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ABSTRACT Electric vehicle (EV) charging is widely considered as a key enabling technology that can
support system stability and provide ancillary services to the grid. The present work aims to advance the state
of the art in dynamic charging of individual EVs within existing AC-charging facilities. The paper proposes
two alternative control solutions for tracking of power setpoints in EVs, based on adaptive feedforward and
feedback linear controllers, respectively. The control design, which does not require any ad-hoc hardware
adjustment of the standard EV charging infrastructure, nor higher-level communication, is supported by
extensive real-world tests that have been performed on the workplace charging facility operated in the JRC
Ispra campus. The experimental results validate the effectiveness of the proposed control methods in tracking
two different current setpoints for flexibility scheme qualification.

INDEX TERMS Battery chargers, E- mobility, Power control, Power demand, Energy management

I. INTRODUCTION
The increasing adoption of electric vehicles (EVs) has been
accompanied by concerns regarding their potential impact
on the electricity grid [1], [2], specifically in light of future
market shares [3]. As power-intensive assets, EV parking
facilities can contribute to grid instability if not properly
designed and managed. Conversely, they can also provide a
relevant source of flexibility that can support grid balancing
and operation [4].

Grid operators have thus started the introduction of market-
based compensation schemes to incentivize resources that
have a higher power-flexibility performance. For instance,
the American grid operator PJM launched a so-called ‘‘Reg-
ulation Market’’ providing financial compensation for dis-
tributed energy resources (DER) that can adjust their con-
sumption in response to automated power set-points broad-
cast at specific moments [5]. PJM assesses the performance
of load-regulation resources through a performance score
that quantifies in terms of accuracy, delay, and precision the
capability to track a power reference signal. To receive certi-
fication from PJM, a resource must achieve three consecutive
performance scores of 0.75 or higher, indicating its reliability
and effectiveness in providing demand side response and thus

contributing to grid stability [6]. Ancillary services markets
are also evolving in Europe, following the objectives intro-
duced in [7]. An example in such regard is the Frequency
Containment Reserve Cooperation [8], which currently in-
volves twelve Transmission System Operators (TSOs) from
nine countries in the EU that interact with national Balanc-
ing Service Providers (BSPs) with the aim of procuring fast
regulation resources. Provided sufficient availability, a faster
service to the grid (e.g., with response time of about 1 second)
can decrease the amount of alternative regulation resources
required to guarantee system stability. To participate in these
markets, slow to medium-fast EV charging facilities can be
designed with load-flexibility in mind, especially if the users
have typical dwell (i.e., park&charge) times from below 30
minutes up to an entire working day. This has led to research
on the design and operation of so called ‘‘smart charging’’
facilities that can better respond to the needs of the grid [9].
Among the various factors influencing AC grid stability, fre-
quency is a key indicator of grid health, as any deviation from
the nominal frequency indicates imbalances between power
supply and demand, potentially culminating in system insta-
bility and disruptions [10]. The primary challenge underlying
frequency regulation pertains to the inherent dynamic nature
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of power systems, characterized by constantly fluctuating
loads, with EV charging being no exception. The growing
share of intermittent renewable electricity further increases
such fluctuations on the generation side. Consequently, in-
creasing regulation resources are required to maintain the
grid frequency within the prescribed bounds and the intrinsic
flexibility of EV charging can provide an important support
in this regard.

In our experimental setup, we analyze the European Com-
mission’s Joint Research Centre (JRC) EV charging field
located at the Ispra campus as a dynamic resource capable
of modulating its power absorption in accordance with given
reference signals. Our objective is to design and test novel
control methods for dynamic regulation of EV charging, as-
sessing their improvements in terms of accuracy and robust-
ness with respect to standard power regulation approaches.

A. RELEVANT WORK
One of the bottlenecks in AC charging, the most diffused
and low cost technology to date, remains the lack of a stan-
dardized communication between the EV and the charging
infrastructure [11]. This issue has prompted the Open Charge
Alliance, a consortium of global EV charging station man-
ufacturers, operators, and service providers to develop the
Open Charge Point Protocol (OCPP), an open communi-
cation standard for EV charging stations. OCPP facilitates
interoperability between different EV charging stations and
management systems, ensuring effective communication and
management of the charging infrastructure. Although the
protocol is publicly available and an increasing number of
manufacturers embed it in their systems, its adoption remains
optional, and often relegated to local development (see [12]
for constantly updated statistics about the adoption of the
OCPP protocol).

Possible approaches to overcome such limitation include
machine learning techniques to predict charging patterns and
anticipate station availability and thus peak power demand
[13], [14] (also relying on control variables such as weather,
mobility, and nearby events [15]), or the introduction of de-
mand response programs to incentivise EV owners to adjust
their charging behaviour and concentrate charging in peri-
ods of low energy prices [16]–[18] possibly accounting for
overloading constraints [19]. The comprehensive review of
smart EV charging methods presented in [9] identifies several
solutions that can reduce the impact of EVs on the electricity
grid and its operational costs.

Another interesting research area focuses on the prediction
and estimation of EVs features on the basis of their charging
data. EVScout2.0 is a tool that analyzes the current and
pilot signals exchanged during charging, and extracts relevant
features of the tested EVs, showing how vehicles can be
successfully identified or classified for cyber-security issues
[20].

Numerous strategies have been put forward in the literature
to effectively integrate EV charging facilities into the grid.
However, these approaches often necessitate the implemen-

tation of ad-hoc management systems and extensive data
integration. On the one hand, EV parking operators frequently
face challenges due to constraints such as time, knowledge,
and resources (and, at times, even interest) required for au-
tonomous implementation. On the other hand, commercial
service providers, as well as EV and chargers’ manufacturers
may not always prioritize energy flexibility, particularly as in
the European Union they are not yet mandated to adhere to
specific flexibility standards.
A fundamental aspect in enabling the intrinsic flexibility

of EV charging assets is the capability of tracking a specified
set-point of power consumption (or, alternatively, of drawn
current) in order to fulfill certain requirements or provide spe-
cific ancillary services. To the best of the authors’ knowledge,
this aspect has not been fully investigated in the literature. As
a matter of fact, several works have tackled the EV charging
regulation problem from a low-level hardware perspective.
For example, [21] takes explicitly into account the specific
power electronic features of an EV charging station and
proposes an adaptive control method to ensure disturbance
rejection. A similar problem is tackled by [22]–[24], which
rely onmodel predictive control to achieve a robust regulation
with dynamic set-point of the charging process. It is worth
emphasizing that the aforementioned papers do not analyze
real EV charging assets but they either consider a fully sim-
ulative setup [21], [23] or Hardware-in-the-Loop simulations
[24]. When real-world tests are conducted, like in the case of
[25], the tracking of power/current references is not explicitly
analysed and addressed.

B. CONTRIBUTIONS
From the analysis provided above, it appears that there is
a substantial gap in the existing literature regarding the dy-
namic regulation of EV charging for the purpose of flexibility
and ancillary services provision. In particular, the cited papers
do not assess the capability by single or multiple EVs to
follow a prescribed profile of power consumption in real-
world charging facilities, nor they consider or mitigate the
impact that some components and features of the EVs can
have on their power tracking performance.
The present paper aims at tackling this research gap and

advancing the state of the art with the following contributions:
• Development of a realistic experimental platform that

is capable of accurately quantifying the power tracking
performance of several brands and models of EVs.

• Design and testing of two adaptive control approaches
that account for the specific properties of the different
EVs under exam and rely on linear regression tuning
and feedback regulation, respectively, to increase the
tracking accuracy of dynamic EV charging.

• Extensive assessment in a realistic simulation frame-
work of the two proposed methods, in order to highlight
their substantial improvements in power tracking perfor-
mance.

In particular, the proposed approach introduces a flexible
and straightforward mechanism that enhances the flexibility
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and efficiency of EV charging operations and is designed to
operate using only standard current measurements, thus elim-
inating the need for additional data streams within the control
mechanism. This not only simplifies the implementation but
also ensures robust performance with minimal infrastructure
changes, addressing both operational efficiency and scalabil-
ity. This becomes particularly relevant in the context of large-
scale EV integration in decarbonized power systems, where
an effective use of the EVs’ flexibility can play an important
role in supporting efficient and robust system operation.

C. PAPER STRUCTURE
The structure of the paper is organized as follows: Section II
provides an overview of our modeling system and the control
theory employed in our experiments. Section III details the
infrastructure established at the JRC Ispra campus, highlight-
ing communication infrastructure and IT implementation. In
Section IV, we delve into the case studies, presenting the
two adopted reference signals and comparing results obtained
with both feedforward and feedback control systems. Ad-
ditionally, we present an evaluation of overall performance
and statistical errors. Finally, conclusive remarks and research
directions for future work are discussed in Section V.

II. EV FLEXIBILITY WITH REFERENCE POWER TRACKING
From an operational perspective, the flexibility of an EV
parking facility can be characterized as the capability of
following a prescribed profile Pr for its aggregate power
consumption, which can be determined on the basis of the
contingent system conditions and of the fleet of vehicles that
is currently connected to the charging points. For the purposes
of the present analysis, which is focused on AC charging at
constant voltage levels (for a comprehensive review of EV
charging standards refer to [26]), a current reference ir can be
considered instead, with no loss of generality.

The main operational challenge that needs to be tackled
in this regard is the discrepancy that is often experienced in
real-world conditions between the current set-point ir that is
utilised by the EV charging points and the actual current iout
that is drawn by the EVs (see top plot in Fig. 2. As discussed in
[26], the charging station can only impose amaximum current
limit, while the actual current drawn by the EV depends
on its internal control mechanisms. This often results in a
discrepancy, typically negative, due to variations in how dif-
ferent BMS implementations manage power delivery during
charging—especially as the battery approaches various states
of charge—along with influences from operating temperature
and other vehicle-specific characteristics. While this is not
an issue under normal operating conditions, our objective is
to enable the provision of power regulation services by the
EV charging infrastructure. In this scenario, the minimiza-
tion of tracking errors for a prescribed reference setpoint is
critical. To address this, we propose two distinct controllers
that dynamically modify the EV’s response during charging
to improve its tracking performance.

The control schemes presented in this section have been
specifically designed with the objective of tracking an equal
current reference ir piloted in parallel to each connected EV,
and limit as much as possible the above mentioned discrep-
ancy.
The two alternative control approaches considered are: a

feedforward controller (FFC) that relies on ex-ante linear
regression tuning to account for the specific characteristics
of each vehicle, and a feed-back controller (FBC) with PID
regulator. A detailed description of the approaches is provided
next.

A. FEEDFORWARD CONTROL WITH LINEAR-REGRESSION
TUNING (FFC)
In this first approach, represented in Fig. 1, the charging
process of the single EV is controlled in feedforward, with
no feedback action to account for external disturbances and
model discrepancies. This choice has been considered as a
feasible option since the use of a feedback loop, evaluated in
the next subsection, is subject in the present setup to time-
varying delays that may affect considerably the performance
of a feedback controller.

LR Tuning

Saturation

FIGURE 1. Diagram of FFC approach

In order to enhance the performance and robustness of
the proposed feedforward approach, an ad-hoc tuning of the
reference signal has been implemented to account for the
specific features of the different car models and their asso-
ciated charging control logic. In particular, the control signal
iin that is broadcast to each single EV is expressed as an affine
function of the initial reference ir :

iin = m∗ · ir + q∗. (1)

The parameters m∗ and q∗ are obtained through a linear
regression tuning process that is conducted when the EV is
initially connected to the charging station, and before the start
of its charging session. A 2-minute testing signal ĩr , composed
by sinusoidal components of different frequency (see top plot
in Fig. 2), is broadcast to the charging EV, measuring the
resulting absorbed current ĩout . The parameters m∗ and q∗ are
calculated as follows:

(m∗, q∗) = argmin
m,q

∥∥∥∥ ĩr − q
m

− ĩout

∥∥∥∥ . (2)

In other words, m∗ and q∗ describe the affine static transfor-
mation that better approximates the inverse of the charging
dynamics of the EV (between iin and iout ) and can therefore be
used in (1) to minimize the overall tracking error between the
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FIGURE 2. FFB testing signal with example of EV response (top), and
associated scatter-plot representation with approximated regression line
(bottom)

reference ir and the current iout .Wewish to emphasize that the
2-minute duration of the FFC tuning procedure is relatively
short when compared to the typical duration of a charging
session, implying that the FFC does not introduce signifi-
cant delays in the EV charging process. Fig. 2 illustrates an
example of the tuning procedure applied to a Renault Zoe
2022 model featuring a 52 kWh usable battery capacity. The
top plot demonstrates how the choice of the tuning reference
profile effectively captures the charging dynamics even at
higher frequencies, condition not effectively met by all EV
models. It is worth noting a slightly greater response delay
in the upsurging portion of the third wave. The plot at the
bottom shows instead the value of each current output sample
ĩout (y-axis) in correspondence with the associated input ĩr (x-
axis), and supports the decision of performing the tuning with
a linear model.

B. FEED-BACK CONTROL WITH PID REGULATOR (FBC)
The general scheme of the designed feedback controller is
represented in Fig. 3.

SaturationDerivative LP filter

Anti wind-up
controller

Data 
Communication

PID Controller

Integral

Proportional

FIGURE 3. Diagram of FBC approach

The idea behind the proposed FBC is to test an alternative
approach that, rather than relying on an ad-hoc tuning and
adjustments for each vehicle type (as in the FFC case), applies
well-established feedback regulation methods to minimize
the tracking error on the setpoint ir for all types of vehicles.
For this purpose, the desired controller is a standard PID
controller with two modifications: i) an additional low-pass
filter added to the derivative component to reduce the high-
frequency noise introduced by the numerical implementation
of the signal derivative and ii) an anti wind-up controller that
reduces dynamical transients following input saturation on
the EV charger by acting on the integral term of the PID
controller.

III. EXPERIMENTAL VALIDATION PLATFORM
The testing and validation of the regulation approaches pre-
sented in Section II have been conducted on the EV charging
field of the JRC Ispra site. The facility, represented in Fig.
4, is located beneath a solar canopy with a peak production
capacity of 60 kW and it is equipped with nine single-phase
ACwall-box chargers, provided by the Italian company Silla1

for experimental purposes. The entire backend system of the
facility was custom-designed utilizing open-source technolo-
gies exclusively, specifically Python, InfluxDB, and MQTT.

FIGURE 4. The EV charging infrastructure

The EV charging field provides free EV charging to all JRC
staff members in return for research data. A badge system
and a Radio Frequency Identification (RFID) totem are used
to identify the EV users and properly classify their charging
behaviour within the existing historical data. Beyond provid-
ing a convenient charging infrastructure, the back-end system
incorporates an experimental layer that enables the execution
of various experiments under real-world conditions. Since its
launch in May 2022, the facility has been used by a user pop-
ulation of 166 individuals, which have provided a wide range
of different test conditions for several experiments, including
credit penalty testing schemes, PV production instant power
matching, smart scheduling, and, notably for this work, power
tracking [27].

1See: https://silla.industries/en/prism-solar-single-phase/
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FIGURE 5. Components and relevant connections of the IT infrastructure

The main structure components of the IT system and
their relevant connections are illustrated in Fig. 5. Each of
the nine charging boxes is configured to publish and re-
ceive control commands via Message Queuing Telemetry
Transport (MQTT) topics. MQTT is a lightweight messag-
ing protocol extensively used for IoT applications [28]. The
protocol features a publish-subscribe mechanism with asyn-
chronous communication, particularly effective for managing
EV charging. The charging box samples iout values (with a 0.1
A precision) and broadcast them as MQTTmessages, that get
timestamped by the application upon receipt, normally within
negligible delay. Other topics are defined to represent differ-
ent aspects of the charging process, such as charging status,
voltage, total session time, etc. A python client application,
running in parallel for each connected EV, initializes aMQTT
broker and subscribes to these topics. When messages are
received they are automatically stored in an Influx database
system. At runtime, the applications receives updated values
for ir (sampled from the reference signal currently in test)
and iout. On the basis of this data, it computes the error e
and the feedback delay Td, which are then passed to the
chosen controller (either FFC and FBC) for computing the
controlled setpoint iin which is eventually sent to the charging
box (which in turns applies saturation if ic is outside the
range 6 to 32 A). A number of libraries are employed by
these functions, including Numpy, Pandas, and Paho.Mqtt.
The execution time of the code is carefully considered during
each iteration to ensure a perfectly discretized time domain
of 1s. The execution of the test had no significant impact
on IT resource utilization compared to the system’s regular
operational state. Monitoring of CPU and memory usage
during the test revealed negligible variation in comparison to
normal system activity.

IV. CASE STUDIES
The proposed approaches for reference power tracking intro-
duced in Section II have been tested experimentally in the EV

charging field. The tests have been conducted on a total of 10
different EV models (see Table 1 for more details), starting
from 5th February 2024 and ending on 4th March 2024. The
considered EV models have been selected in order to achieve
an accurate representation of the heterogeneous EV fleet cur-
rently circulating in the EU [29]2. Users were informed about
the ongoing test and asked for written consent beforehand.
The testing process occurred in a supervised fashion, con-
sidering the absence of a standardized method for screening
the State of Charge (SoC) of the connected vehicle during
charging. The potential interference that could arise upon
reaching full SoC was taken into account, as it may disrupt
the normal charging process. Two distinct setpoint signals,
with a sampling step of 1 second, have been employed in the
tests. The first current reference signal, consists of two step
variations and takes the values of 16A, 11A, and 21A over a
time span of 9 minutes. This step reference has been selected
in order to assess the behaviour of the controllers over the full
frequency spectrum, evaluating their dynamical response and
the steady state error that they introduce. The second signal,
in Fig. 6, represents an example of the ’Regulation D’ signal,
i.e. the dynamic reference used by the PJM TSO for real-time
frequency regulation with flexible resources, and is employed
in our work as a well recognized performance benchmark to
test charging flexibility.
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FIGURE 6. PJM’s Regulation D signal

TABLE 1. Electric Vehicle List

Car Brand Car Model Car Year Battery Capacity (kWh)

Fiat 500e 2021 45
Hyundai Kona 2021 64
Link&co 01 2022 14
MG 4 2022 62
Peugeot e-208 2022 45
Renault Megane 2023 45
Renault Zoe 2022 52
Skoda Enyaq 2023 77
Tesla Model 3 2022 57
Tesla Model Y 2022 75

2See also independent statistics published by companies and organizations
such as https://evplugchargers.com/the-50-best-selling-ev-in-europe/. The
conducted experiments include seven of the top ten selling models.
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The signal has been retrieved from PJM’s Ancillary Ser-
vices resource webpage [30], interpolated over a 1s time step
and rescaled from its original proportional values between -
1 and 1 to meet a feasible range of current values comprised
between 6 A and 32 A (as the majority of EVs do not react
to current values below 6 A), in order to ensure its feasibility
within the current framework. Such reference has been con-
sidered in order to evaluate the performance of the controller
in a real-life scenario, where the EVs are utilised as flexible
resources that support the secure operation of the power grid.

A. TUNING OF THE POWER TRACKING CONTROLLERS
The tuning of the FFC controller is conducted for each EV
once this is connected for charging. Prior to testing, the linear
regression model is built from each EV’s response to the
signal shown in Fig. 2. The model parameters (m∗, q∗) are
then estimated for the calculation of the control setpoint iin in
order to minimize the objective function indicated in (2).

The trend illustrated in Fig. 2 shows a typical EV response,
exhibiting a delay in time (usually below 10 seconds) and a
negative tracking error during the ramping up phases. Rarely,
the EV response to the FFC tuning may display distinctive
characteristics due to external factors such as SoC, external
temperature, or unpredictable EV settings. Fig.7 shows an
example of an EV with considerable delay in the ramp up
phases. For uniformity, we ensure that the coefficientR2 value
exceeds 0.75, else the tuning is repeated, and the EV excluded
from test if such condition is not eventually met.

EV drawn current
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cu
rr
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t 

(A
)

FIGURE 7. EV reacting to FFC tuning with distinctive character

Regarding the choice of the PID parameters for the FBC
controller, a range of standard methodologies proposed in
the literature have been tested [31], [32]. However, given the
particular features of the system under exam (sampling time
step of 1 s, variable delays in the feedback communication
channel, different dynamic behaviour by each EV model) an
ad-hoc heuristic procedure has been utilised for the PID tun-
ing. The resulting PID parameters utilised in the simulations
are the following:

KP = 0.5 KI = 0.1 s−1 KD = 1 s. (3)

B. NUMERICAL RESULTS AND PERFORMANCE
The first presented experiment focuses on two different EV
models (MG 4 and Renault Zoe) and has been conducted with
the step current reference signal described in the previous
subsection. The obtained results are shown in Fig. 8.

FIGURE 8. Experimental tracking results with step current reference.

The dashed black line in the figure indicates the reference
setpoint signal ir that is being provided to the EV under test
whereas the red line indicates the current drawn by the EV
when no specific control action is implemented (Business-
as-Usual, or BaU) and ir is simply passed as reference to the
charging box of the EV. It can be seen that such approach
introduces relevant steady-state tracking error in both cases,
probably due to the internal control logic of the charging box
and of the EV. The results obtained with the introduction of
the proposed FFC and FBC controllers are indicated in blue
and green trace, respectively. It can be seen that, in the FFC
case, a very good tracking of the reference signal is achieved
for both types of EVs. This indicates that the BaU approach
typically introduces linear error dynamics that can be almost
completely cancelled by estimating appropriate parameters
(m∗, q∗) of the feedforward controller. Note that the results
of the FFC controller have been obtained with a different
choice of the tuning parameters for the two vehicles, with
(m∗, q∗) =(1.14, -4.24) for theMG 4 and (m∗, q∗) = (0.94, -
0.31) for the Renault Zoe. On the other hand, the performance
of the FBC is obtained with a unique set of parameters and
is impacted by practical limitations of the feedback data
communication channel in Fig. 3, which is subject to noise
and time-variable delays. Within this challenging operating
framework, the FBC is still capable of providing a noticeable
improvement in the tracking of the ir set-point which is
comparable with the FFC performance. The low-pass filter
introduced in the derivative term of the PID controller is able
to maintain the numerical derivative error within acceptable
limits and the only significant difference with respect to the
FFC case is a slightly higher rise time in response to step
variations of the reference.
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The performance of the FFC and FBC controllers when
the PJM regulation D signal is used as reference are shown
in Fig. 9, where they are compared again with the BaU case
(red trace) in which no specific control action is undertaken.
In general, both FFC and FBC are able to achieve a good
tracking of the reference and provide better performance than
the BaU case. Moreover, the results in Fig. 8 and 9 show
that, in all the considered experimental tests, the initial tuning
procedure of the FFC approach does not seem to induce any
unexpected behavior during the actual charging process.

Amore detailed comparison is available in Fig. 10, where a
zoomed-in representation of the EV charging pattern is shown
for the MG4 and for the Renault Zoe. It can be seen that
the FFC approach achieves a very precise tracking, as the
associated current signal is almost indistinguishable from the
chosen reference. As in the previous test, the FBC controller
shows slightly worse performance than the FFC but it is still
capable of providing a significant improvement with respect
to the BaU case.

FIGURE 9. Measured EV drawn current with PJM regulation D signal as
reference.

Fig. 11 displays the cumulative result of all the 10 EVs un-
der test over a time span of 30minutes. It is observable that the
overall trend is comparable to the one seen in Fig. 9 and Fig. 8
for individual EVs. Over 1 h of charging, the absolute integral
tracking error in the BaU scenario is approximately 16 kWh.
When the FFC and FBC approaches are applied the error is
equal to 2 kWh and 5 kWh, respectively, corresponding to
a significant error reduction of 87.5% and 68.7% in the two
cases. Since we may assume that at least part of the measured
error is random rather than systematic, it is reasonable to
expect a similar (or better) tracking performance when larger
groups of charging EVs are considered.

In order to assess the performance of the proposed track-
ing approaches from an energy perspective, Fig. 12 shows
the percentage error in cumulative energy tracking for the
FFC and FBC controllers, i.e., the integral over time of the
difference between the reference signal in Fig. 11 and the
resulting FFC/FBC current responses. It can be seen that,

FIGURE 10. Measured EV drawn current with PJM regulation D signal as
reference (zoomed-in details).

FIGURE 11. Total charging current drawn by the 10 tested EVs

in both the FFC and FBC cases, the integral tracking error
ranges between 0.2% and 1.8%. This is much smaller than in
the BaU case, where the error is between 8% and 12% (not
shown in the new figure for scale), confirming the substantial
tracking improvements achieved by the proposed controller.
There are noticeable differences between the FFC and FBC
results. In the latter case, the integral error exhibits more
significant variations over time, possibly due to delays in
the communication of the current readings (i.e., in the “Data
communication” block in Fig 3). Conversely, it can be seen
that the energy error tends to decrease over time, likely due
to the integral action of the controller. A more detailed break-
down of the tracking performance according to different error
metrics and for each tested vehicle is provided in Table 2. The
‘‘2-norm’’ columns indicate the normalized Euclidean norm
of the error signal in the conducted experiments. On the basis
of the diagrams in Fig. 1 and Fig. 3 and denoting by T the
duration of the experiment, this can be defined in continuous
time as follows:

||e||2 =
1

T

(∫ T

0

(iout(t)− ir(t))
2 dt

) 1
2

(4)

Similarly, the ‘‘Mean Abs Error’’ in Table 2 corresponds to
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FIGURE 12. Percentage error in cumulative energy tracking for 10 tested
EVs

TABLE 2. Error metrics of the performed tests using FBC and FFC
controller and in the Business-as-Usual (BaU) case.

the normalized absolute-value norm of the error signal:

||e||1 =
1

T

∫ T

0

|iout(t)− ir(t)| dt. (5)

Finally, the ‘‘Variance of Error’’ columns indicate the ex-
perimental variance exhibited by the current tracking error
iout(k) − ir(k), evaluated over the discrete time samples of the
considered experiments.

The evaluations on the mean absolute error confirm previ-
ous comments on Fig. 9-11, indicating a decreased accuracy
of the BaU case with respect to the FBC and FFC approaches.
It is interesting to note that the variance of the error across
the different sampled time instants is higher with the FBC
approach. This can be explained by the substantial delay in
the feedback loop. Such phenomenon is particularly relevant
in the considered experimental framework, where the delay is
not constant, as EV chargers typically are programmed ‘‘on
trigger’’, i.e., they communicate an updated current measure-
ment only when a certain variation threshold is registered by
the internal ammeter. Delay inconsistencies are therefore even
more probable when using highly dynamic signals as input.

V. CONCLUSIONS
The paper presents a novel methodology for smart power
tracking in EV AC charging. The proposed approach signif-
icantly improves the capability of EV charging stations to
follow prescribed profiles of aggregate power consumption,
thereby enhancing their ability to support ancillary services
and actively contribute to the regulation of the power system.

Two distinct control methods, based respectively on feedfor-
ward tuning and feedback control, have been designed and
tested, showing improvements in the tracking performance of
the charging facility and alleviating the inherent power track-
ing errors associated with EVs under charge, which depend
on various factors such as battery condition, current state of
charge, and vehicle design. It is worth underlining that the
proposed solutions require minimal software modifications
and no additional hardware components for their implementa-
tion, significantly facilitating their potential large-scale roll-
out. The developed control solutions have been tested in real-
world conditions, producing a wide range of experimental
results to assess and demonstrate the improved performance
of the proposed approaches.
Future work in this area will consider the design and

testing of alternative and more complex control approaches.
Adaptive control techniques will be evaluated to improve the
tracking accuracy by dynamically modifying the controller
parameters in real time. Moreover, an algorithmic End-of-
Charge detector will be used to forecast changes in the charg-
ing dynamics of EVs as they approach full battery capacity.
Also, the tuning process carried out for the FFC regulation ap-
proach will consider alternative non-linear models, assessing
whether quadratic or discontinuous functions might be more
suitable to characterize the differences between the specified
tracking signal and the open-loop response of the EV under
charge, minimizing at the same time the impact of external
disturbances on the tracking performance. These disturbances
can arise from various factors that warrant further investiga-
tion to better understand the grid-EV interaction, including:
(i) EVs reaching the terminal stage of charging, where re-
duced current may affect data accuracy; (ii) unexpected volt-
age and frequency oscillations in the grid, which can disrupt
charging stability and alter control dynamics; (iii) extreme
weather conditions, such as high or low temperatures, which
impact the EV charging efficiency and the overall system
robustness. Future experiments will also aim to include a
broader range of EVmodels. Moreover, the EV charging plat-
form will be equipped with an EV classification mechanism.
This additional feature (currently under development by the
authors) will rely on an ad-hoc neural network to estimate
and classify the models of the EVs connected at the parking
facility, thus avoiding the necessity of initial control tuning
and speeding up the charging and regulation processes.
Given the potential economic benefits associated with an

EV charging asset with power tracking capabilities, a frame-
work for evaluating the economic aspects of this service will
also be developed. This framework will build upon existing
schemes and mechanisms that quantify and price the power
tracking service for charging EVs, and will be used not only
to assess the performance of the proposed control mechanism
but also to evaluate and compare future enhancements and
modifications to the control strategy.
Finally, our study also underscores an unresolved concern

within the existing EV regulatory framework. The tested
EVs exhibit heterogeneous response patterns, revealing an

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3501474

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

inherent challenge in load flexibility. The proposed control
mechanisms can provide significant support in reducing such
heterogeneity and unpredictability, as demonstrated by the
provided experimental results. At the same time, a large-scale
provision of power regulation services from EV charging
facilities will most likely require regulatory intervention to
standardize the charging behavior of EVs of different brands
and models.
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