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ABSTRACT This research presents two key contributions aimed at improving COVID-19 severity pre-
diction, specifically intubation or death within one month using 3D CT scan data. First, we introduce a
novel dataset of 2,000 segmented 3D lung cubes meticulously curated from the STOIC dataset through
a robust 10-step preprocessing and segmentation pipeline. It is evident that 3D CNNs outperform 2D
CNNs in this domain, owing to their ability to capture inter-slice information in 3D images, while Vision
Transformers excel in texture-based classification tasks. Therefore, as second contribution we propose two
distinct methods for predicting COVID-19 severity, defined as intubation or death within one month. The
first method employs a 3D-CNN pretrained on the MosMedData dataset, later fine-tuned on the STOIC
dataset with two input layers: one for 3D lung images and another for age and gender metadata. The second
method know as 3D-EffiBOT leverages a combination of 3D EfficientNetV2 and iBOT architectures to
capture both 3D as well as 2D spatial features from volumetric CT scans. 3D EfficientNetV2 with weights
obtained after inflating 2D ImageNet weights, was fine-tuned on the STOIC dataset using a dynamic layer
unfreezing strategy, while iBOT was employed to extract 2D slice-level features from axial CT slices. Both
models were trained using five augmentation techniques and evaluated using stratified 5-fold sampling to
address class imbalance, achieving mean AUC score of 0.7862 and 0.7414 for 3D-EffiBOT and 3D-CNN
respectively. This work demonstrates the effectiveness of hybrid architectures in medical imaging, offering
a significant improvement over conventional method. The results suggest that combining advanced 3D and
2D feature extractors enhances diagnostic accuracy, providing a valuable tool for predicting severe COVID-
19 outcomes. Future research directions include integrating patient pre-COVID medical history, expanding
the model’s application to other diseases, and exploring ensemble learning for improved performance across
diverse populations.

INDEX TERMS 3D CT scans, COVID-19 severity prediction, Class imbalance, Deep learning, Dynamic
augmentation, EfficientNetV2, Feature extraction, Fine-tuning, Hybrid model architecture, iBOT, Intubation
prediction, Volumetric CT analysis

I. INTRODUCTION

HE COVID-19 pandemic has underscored the need for
T innovative approaches in global health security, reveal-
ing critical gaps in early detection and response systems. Ma-
chine learning (ML) algorithms have the potential to analyze
diverse datasets to predict and monitor disease outbreaks,
enabling proactive interventions. Integrating ML into global
health data systems can enhance real-time surveillance and
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early warning systems, crucial for timely containment mea-
sures. To date, extensive research has been conducted on
COVID-19 using machine learning techniques for lung seg-
mentation, detection, and severity analysis based on X-rays
and CT scans [1]-[4]. In the current era of machine learning,
innovative approaches are being developed in the field of
medical imaging. Researchers worldwide are collaborating
on a global scale, sharing open-source codes, models, and
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FIGURE 1. Radiological features in 3D CT scans: (a) Ground-Glass
Opacities (GGOs) [8], (b) Consolidation [9], (c) Crazy Paving Pattern [10],
(d) Halo Sign [11], (e) Reverse Halo Sign [12] and (f) Pleural Effusion [13]

datasets [5], [6]. CT scans are usually considered as the most
accurate diagnostic technique for COVID-19 because of their
highly sensitive nature in finding lung problems [7]. Research
have proven that CT imaging can reveal early lung shifts even
in patients without symptoms, and can spot consequences like
acute respiratory distress syndrome (ARDS) and additional
infections.

Radiological features like Ground-Glass Opacities (GGOs),
consolidation, crazy paving pattern, halo sign, reverse halo
sign, and pleural effusion are important in determining the
severity of the disease and forecasting patient outcomes, in-
cluding mortality, in the 3D volumetric CT scan classification
of COVID-19 (See Fig. 1). When these all are put together,
these imaging features make the COVID-19 classification
more accurate. They also give us more information about
how the disease develops with the passage of time and make
it easier for us to group patients by intensity and estimated
death risk. Understanding these patterns in a 3D dimensional
context allows for a more complete assessment of the ill-
ness’s scope and effects. Hence it is essential for making
personalized treatment plans and increasing the survival rate
of patients.

The primary objective of this research is to enhance clinical
diagnostic systems for the benefit of society. By leveraging
deep learning models on 3D volumetric images of CT scans,
we aim to push the boundaries of what is currently possible
in medical diagnostics. This research aims to enhance both
the accuracy and early COVID-19 severity estimation while
also offering a framework that can be adapted for future
pandemics and other medical challenges. By using advanced
machine learning techniques, we can create strong tools that
provide real-time insights and help healthcare professionals
make better decisions. This thesis makes following important
contribution to medical imaging and machine learning, pro-
viding useful insights for future researchers and improving
computer-assisted medical systems in health centers:

1) We proposed two models 3D-CNN and 3D-EffiBOT

that went through pre-training and fine-tuning using
transfer learning. This approach greatly improves the
Area Under the Curve (AUC) severity score, boosting
the models’ predictive accuracy and reliability.

2) We compiled and meticulously pre-processed a dataset
of 3D volumetric CT scans from 2,000 patients using
STOIC dataset, focusing on lung segmentation. Each
segmented lung cube has been verified through visual
inspection, ensuring the accuracy and quality of the
dataset. This dataset serves as a robust foundation for
training and validating machine learning models.

II. RELATED WORK
The development of COVID-19 indicates the importance of
having reliable and accurate methods for detecting and fore-
casting disease and its severity. Machine learning models
have shown a lot of promise, especially those that use 3D
volumetric CT scan. A key obstacle in bringing machine
learning to medical images is the limited number of medical
datasets compared to normal computer vision datasets. 3D
CT scans are particularly not plentiful, making it tough to
train models from scratch. To handle this, researchers usually
employ pretrained models that have been trained on big,
varied datasets and then fine-tune these models on smaller
medical datasets [1]-[4]. Two types of methods are mostly
applied for the classifying of 3D chest CT images. The first
method is known as slicing, in which we divide the 3D volume
into 2D slices along any one axis. After that every slice is
utilized later to train a 2D classifier. The second technique or
method is 3D volumetric approach which involves utilizing
the full and complete 3D volume representation of CT scan as
input to a neural network based on 3D convolution processes.
In [14], six publically available datasets were used for anal-
ysis, including Mosmed [15], MedSeg, and MedSeg_1 [16]
for infection area segmentation, while the SPGC [17] dataset
is used to train the classification model. In order to assess
the accuracy of the model, three additional datasets (LDCT,
LDCT-PCR [18], and Mosmed) were used for assessment.
The work uses an EfficientNetB51 to train the final classifier
and a pretrained MobileNet for data augmentation during the
classification phase. After preprocessing, the labeled slices
are sent into the MobileNet to extract slice-wise feature maps,
which are then run through a global-average-pooling layer
of processing. In [19], Convolutional Neural Network (CNN)
architecture with four convolutional layers, two dense layers,
and flattening in between, is the recommended approach. This
design is meant to group 2D slices of CT scans successfully
using COV19-CT-DB database [20]. The preprocessing of
these images includes anatomy-relevant features to focus on
important areas and removal of non-relevant parts thus finally
they increase the model overall accuracy. The CT slices are
carefully labeled in order to give a good dataset for training
the CNN. The training process employs a cross-validation
methodology to ensure the model’s stability and general-
izability. The paper also emphasizes that a well annotated
and well diverse dataset is very essential for effective model
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training. Furthermore, the model’s simplicity and lightweight
nature make it fit for usage in environments where computer
power may be limited. In [21], a unique way is presented
to increase the generalizing capabilities of 3D convolutional
neural networks (3D CNNs) for COVID-19 detection. Using a
greedy training method, ten distinct 3D CNN models are built
throughout the process. This method generates a large number
of different models, the best of which is selected based on
performance metrics like accuracy and loss. Two datasets,
SARS-CoV-2 CT [22] and Mosmed were used to train and
validate the models. The results of the study proved the
success of the suggested greedy training method. Specifically,
the 3D CNN model labeled as Net5 had the best success.
The researchers also conducted a comparison between their
results and the most recent state-of-the-art algorithms, and the
results showed that their model outperformed others, includ-
ing EfficientNet-BO and ResNet-50. These findings suggest
that the greedy training technique could be a good substitute
for well-established methods by offering a reliable way to
identify viruses from CT scans.

The paper [23] presented an advanced neural network
model based on the 3D conversion of the 2D ConvNeXt
architecture to predict the severity of damage to the lung
and identify COVID-19 infections using CT images. This
research emphasizes the importance of modifying current 2D
neural network designs to accommodate 3D medical imaging
data. To address the limited number of medical datasets,
it devised multiple pretraining strategies which were meant
in order to increase model performance on 3D CT data.
The model was trained and tested using the COV19-CT-DB
database. This research revealed especially high effectiveness
in recognizing extreme cases, which is essential to clinical
applications. In [24] the implementation of deep learning
models for classifying COVID-19 severity based on CT scans
was examined which includes employing eight alternative
Convolutional Neural Network (CNN) architectures: Mo-
bileNetv2, ResNet101, Xception, Inceptionv3, GoogleNet,
EfficientNetb0, DenseNet201, and DarkNet53. The research
developed a pipeline approach to aggregate the outputs of the
top-performing CNN models to boost classification accuracy.
The CT slices were preprocessed and scaled according to the
specifications of each CNN architecture, and a 10-fold cross-
validation technique was used to train and test the models. In
[25] both 2D and 3D techniques for identifying COVID-19 in
CT scans were evaluated to prove the usefulness of ensemble
methods. According to the research, accuracy increased when
2D and 3D models were combined. First models were trained
on IST-C and MosMedData datasets and then models were
evaluated on the COVID-CT-MD. The research also indicates
that attention processes and the use of LSTM for combining
slice-level forecasts improved the accuracy of 2D models.
Meanwhile 3D models advantageous in applying segmenta-
tion masks as input channels. This work highlights the need to
improve the precision and robustness of COVID-19 detection
systems by using both 2D and 3D data as well as ensemble
techniques.
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Tan and Liu [26] presented an improved design for
COVID-19 diagnosis from CT-scan images utilizing a 3D
CNN network coupled with BERT for classification. Re-
sampling was used by the researchers to choose a prede-
termined number of slices from the CT volumes. These se-
lected slices were subsequently categorized using the 3D
CNN-BERT model which uses BERT for temporal pooling.
Their approach comprises applying both normal morphology
transforms and a UNet-based deep learning method for seg-
mentation. In the study [27] by Hou et al., the authors offer
a new approach for improving the accuracy of COVID-19
diagnosis using computed tomography (CT) scans. Mixup
augmentation, a data augmentation technique that generates
new training samples by interpolating between existing sam-
ples and contrastive learning together form the core of their
methodology. The authors argue that this combination helps
the model learn more robust features by enforcing similarity
between augmented views of the same sample while distin-
guishing them from others, which is particularly beneficial
given the limited availability of labelled COVID-19 CT im-
ages. To assess their approach, the authors used a large dataset
that included both COVID-19 and non-COVID-19 CT images
from two chest CT image datasets namely the COV19-CT-
DB and MosMed database. Using a 3D ResNet50, the CMC-
COV19D model was trained. To help the model acquire dis-
criminative features, contrastive learning goals were added
to the loss function. Additionally, the Mixup approach was
utilized during training to produce blended samples, boosting
the model’s capacity to generalize across changes in the data.

The paper by Zunair et al. [28] examines the difficulties
involved with processing volumetric CT scan data using deep
learning algorithms, especially for the prediction of tuber-
culosis (TB). Traditional 2D convolutional neural networks
(CNNs) generally fall short owing to their inability to use
the depth information inherent in 3D data, resulting to un-
satisfactory performance in medical picture processing. A 3D
CNN architecture is deployed to process the entire volumetric
data, capturing spatial context and depth information that
is typically lost in 2D approaches. The study emphasizes
various benefits of 3D CNNs, such as greater usage of spatial
context and depth information, which are critical for precise
illness prediction.

IIl. MATERIALS AND METHODOLOGY

To predict severe COVID-19 infection, defined as incuba-
tion or death within one month, from computed tomography
(CT) scans, two datasets of 3D CT scans were utilized: the
"MOSMEDDATA: Chest CT Scans with COVID-19 Related
Findings Dataset" [15] and the "Study of Thoracic CT in
COVID-19: The STOIC Project" [29]. MosMed dataset com-
prises anonymised human lung computed tomography (CT)
scans findings which are connected to COVID-19 (CT1-CT4)
and which are normal (CT0). There were 1110 investigations
including CT-0-254, CT-1-684, CT-2-125, CT-3-45, and CT-
4-2. Secondly each file is stored in the NifTT format and pre-
served in the Gzip file which preserves complete volumetric
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FIGURE 2. STOIC dataset schematic overview [30]
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FIGURE 3. STOIC dataset Class Label Information

data required for correct analysis. The STOIC project dataset
consists of thoracic 10735 volumetric 3D CT scans from
COVID-19 patients out of which 2000 are available publicly
as shown in Fig. 2, provided in high-resolution Meta-Image
Medical Format. Till date this the largest volumetric 3D CT
scans dataset collected. Each CT scan includes multiple slices
with varying thickness, forming a 3D volumetric image of the
thorax. The typical dimensions of these scans vary based on
the patient’s anatomy and scanning protocol but generally fol-
low standardized medical imaging specifications. Each slice
maintains consistent resolution and image quality, allowing
for detailed analysis of lung structures and abnormalities.
The STOIC dataset includes annotations and classifications
based on the probability as well as severity of lungs as in-
volvement due to COVID-19 as shown in Fig. 3. The CT scans
in the STOIC dataset were collected from multiple hospitals
and medical centers across different regions of France. The
collection period spans from March to May 2020, capturing
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FIGURE 4. Meta Data Associated to .mha File in STOIC dataset

data from the early stages of the pandemic. This period gives
a comprehensive view of early stages of the virus on patients’
lungs, including a variety of cases with different severity and
disease progressions.

A. PRE-PROCESSING AND SEGMENTATION

During the initial inspection of the raw STOIC dataset, it was
observed that all images in the .mha format contain embedded
metadata, which includes both CT scan specifics and patient
details as shown in Fig. 4. Among the metadata properties,
several were deemed critical for preprocessing the .mha files.
These include the transform matrix, offset, center of rotation,
anatomical orientation, voxel dimensions, image dimensions,
datatype, and bit depth. These properties are essential for ac-
curately interpreting the CT scan data and ensuring consistent
preprocessing.

Additionally, patient-specific information such as age and
sex, embedded within the metadata, is vital for severity clas-
sification. These demographic factors influence COVID-19’s
progress and severity and provide a valuable framework for
the model. Incorporating patient age and sex into the training
process can enhance the model’s predictive accuracy and
generalizability. Therefore, these demographic factors were
documented and used during the processing stage to refine
the training dataset further and improve the model’s capa-
bility to classify COVID-19 severity more effectively. This
comprehensive approach ensures that both the technical and
contextual aspects of the CT scans are leveraged, leading to
more robust and reliable predictions. The steps outlined in
Fig. 5 along with their corresponding output images at various
stages of pre-processing as shown in Fig. 6 were followed to
extract lung volumetric images from the raw CT scans:

1) Image Data Type Handling

As shown in meta data, image types were 16 bit signed
integer as voxel values were mentioned in Hounsfield Unit
as a quantitative measure of radio density in CT images. So
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FIGURE 5. Steps followed during pre-processing and segmentation
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FIGURE 6. Output Images on various stages of pre-processing and
segmentation
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all images were assigned Float 32 data type before doing any
manipulation.

2) Intensity Windowing

In literature review [31] it was noted that each body part has
its own Hounsfield value representation in CT scan images
and for COVID related research papers more or less -1000 to
400 range was used for lungs analysis therefore images voxels
intensities were clipped and normalized to O to 1 from window
specified above.

3) Image Resampling

All Images were resampled to Size [512, 512, 512] and Voxel
Spacing [0.75, 0.75, 0.75]. During resampling if the image
was stretched previously, boundary pixels were replicated
after resizing.

4) Lungs Cube Extraction

All images were down sampled to [128, 128, 128], then
bilateral filter is applied to preserve edges and smoothing.
Then Otsu threshold is applied to do connected component
analysis on Coronal, Axial and Sagittal plane along all slices
to get the mask boundaries as shown in Fig. 7. An additional
8% padding is applied to each dimension of the lung cube
as defined by the mask boundaries. This ensures that the
affected areas near the lung surface are preserved while also
providing some extra space to keep the lungs within the
image during rotation transformations during training. The
final corner coordinates of the cube were computed and were
used to extract the lungs from resampled image of [512, 512,
512] and was reshaped to [128, 128, 128]. At the end final
images were all same sizes.

As Fig. 7 displays hotspots indicating the regions with
the maximum area at the slice level across each axis plane
within the resampled images. In contrast the graphs in Fig.
8 illustrate the regions with the maximum area within the
final lung cube volumetric image. These graphs demonstrate
that the lung cubes for all patients are consistently centered,
cropped, and reshaped, making them independent of the pa-
tient’s actual body shape, gender, and age. The mean line with
minimal variance confirms that all features are spatially well-
aligned. This alignment facilitates faster training even with
not complex machine learning models as computations grow
exponentially with the inclusion of the third axis to cater the
entire 3D volumetric information.

B. IMAGE AUGMENTATION

To enhance network generalization, data augmentation plays
a crucial role, with common techniques including flipping
and rotating the images. Deep learning models benefit sig-
nificantly from these augmentations, as they help improve
the models’ ability to generalize from the training data. In
scenarios involving small datasets, pre-trained networks are
often employed to avoid over-fitting. These networks are
typically trained on large public datasets of 2-dimensional
RGB images, which differ from medical CT scans that are
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FIGURE 8. Graphs depicting the distribution of maximum area within the
final lung cube highlighting consistent alignment and independence from
patient specific factors

volumetric and gray-scale. Despite these differences, pre-
trained networks and transfer learning substantially boost net-
work generalization. The specific augmentation techniques
applied during training for both the MosMedData and STOIC
datasets were Gaussian Noise, Gaussian Smooth, Rotation
Transform (-15 to 15 degree along any axis in 3D view),
Elastic Transform and Flip Transform (mirror flipping only).
Fig. 9 compares a normal volumetric image with the output of
each augmentation method. For Rotation and Elastic Trans-
form, spline interpolation of order 3 was employed to ensure
smooth and realistic transformations. These augmentations
play a crucial role in enhancing the model’s robustness and
generalization by simulating various real-world conditions
and introducing variability into the training dataset. The vi-
sual comparison underscores the effectiveness of these tech-
niques in preparing the dataset for more accurate and reliable
predictions of COVID-19 severity from CT scans. The impact
and benefits of these augmentation methods will help model
to get better generalization.
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FIGURE 9. Comparison of augmentation techniques output employed
with the original volumetric image

IV. CLASSIFICATION NETWORKS

A. 3D-CNN

To predict severe COVID-19 infection from CT scans, de-
fined as intubation or death within one month, initially a
3D Convolutional Neural Network (CNN) was designed and
trained on the MosMedData to create a pre-trained network.
The network architecture consists of an input layer for im-
ages of shape [128, 64, 128], followed by four convolutional
blocks. Each block contains a 3D convolution layer with filter
sizes of [64, 128, 256, 512], activation relu ,a kernel size of
[3, 3, 3], and a stride of [1, 1, 1]. These convolution layers are
followed by 3D batch normalization layers and 3D pooling
layers. MaxPooling is used for the pooling in each block. This
architecture aims to capture complex spatial features from
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the CT scans, enhancing the model’s ability to predict severe
COVID-19 outcomes accurately. The detailed design of the
model is shown in Fig. 10(a).

During pre-training, MosMedData annotations were as-
signed numeric values based on severity. As there were five
classes present in MosMedData (Zero, Mild, Moderate, Se-
vere and Critical), only Moderate, Severe and Critical are
used for pretraining in order to classify severity. Moderate
was assigned 0 and Severe and Critical CT images were
labeled as 1. For severity classification this encoding ensured
compatibility with the model’s final dense layer, which has
a single unit with a sigmoid activation function. The model
was trained for 25 epochs with a batch size of 19, using the
binary crossentropy loss function and the Adam optimizer
with a learning rate of 0.0001. The same preprocessing and
augmentation techniques detailed above were applied during
training. This approach aimed to fine-tune the model’s ability
to predict COVID severity levels from CT scans by leveraging
the diverse and annotated MosMedData, setting the stage for
subsequent training on the final STOIC dataset to enhance the
model’s predictive performance.

After pre-training, the model was modified to include an
additional input layer to incorporate age and gender char-
acteristics from the metadata associated with the raw .mha
image files in STOIC dataset. This enhancement allows the
model to utilize these demographic factors alongside the CT
scan data to predict whether subjects had a severe COVID-19
infection, defined as intubation or death within one month.
The final architecture of the modified model is illustrated in
the Fig. 10(b). The weights obtained during the pre-training
on MosMedData were retained during this transition. The
modified model was then further trained using the same
preprocessing and augmentation techniques on new dataset
derived from STOIC dataset after extensive pre-processing
and segmentation. This integrated approach leverages both
imaging and demographic data to improve the model’s pre-
dictive accuracy and robustness, addressing the complexity
and variability inherent in real-world clinical scenarios.

The dataset was divided into five stratified folds for cross-
validation, with 80% allocated for training and 20% for
validation and testing. For the severity classification task,
CT volumetric images labeled as COVID-19 positive were
used, with 904 images indicating the need for intubation and
301 images labeled with death as the outcome within one
month. Given the significant class imbalance, the training
data was balanced by over sampling of the minority class
training samples such that their total numbers gets equal to the
majority class. To further address this imbalance and improve
generalization, data augmentation techniques were applied
on-the-fly during model training. Each sample had a 50%
chance of being augmented at each epoch, with one of five
augmentation techniques selected randomly. This dynamic
augmentation strategy ensured that each sample could be
transformed differently in each epoch, aiding in the robust
generalization of the 3D CNN model.

Finally training was conducted using a batch size of 25,
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(b)

FIGURE 10. Proposed 3D Convolutional Neural Networks (a) With Single
Volumetric Input for pre-training (b) With additional input layer for Age
and Gender to classify severity

with the binary cross-entropy loss function and the Adam
optimizer employed for optimization. The learning rate was
scheduled to decay exponentially starting at 0.00001 with a
decay step of 200 and a decay rate of 0.96 in a staircase
manner. In order to fine-tune and modify hyperparameters the
model was trained for 25 epochs with validation accuracy and
loss being recorded at each epoch. The goal of this training
strategy was to maximize model performance and guarantee
strong generalization to final data. It includes controlling
class imbalance and augmenting data dynamically on the fly
and closely observing validation measures.

B. 3D-EFFIBOT

In the search of open-source or publicly accessible models
specifically fine-tuned for CT images an important one found
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was iBOT: Image BERT Pre-Training with Online Tokenizer
[32] [33]. Initially pre-trained on the ImageNet-22K dataset
iBOT ViT-L/16 was further fine-tuned for 35 epochs on a
large set of 165,000 CT slices, representing about 4,000
patients from seven public datasets [34]. It should also be
noted that iBOT ViT-L/16 was fine-tuned on axial view CT
scan slices. By assuming that the iBOT ViT-L/16 with fine-
tuned weights can be used as feature extractor it was further
went into consideration that which group of slices should
be selected to depict iBOT ViT-L/16 features for the com-
plete 3D volumetric CT image. Finding a way to use iBOT
ViT-L/16 features to represent the whole 3D volumetric CT
images was a significant challenge since iBOT is confined
to processing 2D slices. We chose to include 50% of the
axial view slices that covered the maximum area in order to
address this and provide a more representative selection. The
number of slices were further reduced by half by eliminating
neighboring slices that had almost identical information not
only in terms of visual representation but also in terms of
iBOT feature vector in order to prevent repeated behavior and
excessive computations. Finally 32 slices were selected out
of the original 128 slices and each slice was passed through
iBOT to extract a feature vector of size [1, 1024]. After getting
features of shape [32, 1024] for all slices respectively mean
along first axis is calculated to combine the output of all the
32 slices and final shape obtained [1, 1024] for each patient
respectively.

Although iBOT is a useful 2D feature extractor but it is
unable to capture the 3D spatial connections present between
slices which are visible in the sagittal and coronal views and
are necessary for accurate CT evaluation. Therefore more re-
search was done to find models capable of including 3D con-
textual information while prediction. Several 2D models pre-
trained on ImageNet, such as VGG, ResNet, DenseNet, Mo-
bileNet, EfficientNet, and ConvNeXt were explored. These
models along with their versions have been modified for
3D use by inflating their 2D ImageNet weights [35] [36].
Among the most promising alternatives were ConvNeXt-Tiny
and EfficientNetV2-B3. The choice of EfficientNetV2-B3
was made because, according to the official Keras website
[37] it had slightly greater Top-1 accuracy on the ImageNet
validation dataset and a more easy to handle parameter count
(14 million as opposed to 31 million) than ConvNeXt-Tiny.
EfficientNetV2-B3’s less computational complexity makes it
more appropriate for dealing with 3D volumetric images in a
time-efficient way.

The proposed method 3D-EffiBOT combines the benefits
of iBOT ViT-L/16 for 2D slice-level feature extraction with
EfficientNetV2-B3’s abilities to handle 3D contextual infor-
mation. In order to improve further performance we applied
a dynamic method to gradually unfreeze the top layers of
the EfficientNetV2-B3 model during training which allows
us for better fine-tuning on the testing dataset. On top of all
we added a simple dense layer with 512 neurons followed by
a dropout layer with a rate of 0.5 and a final dense layer with
a single neuron with sigmoid activation function to predict
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FIGURE 11. Overview of the Training Cycle for 3D-EffiBOT Model

severe COVID-19 outcomes which is defined as intubation or
death within one month. Furthermore the model was trained
using additional meta-information such as patient age and
gender. The 3D-EffiBOT whole training cycle is represented
in Fig. 11. This hybrid technique integrating iBOT ViT-L/16
and EfficientNetV2-B3 provides an optimal balance between
performance and computational efficiency making it well-
suited for clinical applications in severe COVID-19 prognosis
from volumetric CT images. Initially lung masks for the lung
cube dataset were obtained using a U-Net (R231) model
[38] [39] followed by binary hole-filling to ensure the mask
continuity. After that data augmentation techniques which are
discussed earlier were applied to address the class imbalance
in the dataset and to further improve model generalization.
These augmentation techniques were applied on-the-fly dur-
ing training such that each sample had a 50% probability of
being augmented at each epoch. One of five augmentation
techniques was randomly selected for each sample ensuring
dynamic transformations across epochs. This strategy was
designed to enhance the model’s ability to generalize across
diverse scenarios by presenting varied data representations to
the model in every epoch.

Given that the iBOT ViT-L/16 model was fine-tuned on
non-segmented 2D CT scan slices we opted to use non-
segmented slices obtained from the augmented volumetric
images. These slices were further shortlisted based on their
maximum area followed by selection of non-adjacent slices
to avoid redundancy. Later own those slices were up-scaled,
represented in RGB format and normalized using ImageNet
database statistics to align with iBOT’s pretraining require-
ments. The feature vectors extracted from these augmented
slices were plotted to visualize the variations introduced
by different augmentation strategies on a single 3D volu-
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metric image as shown in Fig. 12. On the other hand 3D
EfficientNetV2-B3 whose weights were obtained by inflating
2D ImageNet weights was trained using segmented slices
from the augmented volumetric images. Similar to iBOT the
slices were represented in RGB format and normalized using
ImageNet database statistics. A dynamic fine-tuning strategy
was employed for EfficientNetV2-B3, starting with the top 20
layers being unfrozen and gradually increasing to 100 layers
in increments of 20. The initial phase of training lasted for
10 epochs with all layers frozen, followed by 10 epochs of
fine-tuning for each step as the top layers were progressively
unfrozen.

The dataset for this study was divided into five stratified
folds with 80% allocated for training and 20% for testing
in each fold. For the task of severity classification, 1205
CT volumetric images labeled as COVID-19 positive were
used which includes 904 images indicating the need for in-
tubation and 301 images where death occurred within one
month. Training was conducted over a total of 60 epochs
with the first 10 epochs dedicated to transfer learning and
the remaining 50 epochs allocated for dynamic fine-tuning.
The model was trained using a batch size of 4 with the
BinaryFocalCrossentropy loss function and optimized with
the AdamW optimizer. The learning rate was dynamically
adjusted starting at 0.00001 and decaying exponentially with
a decay step of 500 and a rate of 0.96 following a staircase
pattern. Additionally, a weighted loss strategy within the Bi-
naryFocalCrossentropy function was adopted to mitigate the
effects of class imbalance avoiding the need for oversampling
which would increase computational costs per epoch.

This training strategy aimed to maximize model perfor-
mance while ensuring robust generalization to unseen testing
data. By dynamically augmenting data on the fly and con-
trolling for class imbalance using weighted loss strategy the
model was designed to handle the complexities of predicting
severe COVID-19 outcomes from CT scans, such as intuba-
tion and death.

V. EXPERIMENTAL RESULTS

This section focuses on the experimental results meant to
predict from a computed tomography (CT) scan whether
subjects had a serious COVID-19 infection which is described
as intubation or death within one month using STOIC dataset.
The STOIC dataset which was used to evaluate the pre-trained
models is the main dataset for this study as MosMedData was
only used for pretraining in 3D-CNN. Performance measures
used to rate the model are Precision, Recall, F1 score and
the Area Under the plot (AUC) of the Receiver Operating
Characteristic (ROC) plot. The main goal of the STOIC2021
COVID-19 AI Challenge was to identify that which patients
will have serious COVID-19 which is described as intubation
or death within one month after the CT scan’s collection. The
goal was to measure model performance mainly using the
Receiver Operating Characteristic (ROC) curve’s Area Under
the Curve (AUC). The AUC score is crucial for assessing
how well the model can distinguish between highly and low
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FIGURE 12. iBOT Feature vectors visualizing the effects of different
augmentation strategies on a single 3D volumetric image

severity patients. It also allows a simple comparison of the
performance of the proposed model with other researchers’
models. This comparison helps validate the effectiveness of
the proposed model by measuring it against a benchmark that
the challenge participants set.

A. 3D-CNN RESULTS

Several significant insights into the model’s performance are
revealed by the Fig. 13 and 14 in this research. First, the tiny
learning rate of 0.00001, which declines further in a staircase
pattern, is responsible for the steady rise in both training and
validation accuracy from the first epoch onward. Given that
the model was pre-trained, which supplied starting weights
and biases that aided in early categorization, this gradual rise
in accuracy is to be anticipated. The accuracy stabilized as
the training went on, especially between epochs 20 and 25,
showing that the model was successfully learning from the
data. The loss graphs similarly show this stability, with the
mean validation loss decreasing across all folds throughout
the same time frame. This suggests the model had reached
a saturation limit, beyond which more training would cause
over-fitting. In order to avoid over-fitting and guarantee that
the model retained its generalization ability, training was
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FIGURE 13. 3D-CNN Training and Validation Accuracy

Training and Validation Metrics over Epochs

—— Training Loss (mean)
tion Loss (mean)

s
H

H 10 15 20 25
Epochs.

FIGURE 14. 3D-CNN Training and Validation Loss

terminated after 25 epochs.

Accuracy by itself could be deceptive given the notable
imbalance in the original dataset. In order to address this,
extra metrics were computed for each fold throughout the
five-fold cross-validation, as shown in Table 1, including
AUC, Precision, Recall, and F1 Score. The research also em-
phasizes how data imbalance affects the performance of the
model. Although the training data was balanced to decrease
bias toward the negative class, the validation dataset remained
uneven, which is visible in the confusion matrix (Fig. 15).

TABLE 1. 3D-CNN Scores For Each Fold

Fold AUC Precision | Recall F1 Score
Severity
1 0.8025 0.4787 0.7500 0.5844
2 0.7722 0.5211 0.6167 0.5649
3 0.6779 0.3878 0.6333 0.4810
4 0.7540 0.4388 0.7167 0.5443
5 0.7005 0.4045 0.5902 0.4800
Mean 0.7414 0.4462 0.6614 0.5309
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FIGURE 15. 3D-CNN Confusion Matrix
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FIGURE 16. 3D-CNN ROC Curve

Due to the smaller number of samples in the severe class that
resulted in death as opposed to those who required intubation
within a month, the real positive rate was lower than the true
negative rate. The AUC for each fold is further shown by the
ROC curve (Fig 16), where Fold 1 once again displays the
largest area.

B. 3D-EFFIBOT RESULTS
The dataset was divided into five stratified folds with 80% al-
located for training and 20% for testing. Fig. 17 illustrates the
training accuracies and loss curves for all folds as no separate
validation dataset was used during full model training. Initial
experiments using a validation set for a few epochs provided
insights into the optimal number of epochs required to train
both the transfer learning and fine-tuning components of the
models. Based on those experiments it was later decided to
limit the training to a maximum of 60 epochs such that for the
first 10 epochs only the top dense layers were trained with all
other layers frozen hence facilitating effective transfer learn-
ing. Afterward layers were unfrozen incrementally starting
with 20 layers for each subsequent 10-epoch block reaching a
total of 100 unfrozen layers (approximately 25% of the total
layers in the pre-trained EfficientNetV2 model).

Given that EfficientNetV2 and iBOT were both pre-trained
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FIGURE 17. 3D-EffiBOT Training and Validation Accuracy

TABLE 2. 3D-EffiBOT Scores For Each Fold

Fold AUC Precision | Recall F1 Score
Severity
1 0.8152 0.5054 0.7833 0.6143
2 0.8099 0.4848 0.8000 0.6037
3 0.7682 0.4607 0.6833 0.7202
4 0.7876 0.4835 0.7333 0.5827
5 0.7503 0.4512 0.6066 0.5037
Mean 0.7862 0.5663 0.7213 0.6049

models (iBOT was fine-tuned too on 2D CT scans slices) no
additional pre-training was necessary using others datasets
like MosMedData. The gradual learning rate decay starting
from 0.00001 and decreasing in a staircase manner con-
tributed to the steady rise in training accuracy as shown in
Fig. 17. The pre-trained weights and biases also facilitated
early and accurate categorization boosting initial training
performance.

The results presented in Table 2 demonstrate the superiority
of 3D-EffiBOT hybrid architecture by combining Efficient-
NetV2 and iBOT over 3D-CNN, with an approximate 4%
increase in AUC score. The average AUC across all five
folds was 0.7862 as compared to 0.7414 achieved by 3D-
CNN. This improvement highlights the efficacy of using the

Confusion Matrix Fold 1 Confusion Matrix Fold 2 Confusion Matrix Fold 3
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Confusion Matrix Fold 4 Confusion Matrix Fold 5

1 0
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FIGURE 18. 3D-EffiBOT Confusion Matrix
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FIGURE 19. 3D-EffiBOT ROC Curve

hybrid model though the data still lacked critical patient pre-
COVID medical history which could potentially enhance the
model’s understanding of patient immunity and comorbid-
ity. Incorporating such information in future research could
lead to more accurate prognosis. Fig. 18 underscores the
dataset imbalance which motivated the use of a weighted loss
strategy within the BinaryFocalCrossentropy function. The
AUC scores followed a similar pattern across folds suggesting
consistent stratified fold distribution in both 3D-CNN and
3D-EffiBOT with Fold 1 achieved the highest AUC. This
pattern is further confirmed by the ROC curves shown in
Fig. 19 where Fold 1 has the largest area under the curve.
The overall results suggest that while the 3D-EffiBOT yields
significant improvements over 3D-CNN further refinement
particularly through the inclusion of more comprehensive
patient metadata could lead to even better performance.

C. COMPREHENSIVE ANALYSIS OF RESULTS AND THEIR
IMPLICATIONS

In order to increase model accuracy and generality, this study
highlights how crucial it is that other factors such as pa-
tient medical history should be taken into account in further
studies. In addition to the results in metrics, Fig. 20 clearly
states that there is dire need of patient pre-covid health his-
tory for consideration during prediction of death in 1 month
as true positive images clearly states the presence of fluid
in lungs due to extreme severity which lead to death, but
also false positive images predicted by the model clearly
display the excessive abnormality present in the lungs, these
abnormalities could be lung cancer or other lung disease, if
not COVID extreme severity as labeled by the researchers.
This same phenomena can also be seen in True Negative
and False Negative COVID severe patients. As both show
similar lung views. In conclusion of STOIC challenge it was
observed that some patients died due to other health issues
in addition to COVID as pre-covid weak immune system
in the body was responsible for these deaths. This factor if
included by the researchers while preparation of vast dataset,
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TABLE 3. Qualification (Last Submission) Leader-board [40]

Positon User(Team) AUC Severity
Ist simon.j 0.8044
2nd lorenjul (Code 1055) 0.7868
3rd titericz 0.7837
4th etro 0.7752
5th miriamelia (uaux2) 0.7662
Proposed 3D-CNN 0.7414
Proposed 3D-EffiBOT 0.7862

will not only help future analyst for accurate severity and
death prediction but also help other researchers to develop Al
that could analyse 3D CT scans by going more deep into the
features for broader disease prediction, This would be great as
many diseases shares same kind of symptoms in human body.

Table 3 and Fig. 21 compare Qualification Leader-board
AUC Severity displayed on website [40]. These scores are
for reference to compare proposed model results. Although
the results shown in Table 3 of participants were computed
on different testing dataset which is not public yet (see Fig.
2) unlike our proposed methods 3D-CNN and 3D-EffiBOT
which are evaluated on public data set after stratified 5-fold
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FIGURE 21. AUC Severity Comparison Chart with participants

sampling. As T3 approach [30] is implemented during this
STOIC challenge, therefore the Qualification Leader-board
scores were collected and computed after Last submission
round of the challenge in qualification phase. This means that
these results of all participants were reported after training
on public dataset and testing on private dataset Test set A2
(see Fig. 2). Meanwhile our proposed method were solely
relies on public dataset Training set A, therefore in our case
availability of training data was less as compared to the
availability of training dataset to the participants at the time of
STOIC competition. Please also note that there is also Final
Leader-bard available on the website [40], scores of which
are slightly higher than that of Qualification Leader Board,
but this leader board is obtained after completing T3 approach
which means all the qualified participants selected from the
Qualification round were further supplied with another huge
size of training dataset privately (Training set B of 9724 3D
CT images) therefore final scores were increased by 1.1% to
that qualification round scores.

In conclusion, as this research solely relies on small amount
of training dataset (Training set A of 2000 3D CT images)
out of large STOIC Database of 10735 3D CT images, there-
fore there is always a chance to further increase the model
performance by including patients health history as immune
system of the human body varies from patient to patient due
many factors like age, gender, genetic issues, ill due to other
disease and region specific conditions associated with patient.

V1. CONCLUSIONS

In conclusion, this research presents a comprehensive ap-
proach to predicting severe COVID-19 infection from CT
scans using 3D-CNN and 3D-EffiBOT. By leveraging transfer
learning and fine-tuning, we were able to enhance model
generalization and achieve early accuracy improvements. The
segmentation and preprocessing techniques employed, com-
bined with the use of five augmentation strategies, addressed
the challenges posed by imbalanced severity classes and vari-
ations in raw CT data. The final models after training with
a carefully scheduled learning rate demonstrated a robust
performance with mean AUC of 0.7414 and 0.7862 for 3D-
CNN and 3D-EffiBOT respectively. This underscores the
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effectiveness of CNNs and VITs hybrid architecture in captur-
ing volumetric information providing a significant advantage.
Our findings highlight the potential of using hybrid models in
clinical applications for early prediction of severe COVID-
19 outcomes, thereby offering valuable insights for future
research and development in medical image analysis.

Looking ahead, future work will focus on enhancing the
robustness and scalability of our 3D models for predicting
severe COVID-19 infections from CT scans. One area of
exploration is the integration of additional clinical data, such
as laboratory test results and patient medical histories, to
further improve prediction accuracy and provide a more holis-
tic view of patient health. More complex data augmentation
methods and sophisticated transfer learning approaches may
also be able to improve model generalization and alleviate
class imbalance problems. Exploring the potential of ensem-
ble learning approaches, where many models are integrated to
increase prediction performance, is another intriguing area.
Furthermore, broadening the dataset to include a more het-
erogeneous population from various geographic regions may
enhance the model’s suitability and dependability for varying
patient demographics. Ultimately, the development of user-
friendly interfaces and the implementation of real-time pre-
diction capabilities will be crucial stages in converting our
study into useful, actionable tools that healthcare providers
may use to manage COVID-19 and perhaps other respiratory
disorders.
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