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ABSTRACT Integrated sensing and communications (ISAC) technology is being developed in wireless
communications systems in the sixth generation (6G). ISAC has the advantages of lower cost, better
spectral efficiency, and better energy efficiency than systems that use separate transceivers and receivers.
This technology utilizes the same communication resources for communicating and sensing within the
same framework, enabling more efficient use of resources. Currently, machine learning (ML) has been
developed in the field of communications, including sensing and wireless communications, due to its ability
to tackle complex optimization problems, estimate complex issues, and extract and exploit spatial/temporal
patterns that can improve ISAC performance. This paper provides a comprehensive survey of ISAC systems
enhanced by ML. We begin by presenting various system configurations based on the type of radar and
target sensing and the sensing source utilized in the ISAC system, as well as real-world ISAC use cases.
Following an overview of ML and deep learning (DL), we explore common types of ML and DL models
and their potential to enhance ISAC systems. We review the application of ML in ISAC systems to enhanced
sensing performance and optimize ISAC signals. Finally, we outline the potential avenues for future research
aiming to improve ML application on ISAC systems and other prospective applications.

INDEX TERMS integrated signal and communication, machine learning, deep learning, localization, activ-
ity recognition, gesture recognition, channel estimation, waveform design, beamforming, signal processing.

I. INTRODUCTION

INTEGRATED sensing and communication (ISAC) is one
of the technologies that is developed and has an impor-

tant role in the sixth-generation (6G) wireless communica-
tion system [1]. ISAC is a system that combines wireless
communication and radar sensing functions. ISAC has the
advantages of higher energy efficiency, higher spectral ef-
ficiency, and lower costs compared to implementing sepa-
rate communication and radar systems, each with its own
dedicated devices. This is because each device requires a

unique spectrum and transceiver to avoid interference. Hav-
ing separate devices for communication and sensing results
in higher energy consumption and greater spectral use than an
integrated system. Furthermore, implementing separate sys-
tems requires purchasing additional devices, whereas ISAC
allows communication devices to be used simultaneously
for both communication and sensing. ISAC can provide
sensing capabilities by leveraging existing communications
infrastructure [2]. This can be achieved because the ISAC
sensing and communication systems use the same hardware
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and frequency band [3]. These systems work simultaneously
by sharing the same resources cooperatively, aiming to min-
imize interference from each other. Although the radar and
communications systems may be physically integrated in the
same location, they send different signals overlapping in the
time or frequency domain [4]. Integration of communication
and sensing can be achieved for the following reasons: First,
radar and communication systems can be integrated because
they share many similarities in hardware structure and system
components. Second, the antenna structures of communica-
tion and radar systems are becoming more similar, as seen in
multiple-input multiple-output (MIMO) systems and phased
array radar. Third, communication bandwidth is expanding
and even approaching the bandwidth of radar systems [5].
This technology can be used and applied in several areas,
such as intelligent transportation [6], smart home [7], smart
city [8], and various location-based services [9], [10].

Many researchers are developing 6G technology [11]. One
of the main ideas behind creating 6G technology is to expand
the utilization of artificial intelligence (AI) and machine
learning (ML) in wireless networks for users. 6G will also
provide advancements in several technical aspects, such as
high throughput, supporting new applications with high de-
mand, increased use of radio frequency bands, and more,
using AI and ML techniques. ML has great capabilities for
solving complex optimization problems, approximating in-
tricate issues, and extracting and leveraging spatial/temporal
patterns. With these advantages, ML has been developed
in the fields of communication and sensing over the past
few years [12]. As one of the technologies developed for
6G, ISAC can also leverage the advantages of ML to help
improve sensing performance and optimize ISAC signals, for
example, deep learning methods for integrated sensing and
communication in vehicular networks [13], modified deep
learning-based multi-input multi-output (MIMO) communi-
cation for integrated sensing, communication and computing
systems [14], integrated sensing and communication-based
breath monitoring using 5G network [15].

A. EXISTING SURVEY
In the past year, several studies have been on ISAC along-
side ML or DL in 5G and 6G. D. K. Pin Tan et al. [16]
explored ISAC design in 6G regarding four applications that
can be supported by ISAC in the future, along with the
key performance requirements for these applications. They
also present the challenges of the designing of the ISAC
system and outline future research directions for ISAC. In
the future research directions section, the authors mention
AI-enabled ISAC but do not elaborate in detail on real-
world applications. A. Liu et al. [17] studies the limitations
of current ISAC technology research, including state-of-the-
art advancements and performance limits, aiming to pro-
vide insights and direction for the development of improved
ISAC technology. Although they mention AI-aided ISAC but
wasn’t much discussed. J. Wang et al. [18] review ISAC
from the perspective of the enabling techniques that can be

Acronym Meaning
5G Fifth-Generation
5G-A Fifth-Generation Advance
6G Sixth-Generation
AE Autoencoders
AI Artificial Intelliegence
ANN Artificial Neural Network
ASL American Sign Language
BS Base Station
CNN Convolution Neural Network
CSI Channel State Information
DL Deep Learning
DNN Deep Neural Network
DoA Degree of Arrival
DT Decision Tree
EKF Extended Kalman Filter
FFT Fast Fourier Transform
FMCW Frequency Modulated Continuous Wave
FPPA Fast Parallel Proximal Algorithm
GMM Gaussian Mixture Mode
GP Gausian Process
GRU Gates Recurrent Units
IoT Internet of Things
IRS Intelligent Reflecting Surface
ISAC Integrated Sensing and Communication
KNN K-Nearest Neighbor
LSTM Long-Short Term Memory
MIMO Multi Input Multi Output
ML Machine Learning
NLP Natural Language Processing
NN Neural Network
OFDM Orthogonal Frequency Division Multiplexing
PCA Principal Component Analysis
RBF Radial Basis Function
RF Random Forest
RL Reinforcement Learning
RNN Recurrent Neural Network
RSS Received Signal Strength
SINR Signal Interference Noise Ratio
SLAM Simultaneous Localization and Mapping
SVM Support Vector Machine
TCN Temporal Convolution Network
THz Terahertz
UAV Unmanned Aerial Vehicles
UE User Equipment
UWB Ultra-wideband
WiFi Wireless Fidelity
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applied for ISAC, the applications for ISAC systems, and
public datasets and tools that can be used for ISAC research.
They mention ML for ISAC but not much is discussed.

U. Demirhan et al. [12] discusses the roles, reasons,
and methods for implementing ML for integrated sensing
and communication systems in joint sensing and communi-
cation, sensing-aided communication, and communication-
aided sensing. While the potential of ML in ISAC is out-
lined, its implementation remains limited. S. Shao et al. [19]
provide a survey of CSI-based sensing techniques, based on
whether a custom physical model is built, or machine learn-
ing is used and their applications on detection, estimation,
and recognition. However, they focus on ISAC related to CSI
from Wi-Fi. These related papers have been summarized in
Table 1.

B. OUR CONTRIBUTION
Our primary contributions to this survey are summarized as
follows:

1) We provide an ISAC review based on various config-
urations and sensing sources used in ISAC systems as
well as real-world ISAC applications to help improve
communication performance and more.

2) We provide an overview of the basic principles in
ML and DL and their potential applications in ISAC
systems to improve performance and optimize ISAC
signals.

3) We focus on ML-enhanced ISAC applications. We
aim to explore how ML techniques can improve ISAC
systems, boost their performance, and enable new fea-
tures. We discuss specific use cases, real-world imple-
mentations, and potential future applications of ML in
ISAC to give a complete understanding of how these
technologies work together.

The organization of this paper is shown in Figure 1. In
what follows, we give an overview of ISAC, including its
system configuration, sensing source, and real-world applica-
tions in Section II. In Section III, we provide an overview of
key concepts and techniques of ML. Section IV summarizes
existing research on the application of ISAC with ML. Sec-
tion V discusses potential future research to improve ISAC
with ML. Finally, Section VI concludes this paper.

II. INTEGRATED SENSING AND COMMUNICATION
Generally, sensing and communication functions work dif-
ferently, so they need different resources like hardware,
frequency band, and transmission schemes [25]. The main
concept of ISAC is to improve resource efficiency for com-
munications and sensing. With this concept, ISAC can use
communication resources for sensing and communication,
thereby improving system performance at a low cost [26].
Because no additional resources are required to perform
sensing and communication separately, ISAC systems can
reduce operational costs and investment in infrastructure.

Figure 2 illustrates the ISAC architecture, which includes
two key components for sensing using a communication

FIGURE 1: Overview of organization of this paper

FIGURE 2: ISAC architecture
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TABLE 1: List of Related Paper

Publication Year Summary Limitation
[20] 2018 Explores the possible potential of AI-based solutions in

5G mobile and wireless communications technologies
and evaluates various challenges and open issues for
future research.

Discuss AI in 5G but ML-enhanced ISAC
is not addressed.

[21] 2018 Surveys the application of DL algorithms in traffic bal-
ancing and different network layers, including physical,
data link, and routing layers.

Discuss DL in a wireless network but
ML-enhanced ISAC is not addressed.

[22] 2019 Discusses potential solutions from ML for 5G technol-
ogy.

Discuss ML for 5G/B5G but ML-
enhanced ISAC is not addressed.

[23] 2019 Comprehensive survey about the crossover between deep
learning and mobile and wireless network research.

Discuss DL in mobile and wireless net-
works but ML-enhanced ISAC is not ad-
dressed.

[16] 2021 Discusses ISAC design in 6G regarding new applications,
key performance, requirements, challenges, and future
research directions.

Discuss ISAC use case in 6G, mentioning
AI in future research section.

[11] 2021 Presents a demonstration of the utility and role of ML
techniques and an up-to-date overview of future wireless
system concepts.

Discuss ML for 5G and B5G but ML-
enhanced ISAC is not addressed.

[17] 2022 Study the basic constraints of ISAC to understand the
difference between today’s state-of-the-art technology
and its performance limitations.

Mentioning AI and ISAC in future re-
search without delving into details.

[12] 2022 Focuses on the role of machine learning for integrated
sensing and communications, explains how machine
learning can be leveraged, and highlights important di-
rections for future research.

Discuss ML for optimizing ISAC but
there are still few real-world applications.

[18] 2022 Explores ISAC from the techniques, tools, applications,
and data sets, as well as standardization, research chal-
lenges, and directions of future research.

Mentioning ML in ISAC in future re-
search section but without delving into
detail.

[24] 2022 Provides technological advances in the field of DL-based
on physical layer methods for exciting 6G applications.

Discuss DL-aided 6G but ML-enhanced
ISAC is not addressed.

[19] 2022 Provides a comprehensive survey of sensing techniques
based on CSI, namely model-based, data-based, and
hybrid-based methods combining models and data.

Discuss ML application in ISAC but fo-
cus on WLAN domain.

system: hardware and signal. The hardware component refers
to the transmitter and receiver devices that send and receive
communication and sensing signals. Common hardware con-
figurations will be discussed in Section II.A. The signal
transmitted by the transmitter toward the target will return
to the receiver, and sensing information can be obtained by
extracting information from the received signal. The source
of sensing information will be discussed in Section II.B.

Integrating sensing and communication is challenging be-
cause sensing and communication have different informa-
tion processing [27]. Communication focuses on transmitting
information through designed signals and protecting them
from noisy environments, while sensing focuses on obtaining
information from noisy observations. The main object of
ISAC is to combine these two processes and balance them,
resulting in improved overall performance.

A. SYSTEM CONFIGURATION
ISAC works similarly to radar, so they have a similar configu-
ration system. Radar types are classified based on transmitter
and receiver locations into two categories: monostatic radar
and bistatic radar.

• Monostatic radars: Monostatic radars is a radar system
in which the transmitter and receiver are located at the
same location.

• Bistatic radars: Bistatic radars is a radar system where
the transmitter and receiver are positioned in different
locations.

Conventional radar sensing can be classified based on
target sensing into two categories: device-free and device-
based.

• Device-free: Device-free sensing is a type of sensing
where the target does not need or cannot use a device
capable of receiving or transmitting radar signals. It’s
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FIGURE 3: ISAC system configurations: (a) Case 1: Monostatic ISAC and device-based. (b) Case 2: Monostatic ISAC and
device-free. (c) Case 3: Bistatic ISAC and device-based. (d) Case 4: Bistatic ISAC and device-free.

like traditional radar systems work, where targets are
detected and localized based on reflection radar waves
from targets [28].

• Device-based: Device-based sensing is a type of sensing
where the target can receive and transmit both radar
and communication signals. This category has more
accurate localization compared to device-free because
the targets can directly have access to reference signals
and give the information to the radar [28].

From that category, ISAC system configurations can be
categorized by four different cases [29] are illustrated in
Fig.3. User Equipment (UE) can be an example of a device-
based target radar because UE can receive from ISAC TX and
transmit a signal to ISAC RX.

1) Case 1: Monostatic ISAC and device-based.
In Fig. 3(a), ISAC TX and RX are in the same ISAC BS as
the target UE, which can send uplink signals to the ISAC
BS. The uplink transmission process may affect the echo
signal received by the RX. Additionally, self-interference
from the TX can impact the performance of the RX. However
monostatic ISAC has the advantage that because the RX uses
the same clock and oscillator as the TX, it does not require
frequency and time synchronization. In [30] considered self-
interference as one of the problems in monostatic ISAC,
therefore they proposed analog beamforming to suppress
self-inference. Simulations show that the proposed method
effectively solves the SINR maximization problem.

2) Case 2: Monostatic ISAC and device-free.
In Fig. 3(b), the target is not UE, so it can’t interfere with
the echo sensing signal to Radar Rx because it can’t re-
ceive or transmit a signal, but it can be interrupted by self-

interference on ISAC BS. ISAC TX signal can be used to
sense the target and communicate with UE, so UE can get
information about the target location on the second transmit
after sensing the target. In [31] proposed a power allocation
algorithm to minimize the maximum range estimation error
at BS while considering total power and minimum signal-to-
interference-noise ratio (SINR). This approach addresses the
issue of localization accuracy in mono-static ISAC, which is
challenged by inter-BS and self-interference at BS.

3) Case 3: Bistatic ISAC and device-based.
In Fig. 3(c), the target of the radar is UE, but ISAC TX
and RX are placed with different antennae or towers, so it
can minimize interference UE transmitting signal on echo
sensing signal for ISAC RX and there is no self-interference
between ISAC TX and RX. In [32], unmanned aerial vehicles
(UAV) are used as a target device. The ISAC signal is
transmitted using ISAC TX to the UAV, and the echo signal
is received using a separate ISAC RX from ISAC TX. They
proposed to optimize power allocation to the pilot and data
parts in the communication structure for ISAC.

4) Case 4: Bistatic ISAC and device-free.
In Fig.3(d), the target is not UE, so it can’t receive or
transmit a signal, and ISAC TX and RX have been located
in different antennae or towers. With this configuration, the
advantages of bistatic ISAC and device-free operation are
achieved, eliminating self-interference and interference from
the target In [33] introducing bi-static orthogonal frequency-
division multiplexing (OFDM) based for ISAC with over-
the-air synchronization. In the testing stage, it uses a device-
free target. In their conclusion, they state that several things
influence the results of the experiment to be less good, but
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they also provide ways to overcome these problems.

B. SENSING SOURCE
In communication systems, channel or environment effect
is compensated and estimated so the received signal can
be decoded correctly; by using channel information on the
received signal, sensing functions can be applied to detect
targets and sensing parameter estimation [18]. With that
concept, a combination of communication and sensing can
be integrated into a communication system. In ISAC, the
following typical forms for sensing are commonly used:
Channel State Information (CSI), Receiver Signal Strength
(RSS), and waveform directly.

1) Channel State Information
CSI is gained for each subcarrier in an OFDM system and
is accessible on some commercial devices. CSI contains
amplitude, phase, and frequency response, which are essen-
tial elements in wireless communication systems by reveal-
ing the intricacies of the communication channel between
transmitter and receiver [34]. CSI data has been used for
numerous sensing applications. In [35], the authors utilize
CSI-based fire detection by leveraging CSI amplitude that
correlates with fire. Meanwhile, in [36], the authors develop a
framework for temperature sensing based on CSI amplitude.
This is feasible because the kinetic energy present in ambient
gas particles can affect the wireless link. In [37] utilized Wi-
Fi CSI data for object detection. In [38] CSI and CNN for
human activity recognition of Parkinson’s disease patients.
In [39] using CSI data to detect multivariety grain moisture.

2) Received Signal Strength
RSS is a physical layer measurement that reflects the prop-
agation loss between transmitter and receiver, and it’s com-
monly utilized in wireless systems. In general, signal prop-
agation is assumed to follow an exponential decay path
loss model, which is a function of the path loss factor,
transmission-reception distance, and transmitted power [40].
RSS has been widely utilized for various sensing applica-
tions. In [41], RSS can be utilized to estimate crowd density
with the K-means algorithm to clustering based on crowd
density and get an accuracy of 94% for crowd static and 86%
for crowd moving. In [42], RSS is used to locate a person by
finding a person through their breathing. In [43], RSS is used
for malicious UAV detection, and in [44] uses RSS for indoor
localization.

3) Waveform
The principle of ISAC is similar to radar, so in addition to
RSS and CSI, communication waveforms can also be used
for sensing. Radar sensing utilizes frequency analysis over
time and signal correlation to estimate Doppler frequency
shift and delay, which can be interpreted as the distance and
speed of a target. In using waveforms for sensing, wave-
forms can be specially designed to perform both commu-
nication and sensing. The waveform design is conducted in

signal processing before modulation and then transmitted.
Some examples of methods used to design waveforms in-
clude sparse vector coding-based for ISAC [45], general-
ized sparsely index modulation-OFDM for ISAC [46], and
weighted-type fractional Fourier transform-based orthogonal
time frequency space waveform design for ISAC [47]. There
are two types of waveform commonly used for sensing: based
on communication waveform and based on radar waveform.
For the first type, there are several examples, like in [48] us-
ing WiFi signal for human sensing and in [49] using OFDM-
based WiFi for passive sensing for moving targets. For the
second type, in [50] using frequency-modulated continuous-
wave (FMCW) for target detection. In [51] using FMCW for
human sensing. In [52] using a waveform that transmitted
from UAV to tracking object.in [53] using FMCW to make
range detection.

C. SENSING APPLICATION

As one of the features in 6G, ISAC can improve commu-
nication performance by providing imaging, high-resolution
sensing, localization, and environmental reconstruction [16].
This is achievable due to the use of higher frequency bands,
such as mmWave up to THz, and wider bandwidth. This al-
lows for more detailed sensing resolution, as higher frequen-
cies use shorter wavelengths, and also improves accuracy
due to the broader bandwidth. By utilizing communication
systems as sensors, transmission, reflection, and scattering
can be leveraged to sense and understand the physical world,
enabling the development of new services. Additionally, this
can also improve communication performance. There are
four categories use case of ISAC as a service in 6G:

1) Precise Localization and Tracking

6G technology can be used to enhance precision in local-
ization and tracking due to the use of high frequencies and
wide bandwidth. Localization and tracking typically rely on
Global Positioning System (GPS) technology, which works
optimally for outdoor use but becomes challenging indoors
as GPS signals are blocked by walls. In this case, ISAC
can help improve accuracy in indoor environments, such
as in [54] the author utilized an Extended Kalman Filter
(EKF) with data from a BS transmitting sub-THz signals at
a frequency of 142 GHz to track the UE. The experiment
was conducted on a square track in both Line-of-Sight (LOS)
and Non-Line-of-Sight (NLOS) conditions, with 34 prede-
termined location points. As a result, the author achieved a
mean position error of 24.8 cm. In addition to improving
existing technologies, precise localization and tracking can
also be used to enhance communication performance, such
as optimizing beamforming to the UE accurately and quickly
recovering from beam failure. It can also assist in indoor
robot sensing and autonomous vehicles [55], reducing the
need for additional hardware.
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2) Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) is the abil-
ity to understand the surroundings (mapping) while deter-
mining location simultaneously. SLAM typically uses tech-
nologies like LiDAR or cameras (vision-SLAM), but these
devices are expensive and consume a lot of power. ISAC
presents an attractive solution for performing SLAM, as
signals transmitted by the BS can be used. By leveraging the
reflection or echo signals from walls or other objects received
back at the BS, the environment can be mapped and the
location of both the BS and other objects can be determined.
M. Lotti et al. [56] proposed algorithm, Radio-SLAM (R-
SLAM), is based on Fourier-Mellin (FM) transforms. FM is
a technique used for image processing, and in this case, it
is utilized to create a map of the surrounding environment
and determine the location of devices based on the available
data. The data used consists of THz backscattering. Three
real-world experimental scenarios were conducted: the first
with the radar directed toward the movement, then with the
radar oriented perpendicular to the direction of movement,
and the radar scanned the environment in 46 positions along
an oval track characterized by diameters of 5 m and 3 m.
In conclusion, the results of this experiment validate the
feasibility of R-SLAM using backscattering signals in the
THz band collected by a moving radar.

3) Enhanced Human Sensory Capabilities
Enhancing human sensory capabilities can help provide abil-
ities that exceed human limits through portable terminals for
sensing the surrounding environment. One scenario for utiliz-
ing ISAC is ISAC imaging, which can be achieved by lever-
aging the echoes from communication signals. As in [57] by
utilizing THz, which has short wavelengths and high imaging
resolution, terminal imaging using OFDM communication in
the THz band can be used to obtain high-resolution images.
However, achieving this comes with a high time cost. To
address this, the author employs compressed sensing (CS)
to reconstruct images using under-sampled echo data from
OFDM-THz, allowing for faster data collection while still
producing high-resolution images. Simulation and experi-
mental results show that the proposed method outperforms
the Fast Parallel Proximal Algorithm (FPPA) [58].

ISAC can also be used to detect objects behind walls,
which are invisible to the human eye, enhancing human
sensory capabilities. For instance, [59] discusses the funda-
mental radio technology used in see-through-wall systems. In
[60], a method for 3D imaging is implemented using delay-
and-sum beamforming, while [61] designs an UWB radar
system for detecting and locating targets behind walls.

4) Recognition of Gestures and Activities
The high sensing resolution from utilizing high-frequency
waves can be used to better capture human movements or ac-
tivities. By leveraging high-accuracy gesture recognition, this
can be implemented for use in human-computer interaction.
As in [62]many gesture recognition systems are affected by

FIGURE 4: Illustration of the relationship between AI, ML, and
DL

background noise. To address this issue, the author proposed
a multimodal fusion-Gaussian Mixture Model (GMM) for
gesture recognition by utilizing CSI data. The multimodal ap-
proach involves using both sensing and recognition models,
which are then combined using GMM. The sensing model is
used to understand the impact of gestures on WiFi signal CSI,
while the recognition model detects changes in the signal
influenced by the gesture. Experiments were conducted in a
laboratory and a corridor, yielding an average accuracy of
96% and 94%, respectively.

III. REVIEW OF MACHINE LEARNING
In this section, we discuss machine learning, deep learning,
and the potential of machine learning on ISAC. Machine
learning is a program of computers that is given to complete
a task based on learning from the experience gained by
the machine. Performance on these tasks improves with in-
creased practice in solving them over time [63], meaning the
machine solves the problem and makes its decisions based
on the historical data it has learned. In the context of artificial
intelligence, machine learning is the ability of machines to
adapt without human influence, and deep learning is a subset
of machine learning inspired by human neural networks that
simulate the learning procedures of the human brain.

A. MACHINE LEARNING
Machine learning is a field of study that provides computers
with capabilities that can allow them to learn without being
explicitly programmed [64]. With that ability, computers
can make predictions, classifications, or decisions without
depending on hard-coded rules. ML is a development of the
field of pattern recognition and artificial intelligence, which
is a subfield of computer science [65] illustrated in Figure
4. Based on data availability and the problems encountered,
there are three general categories of learning types: su-
pervised learning, unsupervised learning, and reinforcement
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FIGURE 5: Illustration of (a) Supervised learning, (b) Unsu-
pervised learning, and (c) Reinforcement learning.

learning [66], [67].

1) Supervised
Supervised learning is a learning method that uses a dataset
containing examples and their labeled target [68], illustrated
in Fig.5(a). Based on the output, supervised learning can be
grouped into two categories: regression for the numerical
output and classification for categorical output [69]. Some
supervised learning algorithms usually used, such as support
vector machine (SVM), K-nearest neighbor (KNN), random
forest (RF), decision tree (DT), neural network (NN), hidden
Markov model, and Bayes theory [70].

2) Unsupervised
Unsupervised learning is a learning method that uses a
dataset containing only the example without the targets, so
the model learns the property of the dataset. The goal of un-
supervised learning is finding relations and patterns between
data in dataset [64], illustrated in Fig.5(b). Unsupervised
learning is a powerful tool for anomaly detection from find-
ing relations or patterns between data so that it can identify
unusual patterns in the dataset. Besides that, unsupervised
learning can be used for dimensionality reduction. There
are two popular dimensionality reduction methods: Autoen-
coders(AE) and Principal Component Analysis (PCA) [71].

3) Reinforcement Learning
Reinforcement learning is a learning method that utilizes an
agent to make decisions by taking actions that yield positive
rewards [64]. Agents learn from performing actions in the
environment, and each action causes changes in the environ-

FIGURE 6: (a) Neural Network. (b) Deep Neural Network

ment and produces rewards, which can be positive or neg-
ative. Rewards will be generated from actions performed in
an episode. Episodes represent a finite number of actions and
will end when the agent reaches the final state. The agent’s
goal is to maximize the positive value of the expected reward
amount, which will encourage the agent to choose an action
[72], illustrated in Fig.5(c). There are several algorithms that
are used in reinforcement learning, for example, Q-learning
[73], Markov decision processes (MDP) [74], and deep Q-
network [75].

B. DEEP LEARNING
Deep learning is a subset of machine learning, so it basically
has the same purpose as making predictions, classifications,
or decisions based on input data without explicitly program-
ming [23]. Deep learning has neural networks as its basis, but
DL focuses on learning deeper representations [76], [77]. It is
because deep learning commonly uses more than one hidden
layer, illustrated in Figure 6. Neural networks consist of three
layers: input, hidden, and output layer. The input layer is the
layer used to enter data into the neural network, and this
part will determine the dimensions of the data that will be
used as input. The hidden layer is the layer that handles the
learning process from the data provided by the input layer.
The output layer is the layer that produces the final output
of the neural network. Three standard deep learning models
are used: artificial neural network (ANN), convolution neural
network (CNN), and recurrent neural network (RNN).

1) Artificial Neural Network (ANN)
ANN is inspired by the neural network in the human body.
There are nodes connected to other nodes that can process
input and forward output to other nodes in the network.
ANN consists of three or more interconnected layers. ANN
has another name: feed-forward neural network, because the
input processing is unidirectional [78]. ANN has the same
structure as a neural network. The first layer is the input
layer that receives data, the layer between the input and
output layers is the hidden layer, and the last layer is the
output layer that provides output [79], illustrated in Figure
7(a). There are several ANN applications, in [80] using ANN
to classify faults on wireless mesh networks, in [81] ANN-
based localization in wireless sensor network, and not only
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FIGURE 7: Illustration of (a) ANN, (b) CNN, and (c) RNN.

for a wireless domain, in [82] make model ANN-based for
estimating state-of-charge lithium-ion batteries, and in [83]
a complex neural network is used to estimate the Angle of
Departure (AoD) from the communication signal and the
Angle of Arrival (AoA) from the echo signal of the target.
This NN-based method achieves good results with lower
computational complexity compared to benchmark methods.

2) Convolution Neural Network (CNN)
CNN uses convolution operations in mathematics and signal
processing in the node of a neural network, illustrated in
Figure 7(b). Usually, CNN is used in image and video data
because CNN can be used to identify features in images, such
as edges. CNN commonly combines with the pooling layer to
reduce the dimension of data [84], [85]. CNN has three main
layers. The convolutional layer is used for feature extraction
by applying convolutional operations to capture essential
information from input data. The pooling layer for reducing
complexity and number of features. The fully connected layer
for the classification task, mapping the extracted feature to
specific class [86]. Usually, CNN is used in image and video
data because CNN can be used to identify features in images,
such as edges. For example, CNN handles image and video
data in [87] using CNN for breast cancer image retrieval,
in [88] proposed CNN-based for video copyright detection,
and [89] proposes fake 3D video detection based on CNN.

CNN can also be applied in communication technology. For
example, in [90], a CNN is used for wireless channel recogni-
tion, enabling the model to identify channel states efficiently.
Additionally, [91] demonstrates the use of CNN to assess
indoor wireless environment conditions, providing insights
into environmental factors affecting wireless communication.

3) Recurrent Neural Network (RNN)
Neural networks have weaknesses in learning time series data
because nodes can store information from previous nodes.
To overcome this problem, RNN can be a solution because
RNN stores information from previous nodes to learn time
series data [85], illustrated in Figure 7(c). RNN has some
issues with the application, such as vanishing gradients and
exploded gradients. A vanishing gradient occurs when gra-
dient updates are too small during training, which will affect
the network learning process. Exploded gradient occurs when
the cumulative gradient during the backpropagation process
updates is too large for the network. To overcome this issue,
there are various types of RNN called Gates Recurrent Unit
(GRU) and Long Short-Term Memory (LSTM) [92]. The
Example RNN handles time series data in [93] using LSTM
to make a prediction of a number of restaurant customers,
in [94] forecasting COVID-19 confirmed case with LSTM-
based, and in [95] proposed RNN for forecasting the com-
puter network traffic.

C. POTENTIAL OF MACHINE LEARNING
Machine learning has been utilized in wireless communica-
tion technology, both in 5G and 6G. ML can be used to solve
existing problems [20], [22] and optimize wireless networks
[11], [21], [23], [96]. ISAC, which is one of the technologies
developed for 6G networks, can also take advantage of ML
to support ISAC sensing capabilities and optimize ISAC
signals. With ML ability to learn from data, it can be used to
improve sensing services [16]. Radio frequency performance
is also based on the data processing and detection algorithms
used. Learning-based detection algorithms can increase com-
putational speed because ML can utilize parallel computing.

In addition to faster computation, ML can also help solve
complex calculations that cannot be handled by traditional
mathematics [17]. With the large amount of data and the com-
plexity of ISAC applications, particularly in indoor environ-
ments [97], there are numerous disturbances and non-linear
signals in the system that may be unknown or difficult to
model. ML’s ability to transform collected data into insightful
knowledge can help make decisions and achieve automation
[18].

ML can handle complex calculations and data by using
tensor-based algorithms, which allow it to address high-
dimensional data challenges. Tensor-based methods achieve
this by performing tensor decomposition, which transforms
high-dimensional tensors into sparse factor matrices and low-
order core tensors [98]. By reducing data dimensionality,
calculations can be processed faster. A major advantage of
tensor decomposition is that it preserves data structure and
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correlations, meaning that decomposed data still represents
the original information accurately, leading to faster and
more accurate results.

In addition to ML, tensor decomposition is also applica-
ble in signal processing [99]. Studies such as [100]–[103]
use tensor decomposition for channel estimation in MIMO
systems, while [104] applies it to estimate both channel and
target location.

With all its advantages, ML is not suitable for every
problem. There are certain conditions for the application of
ML, including the problem type, dataset quality, time cost,
and implementation complexity [105].

• Problem Type: Problems commonly addressed by ML
can be categorized into regression, classification, and
decision-making tasks. If the problem falls within these
categories, then ML is often a suitable solution.

• Dataset Quality: To produce a reliable ML model, a
high-quality dataset is essential. A good dataset is large
and diverse enough to handle a variety of situations,
enabling the model to generalize well. If such a dataset
is available, ML can be applied effectively.

• Time Cost: Time cost includes both training time (the
time required for model training) and response time (the
time required for the model to produce an output). If the
trained model has acceptable training and, especially,
response times, ML is a feasible choice.

• Implementation Complexity: Consider whether imple-
menting an ML model adds excessive complexity or if
it improves system performance. ML should be used if
it significantly enhances the system’s efficiency.

IV. APPLICATION OF INTEGRATED SENSING AND
COMMUNICATION WITH MACHINE LEARNING
This section will discuss the applications of ISAC with ML in
two main categories: ML for sensing and ML for optimizing
ISAC.

A. ML FOR SENSING
ML for sensing utilizes ML to improve ISAC sensing per-
formance. This paper surveyed four main categories based
on the use case mentioned on section II: localization, activity
recognition, gesture recognition, and others. These sections
have been summarized in Table 2.

FIGURE 8: Illustration of indoor WiFi sensing

1) Localization
Localization aims to track and locate targets. Localization
can be divided into two: outdoor and indoor [118]. This sec-
tion will focus on indoor localization. Indoor localization is
tracking and locating targets in indoor areas where the global
positioning system can’t work effectively. There are various
technologies, such as wireless signals like WiFi, Bluetooth,
ultra-wideband, optical systems like cameras, and LiDAR.
Indoor localization using WiFi is illustrated in Figure 8.

L. Zhang et al. [106] using ML-based integrated in-
door/outdoor sensing and positioning for cellular networks.
Based on the authors’ knowledge, this is one of the first
integrated studies of radio frequency communication signals
for cellular network operation in indoor/outdoor sensing and
positioning. First, measurement reports are collected from
layer 3 on the evolved NodeBs and indoor and outdoor user
equipment across urban areas to emulate the minimization of
driving tests. Then, the mobile scenarios are sensed, and the
database is preprocessed to filter the positioning fingerprint
using a random forest-based indoor/outdoor classifier. After
that, weighted K-nearest neighbor-based Enhanced Cell ID
is employed for radio frequency fingerprinting positioning.
The proposed method of database preprocessing using in-
door/outdoor classifiers achieves an accuracy of up to 97%,
demonstrating its effectiveness in filtering fingerprints for
radio frequency fingerprint positioning by comparing posi-
tioning errors.

Z. Zhang et al. [107] proposed transformer-based for in-
door positioning. Utilize the CSI and estimate the degree
of arrival (DoA) from Wi-Fi signal transmitter, that data
will be preprocessed and fed to the transformer model.
The transformer will be learning the correlation between
the fingerprint and positions. With an attention mechanism
in the transformer, so transformer can predict the current
position using input data and the previous position, which can
boost the accuracy. Transformer was introduced for natural
language processing (NLP) [119]. The transformer has both
an encoder and a decoder, but the author only uses the
encoder part, similar to a Generative Pre-trained Transformer
(GPT). GPT can predict the word at the current step based
on the words generated at the previous time step. Then, the
word at the next time step is generated based on the current
and previous time steps. In this way, GPT produces output
predictions sequentially. The author believes that using the
transformer to predict positions, in the same manner as GPT,
is an appropriate approach. The results using the method that
was approached obtained an error distance accuracy of 20
cm.

Y. Dong et al. [108] leveraging LSTM for indoor position-
ing based on RSS. While LSTM has the potential to utilize
temporal memory, RSS has high-dimensional data, which can
reduce training performance and lower positioning accuracy.
The author proposed an encoded LSTM consisting of two
modules: an encoder and a predictor. The encoder is used to
extract features and reduce the dimensionality of the input
data, while the predictor is used to predict the location based
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TABLE 2: List of Applications ML For Sensing

Application Research Title Year Dataset ML Type

Localization

[106] Machine learning-based integrated wireless sens-
ing and positioning for cellular network

2023 cellular network KNN-ECID

[107] TIPS: Transformer Based Indoor Positioning Sys-
tem Using Both CSI and DoA of Wi-Fi Signal

2022 Wi-Fi CSI Transformer

[108] An Encoded LSTM Network Model for Wi-Fi-
based Indoor Positioning

2022 RSS LSTM

[109] DNN-Based Indoor Localization Under Limited
Dataset Using GANs and Semi-Supervised Learn-
ing

2022 RSS DNN

Activity
Recognition

[110] An Integrated Sensing and Communication Sys-
tem for Fall Detection and Recognition Using
Ultra-wideband Signals

2024 UWB 1-D CNN

[111] Wi-Monitor: Daily Activity Monitoring Using
Commodity Wi-Fi

2023 Wi-Fi CSI TCN

[112] 5G-Based Passive Radar Sensing for Human Ac-
tivity Recognition Using Deep Learning

2024 5G CSI LeNet-5 (CNN)

Gesture
Recognition

[113] Monitoring Respiratory Motion With Wi-Fi CSI:
Characterizing Performance and the BreatheS-
mart Algorithm

2022 Wi-Fi CSI LSTM

[114] Wi-Fi CSI Based Human Sign Language Recog-
nition using LSTM Network

2021 Wi-Fi CSI LSTM

[115] Position and Orientation Independent Wireless
Gesture Recognition

2022 Wi-Fi CSI CNN

Other
Applications

[116] Feasibility of Wind Speed Detection Using WiFi
Sensing to Enable Unconventional IoT Applica-
tions

2024 Wi-Fi CSI SVM

[117] Humidity Estimation Using WiFi Channel State
Information

2023 Wi-Fi CSI GP

on the extracted features. Based on experimental results, the
proposed method shows a 10% improvement in accuracy
compared to previous methods using the same dataset.

W. Njima et al. [109] using DNN for indoor localization
involves using RSS as input data, which is limited in quantity.
To overcome the data quantity limitations, the authors use
a Generative Adversarial Network (GAN) to reproduce a
fake dataset based on the existing dataset. In several testing
scenarios, the accuracy of the model generated using the
combined dataset from GAN and the original dataset showed
improvement compared to the model using only the original
dataset.

2) Gesture Recognition
Gesture recognition is the process of a system becoming
aware of gestures provided by a user [120]. There are two
essential components in gesture recognition: gesture read-
ing and identification. Gesture reading retrieves data and
information from sensors when the user performs a gesture.
Gesture identification then interprets the gestures made by
the user using a mathematical approach.

S. Mosleh et al. [113] proposed BreatheSmart system
detects human respiration motions using Wi-Fi CSI that

employs a bidirectional LSTM. Data is generated by cap-
turing CSI Wi-Fi data streams for each pattern or speed of
respiratory movement with a frame rate of 10 for 60 seconds.
Several preprocessing steps are applied before feeding the
data into the deep neural network. These steps are to identify
respiratory frequencies from the power spectrum, learn and
extract respiratory features from CSI, and normalize the data
to aid model training using low pass filters, Hampel filters,
and Fast Fourier Transform (FFT). The bidirectional-LSTM
model is designed to learn from time-series data, passing
information to subsequent layers to produce the classification
of respiratory patterns and rates. The model’s performance is
evaluated using several metrics: precision, accuracy, speci-
ficity, recall, and F1-score. The model achieves impressive
results, with a precision of 99.58%, accuracy of 99.54%,
specificity of 99.94%, recall of 99.56%, and an F1-score of
99.57%.

H. F. Thariq Ahmed et al. [114] using LSTM for human
sign language recognition with Wi-Fi CSI data. The dataset
is from an open source dataset from SignFi that contains
the American Sign Language (ASL) CSI dataset from home
and lab; with the single-user scenario, 8,280 samples were
acquired for 276 ASL gestures. CSI dataset consists of
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amplitude and phase data. There are several test conditions
in this experiment; there is a variation on a dataset that
used (amplitude only and amplitude + phase), environments
(home and lab) optimizers (SDGM and Adam), and hidden
units on LSTM (50, 100, and 150). From the experiment,
the best performance was LSTM with 150 hidden units and
Adam optimizer using an amplitude-only dataset. With this
combination, the lab 276 dataset gets 99.8%, the home 276
dataset gets 99.5%, the lab+home 276 dataset gets 99.4%,
and the lab 150 dataset gets 78.0% accuracy points.

Y. Wang et al. [115] proposed position and orientation
independent wireless gesture recognition. Utilizing CNN to
recognize six different gestures, this method is used to ac-
knowledge the trajectory of every gesture. In this experiment,
data used for training was generated by simulation; it gener-
ated 9000 trajectory data and for the testing data using CSI
data obtained from a real receiver. For the actual testing data,
the dataset is collected from two position configurations that
were not present in the training data and training stage to
verify the model performance. In the testing stage, there are
5 times tests; the result is for the first position to obtain 96%
for average accuracy and the second position to obtain 85.7%
for average accuracy.

3) Activity Recognition
Activity recognition is the ability to use sensors to sense and
interpret human body signals or movements and determine
human activity or actions [121]. Different from gesture or
action recognition, activity recognition not only focuses on
the movement part of the body but also includes the body’s
movement, such as posture, gait, sitting, leg posture, etc
[122].

Li et al. [110] presenting FallDR using ultra-wideband
communication for fall detection and recognition. Four
DWM1000 modules are used for hardware testing: three as
base stations (BS A, BS B, BS C) and one as a receiver.
This experiment involved ten volunteers: two women and
eight men. There are four types of falls: fall backward, fall
forward, fall right, and fall left, and each action is performed
50-100 times. Additionally, they measured other activities
like "kneeling," "walking," and "sitting down" to be "non-
fall" data. There are 4047 sample data: 1000 samples rep-
resenting “fall backward,” 961 samples representing “fall
backward,” 836 samples representing “fall left,” 690 samples
representing “fall right,” and 560 samples representing “non-
fall.” The proposed method that utilizes a 1-Dimensional
CNN (1-D CNN) with the baseline methods is support vector
machine-radial basis function (SVM-RBF), random forest
(RF), and K-nearest neighbor (KNN). The first stage of this
experiment is fall detection and then fall recognition. For
fall detection, several metrics evaluations, such as accuracy,
precision, specificity, sensitivity, and F-1 score, are used;
for fall recognition, accuracy is used. The proposed method
outperformed the baseline method with 100% accuracy, pre-
cision, specificity, sensitivity, and F-1 score for fall detec-
tion and 100% accuracy for fall recognition. This method’s

robustness is demonstrated by consistently outperforming
baseline methods even with different environments.

Zhou et al. [111] introduce Wi-Monitor to monitor human
activities using Wi-Fi CSI. The CSI data is collected and frag-
mented into CSI bins. Then, features are extracted from the
bins using a feature extraction network that is composed of
several residual convolution networks and a fully connected
layer. After that, the temporal convolutional network (TCN)
captures continuous activity patterns across three scenarios:
basic, cross-subject, and cross-environment. TCN perfor-
mance is compared to other methods, such as LSTM and
over-segmentation suppression mechanism (OSSM); TCN
demonstrates superior results all across scenarios. TCN
achieves an average 96% f1-score and 93% accuracy in basic
scenario, 93% f1-score and 92% accuracy in cross-subject
scenario, and 90% f1-score and 92% accuracy in cross-
environment scenario.

M. Dwivedi et al. [112] utilize 5G new radio for passive
radar and activity recognition. The proposal is leveraging
the synchronization signal block (SSB) to get CSI from
extracting the SSB using secondary synchronization signal
(SSS) and physical broadcast channel demodulation refer-
ence signal (PBCH DM-RS), then fed into modified LeNet-
5 [123] based on CNN to classify the activity. Modified
LeNet-5 is chosen because have fewer parameters than the
other typical model [124]. There are 5 categories: wave, run,
pickup, clap, and no activity. With the proposed method, it
gets a training accuracy of 97.73% and a validation accuracy
of 98.48%.

4) Other Applications

There are other applications of ISAC with ML for sensing
objects other than humans.

Y. Deng et al. [116] utilizes WiFi sensing to detect wind
speed, offering potential applications for unconventional IoT
in smart cities. In this experiment, aluminum foil slices have
good reflectivity of electromagnetic waves, which could am-
plify the perturbation to CSI and thus increase the sensitivity
to obstacle movements. They propose a framework using the
movement of obstacles within the WiFi channel to create
unique CSI, which can be classified using SVM. There are
4 conditions with a different number of obstacles, 0 to 4
aluminum foil slices and 4-speed classes, 0.0m/s, 0.8m/s,
1.3m/s, and 1.8m/s. They achieve more than 90% accuracy
in predicting 4 wind classes.

M. Burke et al. [117] Proposed humidity estimation using
Wi-Fi CSI. This idea utilizes GP regression for estimating
the humidity. Before being fed to GP, CSI data will be
preprocessed using a Hampel filter to filter noisy data. The
CSI data is using nearly 13 Million data consisting of 440 hu-
midity data with each humidity data having 600 CSI every 48
subcarriers. From the experiment, the proposed method had
a R2 value of 0.92 and an average mean absolute percentage
error of 93%.
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TABLE 3: List of Applications ML For Optimization

Application Research Title Year Dataset ML Type

Channel
Estimation

[125] Deep-Learning-Based Channel Estimation for
IRS-Assisted ISAC System

2022 Channel DNN

[126] Joint Target Sensing and Channel Estimation for
IRS-Aided mmWave ISAC Systems

2024 ISAC signal TVBI

[127] Extreme Learning Machine-Based Channel Esti-
mation in IRS-Assisted Multi-User ISAC System

2023 ISAC signal NN

[128] Deep-Learning Channel Estimation for IRS-
Assisted Integrated Sensing and Communication
System

2022 ISAC signal CNN

Waveform
or Beam-
forming
Design

[129] DL-based Joint Waveform and Beamforming De-
sign for Integrated Sensing and Communication

2023 ISAC signal FCNN

[130] Deep Learning-based Design of Uplink Integrated
Sensing and Communication

2024 ISAC signal CNN

[131] A Deep Reinforcement Learning Approach for
Integrated Automotive Radar Sensing and Com-
munication

2022 ISAC signal DQN

Signal
Processing

[13] Deep-learning methods for integrated sensing and
communication in vehicular networks

2023 ISAC signal DNN & CNN

[132] ISAC-NET: Model-driven Deep Learning for In-
tegrated Passive Sensing and Communication

2024 ISAC signal NN

[133] Sensing Integrated DFT-Spread OFDM Wave-
form and Deep Learning-Powered Receiver De-
sign for Terahertz Integrated Sensing and Com-
munication Systems

2022 ISAC signal NN

FIGURE 9: System model IRS-aided ISAC

B. ML FOR OPTIMIZATION

ML for optimization utilizes ML to optimize the quality and
processing of ISAC signal. There are 3 categories surveyed
in this paper: channel estimation, waveform or beamforming
design, and signal processing. These sections have been
summarized in Table 3.

1) Channel Estimation
Channel estimation techniques are usually required in wire-
less communications to ensure that the receiver can receive
the generated information without distortion [134]. Channel
estimation is used in determining the quality of the channels
used for data transmission between transmitters and receivers
in an OFDM system [135], [136].

Y. Liu et al. [125] proposed a DL framework to estimate
sensing and communication channels for intelligent reflect-
ing surfaces (IRS). This framework employs two DNNs. The
first DNN is designed to make an estimation of the sensing
channel on the base station using the feed-forward layer, and
the second DNN is designed to estimate the communication
channel on UE using CNN. A designed input-output pair of
sensing and communication channels constructs the dataset.
The proposed method will be evaluated using normalized
mean square error (NMSE) and compared with the baseline
using a least squares estimator. Compared with the bench-
mark scheme, the proposed method shows better generaliza-
tion ability and greatly improves the performance of NMSE.

Z. Chen et al. [126] proposed an angel-based sensing
turbo variational Bayesian inference (AS-TVBI) to improve
channel estimation and target sensing on self-sensing IRS-
aided millimeter wave ISAC system. This idea is to overcome
the problem of passive IRS device-free sensing that may
cause severe path loss due to multiple signal reflections that
can degrade the sensing performance. There are two phases
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to get coarse and refined sensing/channel estimation results.
To overcome the problems of joint sensing and channel
estimation, AS-TVBI designed each stage. The simulation
results show the effectiveness of the proposed method.

Y. Liu et al. [127] Proposed channel estimation in multi-
user ISAC assisted by the IRS system using an extreme learn-
ing machine (ELM). Channel estimation problems can occur
in such systems because passive IRS cannot process signals
properly and interference occurs between communication
and sensing signals. To simplify the solution, the channel
estimation problem is divided into two sub-problems: direct
channel estimation and reflection channel estimation. Based
on this scheme, the sensing and communication channels of
the target and uplink users will be estimated by the ISAC
BS, while the downlink communication channels of each
user will be estimated individually. The NN consisting of
two ELMs is in the downlink user and the ISAC BS to
estimate the sensing and communication channels. From
the simulation result, the proposed ELM-based framework
performs better from least-squares, CNN, and feedforward
neural network (FFNN), with reduced training complexity
and faster training time.

Y. Liu et al. [128] utilize CNN for channel estimating
for IRS-assisted ISAC, illustrated in Figure 9. Three stages
are used to constitute several sub-problems to separate the
estimation problem: estimation of the sensing and direct
communication channels, estimation of reflected communi-
cation channels, and estimation of the reflected sensing chan-
nel. To solve three sub-problems, two CNN-based channels
estimation is proposed. The first CNN was used to solve the
problem of direct sensing and communication channels, and
the second CNN was used to solve the problem of reflected
sensing and reflected communication channels. Based on the
simulation result, the proposed CNN has better NMSE over
the least-square baseline scheme.

2) Waveform or Beamforming Design

Waveform design is a crucial technology as it determines a
system’s performance limits [137]. The ISAC system aims
to simultaneously perform sensing and communication us-
ing the same resource platform, including waveform and
beamforming. Proper waveform design and beamforming
can enable efficient utilization of resources to achieve both
functions effectively [138]. As in [139] the authors designed
beamforming to achieve high communication rates and de-
tect passive targets, allowing communication and sensing to
operate more effectively together.

Q. Qi et al. [129] proposed the ISAC system waveform
and beamforming design based on DL. Due to the shar-
ing of resources for sensing and communication, mutual
interference between them can occur, which can lead to
overall performance degradation. To overcome this problem,
ISACNN is proposed to optimize sensing signal waveform
and communication receive beamforming. ISACNN consists
of 4 fully-connected neural networks (FCNN). Based on

theoretical analysis and numerical results, it shows that the
proposed method is more effective than the baseline method.

In another study, Q. Qi et al. [130] has modified ISACNN
by adding the CNN inside the architecture of ISACNN. CNN
is added to extract features of the input vector, and then
FCNN will integrate feature information from CNN which
will produce vector θ and scale scalar η. The output of FCNN
will be sent to the lambda layer to produce the output signal.
The modified ISACNN is effective and robust, as proven by
theoretical analysis and simulation results.

L. Xu et al. [131] proposed deep reinforcement learning
(DRL) to design beamforming transmit for integrated auto-
motive radar sensing and communication. DRL is utilized to
learn a quantized vector of beamforming transmission for a
sparse array transmission in automotive radar ISAC systems.
Automotive radar learns the current reflecting the difference
between mainlobe peak and sidelobe peak levels in radar
sensing mode or user feedback in communication mode and
intelligently adjusts its beamforming vector in a way that
interacts with the environment. Simulation results confirm
that the proposed approach effectively handles large action
space dimensions without requiring extensive action search.

3) Signal Processing

In an ISAC system, the receiver must be able to extract
valuable information from the communication signal and si-
multaneously estimate the state of the target or target-related
parameters from the echoes. These two tasks will likely
be performed simultaneously, which can result in mutual
interference and create challenges in ISAC system design
[140].

Z.Zhang et al. [13] proposed DL methods for ISAC in
vehicular networks. This paper proposed two model DL for
multi-user demodulation using DNN and multi-target sensing
using YOLOv5 [141]-SORT based on CNN. DNN-based de-
modulation demonstrates better than Successive Interference
Cancellation (SIC), and the tracker based on peak detection,
K-means clustering, and PHD filter outperforms the baseline
tracker.

W. Jiang et al. [132] introducing ISAC-NET, DL-based
that adopts a block-by-block method for signal processing
to improve sensing and communication performance. ISAC-
NET is proposed as an ISAC signal processing optimization
scheme that jointly processes the pilot and data signal. Simu-
lations show that ISAC-NET performs better than traditional
communication and sensing signal demodulation.

Y. Wu et al. [133] proposed sensing integrated discrete
Fourier transform spread orthogonal frequency division mul-
tiplexing (SI-DFT-s-OFDM) system and DL-powered re-
ceiver design for terahertz (THz) ISAC system. Two DLs are
developed at the receiver for communication and sensing. In
the sensing part, DL is used to estimate velocity and range. In
the communication part, DL is used to recover data symbols.
Based on simulation results, the proposed DL method has
enhanced the sensing and communication performance and is
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robust against phase noise, Doppler effects, and multi-target
estimation.

V. FUTURE RESEARCH
The application ISAC with ML has been surveyed above, and
from those articles, several points can improve the perfor-
mance of the applications for future research direction.

A. DATASET QUALITY
First of all, the quality of the dataset must be improved. It can
add more data and more categories; for example, GPS data
can be added to the localization dataset to improve accuracy.
In [142], proposed selected a subset of UEs with accurate
position estimated using GPS to be anchors to localizing the
target; this method proved its effectiveness with its numerical
results. Besides that, the preprocessing step can take the
role in improving the performance of model ML/DL, such
as looking for the correlation between data or reducing the
dimensional data, it can improve the quality of data that can
be fed into ML, leading for better performance and more
reliable result.

B. COMPLEX ENVIRONMENT
Second, improving the complexity of the environment. It can
be adding multiple objects to sensing or adding more sensing
sources to make it more reliable in daily life applications.
Detecting multiple objects with a model that is trained for
one object seems difficult because the model is prepared to
detect one object, whereas to detect multiple objects, it must
be retrained with better data and in accordance with real
conditions. In [143] proposed EasyCount, crowd counting
using WiFi. EasyCount can be used for counting 0-6 people,
and you just need one person to do the simple calibration.
So, multi-object sensing with ISAC is possible. Most of the
surveyed papers use only one sensing source. Adding more
sensing sources can be more reliable because, in some real-
life conditions, there is more than one wireless source in one
place. With more sensing sources, it can make an interference
for the main sensing source and make a reliable dataset for
training ML and can improve its robustness.

C. SIGNAL VARIATION
Third, apart from improving the complexity of the envi-
ronment, using other signal variations, such as different
frequencies, can be used to enhance ML performance so
that it can adapt better. For example, in the study surveyed
previously [133], By using the low THz scenario as a dataset,
the resulting model does not necessarily work well for the
high THz scenario. This is because, at high THz, atmospheric
effects further weaken the propagation of THz waves, the
Doppler shift worsens, and the saturation output value of
the power amplifier becomes even lower. This development
aims to improve the performance and durability of the model
created.

D. MULTIMODAL SENSING
Fourth, combining with other technologies like IoT to im-
prove the quality of service for users and make it more
reliable. With IoT technology, ISAC can be combined with
various other types of sensing, thereby enhancing the overall
user experience. There are seven scenarios and 34 use cases
ISAC for IoT that have been discussed in [144], including
remote sensing, environment monitoring, human-computer
interaction, sensing as a service, vehicle to everything, smart
home, and in-cabin sensing. in [145] proposed ISACoT as a
general framework covering the time, space, frequency, and
protocol aspects of the problem.

E. ISAC-AIDED DIGITAL TWIN
Digital Twin (DT) is a promising technology with the po-
tential to shape the future of industry and society [146]. DT
is an experimental technology designed to replicate physical
systems such as elements, functions, operations, and dynam-
ics into a digital form that allows for better control, testing,
analysis, and prediction. DT has already been utilized in
various fields, such as healthcare [147]–[149], manufacturing
[150], [151], and smart cities [152], [153]. ISAC can be
applied to DT with its capability to sense the environment
and communicate effectively, which reduces the need for
additional hardware and improves the efficiency of sensing
data transmission [154]. Moreover, ISAC can be used to re-
duce processing latency with the help of Deep Reinforcement
Learning (DRL) as shown in [155].

VI. CONCLUSION
We have provided a comprehensive survey of ISAC systems
enhanced by ML. We summarized concepts of ISAC based
on various configurations, sensing sources used in ISAC,
and real-world applications of ISAC. We highlighted ML
methods that are applicable to this field and their potential
to enhance ISAC systems. We reviewed several practical
applications of ML in ISAC systems, emphasizing improve-
ments in sensing and signal optimization and highlighting the
technology’s advantages in enhancing performance and capa-
bilities. By providing this comprehensive overview, we hope
our survey can help readers understand ISAC and ML by
showing the potential benefits of integrating ML with ISAC
to inspire further research and stimulate more widespread
applications.
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