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ABSTRACTModern wireless networks provide state-of-the-art services to numerous users by utilizing 

ultrahigh frequency lines and machine-type interaction. Incorporating ultrahigh frequency lines and 

machine-type interactions to delivermultiple user services is driving the need for creative energy-saving 

strategies in wireless networks, which are advancing rapidly. The Preemptive Energy Conservation 

Technique (PECT) is a novel energy preservation method developed for next-generation wireless networks. 

This method meets each device's unique requirements while accumulating and dispersing energy in an eco-

friendly way. The method's core tenet is that it finds energy slot intervals intended for distribution and 

portable device operating, thus maximizing support for data exchange. The next step is to initiate the 

conservation operation by utilizing the discovered slot intervals and the projected device demands. Using 

Naïve Bayes prediction intelligence, PECT finds energy slot intervals specifically for portable device 

operation and dissemination and then starts conservation actions based on these predictions. This proactive 

method guarantees sufficient energy allocation for efficient information exchange by improving the speed 

of data sharing through synchronized wireless networks. Energy usage, delay, communication loss, and the 

lowest possible conservation ratio are some metrics used to assess the efficacy of the suggested PECT. 

 
INDEX TERMSArtificial Intelligence, Energy Conservation, Preemptive Approach, Information 

Exchange, Naïve Bayes Prediction, Synchronized Links, Wireless Network. 

I. INTRODUCTION 

Integrating many devices with varying Quality of Service 

(QoS) and Quality of Experience (QoE) needs will fall on 

future wireless networks. Due to the large number of 

devices, it is necessary to predict how they will behave to 

create a system that can meet service quality and experience 

standards [1]. When planning predictive networking 

systems, it's essential to consider the wide variety of 

possible future wireless network applications. There are 

fresh obstacles to energy efficiency due to the proliferation 

of critical applications and streaming media services 

supported by network infrastructure. These applications 

demand quick satisfaction of QoS criteria [2]. Research on 

energy consumption and savings has garnered significant 

attention because of the growing concerns about energy 

efficiency and the operational expenses of networks. Base 

stations (BSs) are the primary power users in wireless and 

mobile communication networks, and their power usage 

can change over time. Improving energy efficiency is one 

goal of increasing transmission power to meet user QoS 

needs and maximize user happiness; conversely, lowering 

transmission power reduces QoS performance. Critical 

elements in BS energy consumption that necessitate 

balanced optimization include assessing the compromise 

between energy usage and the desired quality of service. 

Academic and business researchers have devised practical 

ways to lower network operational costs by installing 

energy-efficient gear, but this has only gone so far [3]. 

There must be a balance between energy expenses and the 

decrease in user coverage to reduce network operational 

costs by deploying more energy-efficient gear. Because it 

could lead to portable access networks being either over- or 
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under-provisioned concerning user traffic demands, this 

strategy fails to solve the energy efficiency challenge. 
 Emerging mission-critical applications like 

telemedicine, intelligent transportation, virtual/augmented 

reality (VR/AR), and ultra-reliable and minimal latency 

communications (URLLC) on 5G networks are challenging 

current standards to meet all KPIs [4]. Combining device-

centric wireless networks with opportunistic networking 

allows for more efficient use of device and network 

resources. Examples of such networks include Device-to-

Device (D2D), Multi-hop Cellular, and D2D-aided cellular 

communications. Next Generation Opportunistic 

Networking (NGO) relies on links' ability to efficiently 

meet demand and services within a particular timeframe 

[5].  

 On the other hand, partial attributes of few-shot 

examples draw implicit feature observations that can 

expose the underlying label correlation of rare label 

categorization, which is counterintuitive. In [6],PACNet, a 

Part-Aware Correlation Network based on PR and SCM, is 

presented to investigate the relationship between labels and 

partial features in detail. In particular, we create an object's 

partial representation module that lets the model zero in on 

more unique features by removing object-independent data. 

The topology optimization problem is expressed as a multi-

objective optimization problem by considering the 

constraints of connection, the objectives of coverage, 

propagation intensity, and interference intensity all at once. 

Various cutting-edge serial and parallel multi-objective 

evolutionary algorithms (MOEAs) in [7] are used to find 

the solutions. 

 Optimizing wireless network efficiency and power 

usage improves calculations and coverage. Wireless 

network power utilization is tested via the radio access 

network. Through the mobile communication system, the 

requested energy is supplied to the node [8]. The 

transmission was deployed on time and without faults 

following extensive node checks. Consumption quantifies 

and conserves energy. Energy forwarding resource 

management improves with optimization. Multi-layer 

resource management is deployed during transmission 

between source and sink nodes. The processing stage 

includes radio resource energy optimization [9]. The traffic 

is detected and not sent to the node, improving optimal 

route detection. Energy is captured by sending it via 

prediction. Wireless network energy can be saved by 

employing transmission forecasts. Histogeneous platforms 

optimize energy conservation and resource exchange [10, 

11]. Machine learning and AI improve energy collection. 

Network energy savings and reliable sharing are handled by 

energy optimization [12]. 

 Data aids system energy and function operations. 

Predictions from desired devices are used to evaluate and 

transmit energy. The usage approach determines processing 

to optimize this computational stage [13]: processing yields 

AI and communication energy. Communication is linked to 

AI-requested device power exchange [14]. An affordable 

optical transport network (OTN) with high bandwidth, low 

latency, and significant scalability from the core to the edge 

and antenna sites is one of several difficulties that have 

gone unsolved in earlier generations [15]. This algorithm 

identifies the best way to capture energy and wirelessly 

send it to required devices. Processing determines radio 

frequency and implements linear processing in the network. 

AI can optimize energy utilization by assessing analytic 

safety and efficacy [16]. 

            A novel approach to improving the efficiency of 

wireless networks is the Preemptive Energy Conservation 

Technique (PECT), which combines predictive analytics 

with proactive energy management. To employ Naïve 

Bayes predictive intelligence to plan and distribute energy 

for the operation of portable devices and data dissemination 

appropriately, PECT can distinguish between energy slot 

times. This method improves the network's overall 

efficiency, caters to each device's unique requirements, and 

guarantees environmentally responsible energy distribution. 

With these forecasts, PECT can minimize energy use, speed 

up data exchange, and eliminate communication losses and 

delays by proactively deploying energy-saving measures. 

This technology demonstrates the novel sustainability and 

operational efficiency combinationbythoroughly examining 

energy use, delay, communication loss, and conservation 

ratio. 

The main objectives and novelty of the article include 

 The research describes the Preemptive Energy 

Conservation Technique, a novel energy 

conservation method for next-generation wireless 

networks. 

 Then, utilizing the slot intervals and expected 

device demands, the conservation procedure 

begins. Naïve Bayes prediction intelligence helps 

distinguish energy conservation from distribution.  

 The suggested PECT's effectiveness is assessed 

using energy consumption, delay, communication 

loss, and the lowest feasible conservation ratio. 

The rest of the paper is prearranged as follows: section 2 

deliberates the related works, section 3 proposes the PECT 

model, section 4 discusses the results and discussion and 

section 5 concludes the research paper. 
 
II. RELATED WORKS 

To address the substantial energy expenditure in Fiber-

Wireless (FiWi) connection networks serving both 

conventional and Internet of Things (IoT) services, Zhang 

et al. [17] offered an adaptive frames aggregation approach 

with load transfer. The approach minimizes energy usage 

without sacrificing service delay performance by 

dynamically modifying frame lengths according to wireless 

network quality and optimizes frame lengths for various 

service priorities. However, implementing the plan would 

be difficult, and load transfer procedures might add to the 

overhead. 
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 Mobile edge computing (MEC) is an access point in 

the wireless channel for both energy and task causality 

constraints. This work aims to increase the energy 

consumption over a finite horizon, and offline optimization 

is determined. To examine the knowledge-based 

computation in MEC channel state information (CSI) and 

task state information (TSI), it is developed in [18]. The 

task allocation and offloading are performed to decrease the 

computation time. 

 Wireless Power Mobile Edge Cloud (WPMEC) is 

proposed for computationally intensive data [19]. Wireless 

Power Transfer (WPT) and Mobile Edge Cloud (MEC) 

detect low-power battery devices and computation 

capabilities. The first model determines WPT, whereas the 

second model covers the offloading and computation in 

MEC. The network computational energy efficiency is 

addressed and improved. 

 An optimal control policy is introduced in [20] to 

reduce the delay transmission in multi-hop energy 

harvesting wireless sensor networks (EH-WSNs). This 

paper uses reinforcement learning (RL) to forward the data 

from the source to the sink node. The energy harvesting is 

increased for the neighbouring nodes in WSN. The control 

action is taken for the sensor node for the information 

sharing in the wireless medium. 

 Tam et al. [21] introduced a MOEA/D-LS algorithm to 

enhance the network lifetime. The relay nodes forward the 

data to the base station and provide three-dimensional 

terrains. A hybridization method is evaluated for the 

evolutionary algorithm concerning decomposition. The 

performance is improved, and energy consumption is better. 

The particular local search detects the subproblems. 

 Energy-Efficient Adaptive Scheduling Scheme (EASS) 

addresses energy harvesting in cloud-based energy 

consumption. In [22], the proposed work is used for the 

Mesh Grid Wireless Sensor Networks to schedule the 

process at the embedded network. The data packet is 

delivered to the sink node from the source node, and traffic 

is detected and avoided for the upcoming scheduling 

method. The energy efficiency is determined in this work 

by decreasing the dead nodes ratio. 

 The Ant-Q algorithm is proposed to decrease 

complexity and improve the convergence ratio. 

Reinforcement Learning (RL) and the discrete power 

scheme are used to derive this routing. The joint 

optimization issues are rectified by introducing the Mixed 

Integer Linear Problem (MILP), in which energy is 

consumed and throughput is enhanced. In [23], the routing 

algorithm is used to improve the accuracy level. 

 Gbadouissa et al. [24] implemented clustered WSNs to 

manage the numerous resources in the network. The 

hypergraph theory is introduced to optimize energy and is 

termed HyperGraph Clustering (HGC). This clustering 

method improves energy consumption by selecting the 

cluster head. Energy consumption is enhanced by 

determining the power-aware WSN to enhance 

performance. 

 MFRSEA is presented in [25] for network random 

essential representation by selecting single or multiple 

hops. The utilization of crucial representation is examined 

using the multifactorial evolutionary algorithm. The 

crossover function optimizes two networks based on the 

critical representation. The relay nodes are responsible for 

transmitting the data to the sink nodes. 

 Slimani et al. [26] investigate how smart radios can 

improve Wireless Sensor Networks' (WSNs') energy 

efficiency. It draws attention to how they might modify 

communication protocols and optimize energy usage to 

extend the life of sensor devices and lessen their adverse 

effects on the environment. It also examines the differences 

between 5G and 6G technology in wireless sensor networks 

(WSNs), highlighting the emphasis of 6G on achieving low 

energy consumption as a significant breakthrough in 

wireless communication. 

 Deshpande et al. [27] proposed anticipatory networking 

will be necessary in future wireless networks to forecast 

device behaviour and maximize efficiency. Anticipatory 

networking is anticipating data and applying strategies to 

improve system efficiency. The diversity of application 

settings, however, presents difficulties. To properly handle 

these difficulties, this paper provides a thorough overview 

of predictive networking strategies across several network 

layers. 

 Liu et al. [28] introduced an offline transmission 

scheme to improve the throughput in the cooperative relay 

system. The classification is done for the online 

transmission and ensures the QAM level for energy storage. 

The training data is used for the classification method to 

determine the relay communication. Compared to online 

transmission, offline shows better performance. 

 The energy is harvested by proposing three hybrid 

placement schemes: Multi-Stage Weighted Election 

heuristic (MSWE) and Minimum Cost Cross-layer 

Transmission model (MCCT). In [29], a scalable and 

energy-efficient scheme (SEES) is developed for the 

heterogeneous node. The network lifetime throughput for 

the energy harvesting node in WSN is improved. The 

energy cost is decreased in this proposed work. 

Data distribution is essential in networks of sensors within 

the Internet of Things systems, but current methods don't 

adequately handle the variety of IoT applications. To 

effectively control energy during transmission, Kuthadi et 

al. [30] suggested the OEM-DD framework for optimized 

management of energy model data dissemination. It 

accomplishes effective data distribution and low energy 

consumption among sensor nodes by using a non-adaptive 

routing technique, increasing data transmission speeds by 

96.33% while using 20.11% less energy in WSN. 

 Fan et al. [31] investigated how deep learning (DL) and 

artificial intelligence (AI) support sustainability in fields 

such as intelligent building management, environmental 

health, and renewable energy. Although artificial 

intelligence (AI) has the potential to impact 134 of the 169 

goals for sustainable development (SDGs), oversight by 
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regulators is essential for ethics and transparency. AI and 

DL help with waste management, illness prediction, and 

energy optimization. However, model openness, data 

scaling, and ethical considerations must be addressed for 

sustained adoption. Future research should prioritize 

tackling these issues to ensure the moral and efficient use of 

AI and DL. 

 To provide IoT support for Wireless Sensor Networks 

(WSNs), including mobile sinks, Preeth et al. [32] 

presented a unique method called Neuro-fuzzy Emperor 

Penguin Optimisation (NF-EPO) for creating energy-

efficient trajectories. The best cluster head selection uses an 

adaptable Neuro-fuzzy inference system (ANFIS) that 

considers node behaviour history, neighbour node sharing, 

and residual energy. It also uses sink trajectories and 

rendezvous spots based on emperor penguin optimization 

(EPO). According to the simulation results, the suggested 

approach outperforms the existing one in a few areas. 

To preserve network resources while offering specific 

personalized security for each user, a new resource-efficient 

protection system (NR-EPS) dubbed OSU protection 

(OSU-P) has been developed for OSU-based OTNs 

[33].OSU-P assigns protected services to backup 

connections with limited bandwidth. In the event of a 

failure, the protection bandwidth is changed to match the 

service's bandwidth requirements during 

switching.Successful recovery switching of protected 

services has little effect on preemptable unprotected 

services after a network failure is achieved via a 

deterministic protection algorithm (DPA) and a 

preemptable service provisioning algorithm based on 

overlapping risk avoidance. Vehicle networks use a new 

energy-efficient mobility management protocol (NEMa) 

[34]. With this protocol, cars' onboard sensors and the 

network work together to reduce power consumption 

without sacrificing network throughput or reliability. They 

analyzed the suggested protocol's efficiency, latency, and 

network overhead compared to current benchmark solutions 

for mobility management and their respective energy 

consumption rates. Deadline Scheduling with Commitment 

(DSC) method of scheduling shows that our improved 

version of the widely used Earliest Deadline First (EDF) 

method may significantly boost the performance of the 

method [35]. To fulfil the demanding needs of smart grid 

communications, a new method called Optimal Usage and 

Dropping Scheduling (OUD) is suggested for the correct 

allocation and use of Resource Blocks (RBs).Finally, the 

suggested OUD scheduling method allows for the efficient 

use of 5G communications in smart grids. 

          Mai A. Abdel-Malek and Mohamed Azab [36] 

suggested the UAV-fleet management for extended NextG 

emergency support infrastructure with QoS and cost 

awareness. A balanced multi-objective, multi-dimensional 

convex-optimization problem, the formalized optimization 

solves the operation management issues of ad hoc UAV 

deployment. In addition to outlining a framework for 

managing UAV operations, the article includes numerical 

analyses and parameters to provide optimum mission-

oriented extension coverage before flight. A 5G-sub 6 

cellular network optimization issue is modelled to evaluate 

the efficacy and efficiency of the suggested framework in a 

scenario including coverage expansion. Longer flight times, 

overlay network support, and reliable service provisioning 

were all made possible by the suggested architecture. 

Vaibhav V. Deshpande and Rajesh K. Shukla [37] proposed 

the Fuzzy AHP and Iterative Grey Wolf Jelly Fish 

Optimization (GWJFO) for Enhancing Energy Efficiency in 

IoTBased Wireless Sensor Networks. The GWJFO's 

strategic ability to outline ideal routing patterns, which 

reduces energy consumption and improves data relay 

efficiency, makes it special. In addition, the model is 

enhanced with a Q Learning Method, which is cleverly 

engineered to find and implement viable alternative routing 

pathways using a Make Before Break method. This 

enhancement removes a possible source of error and greatly 

improves computing efficiency and packet delivery 

performance. Experiment results from real-time network 

simulations proved the model was better than the 

competition, showing improvements in communication 

speed of 9.5%, energy efficiency of 8.5%, performance of 

packet delivery under fault conditions of 4.5%, throughput 

of 10.4%, and network consistency of 5.9% compared to 

the prior methods. 

          Ishwari V. Ginimav et al. [38] presented the Deep 

Learning-based Low-BER Video Streaming Model 

(DLLBVS) for High-Noise Wireless Networks. The 

suggested approach begins by estimating frame-level 

characteristics using an LSTM block and then transmits and 

receives processed video frames using a modulation 

platform based on Orthogonal Frequency Division Multiple 

Access (OFDMA). Data fidelity is improved under varied 

noise environments by cascading an OFDMA model with a 

chaotic communication module. To make the chaotic 

communication module work better in real-time 

communication settings, Grey Wolf Optimiser (GWO) is 

used to help set up its hyperparameters. Video frames were 

pre-processed with the help of dual neural networks to 

estimate differential frame information sets. Streaming 

performance for various video kinds is enhanced due to 

faster streaming speeds made possible by estimating this 

differential frame information, which helps to increase the 

number of frames delivered per second. The VARMAx 

Model, built on iterative Gated Recurrent Units (GRUs), 

takes this frame data and forecasts when a frame will be 

removed, which helps with low-error, rapid 

communications. Throughput and congestion are improved 

by optimizing data flow using the GRU VARMAx Model. 

The model was evaluated using AWGN, Rayleigh, and 

Rician channel types, and its performance was contrasted 

with that of conventional streaming methods concerning 

computational complexity, communication jitter, 

throughput, peak-to-average power ratio (PAPR), 

communication error rate, and bit error rate (BER). From 

this comparison, this study can deduce that the proposed 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3496485

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 9 

model is ideal for many real-time streaming applications 

due to its reduced communication delay of 3.5%, BER of 

8.3%, PAPR of 5.9%, increased throughput of 10.5 %, jitter 

of 3.9%, and computational complexity of 6.4%. 

The Preemptive Energy Conservation Technique (PECT) 

advances over traditional approaches for optimizing energy 

use in wireless networks. It does this by integrating 

proactive management with predictive analytics. PECT uses 

Naïve Bayes predictive intelligence. This novel approach 

results in reduced energy waste and increased network 

efficiency. By catering to the specific requirements of each 

device, PECT further reduces waste while improving 

overall performance via ecologically responsible energy 

distribution. In contrast to reactive methods, PECT begins 

conservation efforts in advance based on anticipated device 

demands, ensuring faster data transfer with fewer delays 

and fewer communication losses. A more comprehensive 

evaluation of power consumption, latency, and data loss 

makes PECT a more effective and advanced choice for 

future wireless networks. 

 
III. PROPOSED PREEMPTIVE ENERGY CONSERVATION 
TECHNIQUE 

Communication with the multi-user is the next generation 

that deploys the AI and Wireless network. The network 

performs different operations in the AI framework, 

including computation, resource allocation, and sharing. 

The evaluation determines the energy harvesting and 

conserved distribution based on the device requirement. 

Here, the distribution and wireless device operation aid the 

maximum information exchange in the network.Fig 1a 

shows the block diagram representation of the proposed 

method.The PECT is introduced in the paper for next-

generation wireless networks. Optimizing resource 

allocation and operations with ultrahigh frequency lines, 

machine-type interactions, and AI models improves energy 

efficiency and meets device needs. The approach identifies 

energy slot intervals and assesses conservation and 

dissemination needs using Naïve Bayes prediction. The  

 

FIGURE 1a Block diagram of PECT 

 

method is assessed by energy consumption, delay, 

communication loss, and the lowest possible conservation 

ratio. 

 The identification of wireless devices determines the 

energy-conserving process for the next generation. Fig. 1b 

presents the process flow of the proposed technique. 

 
 

FIGURE 1b Proposed Technique's Process Flow 
 

 The proposed technique performs energy harvesting 

and information exchange processes preemptively. For 

energy harvesting, slots are allocated, after which the 

utilization and conservation are estimated. In the 

conservation process, the shared resources and their 

classifications are accounted for (Fig. 1). Energy harvesting 

saves energy and consumes the required energy for the 

devices. The device need is defined here based on the 

previous processing state. Information sharing, energy 

harvesting, and conservation are accomplished using this 

method. In addition to determining the safe information 

transmission between the wireless devices, resource 

allocation is carried out for energy harvesting. In this 

process, resource allocation is performed for the required 

devices in AI. The following section is used to determine 

the resource allocation 

 
A. RESOURCE ALLOCATION 

Resource allocation is done based on the state of prior 

processing and examines energy conservation and 

harvesting. Here, the conserved distribution is performed 

based on device requirements and the processing status. 

The analysis is done by deploying the energy distribution 

among the corresponding AI devices, examining the 

wireless device operation, and improving the data 

exchange. The exchange of information is used to state the 

energy harvesting and conserved distribution in AI. This 

approach performs the allocation with the available AI 

devices, and the processing is monitored. Equation (1) is 

used to calculate the resource allocation. 

𝑅 =  𝑔𝑒 + 𝑞𝑟 ∗  
𝐸∗𝑁

 𝑑0−𝑤𝑑𝐼
 +   𝑡0 ∗ 𝑞𝑟 +  𝑒0 ∗ 𝑦𝑠  − 𝑜𝑡

      (1) 

Resource allocation is done for energy distribution, and 

energy harvesting is deployed for the number of 

information exchanges. Here, the energy distribution for the 

wireless devices is evaluated. The connection is established 

between the wireless devices in AI and finding out the 
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energy harvesting. The power is distributed to the 

appropriate devices, and the conserved distribution for 

energy harvesting is examined. The wireless devices 

examine the status and request the energy to carryout the 

particular task. Here, the information exchange is done by 

determining the resource allocation for shared information. 

The evaluation is done by sharing the relevant data with the 

wireless devices on time. 

 The allocation is performed to determine the status of 

the devices and examine the wireless connection between 

the devices. The conserved distribution is performed for the 

varying information exchange in AI. The resource 

allocation is done by identifying the distribution of energy 

to the devices and monitoring the exchange, and it is 

denoted as 𝑅. The information exchange for the various 

devices is carried out, establishing the energy distribution 

denoted by 𝐼. The information varies for the device 

requirement, as{𝑒0, 𝑒1, … 𝑒𝑛}, and examines the distribution 

of energy to the wireless devices, and it is denoted as 𝑤𝑑 . 

The energy is forwarded to the required devices in AI, and 

it is defined as 𝑔𝑒 , the energy harvesting is maintained in 

this approach, and it is represented as 𝐸. 

 Here, the wireless device requirement is used to state 

the connection for the appropriate devices, and it is 

represented as 𝑞𝑟 . The energy is allocated to the desired 

devices, and the resource allocation is referred to 

as𝑑0and 𝑅 is examined. The connection is established to 

communicate for the wireless devices, denoted as 𝑁. The 

synchronization is done to improve the information 

exchange on time, and it is mentioned as 𝑦𝑠 . The evaluation 

is denoted as 𝑡0,is performed for the preceding state and 

offers the pertinent sharing. The time, which is indicated 

as 𝑜𝑡 , is utilized to complete the AI work and look at energy 

harvesting. To discover how resources are shared with 

wireless devices, apply Equation 2. 

𝑕𝑎 =  

  𝑑0 ∗ 𝑤𝑑 +  
𝑑0∗𝑒𝑛

𝐸∗𝐼
 ∗ 𝑞𝑟

𝑒0
𝑁

𝑞𝑟 =  𝑓𝑎 + 𝑒0 ∗  𝑑0 − 𝑛𝑣 

𝑓𝑎 =  𝑡0 − 𝑛𝑣 + ∅

𝑛𝑣 =  𝑡0 − 𝑥 ′ + 𝑓𝑎(𝑤𝑑 )  
 
 

 
 

  (2) 

Resource sharing v is carried out for the necessary wireless 

devices, the connection is examined, and the outcome is 

given. Energy collection and distribution are determined by 

the information that is shared. Mapping with the prior state 

is used to share with the wireless device. Wireless devices 

share information, which harvests energy for different types 

of connections. Mapping with the preceding state 

accomplishes energy savings and supplies the necessary 

exchange. By enabling connectivity with wireless devices, 

data exchange is performed. Lastly, energy distribution for 

the wireless gadget in AI is completed, and energy 

conservation is examined. Resource sharing determined by 

slot evaluation is shown in Fig. 2. 

 
 

FIGURE 2 Resource Sharing based on Slot Evaluation 
 

 The interconnected devices are swift in admitting slots 

for communication. The available slots are evaluated based 

on 𝑉to prevent unnecessary loss. This allocation process 

maps synchronized devices and slotsto improve efficiency. 

This improves transmission throughout the allocated time 

interval, reducing latency (Fig. 2). The evaluation is done 

by identifying wireless devices and deploying energy 

harvesting and information exchange. The resource 

allocation is done according to the device requirement, and 

the computation is timely. Here, device requirements are 

utilized to state the energy conservation and thus provide 

energy distribution. Device requirements are identified by 

determining the previous state and forwarding the energy to 

the wireless devices. The forwarding of the information to 

the devices is done on time and relevancy, and it is 

represented as 𝑓𝑎and𝑛𝑣. Communication is established for 

the wireless devices, and information is shared, denoted 

as ∅. The mapping is completed with the prior state and 

pursuing information represented as 𝑥′. The energy 

harvesting and conserved distribution are carried out 

according to the device requirement and are computed in 

the equation below. 

𝑉 =  
𝑤𝑑 +𝑓𝑎

  𝑔𝑒+𝑑0 𝑤𝑑

 ∗  
𝐸 + 𝑦𝑠

𝑁 + 𝑒𝑛
  +   𝑅 ∗ 𝑒0 − 𝑜𝑡𝑕𝑎

      (3) 

𝐷 =  
1, 𝑖𝑓  𝑕𝑎 ∗ 𝑔𝑒 +  

𝑒0∗𝑛𝑣
𝑁 

𝑑0
 ∗ 𝐼 + 𝑦𝑠

0, 𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

   (4) 

 In equation (3), the energy harvesting is done by 

deploying the device requirement state and forwarding the 

information. Here, energy distribution is used to state the 

resource allocation and examine the information exchanged 

with the user. The energy harvesting is defined from the 

prior state and issues the results to the wireless devices. 

Here, the identification is determined by the amount of 

information shared with the wireless devices in AI. The 

relevant information is exchanged with devices, and the 

energy-conserving process for the next-generation wireless 

network is estimated. Finally, the resource allocation is 

done for varying information sharing and gives energy 

conservation for the devices. 

 Energy harvesting is defined by determining the 

mapping with the prior state and sending the data to the 

wireless devices. Enough energy is sent here to the devices, 
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which track the performances. The evaluation 𝑉 is done by 

deploying the resource allocation and sharing with the 

wireless devices. Here, the assessment is carried out to 

share information on time and energy harvesting. In this 

processing step, the connection is established with the 

security devices in AI, and energy conservation is 

performed. The information exchange is carried out for the 

energy harvesting method, and it is formulated 

as 
𝐸 + 𝑦𝑠

𝑁 + 𝑒𝑛
  .  

 The conserved distribution decreases the loss in a 

wireless network and improves the information exchange. 

Here, the procedure chooses the suitable wireless device 

depending on the device's requirement. Energy 

conservation is carried out in this computing stage by 

providing wireless devices and mapping onto the previous 

state. In this case, the user's varied information sharing is 

considered while allocating resources, and the energy 

needed for communication is estimated. The conserved 

energy distribution has forwarded the post to the resource 

allocation method. The𝑦𝑠 + 𝑒𝑛  is done to increase the 

number of information exchanges with AI devices. In 

equation (4), the determination is made for the conserved 

distribution of energy in the wireless network, which 

provides reliable processing. 

 The energy is distributed to the user by examining the 

synchronized process. Information sharing is done by 

deriving energy harvesting from devices. The device 

requirement is done for resource sharing and allocation and 

performs the conserved distribution, and it is represented 

as 𝑟𝑖 . The determination of energy conservation is used to 

enhance information processing, denoted as 𝐷. The 

synchronization is carried out for energy conservation and 

is estimated in the if and otherwise conditions. The 

condition is carried out; otherwise, the condition is 

executed if the energy-saving distribution is carried out 

based on the prior state of energy harvesting. The energy 

slot for energy and mobile device operation is determined 

using the following equation to maximize the support for 

information sharing. 

𝐹 =  

 𝑞𝑟 + 𝑤𝑑 ∗  
𝐸+𝑔𝑒
𝑁

𝑑0
 

 +  𝑓𝑎 ∗ 𝐼 + 𝑦𝑠

𝑁 =   𝑒𝑛 + 𝑓𝑎 ∗  𝑔𝑒 − 𝑜𝑡  + 𝑙′

𝑙′ =  𝑕𝑎 ∗ 𝑤𝑑 +  𝑅 ∗ 𝑟𝑖 

𝑟𝑖 =  𝑁 + 𝑒0 ∗  𝑓𝑎 − 𝑞𝑟  
 
 

 
 

  (5) 

 The energy slot is identified by determining the 

resource allocation with the devices and examining energy's 

conserved distribution. The evaluation is done by deploying 

the communication and exploring the connection with the 

end devices in a wireless network. Here, energy harvesting 

and resource sharing are performed with the devices based 

on resource allocation. The connection is established with 

the devices in the wireless network for energy conservation. 

The energy distribution is done for energy harvesting and 

distribution to the relevant devices. The energy slot is 

identified to distribute energy and allow wireless device 

operation for information exchange. The energy 

distributionis carried out for the conserved distribution 

based on device requirements. Fig. 3 presents the possible 

combinations in identifying energy slots before and after 

allocation. 

 
(a) Before Allocation 

 
(b) After allocation 

 
FIGURE 3Combinations in Identifying Energy Slots 

 

 In the forehand allocation [Fig. 3(a)], the 𝜌  𝑟𝑖 𝑑𝑜  

achieves high 𝐷 through repeated classifications. 

If 𝐷 𝑔𝑒 , 𝐸  is high, then an energy slot is available, 

reducing communication loss. The 𝜃 is performed for one-

to-one 𝐹 and 𝑅 along with 𝜌 values. Contrarily, the after-

allocation [Fig 3(b)] requires preemptive classifications 

based on synchronized slot utilization. Both cases are 

computed to identify empty and energy-reliable slots for 

communication. The identification is performed for every 

iteration step to determine the sufficient energy and execute 

the energy-conserving process for the next-generation 

wireless network. The initial step of this proposed work 

post to the resource allocation, sharing the energy slot is 

determined for the energy-conserving process. Here, the 

distribution is forwarded to the devices and provides the 

conserved energy for the wireless devices concerning 

harvesting, and it is represented as 𝑞𝑟 + 𝑤𝑑 ∗  
𝐸+𝑔𝑒
𝑁

𝑑0
 

 . In 

this computation step, the energy slot is detected with the 

prior state of action and estimates the distribution and 

conservation, and it is denoted as 𝑙′. Prediction learning is 

utilized to distinguish the preservation and distribution of 

energy in AI for this Naïve Bayes' prediction learning is 

introduced. 

 
B. PREDICTION LEARNING 

It is a predictive learning approach that classifies the 

conservation and distribution of energy in a wireless 
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network and estimates the reliable information exchange. 

The probability function defines whether it is conservation 

or distribution of the energy used to forward the 

information to the devices to improve the exchange rate. 

The training data determines the energy conservation for 

the next generation and forwards the information to the 

appropriate devices. The energy slots are identified in AI, 

examining the synchronized connection and enhancing the 

information exchange. Equation (6) is used to predict 

energy harvesting and conserved distribution. 

𝐷 𝑔𝑒 , 𝐸 =  
𝑤𝑑

𝑔𝑒
 

𝑞𝑟
 ∗    𝑒0 + 𝑓𝑎 ∗  𝑁 +

𝐼∗𝑙 ′

𝐸
  𝑙 ′ + 𝜇(𝑡0 − 𝑥′)

      (6) 

 The prediction is performed with the prior state and 

gives the result based on energy conservation. Here, energy 

harvesting and conservation are done by deploying 

communication and exchanging information. Here, the 

wireless device is used to forward the energy consumption 

for the next generation and determine the energy slots. The 

energy slots define the information exchange with the 

devices in a wireless network and monitor the performance. 

The maximum information exchange is performed for 

energy harvesting in AI to determineenergy conservation. 

Here, the energy harvesting and conserved distribution are 

done by deploying the device requirement. 

In Naive Bayes' prediction learning, probability is used to 

define the state of processing in AI. In this approach, the 

information exchange is done by deploying the previous 

state. Based on the last state, the energy is forwarded to 

sufficient devices in a wireless network. Prediction learning 

is used to define the communication medium preemptively. 

Concerning this evaluation step, the determination of 

energy harvesting and energy forwarding is detected. The 

energy slots are used to examine the energy harvesting for 

the connection establishment, and it is represented 

as     𝑁 +
𝐼∗𝑙′

𝐸
 . The conserved distribution is done for the 

energy harvesting for the wireless devices and performs the 

prediction with the previous history of information, and it is 

referred to as 𝜇. The probability function is derived for the 

conservation and distribution of energy. 

 𝜌  𝑟𝑖 𝑑0 =
𝜌  𝑑0 𝑟𝑖 ∗𝜌(𝑟𝑖)

𝜌(𝑑0)
   (7) 

 The probability factor determines energy conservation 

for the number of information exchanges in AI. Here, the 

process is termed to examine the distribution of energy for 

conservation purposes. The evaluation is done by deploying 

the connection in wireless architecture and provides the 

conservation of energy. Here, the energy slots are identified 

to distribute the energy to the appropriate devices in a 

wireless network and differentiate the preservation. The 

PECT is introduced for the energy conservation for 

upcoming generation wireless networks, and this resource 

allocation is examined. The resource allocation is done by 

deriving the previous state's conservation process and 

providing a feasible solution. 

Sufficient energy sharing with the devices is examined in 

the wireless network, and the conservation and distribution 

of energy are deployed. Here, energy slots are identified for 

varying information sharing and connect with the end 

device in a wireless network. The evaluation is carried out 

for the different information exchanges in a wireless 

network; the probability is used to define either case, 

termed as 𝜌. It can be conservation energy or distribution 

and deploys the identification phase with the energy 

distribution. The equation below performs the 

classification, including energy conservation and 

distribution.  

𝜃 =  
 𝐼 + 𝑔𝑒 ∗  𝑞𝑟 +

𝐸

𝑑0+𝑁
 + 𝑒𝑛 ∗ 𝑓𝑎 𝑛𝑣 − 𝑡0

 𝑓𝑎 ∗ 𝑞𝑟 + 𝐷  𝑒𝑛 ∗ 𝑕𝑎 ∗  𝑟𝑖 − 𝑜𝑡  − 𝑜𝑡
𝑔𝑒
𝐸

  (8) 

 The classification is performed in this proposal to 

distinguish the conservation and distribution of energy. 

First, energy harvesting is determined preemptively. The 

task requires a wireless network; the device needs energy in 

this processing. The AI requests the energy, and forwarding 

is carried out for the information. The preemptive is defined 

as distributing the energy to the device and monitoring the 

available energy slots to perform the task. This preemptive 

is one type of scheduling process that deploys the 

information exchange to the devices and estimates energy 

conservation. Here, classification is performed using Naive 

Bayes' method, which deploys probability for conservation 

and distribution. Fig. 4 presents the classification model for 

preemptive energy conservation. 

 
 

FIGURE 4Classification Model Illustration 
 

 The  𝜃 and  𝜌 are the inputs classifying ∅ under 

 𝐴(𝐼)and  𝑉 𝑟𝑖 . In this classification, the  𝑈 requiring  𝜃 is 

identified, provided 𝜌 is high. This identification reduces 

the dropouts' ability to assign resources for the 

communication required. Therefore, identifying 𝑈 required 

instances is mandatory for leveraging the performance (Fig. 

4). The identification is made energy slots, and distribution 

is carried out for the varying information exchange. The 

evaluation is done by determining the prediction for energy 

harvesting and conservation. The proposed method, 

PECT,maximizes the information exchange; Naïve Bayes' 

is used for preemptive communication. For this approach, 

classification is estimated in the above equation for 

sufficient energy transmitting, and it is referred to as 𝜃. The 

conserved distribution is determined for the information 

exchange with the required devices. Concerning the energy 

slots, the distribution is performed from that classification 

is executed. The conservation of energy is evaluated by 
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combining equations (5) and (6), and it is formulated in the 

following equation (9). 

𝑉 𝑟𝑖 =  

 𝐹 + 𝑔𝑒 ∗ 𝑛𝑣 +  𝑦𝑠 ∗  
𝑤𝑑∗𝐸

𝑅 

𝑙′
  ∗  𝜇 + 𝑦𝑠 − 𝜌

𝑦𝑠 = 𝑛𝑣 ∗ 𝑔𝑒 𝑓𝑎 ∗ 𝑝𝑚

𝑝𝑚 = 𝑕𝑎 +  𝐹 ∗ 𝐼 − 𝑜𝑡

𝐼 =  𝑙′ ∗ 𝜇 − 𝑡0  
 
 

 
 

      (9) 

 The evaluation is carried out for energy conservation. 

In this approach, harvesting is done for the varying 

information exchange between the devices in AI. The 

synchronized connection is ensured in this approach to 

improve the information exchange rate in this proposal. The 

PECT method is developed for harvesting and conservation 

and distributes the energy to the requested devices in a 

wireless network. Examining this conservation, the 

classification is used to process the information 

preemptively. The preemptive is used to decrease the 

failure in a wireless network, and it is termed as𝑝𝑚 . The 

resource is shared with the devices, deploys the connection, 

and maintains synchronization. 

 The synchronized transmission is determined for the 

preemptive processing and estimates the energy harvesting 

and conservation. Here, the prediction is made for the 

information exchange, and the energy slots are examined. 

The prediction is evaluated by introducing the Naïve Bayes 

method, including the PECT method for energy 

conservation. Identifying energy slots examines the 

probability factor and provides the energy. Finally, the 

distribution is done by determining the information 

exchange on time with relevant information to the devices. 

Thus, the evaluation is derived from the above equation, 

and communication is established by equating the below 

equation. 

∅ =  𝑙′ ∗ 𝑛𝑣 +  
𝑕𝑎

  𝑓𝑎 +𝑞𝑟 𝑒0

 ∗ 𝑓𝑎 𝑒0 + 𝐹 𝜇 − 𝑡0 (10) 

 Communication is established for sharing relevant 

information with the devices. Here, resource sharing is 

done by determining the energy distribution for the number 

of information exchanges. The sharing is done through the 

allocation of resources and performs the information 

forwarding to the devices. Here, the connection is 

established between the two devices in a wireless network, 

the energy slots are determined, and energy harvesting is 

provided. The communication is established by detecting 

the appropriate information sent as advice requests. The 

prediction is made by distributing the energy to the devices 

and deploying the energy slots. This derivation addresses 

the communication loss, and the information shared is 

decreased. 

 The identification is done for the energy slot allocation 

and performs the forwarding of information on time. The 

relevancy is maintained for the number of information 

exchanges based on conserved distribution. Here, the 

resource allocation is done by determining the identification 

of the task and providing the prediction. The prediction is 

performed by mapping the information with the previous 

state and providing the result. By pursuing this process, 

communication is done for the information exchange with 

the devices and determines the sharing formulated 

as 
𝑕𝑎

  𝑓𝑎 +𝑞𝑟 𝑒0

 . The equation below determines the 

preemptive process, which includes the connection and 

improves the information exchange rate.  

𝑝𝑚  𝐷 =  𝑒0 + 𝑁 ∗ 𝑕𝑎 −  𝑞𝑟 + 𝑉 ∗  𝑙′ + 𝑛𝑣(𝑓𝑎)   (11) 

 The preemptive manner is followed in this work to 

improve the performance of energy harvesting and 

conservation. Here, the information exchange rate is 

enhanced by using Naïve Bayes' prediction method. The 

identification of energy slots is used to evaluate the sharing 

of resources to the allocated devices. The probability factor 

determines whether the processing is done for the energy 

distribution method. The conserved distribution is done by 

selecting the classification method. The distribution and 

conservation are classified in this proposal to evaluate the 

preemptive manner.  

If the task needs the energy to perform the particular task, 

then the energy is forwarded. Post to the energy forwarding, 

the device from the waiting state arrives ready to 

accomplish the task. This state change from waiting to a 

ready state decreases the failure and loss, and it is defined 

as the preemptive process. The above equation determines 

the preemptive process for the shared resources in a 

wireless network. The naïve Bayes method determines the 

energy slots by performing classification. Finally, the 

following equation analyses the synchronized connection 

with the wireless network devices. 

𝑦𝑠 𝐴 = 𝑛𝑣 𝑒0 +   𝑕𝑎 ∗ 𝑤𝑑 +  
𝑑0∗𝑙′

𝑒𝑛
  ∗  𝑟𝑖 + 𝑅(𝐸)𝑓𝑎

      (12) 

 The analysis 𝐴 is done around the synchronized 

connection between the devices, and the energy is 

distributed to the requested devices in AI. The relevant 

information is forwarded to the devices and deployedto the 

conserved distribution. Concerning device requirements, 

energy harvesting and conserved distribution are executed. 

Resource allocation is examined for the information sent to 

the devices. The device requirement is stated from the 

previous state and provides reliable processing. Here, 

energy slots determine the synchronized processing with 

the AI devices. The following equation performs the 

information exchange post to the synchronization. 

𝐴 𝐼 = 𝑒0 𝑞𝑟 ∗  𝑡0 + 𝐷 ∗  
  𝑔𝑒+𝑕𝑎  

𝑙′

𝑟𝑖+𝐸
 + 𝑛𝑣(𝑅 ∗ 𝑦𝑠)    (13) 

 The information exchange is done if a synchronized 

connection is established between the devices. If the 

connection is established securely, communication is 

performed among the devices. Based on the requirement, 

the energy distribution defines the conserved energy 

distribution to the devices. The information exchange 

process is presented in Fig. 5. 
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FIGURE 5 Information Exchange Process 

 

 In the information exchange, two decision-making 

processes are validated for user and energy conservation. 

First, the preemptive process is followed for energy 

distribution and deploys the probability factor. Here, the 

classification is used to examine the relevant extraction of 

information from the previous state. Then, the mapping is 

performed with the state earlier, and the result is provided 

on time. Second, energy harvesting and information 

exchange are used to determine the energy slots for the 

classification model. Finally, the equation below states the 

energy utilization and enhancement. 

𝑈 =  𝑑0 ∗ 𝑤𝑑 +  𝐷 +
∅

𝑒0∗𝑦𝑠
 − 𝑐𝑘 𝑡0 ∗ 𝐴 +  𝐹 𝑙′ − 𝑠0 

      (14) 

 In the above Equation, energy utilization is improved 

by increasing the information exchange derived in the 

above equation. The analysis is done for the information 

exchange that estimates the synchronized information 

sharing with the user. The evaluation is done by deploying 

the prediction with the previous state and enhances the 

utilization 𝑈. If the utilization factor is improved, then the 

latency and loss are detected and decreased, denoted 

as 𝑐𝑘and𝑠0. The evaluation is done for the information 

exchange post and the device communication. The scope of 

the proposed work is addressed by introducing PECT and 

Naïve Bayes' prediction learning that includes probability 

factors. The probability is used to state energy harvesting 

and conservation and enhance utilization and information 

exchange. This methodology decreases latency and loss and 

improves energy harvesting and conservation distribution. 

 

 

 
 

FIGURE 6(a) Allocation and Conservation 
 

 
(b) Slots 

FIGURE 6(b) Comparative Analysis under Sharing Ratio 
 

 Figs 6(a) and 6(b) present the allocation, conservation, 

and slots for different sharing ratios. The sharing rations 

increases𝑕𝑎  and  𝑅 such that the slots are increased. In this 

process, accounting for the device density, the slots are 

increased to prevent early 𝑈 point identification. Through 

the  𝜃 process, identifies multiple 𝑈 such that 𝑅 is high. For 

the shared 𝑅, the high 𝐹 is distributed based on 𝐷(𝑔𝑒 , 𝐸) at 

the initial stages. In the pursuing slots, the distribution is 

modelled based on 𝜌 𝑟𝑖 , 𝑑𝑜 . The classification 

approximates the prediction and probability of increasing 

the efficiency. 
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FIGURE 7 (a) Sharing and Classifications 

 

  
(b) Efficiency 

FIGURE 7 (b) Comparative Analysis under Prediction 
 

The sharing, classification, and efficiency analysis for 

different prediction factors is analyzed in Figs. 7(a) and 

7(b), respectively. The prediction factor increases the 

chance of  𝐴(𝐼); hence 𝜃 increases. As 𝜃 increases,𝑕𝑎  and 

 𝑅 are predominant for leveraging different intervals. 

Therefore  𝐹 increases with communication loss. The 

change in 𝑈  through classification is identified in different 

information-sharing rates, for which 𝜃 is improved. As the 

 𝜃 is improved, the efficiency in different intervals is 

retained for leveraging 𝐷 and 𝑉. This process is 

uncompromisable for achieving high efficiency in 

different 𝐹. The energy utilization is shared for all 𝑅 

regardless of the users in various intervals, increasing the 

efficiency. 
 

 
FIGURE 8 Information Rate under Prediction 

 

Fig. 8 presents the analysis for information rate under 

different prediction factors. This abruptly increases the slots 

for which allocation is performed. The allocation pursues 

different slots for𝑕𝑎  and 𝑉. Therefore,  𝐹 and 𝑃𝑚 (𝐷) are 

ensured in providing different𝑦𝑠(𝐴) achieving fair 

efficiency. The changes are observed and recurrently 

classified in different intervals, maximizing efficiency. 

The Preemptive Energy Conservation Technique 

(PECT) might reap several advantages for future wireless 

networks. PECT uses Naïve Bayes predictive intelligence 

to optimize energy allocation, reduce waste, and promote 

eco-friendly behaviors. Identifying energy slot intervals 

optimizes energy allocation for portable devices and data 

transmission, improving network performance. PECT 

lowers dead time, communication delays, and data 

exchange. To illustrate the technique's ability to balance 

network efficiency and energy conservation, energy use, 

latency, communication loss, and conservation ratio are 

carefully tested. PECT's high-performance wireless 

network is environmentally friendly and efficient, setting a 

new benchmark for energy management. 

 
IV. RESULTS AND DISCUSSION 

In this section, the performance of the proposed technique 

is analyzed using network simulator experiments. The 

experiment consists of 100 wireless devices exploiting 

varying slots up to 100 for communication. In the 

communication process, the data rate is varied between 20 

and 160 Mbits. A shared resource is the source for 

transmitting and accessing information between the 

devices. The experimental analysis results are validated 

using energy utilization, conservation ratio, communication 

loss, latency, and efficiency metrics. From the related 

works section, the methods SEES [29], HGC [24], and POS 

[19] are accounted for comparative analysis.  
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A. ENERGY UTILIZATION 

 
FIGURE 9 (a) Slots 

 

 
(b) Information Rate 

FIGURE 9 (b) Avg. Energy Utilization 
 

Fig 9(a) and 9(b) compare the average energy 

utilization for different slots and information rates. The 

proposed technique achieves less utilization by two specific 

operations. First, predict the energy requirements of the 

devices through 𝐹 in different resource access intervals. 

This process is required to vary the criteria and shortages 

for performing communication. Secondly, the𝑝𝑚 (𝐷) is 

responsible for sharing and utilization based on user 

availability. It is performed to ensure lossless information 

exchange between the devices. In all the communication 

slots,𝑦𝑠(𝐴) between the users is analyzed to achieve fair 

distribution. This prevents multiple devices from handling 

the same information, so energy utilization is confined. 

Besides, the shared conservation validation is performed for 

increasing the  𝑉 by which energy utilization is confined. 

The preemptive processes are excluded if the energy is 

completely drained, so the device operation is not observed. 

This feature is also periodically updated in the proposed 

technique for energy minimization. 

 

 
B. CONSERVATION RATIO 
 

 
FIGURE 10 (a) Slots 

 

 
(b) Information Rate 

FIGURE 10 (b) Conservation Ratio 

 

The PECT achieves high energy conservation 

compared to the other methods [Refer to Figs 10 (a) and 10 

(b)]. In this technique, 𝑣  𝑟𝑖  is performed based on ∅. The 

output of 𝜃 is 𝑈 identification, after which the device 

remains unfunctional. The 𝐴(𝐼) is achieved by 𝐹 and  𝑉 

through the classification. In the allocated slots, 𝜌 𝑟𝑖  𝑑𝑜  is 

computed to verify if 𝐷 occur. The change in 𝜌 𝑟𝑖 𝑑𝑜  

requires different devices to handle the same information. 

The reducing 𝑈 is predicted through 𝜃process for different 

slots and information rates. This prevents early device drain 

(energy) and malfunctioning. The  𝑉 performed in 

different 𝐹 is distributed for retaining the preemptiveness ∅. 

Therefore, the 𝑅 is performed based on 𝑣 after deserving  𝑈 

through the 𝜃. The output ensures valid slots and energy 

deficiency for which conservation is required. Hence, 

further allocations are based on preferred decisions before 

the classification process. This provides a high energy 

conservation ratio of PECT for different slots and 

information rates. 
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C. COMMUNICATION LOSS 

 

 
FIGURE 11 (a) Slots 

 

 
(b) Information Rate 

FIGURE 11 (b)  Communication Loss 

PECT achieves less communication loss compared to 

the other methods for different slots and information rates 

[Refer to Figs. 11 (a) and 11(b)]. The proposed technique 

verifies 𝑝𝑚 (𝐷) before initiating ∅, and hence 𝐷 is modified. 

In this process, 𝑃 𝜇 − 𝑡𝑜  is computed during 𝑈 point 

observation. This improves the  ∅ in different intervals, 

retaining the 𝐷 𝑔𝑒 , 𝐸 . The 𝐷  is performed if a device goes 

inactive after  𝑈 identification. The consecutive way is to 

identify𝑦𝑠(𝐴) indifferent 𝐹 such that the changes are 

optimal. Therefore, the 𝜃 is increased for improving 𝑣 such 

that not many devices are inactive ∅. Hence, the 

communication is preserved, retaining the liveliness of the 

slot. Contrarily, 𝑉 increases the  𝐴(𝐼) and 𝐹 required 

throughout the process. In this, the change in 𝜌 𝑟𝑖  𝑑𝑜  and 

 𝐷 𝑔𝑒 , 𝐸  are identified, and hence, further classifications 

are timed throughout the  ∅ process. This retains the slots 

for complete transmission, reducing communication loss.  

 

 

D. LATENCY 

 

 
 

FIGURE 12 (a) Slots 

 

 
(b) Information Rate 

FIGURE 12 (b) Avg. Latency 
 

Frequent link failures and devices malfunctioning due 

to energy drain and deficiency are confined to the proposed 

technique. The proposed technique's energy distribution is 

different for slots and information rates. For the changing 

slots, 𝐹 is allocated based on 𝐷(𝑔𝑒 , 𝐸) at the initial stages. 

In the pursuing states, this factor is updated using 𝜃 other 

than blind𝑕𝑎 . This improves the energy retainment in the 

slots, preventing a communication delay. In the information 

rate-based allocation,𝑦𝑠(𝐴) between the devices is verified 

for improving the efficiency in ∅. The pursing in 

information exchange is validated for  𝑈 point through 𝜃. 

This identifies weak/energy-drained devices, improving 

concurrency. Therefore, the change in communication path/ 

𝑦𝑠  (𝐴) is updated using 𝑉 𝑟𝑖  for preventing loss. This 

prevents periodic neighbour replacement, reducing latency 

regardless of the information rate. A comparative analysis 

is presented in Fig.12 (a) and 12 (b) for slots and 

information rate, respectively. 
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E. EFFICIENCY 
 

 
 

(a) Slots 

 

 
 

(b) Information Rate 
FIGURE 13 Efficiency 

 

The energy exploited per information bit of the 

proposed technique is higher than the considered methods. 

Based on classifications, the𝑝𝑚 (𝐷) and 𝐴(𝐼) is retained 

with less communication loss and latency. This increases 

the flow of information between the devices, requiring less 

energy. Further, the 𝑈 at different classification points are 

identified for 𝑕𝑎  and  𝐴(𝐼) reallocation. Therefore, 

the 𝐴(𝐼)is less impacted due to periodic 𝐹 updates and 

replacements. For the deficient 𝐹, 𝑉 is encouraged such 

that 𝑅 are enhanced for increasing 𝐴(𝐼). The  𝜃 based 

 𝑉 𝑟𝑖 Estimation pursues different intervals for maximizing 

transmissions. The  𝐷 in both the classified and unclassified 

intervals is based on 𝜌 𝑟𝑖 𝑑𝑜  and hence𝑝𝑚 (𝐷) is retained. 

The  𝑈 identified intervals are allocated with new 𝐹 to the 

wireless devices, increasing the ∅. Therefore, the 

information exchanged between the devices is high under 

different 𝐹. For handling considerable information, the 

𝑦𝑠(𝐴) through  𝜃 is high such that𝑕𝑎  is high for different 

intervals. These two factors achieve the high efficiency of 

the proposed method for slots [Fig. 13(a)] and information 

exchange [Fig 13 (b)]. In Tables 1 and 2, the comparative 

analysis summary for slots and information rate is 

presented. 
TABLE 1  

COMPARATIVE ANALYSIS SUMMARY (SLOTS) 

Metrics SEES HGC POS PECT 

Avg. Energy Utilization 11.715 10.52 9.53 8.538 

Conversation Ratio 9.69 12.02 15.6 19.338 

Communication Loss 0.092 0.073 0.056 0.0459 

Avg. Latency (ms) 73.9 67.76 63.29 58.32 

Efficiency (bits/ Joule) 1.63 3.37 5.98 7.658 

 

The proposed technique reduces energy utilization, 

communication loss, latency communication loss, and 

latency by 9.69%, 8.33%, and 14.63%. On the other hand, it 

improves conservation ratio and efficiency by 13.8% and 

17.4%.  
TABLE 2  

COMPARATIVE ANALYSIS SUMMARY (INFORMATION RATE) 

Metrics SEES HGC POS PECT 

Avg. Energy Utilization 11.72 10.96 10.27 8.997 

Conversation Ratio 9.49 12.54 16.38 18.85 

Communication Loss 0.12 0.105 0.096 0.0782 

Avg. Latency (ms) 73.32 70.08 63.21 57.167 

Efficiency (bits/ Joule) 1.76 4.04 5.24 7.604 

 

The proposed PECT achieves 9.05% less energy 

utilization for the different information rates, 8.64% less 

communication loss, and 16.9% less latency. In addition, it 

improves the 12.09% high conservation ratio 

and17.2%.Efficient energy conservation and network 

performance are optimized by PECT, as shown by its 

thorough review of important metrics including energy use, 

latency, communication loss, and conservation ratio. This 

strategy revolutionizes energy management in next-

generation networks by achieving a balance between both 

parameters, leading to a wireless network that is both more 

sustainable and performs better. Compared to more 

conventional reactive approaches, PECT is light years 

ahead due to this cutting-edge technology, which 

guarantees energy conservation while improving network 

functioning and efficiency. 

 
V. CONCLUSION 

This article introduces a preemptive energy conservation 

technique to leverage next-generation wireless networks' 

energy efficiency. The proposed method identifies service-

requiring users and allocates sufficient communication 

energy slots. In this allocation, predictive learning is 

employed. Based on the learning prediction, the slots are 

assigned and are open for resource allocation and sharing. 

The energy requirement and pre-emotiveness classification 

are analyzed at the end of the communication. This analysis 

uses Naïve Baye's learning to achieve synchronized 

communication between the users and wireless devices. 

The probability-based classification and information 
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exchange between the devices improves energy 

conservation. Besides, the energy harvesting and deficiency 

are precisely identified for further energy slot allocations. 

The wireless architectures are exploited to handle multiple 

energy-sufficient communication links and prevent 

communication loss. The proposed technique reduces 

energy utilization, communication loss, latency, and latency 

by 9.69%, 8.33%, and 14.63%. On the other hand, it 

improves conservation ratio and efficiency by 13.8% and 

17.4%. 
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