%)

1-shot 66.41 106.78 85.41 105.84 5.99 88.84
5-shot 60.31 103.14 85.43 101.28 -0.45 82.99
10-shot 56.49 100.00 79.31 92.01 1.53 78.15
15-shot 55.14 94.37 75.15 87.30 1.02 75.44

An analysis of the performance improvement, as outlined
in Table 6, highlights accuracy growth throughout all con-
figurations. In the five-way classification, the base mod-
els provides accuracy boosts of 12%, 35.22%, and 9.27%
with EDED, escalating those gains to 20.10%, 47.47%, and
30.85% when PSN is integrated with EDED. This favorable
trend of accuracy boosts continues consistently throughout 5-
shot, 10-shot, and 15-shot scenarios. For the 8-way classifi-
cation, the impact of EDED is evident, with 13.86%, 39.82%,
and 7.87% accuracy gains in the one-shot setting. Eventually,
the integration of PSN boosts these gains to 22.04%, 47.48%,
and 30.99%. Extending our examination to the challenging
12-way classification task, our models achieve one-shot gains
of 14.28%, 66.94%, and 5.31% with EDED, which further
improves to 26.19%, 79.71%, and 58.00% with PSN and

EDED together. The similar performance improvements are
observed across 5-shot, 10-shot, and 15-shot scenarios. Occa-
sional accuracy losses are recorded, especially in 5-shot and
10-shot scenarios for the 5-way and 8-way classifications. In
these cases, a slight reduction in accuracy is observed, which
provides the scopes for further optimization. Regardless, our
strategy consistently delivers significant overall performance
improvement, highlights the strength of our approach.

VI. CONCLUSION
In this paper, we proposed a novel methodology in low-
resource regional language OCR tasks using a Siamese meta-
learning strategy. The methodology includes a novel priority
smart network (PSN) framework and a novel preprocess-
ing, called enhanced differential edge detection (EDED) to
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TABLE 5. Comparison of Classification Accuracy Recall and Precision for mapi Scripts Across Various Ways and Shots, with Respect to RSFE, DSFE and
ESFE.

RSFE DSFE ESFE

5-
w
ay

1-shot
Accuracy 60.14 ± 4.97 67.36 ± 7.11 72.23 ± 6.91 57.46 ± 2.98 77.7 ± 6.13 84.74 ± 7.36 55.62 ± 4.58 60.78 ± 6.4 72.78 ± 6.08
Precision 0.6 ± 0.06 0.71 ± 0.07 0.75 ± 0.06 0.61 ± 0.03 0.8 ± 0.05 0.87 ± 0.06 0.59 ± 0.05 0.64 ± 0.06 0.75 ± 0.06
Recall 0.6 ± 0.05 0.67 ± 0.07 0.72 ± 0.07 0.57 ± 0.03 0.78 ± 0.06 0.85 ± 0.07 0.56 ± 0.05 0.61 ± 0.06 0.73 ± 0.06

5-shot
Accuracy 70.63 ± 5.37 75.54 ± 4.62 82.07 ± 6.02 66.36 ± 8.41 82.81 ± 5.74 88.58 ± 5.99 67.15 ± 4.74 63.85 ± 5.2 80.8 ± 3.35
Precision 0.73 ± 0.06 0.78 ± 0.04 0.83 ± 0.06 0.75 ± 0.08 0.85 ± 0.06 0.89 ± 0.06 0.7 ± 0.05 0.65 ± 0.08 0.82 ± 0.03
Recall 0.71 ± 0.05 0.76 ± 0.05 0.82 ± 0.06 0.66 ± 0.08 0.83 ± 0.06 0.89 ± 0.06 0.67 ± 0.05 0.64 ± 0.05 0.81 ± 0.03

10-shot
Accuracy 74.75 ± 5.03 77.81 ± 4.99 84.28 ± 5.48 70.65 ± 8.48 85.5 ± 5.58 90.13 ± 5.03 69.26 ± 6.56 64.84 ± 4.94 82.32 ± 3.15
Precision 0.78 ± 0.05 0.79 ± 0.05 0.85 ± 0.05 0.74 ± 0.07 0.86 ± 0.05 0.91 ± 0.05 0.73 ± 0.06 0.64 ± 0.06 0.84 ± 0.02
Recall 0.75 ± 0.05 0.78 ± 0.05 0.84 ± 0.05 0.71 ± 0.08 0.86 ± 0.06 0.9 ± 0.05 0.69 ± 0.07 0.65 ± 0.05 0.82 ± 0.03

15-shot
Accuracy 77.11 ± 4.62 79.76 ± 3.79 86.27 ± 5.22 72.64 ± 8.61 87.32 ± 5.38 91.23 ± 4.76 71.49 ± 6.08 66.9 ± 4.17 84.25 ± 3.36
Precision 0.79 ± 0.05 0.81 ± 0.04 0.87 ± 0.05 0.77 ± 0.07 0.88 ± 0.05 0.92 ± 0.04 0.74 ± 0.05 0.67 ± 0.07 0.85 ± 0.03
Recall 0.77 ± 0.05 0.8 ± 0.04 0.86 ± 0.05 0.73 ± 0.09 0.87 ± 0.05 0.91 ± 0.05 0.71 ± 0.06 0.67 ± 0.04 0.84 ± 0.03

8-
w
ay

1-shot
Accuracy 51.95 ± 6.39 59.15 ± 4.62 63.40 ± 6.22 49.12 ± 7.95 68.68 ± 3.40 72.44 ± 3.85 46.28 ± 6.74 49.92 ± 8.33 60.62 ± 3.95
Precision 0.55 ± 0.06 0.62 ± 0.06 0.67 ± 0.08 0.56 ± 0.09 0.71 ± 0.03 0.74 ± 0.04 0.46 ± 0.08 0.53 ± 0.08 0.62 ± 0.04
Recall 0.52 ± 0.06 0.59 ± 0.05 0.63 ± 0.06 0.49 ± 0.08 0.69 ± 0.03 0.72 ± 0.04 0.46 ± 0.07 0.50 ± 0.08 0.61 ± 0.04

5-shot
Accuracy 64.83 ± 2.86 66.46 ± 3.17 71.60 ± 5.17 63.70 ± 2.45 79.95 ± 2.30 82.36 ± 2.93 58.67 ± 4.21 60.66 ± 4.11 70.55 ± 2.62
Precision 0.67 ± 0.04 0.67 ± 0.04 0.74 ± 0.05 0.68 ± 0.05 0.81 ± 0.02 0.84 ± 0.02 0.63 ± 0.04 0.63 ± 0.03 0.74 ± 0.02
Recall 0.65 ± 0.03 0.66 ± 0.03 0.72 ± 0.05 0.64 ± 0.02 0.80 ± 0.02 0.82 ± 0.03 0.59 ± 0.04 0.61 ± 0.04 0.71 ± 0.03

10-shot
Accuracy 66.81 ± 3.09 68.87 ± 3.44 74.28 ± 5.10 66.92 ± 3.91 82.04 ± 2.18 84.77 ± 3.22 61.65 ± 4.26 62.70 ± 4.44 72.26 ± 2.73
Precision 0.71 ± 0.05 0.70 ± 0.05 0.75 ± 0.05 0.73 ± 0.03 0.83 ± 0.02 0.86 ± 0.03 0.64 ± 0.04 0.65 ± 0.04 0.74 ± 0.02
Recall 0.67 ± 0.03 0.69 ± 0.03 0.74 ± 0.05 0.67 ± 0.04 0.82 ± 0.02 0.85 ± 0.03 0.62 ± 0.04 0.63 ± 0.04 0.72 ± 0.03

15-shot
Accuracy 69.25 ± 3.15 70.66 ± 2.59 74.91 ± 5.05 69.06 ± 3.59 83.99 ± 1.38 86.57 ± 3.06 62.79 ± 4.79 63.76 ± 4.72 73.90 ± 3.08
Precision 0.73 ± 0.04 0.71 ± 0.04 0.76 ± 0.05 0.73 ± 0.04 0.85 ± 0.02 0.87 ± 0.03 0.65 ± 0.04 0.66 ± 0.04 0.75 ± 0.03
Recall 0.69 ± 0.03 0.71 ± 0.03 0.75 ± 0.05 0.69 ± 0.04 0.84 ± 0.01 0.87 ± 0.03 0.63 ± 0.05 0.64 ± 0.05 0.74 ± 0.03

12
-w

ay

1-shot
Accuracy 43.42 ± 5.57 49.62 ± 4.00 54.79 ± 4.12 35.97 ± 3.33 60.05 ± 5.19 64.64 ± 1.78 33.52 ± 3.33 35.30 ± 5.19 52.96 ± 1.78
Precision 0.46 ± 0.06 0.53 ± 0.03 0.58 ± 0.46 0.40 ± 0.03 0.63 ± 0.04 0.67 ± 0.03 0.36 ± 0.03 0.36 ± 0.04 0.54 ± 0.03
Recall 0.43 ± 0.05 0.50 ± 0.04 0.55 ± 0.41 0.36 ± 0.03 0.60 ± 0.05 0.65 ± 0.01 0.34 ± 0.03 0.35 ± 0.05 0.53 ± 0.01

5-shot
Accuracy 53.74 ± 4.00 58.36 ± 2.04 64.26 ± 3.56 47.61 ± 4.27 72.32 ± 4.21 77.45 ± 2.16 43.82 ± 1.61 46.71 ± 4.83 62.61 ± 2.71
Precision 0.60 ± 0.05 0.60 ± 0.03 0.67 ± 0.03 0.54 ± 0.05 0.75 ± 0.04 0.79 ± 0.02 0.44 ± 0.03 0.48 ± 0.07 0.66 ± 0.02
Recall 0.54 ± 0.04 0.58 ± 0.02 0.64 ± 0.03 0.48 ± 0.04 0.72 ± 0.04 0.77 ± 0.02 0.44 ± 0.01 0.47 ± 0.04 0.63 ± 0.02

10-shot
Accuracy 56.85 ± 4.41 60.54 ± 2.20 67.46 ± 2.50 52.75 ± 3.15 75.26 ± 3.87 80.48 ± 2.77 48.25 ± 2.51 49.36 ± 5.37 64.55 ± 2.98
Precision 0.61 ± 0.06 0.64 ± 0.03 0.70 ± 0.03 0.60 ± 0.05 0.78 ± 0.03 0.82 ± 0.02 0.49 ± 0.04 0.49 ± 0.07 0.67 ± 0.03
Recall 0.57 ± 0.04 0.61 ± 0.02 0.67 ± 0.02 0.53 ± 0.03 0.75 ± 0.03 0.80 ± 0.02 0.48 ± 0.02 0.49 ± 0.05 0.65 ± 0.02

15-shot
Accuracy 58.56 ± 3.56 61.80 ± 2.07 69.14 ± 3.15 57.20 ± 4.70 76.72 ± 3.55 81.43 ± 2.38 49.41 ± 2.78 51.10 ± 3.56 65.99 ± 3.04
Precision 0.63 ± 0.04 0.64 ± 0.03 0.71 ± 0.03 0.65 ± 0.04 0.78 ± 0.03 0.82 ± 0.02 0.51 ± 0.04 0.52 ± 0.06 0.68 ± 0.03
Recall 0.59 ± 0.03 0.62 ± 0.02 0.69 ± 0.03 0.57 ± 0.04 0.77 ± 0.03 0.81 ± 0.02 0.49 ± 0.02 0.51 ± 0.03 0.66 ± 0.03

TABLE 6. Performance Gain Comparison with EDED and Integration of PSN for RSFE, DSFE, and ESFE on mapi dataset.

RSFE DSFE ESFE

EDED PSN+ EDED EDED PSN+ EDED EDED PSN+ EDED

5- way Accuracy Gain (%)

1-shot 12 20.10 35.22 47.47 9.27 30.85
5-shot 6.95 16.19 24.78 33.48 -4.91 20.32
10-shot 4.09 12.74 21.01 27.57 -6.38 18.85
15-shot 3.43 11.87 20.20 25.59 -6.42 17.84

8 - way Accuracy Gain (%)

1-shot 13.86 22.04 39.82 47.48 7.87 30.99
5-shot 2.51 10.44 25.51 29.29 3.39 20.25
10-shot 3.08 11.18 22.59 26.67 1.70 17.21
15-shot 2.04 8.17 21.62 25.35 1.54 17.69

12 - way Accuracy Gain (%)

1-shot 14.28 26.19 66.94 79.71 5.31 58.00
5-shot 8.60 19.58 51.90 62.68 6.60 42.88
10-shot 6.49 18.66 42.67 52.57 2.30 33.78
15-shot 5.53 18.07 34.13 42.36 3.42 33.56

improve performance. The EDED strategy significantly en-
hanced the performance of OCR classification. We exten-
sively experimented using three benchmark OCR datasets
and three state-of-the-art models (ResNet, DensNet, and Ef-
ficientNet). Our results reveal that the EDED strategy signifi-
cantly improves the performance of the base models. The ac-
curacy is further boosted to a new level when combined with
the PSN framework. However, it is essential to note that in
some rare cases, the EDED technique’s reduced performance
corresponded to the base models. Further research can be
conducted to address the rare cases where the EDED strategy
reduces accuracy and to investigate its applications in other
fields.
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