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ABSTRACT Fast detection of railway engineering targets under low light conditions has always been a
challenging problem. Traditional target detection algorithms are limited by lighting conditions, resulting
in a decrease in target visibility, which in turn affects detection accuracy. To address this issue, this study
proposes a new target detection network for low-light environments (Re-DETR) that enhances the model’s
detection capability for targets under low light conditions by integrating an optimized RetinexNet image
enhancement network and an improved transformer for the image recognition strategy (DETR). Re-DETR
uses RetinexNet for image enhancement to improve image quality and visibility and then inputs the enhanced
images into the DETR algorithm with an added global channel attention (GCA) module for target detection.
The experimental results show that our method can quickly and accurately detect railway engineering targets
in the dark time domain, which has significant advantages over traditional methods.

INDEX TERMS DETR, Retinexnet, Global Channel Attention (GCA), target detection, dark time domain,
railway engineering

I. INTRODUCTION1

IN today’s society, railway transportation, as an important2

means of traffic, plays a crucial role in connecting cities3

and promoting economic development. However, with the4

continuous expansion of railway networks and increasing5

demand for transportation, railway safety issues are becom-6

ing increasingly prominent. Among them, fast and accurate7

detection of railway engineering targets is crucial to ensuring8

railway transportation safety. However, in the dark time do-9

main environment, insufficient lighting conditions limit the10

visibility of railway engineering targets, posing great chal-11

lenges to target detection. In this case, the low accuracy of12

target detection affects the efficiency of railway engineering,13

leading to transportation delays and ultimately affecting rail-14

way safety. The traditional target detection methods based on15

manual features and deep learning have limitations in dealing16

with railway engineering target detection in dark time domain17

environments, making it difficult to effectively solve the cur-18

rent problem. Therefore, finding new solutions to improve the19

accuracy of railway engineering target detection is an urgent 20

task. 21

To address this issue, this study proposes an RE-DETR net- 22

work aimed at achieving fast detection of railway engineering 23

targets in a dark time domain environment. The traditional 24

DETR [1] achieves end-to-end target detection through a 25

self-attention mechanism, which can effectively extract target 26

features and perform correlation. However, its performance 27

is relatively poor for railway engineering detection in the 28

dark time domain. Our proposed RE-DETR network further 29

combines DETR with RetinexNet Enhance-Net to improve 30

the visibility of targets under insufficient lighting conditions, 31

thereby improving the accuracy and robustness of target 32

detection. In addition, the transformer is a nondiscrimina- 33

tive spatial attention mechanism, which means that while 34

it weights target features, it also gives weight to noise fea- 35

tures. Under low-light conditions, there is often considerable 36

background noise, which can severely affect the detection 37

performance of themodel. Therefore, by using global channel 38

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3502438

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

attention (GCA) to increase the value of target features and39

decrease the value of noise features, the model can effectively40

distinguish between target and noise features, alleviating the41

problem of noise interference in the detection of buildings in42

high-resolution remote sensing imagery. Inspired by this, this43

paper introduces a global channel attention (GCA) module,44

which calculates the correlation between all channels and45

assigns different weights to each channel, enhancing the abil-46

ity of the network to learn target features and reducing the47

interference of noise features.48

The main contributions of this study include the following:49

(1) For the dark time-domain conditions in railway mainte-50

nance, an improved image enhancement network, RetinexNet51

[2], was selected to process low-light images. By introducing52

RetinexNet for image enhancement, the improved data have53

better contrast and brightness when training the target detec-54

tion model, thereby improving the accuracy and stability of55

target detection.56

(2) By combining the enhanced images with an improved57

DETR strategy for low-light target detection, the original58

DETR model uses the GCA algorithm and a comprehensive59

loss function to increase its adaptability and accuracy in60

target detection tasks. Our proposed Re-DETR has achieved61

significant effects in low-light target detection tasks, improv-62

ing detection accuracy and generalizability and providing an63

effective solution for target detection problems in complex64

scenarios.65

II. RELATED WORK66

With the continuous development of target detection technol-67

ogy, it has been applied in more and more scenarios and fields68

[3], among which target detection for railway engineering in69

dark time domain is a challenging scenario. In this scenario,70

the lighting conditions are poor, and the target object may be71

occluded or blurred, which brings additional difficulties and72

complexity to target detection.73

In recent years, significant progress has been made in74

both target detection and image enhancement technologies.75

The target detection algorithm is continuously optimized and76

improved, evolving from traditional region-based methods to77

end-to-end detection models based on deep learning, such78

as Faster R-CNN, YOLO, SSD, etc. These models have79

achieved significant improvements in accuracy and speed,80

making target detection more widely used in various ap-81

plication scenarios. On the other hand, image enhancement82

technology is also constantly evolving. By enhancing the83

quality, contrast, clarity, and other aspects of the image, im-84

age enhancement technology can improve the visual effect85

of the image, which helps to improve the performance and86

accuracy of target detection algorithms.Image enhancement87

technology plays an important role in many fields, providing88

better input data for machine learning algorithms.89

In terms of image enhancement, traditional image enhance-90

ment methods include techniques such as histogram equaliza-91

tion and filters. Mayathevar et al. [4] proposed the histogram92

equalization method was introduced for image enhancement.93

This histogram equalization can enhance the contrast and 94

brightness of the image, but it can easily lead to excessive 95

contrast enhancement, which may result in excessive sharp- 96

ening and make the image look unnatural. Manjon et al. [5] 97

proposed a Non-local Means Filter for image denoising. This 98

method reduces noise by searching for similar blocks in the 99

image and calculating the weighted average of these blocks, 100

thereby preserving image details. However, its computational 101

complexity is high, parameter selection is difficult, and edge 102

blurring is handled. In contrast, image enhancement methods 103

based on deep learning have more advantages than traditional 104

methods. For example, Wei et al. [6] proposed a low light 105

enhancement method based on deep Retinex decomposition. 106

This method can effectively improve image brightness and 107

contrast under low light conditions, while preserving detailed 108

information. A multi-scale Retinex method was proposed in 109

reference [7] by Huang et al, which is suitable for image 110

enhancement at different scales. This method can better pre- 111

serve image details and textures, and improve image quality 112

when processing images of different scales. Lv et al. [8] 113

introduced a deep dual Retinex network for low light image 114

enhancement. This network not only enhances the brightness 115

of low light images, but also effectively enhances the details 116

and clarity of the images. Lee et al. [9] improved the deep 117

Retinex decomposition method to enhance the quality of low 118

light images. This improved method can produce clearer and 119

more contrasting images under low light conditions. Zhang 120

et al. [10] proposed an adaptive multi-scale Retinex method 121

for image enhancement. This method can automatically select 122

the appropriate scale based on the features of the image, 123

improve the contrast and color balance of the image, and 124

is particularly suitable for processing images under complex 125

lighting conditions, thereby effectively improving the quality 126

of the image. Yang et al. [11] proposed an image enhancement 127

method based on Retinex, which uses adaptive gamma cor- 128

rection. This method can effectively enhance the brightness 129

and contrast of the image under low light conditions while 130

preserving the clarity of detailed information. Cai et al. [12] 131

proposed a Retinexformer model based on ORF and IGT. 132

In target detection, traditional methods include Haar fea- 133

ture cascaded classifier and HOG+SVM. Zhu et al. [13] used 134

Haar feature and cascaded AdaBoost classifier for target de- 135

tection, which performs well in face detection but is sensitive 136

to complex backgrounds and lighting changes, not suitable for 137

complex scenarios, and requiresmanual feature design, which 138

is not flexible enough. Llorca et al. [14] proposed a method 139

for intelligent detection and classification of infrared images 140

based on HOG features and SVM classifiers. However, it is 141

sensitive to changes in target scale and pose, making it diffi- 142

cult to cope with occlusion and complex backgrounds, requir- 143

ing manual adjustment of parameters and feature extraction 144

methods. Therefore, we plan to use target detection networks 145

from recent years. In recent years, many networks have been 146

used, including the improved Fast R-CNN proposed byMaity 147

et al. [15], which achieves more efficient target detection with 148

targeted and diverse features. Bharati et al. [16] combined 149
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the Mask R-CNN model of target detection and fusion of150

different visual features, which can better predict the bound-151

ing boxes of targets. Wang et al. [17] proposed enhancing152

the performance of YOLOv2 by adjusting the detection layer153

of a single machine network, which can better perform real-154

time detection of key railway parts. The Single ShotMultiBox155

Detector (SSD) proposed in Kumar et al. [18] achieves fast156

target detection by predicting bounding boxes and categories157

at multiple scales. TheGhost RetinaNet proposed in reference158

[19] has good bounding box regression and localization accu-159

racy, and can achieve fast detection. Chen et al. [20] proposed160

an improved Cascade-RCNN network that improves target161

detection accuracy by simultaneously introducing multi-scale162

training. The Transformer-based DETR model mentioned by163

Zhu et al. [21] achieves end-to-end target detection, using164

attention mechanisms to achieve target detection and cate-165

gory prediction. It has good plasticity and accuracy in target166

detection. Du et al. [22] mainly delves into state-of-the-art167

artificial intelligence (AI) technologies, with a special focus168

on pipeline parallelism, data parallelism, and multimodal169

learning.170

Based on the above research results, we have cho-171

sen RetinexNet enhance-net and Transformer-based DETR172

model to design a RE-DETR method with high accuracy and173

recognition speed to meet the needs of railway operation and174

maintenance.175

III. PROPOSED METHODS176

The operation and maintenance of railways is characterized177

by dark time domain and a large number of tools, resulting178

in large differences in brightness and multiple overlapping179

forms in the railway tool dataset, making target detection dif-180

ficult. To address this issue, this paper proposes a framework181

for railway tool recognition in the dark time domain. Firstly,182

the RetinexNet brightness enhance-net is used to enhance183

images under various lighting conditions. Subsequently, the184

enhanced image is input into the improved DETR target185

detection network to obtain accurate detection results. As186

is shown in Figure 1, this framework combines brightness187

enhancement and target detection techniques, aiming to effec-188

tively address the challenges of railway tool datasets, improve189

recognition accuracy and robustness.190

A. IMAGE ENHANCEMENT MODULE191

The maintenance and upkeep of railway equipment in the192

field usually requires constant attention, resulting in signif-193

icant differences in brightness of the collected tool images. In194

response to this challenge, this article proposes an improved195

image enhancement framework based on RetinexNet for dark196

time domain environment. According to Retinex theory - hu-197

man color perception modeling, an image S is considered as198

the product of the illumination component I and the reflection199

component R. The equation as follows:200

S = I ◦ R (1)

The reflection component R is a constant part determined 201

by the inherent properties of the target, while the illumina- 202

tion component I is the part affected by external lighting, ◦ 203

represents multiplication. The purpose of image enhancement 204

can be achieved by removing the influence of lighting or 205

correcting the illumination component I . 206

The improved framework can be divided into four steps: 207

(1) Brightness judgment 208

Faced with the impact of brightness differences on en- 209

hancement, we classify images into three categories: dark 210

images, medium brightness images, and bright images. By 211

using statistical measures for threshold discrimination, the 212

brightness type of the image is determined, and different 213

strategies are used to enhance the image using the improved 214

RetinexNet. Specifically, brightness adjustment and contrast 215

enhancement are applied to dark images, color adjustment 216

and noise removal are applied to medium brightness images, 217

and exposure control and detail protection are applied to 218

bright images. This method can better adapt to the brightness 219

differences of railway tool images in the dark time domain, 220

thereby improving the accuracy and robustness of target de- 221

tection. 222

The brightness judgment formula is as follows: 223

T = (mt − Tt)/Tt (2)

where mt is the average brightness of the image at time t, 224

and Tt is the global average brightness of the expected normal 225

image at time t. If T < τt1 , judged as a dark image; If T > τ t2, 226

judged as a bright image; If τ t1 < T < τ t2, it is determined as 227

a medium brightness image. Among them, τ t is the threshold 228

used to determine image brightness. This article determines 229

Tt and the threshold τ t1 and τ t2 through experiments. The 230

most suitable values are 0.8, 0.5, and 0.2, respectively.Below 231

are examples of three scenarios Figure 2. 232

(2) Layer Separation 233

In our railway equipment image processing framework, the 234

image first passes through a model called Decom-Net, which 235

consists of 5 convolutional layers with ReLU (excluding the 236

first and last layers). This model takes low/normal lighting 237

image pairs as inputs and shares network parameters to obtain 238

the reflection component Rlow and lighting component Ilow 239

of low lighting images, as well as the reflection component 240

Rnormal and lighting component Inormal of normal lighting 241

images. To optimize this model, we utilized the constraint 242

relationship between these four components and incorporated 243

this constraint relationship into the objective function. Specif- 244

ically, the loss function of the model consists of three parts: 245

reconstruction loss, reflection component consistency loss, 246

and lighting component smoothing loss: 247

L = Lrecon + λirLir + λisLis (3)

Reconstructing losses yields: 248

Lrecon =
∑

i=low,normal

∑
j=low,normal

λij ∥Ri ◦ Ij − Sj∥1 (4)
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FIGURE 1: RE-DETR framework

FIGURE 2: a is the tool image for dark images, b is the tool
image for medium brightness images, and c is the tool image
for bright images.

The main object of this item is to ensure that the reflection249

component R and lighting component I obtained from model250

decomposition can accurately reconstruct the details and fea-251

tures of the original image as much as possible, thereby im-252

proving the overall image reconstruction quality and fidelity.253

The consistency loss of reflection components is expressed254

as:255

Lir = ∥Rlow − Rnormal∥1 (5)

According to Retinex image decomposition theory, the re-256

flection component R is independent of lighting, so for paired257

low/normal lighting images, their reflection component R258

should be kept as consistent as possible.259

The smoothing loss of lighting components is expressed as:260

Lir =
∑

i=low,normal

∥∇Ii ◦ exp(−λg∇Ri)∥ (6)

In the RetinexNet paper, a hypothesis about the lighting261

component I was proposed, which is that the ideal lighting262

component should maintain smoothness in texture details and263

effectively preserve the overall structure. The implementation264

of this assumption is achieved by processing the gradient of265

the reflection component R, allocating the information of its266

gradient map to the illumination component I , to ensure that 267

the smooth areas in the reflection component R correspond 268

to the same smoothness in the illumination component I . 269

The design of this loss function enables the model to better 270

understand the texture details and overall structure of images 271

during the learning process, thereby improving the quality of 272

image decomposition and reconstruction. 273

(3) Adjusting the model 274

Regarding the adjustment of Rlow: BM3D algorithm is used 275

to suppress the amplified noise in Rlow, and lighting related 276

strategies are introduced to further optimize the quality of 277

Rlow. 278

Regarding the adjustment of Ilow: Adopting the multi- 279

scale lighting adjustment network of Enhance-Net, its overall 280

structure is an encoder-decoder architecture, and multi-scale 281

connections are introduced. This design enables the network 282

to capture a wide range of lighting distribution contextual 283

information, which helps improve its adaptive adjustment 284

ability. 285

(4) Reconstruction 286

The final enhanced image can be obtained by multiplying 287

the adjusted Rlow and Ilow. 288

Due to the possibility of overexposure for bright images 289

during image enhancement, which may affect subsequent 290

target detection, we only used RetinexNet brightness en- 291

hancement neural network for brightness enhancement and 292

denoising for dark and medium brightness images, without 293

performing bright image enhancement processing. Our pro- 294

cessing flow includes three key steps: brightness separation, 295

logarithmic transformation, and color restoration. 296

1. In the step of brightness separation, the image is de- 297

composed into two parts: brightness and color, so that the 298

brightness information and color information can be pro- 299

cessed separately. 300

2.In the step of logarithmic transformation, the brightness 301

image is processed to enhance the contrast of the image, 302

making the image details clearer and more prominent. 303

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3502438

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

3.In the step of color restoration, the processed brightness304

image and color image are resynthesized to generate the final305

enhanced image, making the overall effect of the image more306

vivid and natural.307

Through the above processing flow, image quality and308

visual effects can be effectively improved.The renderings are309

shown in Figure 3.310

FIGURE 3: a is the tool image of the dark image, b is the result
of enhanced dark image, c is the tool image of the medium
brightness image, and d is the result of enhanced medium
brightness image.

B. TARGET DETECTION MODULE311

To facilitate rapid detection of railway maintenance targets,312

this paper has appropriately modified the DETR model to313

increase its performance and efficiency in detecting railway314

maintenance under dark time-domain conditions. The DETR315

model is mainly composed of four parts: the CNN backbone,316

the transformer’s encoder, the transformer’s decoder, and the317

prediction layer feed-forward network (FFN). To enhance the318

adaptability and accuracy of the original DETR model for319

target detection tasks, we improved it using the GCA algo-320

rithm and a comprehensive loss function. The self-attention321

mechanismA of the DETRmodel usually adopts a fixed fully322

connected weight matrix, as follows:323

A = XWq(Wk)
T (7)

where X is the input feature matrix and Wq and Wk are324

the weight matrices of the query and key, respectively. How-325

ever, this fixed weight matrix may not adapt well to the326

relationships and feature representations between different327

target objects. Therefore, this paper introduces global channel328

attention (GCA) to enhance the features of building targets329

and suppress background noise.330

Multiscale feature fusion helps to enrich the semantic infor-331

mation in the spatial domain, thereby alleviating the problem332

of feature information loss. However, in complex scenarios333

of high-resolution remote sensing images, there is often a334

significant amount of background noise, which may affect335

the model’s detection performance. To address this issue, this 336

paper introduces a GCA mechanism to enhance the feature 337

representation of building targets and suppress background 338

noise. The design details of the GCA mechanism are shown 339

in Figure 4, and the implementation process is as follows: 340

1. Input feature map: We denote the input feature map as 341

X ∈ ΩH×W×C ,and obtain a feature vector P ∈ Ω1×C through 342

adaptive average pooling operation. 343

2. Feature flattening and relationship matrix: Flatten the 344

input feature map X and adjust its shape to obtain Y ∈ 345

ΩL×C , (L = H × W ). Then, the feature maps T ∈ ΩL×C
346

and S ∈ ΩL×C are generated through a linear mapping layer, 347

followed by matrix multiplication to obtain the relationship 348

matrix R ∈ ΩC×C . Finally, we exchange the last two dimen- 349

sions of R to obtain R′. 350

3. Matrix concatenation and dimension adjustment: con- 351

catenate the feature vector P ∈ Ω1×C , the relationship matrix 352

R ∈ ΩC×C , and R
′ ∈ ΩC×C in the -2 dimension to obtain the 353

matrix Z ∈ Ω(2C+1)×C . Next, adjust its dimensions to form a 354

new matrix Z ∈ ΩC×(2C+1). 355

4. Linear transformation and output generation: Process 356

the obtained Z through a linear layer and apply a sigmoid 357

activation function to generate Z ∈ ΩC×(2C+1). Finally, 358

matrix multiply Z ′with the input feature map X to output the 359

enhanced feature map X ′ ∈ ΩH×W×C . 360

Through these steps, the Global Channel Attention mech- 361

anism effectively improves the extraction capability of build- 362

ing features and reduces the adverse impact of complex back- 363

grounds on model performance. For the selection of hyper- 364

parameters, we set the number of channels compressed to 365

C’=C/4, the learning rate to 1e−3, the batch size to 16, and 366

the activation function type to Sigmoid. 367

C. IMPROVED LOSS FUNCTION 368

The bounding box loss function in the DETR model is calcu- 369

lated via a combination of the Generalized Intersection over 370

Union (GIoU ) and L1 loss, as shown in Equation 8: 371

Lbox(bi, b̂s(i)) = λIoULGIoU (bi, b̂s(i)) + λL1LL1(bi, b̂s(i)) (8)

In this formula, λIoU and λL1 represent the weight coeffi- 372

cients for the GIoU and L1 loss, respectively. The variable bi 373

denotes the coordinates of the ground truth bounding box for 374

the ith target to be detected, while b̂s(i) refers to the coordinates 375

of the predicted bounding box associated with the s(i)th pre- 376

diction for the ith target. LGIoU and LL1 are the loss functions 377

for GIoU and L1, respectively, where the specific forms of 378

the GIoU loss are detailed in Equation 9 and Equation 10: 379

IoU(b, bgt) =
b ∩ bgt

b ∪ bgt
(9)

result =


IoU(b, bst)− c− (b ∪ bst)

c
,IoU ̸= 0

−1 +
(b ∪ bst)

c
,IoU = 0

(10)
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FIGURE 4: The design details of the global channel attention mechanism.

The GIoU is a distance metric used to evaluate the degree380

of overlap between bounding boxes, with a value range of381

(-1,1]. In this metric, c represents the area of the smallest382

enclosing area introduced due to attention to nonoverlapping383

regions, and b ∪ bst represents the overlap between the pre-384

dicted box and the true box. Although theGIoU can more ac-385

curately reflect the overlap between two objects than the IoU386

can, it also has several shortcomings: in special cases where387

there is a containment relationship between the predicted box388

and the true box, the loss values calculated by the GIoU389

and IoU are the same, making it difficult to determined their390

relative positional relationships effectively. This situation can391

slow the convergence of bounding box regression, thereby392

significantly extending the training time and failing to achieve393

effective bounding box regression.394

To address this issue, the CIoU (complete intersection395

over union) introduces the ratio of the diagonal distance to396

the centre point distance, thereby improving the convergence397

problem of theGIoU when there is a containment relationship398

between the predict ed box and the true box. At the same time,399

the CIoU also considers the aspect ratio of the predicted box400

and the true box, making it more accurate in reflecting their401

overlap. The specific form of theCIoU loss function is shown402

in Equations 11 to 13:403

v =
4

π2

[
arctan

(
wgt

hgt

)
− arctan(

w
h
)

]2
(11)

a =
v

(1− IoU(b, bgt)) + v
(12)

LCIoU = 1− IoU(b, bgt) +
m2(b, bgt)

c2
+ av (13)

In the context of the CIoU loss function, wgt , hgt , w, h404

represent the width and height of the ground-truth bounding405

box, respectively, while m(b, bgt) represents the Euclidean406

distance between the centers of the predicted bounding box407

and the target box. The improved bounding box loss function408

for the DETR model is shown in Equation 14.409

Lbox
(
bi, b̂s(i)

)
= λIoULCIoU

(
bi, b̂s(i)

)
+ λL1LL1

(
bi, b̂s(i)

)
(14)

IV. EXPERIMENTAL RESULTS AND ANALYSIS 410

A. EXPERIMENTAL PREPARATION 411

Given the scarcity of railway engineering datasets, this study 412

constructed a construction tool dataset using the data col- 413

lected by the railway system, which includes 351 images. 414

To build the label, we used the LabelImage tool. The label 415

covers a variety of construction tools, such as carts, motors, 416

brooms, electric drills, wires, water pipes, woven bags, tool 417

kits, buckets, blowers, tape measures, shovels, sand buckets, 418

sanders, plastic buckets, and cement buckets, of which 16 are 419

themost commonly used detection targets. The unique feature 420

of this dataset is that all the images are sourced from onsite 421

construction scenarios, reflecting real and complex data sce- 422

narios, so there is no need for further dataset expansion. 423

To effectively utilize this dataset, we divided the dataset 424

images into training and testing sets at a 7:3 ratio and selected 425

30% of the images from the training set as the validation 426

set. This partitioning method helps maintain the diversity 427

and representativeness of the dataset while also ensuring that 428

the model has sufficient generalization ability during training 429

and testing. Through such data preparation work, we laid a 430

solid foundation for subsequent model training and evalua- 431

tion, with the aim of achieving satisfactory results in target 432

detection tasks in railway engineering. 433

The experimental environment: The operating system is 434

based on Windows 10 Professional Edition 64 bit (10.0, in- 435

ternal version 19045), the graphics card is NVIDIA GeForce 436

RTX 3060, the system model is ASUS TUF Gaming A15 437

FA506QM_FA506QM, the processor is AMD Ryen 7 5800H 438

with Radeon Graphics (16 CPUs), 3.2GHz, the memory is 439

16GB, and the deep learning framework based on Python is 440

used. 441
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B. EVALUATION INDICATORS442

Our evaluation indicators were average precision (AP) and443

mean average precision (mAP).AP i is a commonly used eval-444

uation indicator in target detection tasks and represents the445

average precision value at different intersection over union446

IoU thresholds; it can reflect the performance of the detector447

at different thresholds. The formula is as follows:448

AP =

∫ 1

0

p(r)dr (15)

The AP is the area under the accuracy curve at different449

recall rates, representing the average accuracy of the detector450

at different recall rates. The mAP is the average AP for451

multiple categories and is a commonly used comprehensive452

evaluation indicator in target detection tasks. The formula is453

as follows:454

mAP =
(AP1 + AP2 + ...+ APn)

n
(16)

The mAP is an important evaluation indicator used to455

comprehensively evaluate the performance of target detectors456

in multiple categories and can comprehensively evaluate the457

accuracy and stability of target detection models in different458

categories. By comprehensively considering theAP andmAP,459

the performance of target detection models in different sce-460

narios can be comprehensively evaluated. Usually, the larger461

the AP and mAP values are, the better, and they are important462

references for model optimization and improvement.463

C. ANALYSIS OF EXPERIMENTAL RESULTS464

During the training process of RE-DETR, the loss curve of465

the model is shown below.The loss curve tends to stabilize as466

the number of training rounds increases. When the number of467

epochs is approximately 80, the RE-DETR model gradually468

converges, and no fitting phenomenon occurs during this469

training process.470

FIGURE 5: Changes in loss values of the RE-DETR model,
where training loss refers to the error or loss value calcu-
lated during the training phase of a machine learning model.
Smoothing training loss involves applying a smoothing tech-
nique to loss values over multiple training iterations or epochs
to reduce fluctuations and provide a clearer trend of model
performance over time.

To verify the performance of the RE-DETR model for 471

dark time-domain tool detection, this paper designs a set of 472

ablation experiments and comparative experiments for the 473

model. We verify the impact of different improvements on 474

network performance through ablation experiments and then 475

conduct comparative experiments with current mainstream 476

networks ( DETR, YOLOv5, YOLOX, and RYOLO ) through 477

RE-DETR. On the basis of the experimental results, we com- 478

prehensively analyse the performance of the model. 479

1) Ablation experiment 480

To analyze the impact of the improvements made in this 481

article on model performance, three sets of experiments are 482

designed to analyze different improvements. Each experiment 483

is tested on the same training parameters and different model 484

contents. The performance test results of the model are shown 485

in Table 1. Compared with the first and second rows in Table 486

1, the addition of an improved Retinexnet image enhancement 487

module to the original DERT improved the model’s detection 488

ability for full time domain images, with a mAP increase of 489

0.92%. Comparing the experimental results in the second and 490

third rows, after adding Retinexnet and modifying the loss 491

function to CIoU,mAP increased by 1.84% again. Continuing 492

to compare the experimental results in the third and fourth 493

rows, adding a lightweight attentionmodule can improve inter 494

channel communication ability while weakening the impact 495

of noise on deep networks, resulting in a 0.97% increase in 496

mAP. This indicates the effectiveness and rationality of the 497

improved model in this article. Figure 6 shows a schematic 498

diagram of the detection effect of the DETR model before 499

and after the improvement. 500

To analyse the impact of the improvements made in this 501

study on model performance, three sets of experiments are 502

designed to analyse different improvements. Each experiment 503

is tested on the same training parameters and different model 504

contents. The performance test results of the model are shown 505

in Table 1. Compared with the first and second rows in Table 506

1, the addition of an improved RetinexNet image enhance- 507

ment module to the original DERT improved the model’s 508

detection ability for full time domain images, with an mAP 509

increase of 0.97%. Comparing the experimental results in the 510

second and third rows, after adding RetinexNet and modi- 511

fying the loss function to the CIoU , the mAP increased by 512

1.81%.While continuing to compare the experimental results 513

in the third and fourth rows, adding a lightweight attention 514

module can improve the interchannel communication abil- 515

ity while weakening the impact of noise on deep networks, 516

resulting in a 0.97% increase in mAP. This indicates the 517

effectiveness and rationality of the improved model in this 518

study. 519

2) Model performance comparison experiment 520

To better test and verify the detection performance of the RE- 521

DETR model, a comparative experiment is conducted with 522

current mainstream detection models. The comparative test 523

results of various railway engineering tool detection methods 524
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TABLE 1: Experimental results of different improvement
methods

method mAP FPS
DETR 73.61% 29.28

DETR+Retinexnet 74.53% 30.18
DETR+Retinexnet+Clou 76.37% 33.6233.6233.62

DETR+Retinexnet+CloU+Adaptive attention mechanism 77.3477.3477.34% 32.43

FIGURE 6: Schematic Diagram of Detection Performance
Before andAfter Improvement in DETRModel. (a) Detection
effect of the original DETR under low brightness conditions.
(b) Detection effect of the Re-DETR under low brightness
conditions. (c) Detection effect of the original DETR under
medium brightness conditions. (d) Detection effect of the Re-
DETR under medium brightness conditions.

are shown in Table 2. The mAP value of the RE-DETRmodel525

reaches 78.62%, which is 3.34% higher than that of the orig-526

inal DETR algorithm. According to the table, the AP values527

of plastic buckets, motors, electric drills, polishing machines,528

and woven bags improved to varying degrees compared with529

those of the original DETR algorithm, showing that the im-530

proved model achieves better detection performance than531

other mainstream target detection models (YOLOX, Reti-532

naNet, YOLOV5). In particular, in terms of tool detection in533

the dark time domain, RE-DETR has significant advantages.534

While ensuring high-precision target detection, the FPS of the535

model itself does not significantly decrease, and it still has536

certain advantages in terms of detection speed compared with537

mainstream models.538

TABLE 2: Performance comparison of mainstream target
detection models

Model AP(loU=0.6) mAP FPS
Plastic
bucket motor

Electric
drill

Polishing
machine

Woven
bag

Retinanet 0.97 0.89 0.67 0.14 0.55 71.02 23.67
YOLOV5 0.65 0.91 0.34 0.04 0.53 68.37 41.37
YOLOV8 0.88 0.91 0.66 0.53 0.45 74.16 34.2634.2634.26
RYOLO 0.99 0.92 0.75 0.61 0.57 77.26 32.25
DETR 0.81 0.91 0.72 0.61 0.49 73.61 29.28
RE-DETR 0.990.990.99 0.950.950.95 0.840.840.84 0.730.730.73 0.670.670.67 77.3477.3477.34 32.43

According to the data in Table 2, the improved DETR 539

model significantly outperforms other traditional object de- 540

tection models, such as the YOLO series and Faster-RCNN, 541

in the multitarget detection scenario of railway maintenance 542

sites. Moreover, compared with the original DETRmodel, the 543

improved DETR model achieves higher detection accuracy. 544

Figure 7 illustrates the detection effect of the improved DETR 545

model. In Figures a to e, we compare the detection results of 546

our network with those of YOLOV5, YOLOV8, RYOLO, and 547

DETR under medium and low brightness environments. Row 548

a presents the test results for YOLOV5, row b for YOLOV8, 549

row c for RYOLO, row d for DETR, and row e for RE- 550

DETR. Comparing the first column of images, we can see 551

that the detection results of RE-DETR are significantly better 552

than those of the original DETR and outperform the other 553

three networks as well. In the second column, RE-DETR 554

shows the best detection performance, successfully detecting 555

six targets with high precision. While YOLOV5 detects the 556

same number of targets as RE-DETR, RE-DETR achieves 557

better accuracy. In the third column comparison, it is noted 558

that only YOLOV5 and RE-DETR detect the same number 559

of targets. The original low-light image processed by the RE- 560

DETR network shows some distortion due to the excessively 561

dark environment; however, in terms of both the number of 562

detected targets and detection accuracy, it still surpasses the 563

other four networks. In the fourth column, it is observed 564

that under complex overlapping conditions, the detection 565

counts for YOLOV5, YOLOV8, and RE-DETR are all eight, 566

while RYOLO detects nine targets. In terms of accuracy, 567

both YOLOV5 and RE-DETR perform better. Overall, RE- 568

DETR demonstrates a higher detection capability in low-light 569

environments compared to the other four networks. 570

V. CONCLUSION 571

This article proposes an RE-DETR tool detection model to 572

address the inability of existing target detection models to 573

detect railway engineering tools efficiently in the dark time 574

domain. The model, which is based on the DETR framework, 575

incorporates an improved RetinexNet image enhancement 576

module, introduces a global channel attention mechanism 577

in DETR, and utilizes a comprehensive loss function. The 578

main goal in the future is to further improve the recognition 579

accuracy of the model and further refine the classification 580

ability of the dark time domain model. 581
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(a) YOLOV5

(b) YOLOV8

(c) RYOLO

(d) DETR

(e) RE-DETR

FIGURE 7: Visualization of the detection results of the dataset under different models.
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