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ABSTRACT Due to the popularity of Android mobile devices over the past ten years, malicious Android
applications have significantly increased. Systems utilizing machine learning techniques have been success-
fully applied for Android malware detection to counter the constantly changing Android malware threats.
However, attackers have developed new strategies to circumvent these systems by using adversarial attacks.
An attacker can carefully craft a malicious sample to deceive a classifier. Among the evasion attacks, there
is the more potent one, which is based on solid optimization constraints: the Carlini-Wagner attack. Carlini-
Wagner is an attack that uses margin loss, which is more efficient than cross-entropy loss. We propose a
model based on theWasserstein Generative Adversarial Network to prevent adversarial attacks in an Android
field in a white box scenario. Experimental results show that our method can effectively prevent this type of
attack.

INDEX TERMS Adversarial Attack, Carlini-Wagner attack, Generative Adversarial Network, Android
Adversarial Malware.

I. INTRODUCTION

ANDROID is the open-source and most widely used
operating system in the world. Many attackers create

various malicious applications to gain unauthorized access
to any personal user device. However, the defenders on their
side try to overcome the obstacle by developing solutions
to counter the attackers. Machine learning (ML) algorithms
have been created under the assumption that training and
test data follow the same underlying probability distribution,
which renders them susceptible to well-crafted attacks that vi-
olate this assumption, as first noted by Barreno et al. [1]. This
implies that the weakest link in the security chain may be ML
itself [2]. Despite enormous community efforts at defensive
measures, malware continues to present an important threat
to cyber security. ML is used to automate the identification
of malware in the wild to deal with the increasingly serious
scenario [3]. However, adversarial evasion attacks, in which
an adaptive attacker perturbs or alters malware instances into
adversarial examples that would be considered benign rather

Distribution Statement A: Approved for public release. Distribution is
unlimited.

than harmful, might compromise ML-based solutions [4].
Many evasion attacks have been proposed to deceive ML
algorithms, as presented in [5, 6, 7]. These evasion attacks
have been proposed first for computer vision and later adapted
for the cyber security domain. However, both fields are not the
same. Computer vision is a continuous environment, whereas
cyber security is a discrete domain where it is more difficult
to manage adversarial attacks. Some authors have started to
have more interest in Android adversarial malware. Malware
detection has evolved into an ML application as a result of
the rise in the number of released programs and applications.
The presented features, however, have a significant impact on
the detection’s quality. Static and dynamic features are two
categories that are typically distinguished in the literature.
Static features can be easily gathered and included from
the source code of the application. The more common type
today is dynamic features, which sample features from an
application while it is in use and observe usage patterns for
access and communication. The last approach combines static
and dynamic analysis [8]. While some authors have proposed
solutions such as distillation defense [9] and adversarial train-
ing [6], [10], [11], which do not work with some attacks
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such as the Carlini-Wagner attack, others have focused on
the Generative Adversarial Network (GAN) in the context of
misleading classifier [12] and others for preventing attacks
[13]. We aim to utilize Wasserstein GAN, a variation of the
standard Generative Adversarial Network, which enhances
stability and training by employing a distinct loss function
based on the Wasserstein distance. This approach measures
the divergence between the real data distribution and the
generated data distribution, providing a solution to mitigate
the Carlini-Wagner attack. Our contributions to this paper are
as follows:

• Proposing model to thwart adversarial evasion attack.
The model leverages the underlying logic ofWasserstein
GAN to build a model robust against those adversarial
attacks;

• Focusing our protection by countering the Carlini-
Wagner attack. This will make the model robust against
this attack;

• Evaluating the dataset’s vulnerability to the Carlini-
Wagner attack, as well as the effectiveness of our method
across five different classification techniques.

The rest of this paper is organized as follows: in section II, we
present a background on an explanation of Android, GAN,
and machine learning classifiers. Section III describes the
related works on Android malware detection and MalGAN.
Section IV presents the attack model and dataset. Section V
explains the proposed approach. Section VI, gives evaluation
results and performance. Finally, section VII concludes this
paper and presents future works.

II. BACKGROUND
A. PRELIMINARIES ON ANDROID
The Android app is compiled and packed in a single archive
.apk file that contains the Androidmanifest.xml file, Dalvid
executable (class.dex) file, assets, and resources as presented
in Fig.1.

FIGURE 1. Android Architecture.

The AndroidManifest file represents a framework based on
components for constructing mobile apps, which keeps infor-
mation about its structure [14]: Services, Activities, Broad-
cast Receivers, and Content Providers. The components are

first configured using a set of application attributes to specify
default values for relevant elements. The activities of each
component are further described through filtered intentions,
which declare the types of intentions it can reply to. The
AndroidManifest file also includes a list of the permissions
that the app requests to carry out tasks. Since permissions,
filtered intents, and application attributes can show how an
app interacts with other apps and the operating system, we ex-
tract them as features from the Android manifest file. Dalvik
executable (dex) files can be created from Android apps and
executed on the Dalvik Virtual Machine (DalvikVM) [15].
The Dalvik VM uses API calls to access operating system
resources and functionality. It can interpret the dex file,
which contains compiled code created for Android, as user-
implemented methods and classes. Exceptions are another
way the dex file highlights conditions that an application
might want to avoid. Hence, the dex file may be used to rep-
resent the actions of an Android app through new instances,
API calls, and exceptions. We use Virtual Machine Santoku,
which contains all the tools we need for extracting features
such as Androguard, APKtool, Baksmali, and JD-Gui.

B. GENERATIVE ADVERSARIAL NETWORK
A GAN is a generative model that was initially described
by Ian Goodfellow et al. [16] and is based on deep learning
(DL). Its objective is to create adversarial samples from input
datasets that are strikingly comparable to the original data. As
in a two-player game, a GAN is implemented by two neural
networks that challenge each other. It enables a model to gain
additional knowledge from the available data and strives to
replicate a data distribution. The generator receives a random
number (random noise) as input, generates samples that are
comparable to those in the dataset, and then sends those
samples to the discriminator, which analyzes them and deter-
mines whether they are samples of genuine data or generated
data [17]. The discriminator gains knowledge of original
data properties and, using this understanding decides how to
interpret the data that the generator passes to it. The generator
constantly enhances its adversarial samples to make it harder
for the discriminator to recognize them. The discriminator
strives to gain more knowledge and accurately recognize
the adversarial samples that the generator introduces. The
capabilities of GAN are subject to several restrictions. One
of them is the vanishing gradient problem when the generator
reaches saturation and can no longer generate new samples to
deceive the discriminator. In other words, the discriminator
correctly identifies samples produced by the generator with
high confidence values, leaving the generator with no gra-
dient [18]. By carefully balancing the training between the
generator and discriminator networks and ensuring that the
discriminator is not overtrained, this problem can be avoided.
To prevent such problems, it is essential to make sure that
the discriminator is trained to the best possible level for each
iteration of the generator training. In [19] , some strategies for
stabilizing GAN training are addressed and examined.
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C. CLASSIFICATION ALGORITHMS
Classification algorithms are essential to the effectiveness of
ML-basedmodels. The algorithms in this workwere therefore
chosen based on the level of expertise they represented to the
scientific community, particularly in handling datasets with
various classes:
a) Decision Trees: The core capability of the Decision Tree
(DT) method is the efficient classification of data into logical
trees composed of leaf nodes, root nodes, and branchlike
structures with nodes [20].
b) Random Forest: The Random Forest (RF) classifier is a
well-known and effective ensemble learning technique that
consists of several DTs that have been trained on various
dataset subsets. In addition, different data patterns affect the
features that each tree takes into account while making deci-
sions. To make the final judgment on an input, all individual
tree’s predictions are taken into account and averaged [21]
c) Support Vector Machines: Support Vector Machines
(SVMs) are a traditional technique that successfully manages
huge data applications. Even though this technique requires
sophisticated and time-consuming computations, we chose it
because of howwell it handles non-linear classification issues
[22] .
d) Extreme Gradient Boosting (XGBoost): The XGBoost
technique provides a way to create K Classifications and
Regression Trees as well as Gradient Boosting Machines.
The algorithm is built on the concept of "boosting," which
combines all of the predictions made by a group of "weak"
learners to create a "strong" learner through additive training
techniques. In addition to avoiding over-fitting, XGBoost
optimizes processing resources. This is achieved by condens-
ing the objective functions that permit the combination of
regularization and prediction terms while still maintaining a
perfect computation speed [23].

D. LEARNING-BASED CLASSIFIER FOR ANDROID
MALWARE DETECTION
The issue with learning-based classifiers for Android mal-
ware detection can be expressed in the form f : X −→ Y ,
which uses the function f to assign the label y ∈ Y to an input
app x ∈ X . Thus, the following may be written as a general
linear classification model for Android malware detection:

g = sign(f (X)) = sign(XTw+ b) (1)

Each column of matrix X represents the feature vector of an
app, g is a vector whose elements are each the harmful or
benign label of an app to be predicted, w is the weight vector,
and b is the bias. A learning-based classifier can be described
as an optimization problem in more detail:

argming,w,bL(y, g) + β||w||+ γ||b|| (2)

with Rf = β||w||+ γ||b||.

Equation (2) is subject to Equation (1), where Rf is a regu-
larization term to prevent overfitting, β and γ are the regular-
ization parameters, and y is the labeled information vector,
L(y,f), a loss function. The classifier in Equation 2 is an
example of a learning-based classifier. Depending on the
choice of the loss function and regularization variables, the
equation can be translated without losing generality into sev-
eral learning models[15].

III. RELATED WORK
A. ADVERSARIAL EXAMPLE
Many ML algorithms are quite susceptible to malicious at-
tacks. If ML-based malware detection algorithms may be eas-
ily defeated by specific adversarial approaches, they cannot
be applied in real-world applications. Deep learning adver-
sarial examples have attracted the interest of many academics.
Adversarial examples can be referred to as examples that have
perturbations added to them. To create adversarial examples,
Szegedy et al. [5] applied imperceptible perturbations to the
images to increase a trained neural network’s classification
mistakes and prevent the network from accurately classify-
ing the images. Goodfellow et al. [6] suggested a gradient-
based approach. Papernot et al. [24] employed the Jacobian
matrix to decide which features to change when generating
adversarial examples. Grosse et al. [25] recommended using
a gradient-based technique to craft adversarial Android mal-
ware instances.

B. GAN FOR ANDROID
MalGAN [12] is an adversarial malware attack technique
for computers. MalGAN is appropriate for Android because
of the significant degree of similarity between PC software
and Android applications. To produce harmful adversarial
malware instances, the generator uses noise and malicious
samples as input. In addition to MalGAN, a variety of other
adversarial example-generating techniques have emerged in
recent years. To attack the model with adversarial defensive
capabilities, E-MalGAN [26] modified the structure of Mal-
GAN by introducing a new substitute detector that learns the
adversarial examples detector in the detection system. In a
series of API calls, Peng et al. [27] create adversarial exam-
ples using a Long Short-Term Memory networks generator
and a Convolutional Neural Network as a stand-in model. By
applying Least Square (LS) loss to improve border examples
and generate smoother adversarial examples, Wang et al. [28]
proposed LSGAN-AT to optimize the network topology of
the GAN. Many of these techniques for creating malware
adversarial examples involve replacement models to convert
black-box detectors into white boxes to generate gradients. A
significant ML idea that makes use of the transferable quali-
ties of ML is substitute models. A model called p-MalGAN,
a MalGAN with predictive capability, was proposed in [13].
They also take into account the issue that throughout the
development of these methods, both the detector and the
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attacker employ the same features. Li et al. [26] suggested
an approach based on bi-objective GANs to produce an ad-
versarial example attack strategy against Android malware
classifiers. Through the usage of features based on intents,
Salman et al. [29] leveraged GANs to bolster the security of
Android malware detectors. On Android malware classifiers,
Taheri et al. [30] tested four different evasion attack models
and developed a countermeasure using GANs. According to
the authors of [30], GAN-based techniques increase the eva-
sion detection of Android malware by up to 50%. By utilizing
GANs, Millar et al.[31] introduced DanDroid, a model to
categorizemalicious and benignAndroid applications that are
both obfuscated and unobfuscated. They used the classifier-
two sample test (C2ST) to assess the accuracy and expectancy
loss of the discriminator as well as the generator of the
GAN. In reality, malicious data was fed to GANs to produce
artificial data that resembled the actual malicious programs.
Many of these works investigated how to deceive malware
classifiers by using GAN. In our work, we use a specific
generative adversarial network, Wasserstein GAN, to prevent
a particular evasion attack, the Carlini-Wagner attack.

IV. ATTACK MODEL AND DATASET
A. ATTACK MODEL
The integrity of a classifier is intended to be compromised
by evasion attacks that are either targeted (misclassifying a
specific group of input) or untargeted (misclassifying any
sample) [32]. The understanding of an adversary can be par-
tial or full on the training data, feature set, learning algorithm,
parameters, and hyperparameters for the target classifier. The
capabilities of an adversary determine how they can take
advantage of the classifier during training or testing [32]
or what obstacles they can surmount during sample pertur-
bation [33]. Attack utilizing feature selection: Grosse et al.
[10] produce adversarial samples of Android malware that
target a feed-forward neural network classifier using a feature
selection method. Consider an Android application that has
M dimensions and is represented by the binary vector x
∈ {0, 1}M . They suggest only adding features to the Android-
Manifest.xml file and limiting the total amount of features
introduced to address the limits for malware disturbance.
The approach for creating adversarial samples based on for-
ward derivatives is suggested by [24]. They first calculate
the gradient, also known as the forward derivative, of the
classifier F with respect to the input X. They next choose a
perturbation that maximizes the gradient with respect to X.
For the altered sample to behave like the original sample,
the perturbation should ideally be modest. This limitation is
simpler to examine in an image. Malware samples, on the
other hand, are represented by discrete and binary features;
a feature is either present or not. Therefore, to apply this
constraint, they modify one X feature from 0 to 1 based on the
forward derivative information, and they repeat the procedure
until there has been a maximum number of feature changes or
the classifier has produced a misclassification.

The Carlini-Wagner Attack: A targeted evasion attack, some-
times known as a CW attack, was proposed by Carlini and
Wagner [8] as a means of overcoming the common defense
technique known as defensive distillation. The majority of
defensive strategies were rendered useless by this white-
box attack, which became more effective than many other
white-box attack techniques in the research community. The
fundamental element of an adversarial attack algorithm is
the formulation of an optimization problem that results in
misclassification. CW attack [7] is presented in the following
ways:

min||δ||22 + c.f (X + δ) (3)

where f (X
′
) = max[maxi ̸=tZ(X

′
)t − Z(X

′
)i,−k]. f is the

best objective function. where c > 0 is constant. Z is the
set of input objects (apps), and z ∈ Z is a sample. δ is a
perturbation vector. The parameter k encourages the solver
to find an adversarial instance X

′
that will be classified as

class t with high confidence. The value of a feature must fall
within the range of 0 and 1 according to the first constraint,
X + δ ∈ [0; 1]n. The norm of the features in each family or
package of the API call is restricted by the second constraint,
which is presented as follows:

||Xg + δg||1 = 1, g ∈ 1...k , additionally, it should be 1. The
optimization variable is changed from δ to w since it is being
done to add more API calls, and w is defined as follows:

δgi =
aig+w

g
i

ag+wg −
aig
ag (4)

where wg =
∑

i wig and aig represents all of the API calls
made by the ith feature in the gth group. They limit themselves
to adding API calls.

B. DEFENSE METHODOLOGY
C. DATASET OVERVIEW
To represent each gathered Android app, we initially extract
the features and transform them into a vector space, which
can then be input to the classifier for either training or
testing. Permissions (S1), filtered intents (S2), and appli-
cation attributes (S3) from manifest files, API calls (S4),
new-instances (S5), and exceptions (S6) from dex files are
among these six sets of features. We define our dataset K as
having the form K = {xi, yi}ni=1 of n apps, where xi is the
characteristics extracted from app i, and yi is the class label
of app i yi ∈ {0, 1}, 1:malicious, 0: benign. Let nf be the total
number of features in dataset K’s S1−6. Consequently, each
program can be represented by a few binary feature vectors.
If a feature is associated with app j, then xij = 1 or xij = 0,
and xi ∈ {0, 1}nf .

We use Drebin [34] as a benchmark dataset in this investiga-
tion. The dataset contains 9476 benign applications and 5560
malicious ones. In addition, we extract the Java source code
from the Android application packages (APKs) in the dataset
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FIGURE 2. This figure presents a general description of the model. The part on feature extraction shows how we obtain features from Android apps.
Thereafter, the Wasserstein Generative Adversarial Network is used on the training dataset to teach the Critic model how to detect adversarial samples.
Then we apply the Carlini-Wagner attack to obtain adversarially infected samples. Finally, the classifiers DT, RF, SVM, Neural Network, and XGBoost are
used to show the classification results.

FIGURE 3. Training Phase of the model. Here critic model receives a generated sample from the generator and a training sample; it learns the difference
between a real and fake sample. By doing backpropagation, it permits the generator to generate a realistic sample. In the end, the generator and the critic
reach the equilibrium point where they cannot increase their ability to generate and differentiate between real and fake anymore. The normal training
sample is classified by the classifier to see the classification results without adversarial attacks.

by reverse engineering them. APKs are first decompiled into
.dex files, which are subsequently converted into .jar files. To
extract features, the .jar files are then disassembled into Java
source code.

V. PROPOSED APPROACH
A. PROBLEM DEFINITION
Let the feature space be X ∈ Rnf and the number of features
is nf . Assume that (xi; yi) is the ith instance in the training
set, which consists of true class labels yi ∈ Y and feature
vectors xi ∈ X produced by an unidentified distribution

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3494545

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Fabrice et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4. Test phase of the model. We apply the Carlini-Wagner attack on the testing samples to obtain the adversarial sample, and we pass them
through our critic model for removing the adversarial samples, which is already trained to do that. Thereafter, we pass them through classifiers to see the
classification results.

xi ∼ Pdata. the goal of the learning system is to learn a
classifier f : X → Y from the domain X to the set of
classification outputs Y, where |y| represents the variety of
classification outputs that may be possible. The objective of
an adversary is to provide an adversarial example xA, which
can be either f (xA) = t (targeted attack), where t is the target
class, or f (xA) ̸= y (untargeted attack), where y is the true
label.

1) General representation
Fig. 2 highlights the major components of the system and
illustrates the proposed approach to Carlini-Wagner attacks.
In the feature extraction module, we reverse-engineer the
Android applications to extract API-based features. The col-
lected features are further used to train several ML classifier
models. The extracted features are then used for training
numerous ML classifier models. To circumvent the trained
classifiers, we generate adversarial data based onWasserstein
GAN in the adversarial samples generation module. The
adversarial samples are subsequently tested on the existing
pre-trained classifiers. Finally, we perform adversarial train-
ing to improve the security of Android malware classifiers
against the adversarial CW attack. First, employing each of
the selected classification methods on the original dataset in
non-adversarial situations, the model performance baseline is
assessed. After that, the CW attack is used to evaluate the
model. The phases of training and testing are shown in Fig.3
and Fig.4, respectively.

2) Generator model
The generator captures the data distribution and generates an
adversarial example. It uses malicious samples and noise as
input for generating adversarial examples of malware, and it
aims to have the detector misclassify adversarial instances as
much as possible.

Lgen(w) = minθ − Ez∼Z [fw(gθ(z))] (4)

3) Critic model
The Critic model predicts whether the input sample is from
the training data or the generator, and it differentiates whether

the sample is generated by the generator as accurately as
feasible. The objective function of the critic is as follows:

Lcritic(w) = maxw∈WEx∼Pr [fw(x)]− Ez∼Pz [fw(gθ(z))] (5)

Here, E stands for the probability estimation; z and x are the
noise and real samples, respectively, whilePr andPz represent
the probability distributions of real and noise data.

4) Algorithm Wasserstein GAN adversarial example (WGAE)

Algorithm 1WGAE algorithm
Require: Σ, classifier[1,2,3,4,5], epochs, batches
Ensure: Result
1: Σtrain ← 70%
2: Σtest ← 30%
3: build generator G and critic model C
4: for k in epoch do
5: for q in batches do
6: xk ← element of(Σtrain)
7: zq ← generate_noise_sample(0, 1, batch_size)
8: WCq ← WCq − α∇WCqL(Xk )
9: WCq ← WCq − α∇WCqL(Gzq )
10: WGq ← WGq − α∇WGqL(Zq)

11: end for
12: end for
13: Σadver ← CW_attack(Σtest)
14: ΣT ← Σadver ∪ Σtest

15: for j in [1,2,3,4,5] do
16: Result_normal[j]← train_classifier[j](Σtrain)
17: Result_adver[j]← [j](ΣT )
18: Result_final[j]← [j](C(ΣT ))
19: end for
20: Result[1, 2, 3]← Result_normal,Result_adver,Result_final
21: return Result

The WGAE algorithm shows the pseudocode of the model. It
takes as input, Σ set of samples, the five classifiers, epochs,
and batches. As output, it returns Result aims to output all the
results, like accuracy, Recall, etc. At lines 1 and 2, we split the
set of samples into Σtrain and Σtest . Line 3 aims to construct
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the generator and the critic models, as explained in Sections
V-A3 and V-A2. From line 4 to 11, we have described the
process of generating fake samples thatmimic real samples by
teaching the critic model how to detect fake samples. At line
13, we generate adversarial samplesΣadver by running the CW
attack. Line 14 shows the combination of adversarial and test
samples. We get the results of normal classification without
adversarial samples of the five classifiers at line 16. Line 17
gives us the results with adversarial samples. In line 18, we
get the result with our model on infected samples. In line 20,
we get the results from classifiers after applying WGAN to
remove adversarial examples. In the end, we return the results.

VI. RESULTS AND PERFORMANCE EVALUATION
A. GENERATOR CONFIGURATION
The generator is made up of a five-layer NN with a random
noise input layer of size 216 and three inner layers, and
uses the ReLU activation function for learning the real data
distribution. It has an output layer that produces a data sample
of size 216, which is similar to the original data. A generator
loss function is calculated based on the prediction outcomes
produced by the discriminator and fed back to the generator
for it to elevate in a way to minimize the loss value.

B. CRITIC OR DISCRIMINATOR CONFIGURATION
The critic network contains an input layer that accepts inputs
from the generator, the training dataset during the learning
phase, and four hidden layers with the ReLU activation
function. The output result shows how confident the critic
is about the sample being real or fake.

C. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we evaluate the performance of different
ML classifiers for normal classification, against the CW at-
tack and performance after applying Wasserstein GAN. ’
The PC that was used for the experiment has the following
specifications: Ubuntu 22.04 64-bit, Intel Xeon E5-2686 v4
(Broadwell), and 61 GB RAM. The software specifications
are Python 3.6.5, Tensorflow 1.13.2, Scikit-learn 0.24.2, and
Keras 2.1.5. The CW attack was implemented using the Clev-
erhans 3.0.1 library [23]

All the results are shown in the Table 1.

In case of no adversarial attacks, we train the LSVM, NN, RF,
XGB, and DT classifiers on default hyper-parameters settings
with a distribution of 70% train and 30% test set. Fig. 5
presents the normal classification without adversarial attack:
DT has 93.88% of classification, RF has 96.45%, LSVM
achieves 96.47%, XGB obtains 96.91%, and NN achieves
97.55%.
Next, we performed the Carlini-Wagner attack and got the
results shown in Fig.6: DT becomes 92.46%, RF becomes
96.01%, XGB gives now 96.11% and NN gives 77.55%.

When we apply our model we get the results shown in Fig.
7: DT gives 93.07%, LSVM becomes: 96.47% RF gives
96.07%, XGB becomes 96.91 and NN gives 97.21%.

Table 2 presents a comparison of our results on neural net-
works (NN) with the work of Taheri et al. [30]. The first
column provides the basis for comparison, the second col-
umn displays the results without adversarial attacks, the third
column shows the outcomes under the Carlini-Wagner (CW)
attack, and the fourth column presents the results after apply-
ing the adversarial detection model. Our findings indicate that
our model outperforms the better.

Fig. 8 presents classifier accuracy. The first four bands show
the baseline of classification without adversarial attack: RF is
93.79%, LSVM gives 96.89%, RF gives 96.67%, XGB gives
97.23%, and NN gives 97.55%. Thereafter, with adversarial
attack DT becomes 92.46%, LSVM becomes 75.86%, RF
becomes 88.15%, XGB becomes 96.23% and NN becomes
73.53%. When we apply our method RF gives now 93.45%,
LSVM gives 96.89, RF gives 96.45%XGB gives 97.23% and
NN gives 97.67%.

Fig. 9 presents classifier Recall. For classification without
adversarial attack: DT gives 94.29%, LSVM gives 96.89%,
RF gives 96.89%, XGB gives 97.23 and NN gives 97.67%.
With adversarial attack DT becomes 71.46% LSVM becomes
56.93%, RF becomes 88.43% XGB becomes 96.23% and
NN becomes 73.53%. After applying Our model we obtain
93.78% for DT, 96.86% for LSVM, 96.78% for RF, 97.23%
for XGB and 97.67% for NN.

Figure 10 illustrates the neural network (NN) confusion ma-
trix results for normal classification, yielding 99% true nega-
tives (TN), 96% true positives (TP), 4% false negatives (FN),
and 1% false positives (FP).

Figure 11 presents the NN confusion matrix results under the
Carlini-Wagner (CW) attack, indicating 85% TN, 74% TP,
15% FN, and 26% FP.

Figure 12 displays the NN confusion matrix results after
applying our detection model, showing 98% TN, 96% TP, 4%
FN, and 2% FP.
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TABLE 1. The different classification results

Normal classification Classification with CW attack Result with our method

DT LSVM RF XGB NN DT LSVM RF XGB NN DT LSVM RF XGB NN

F1-score (%) 94.29 96.89 96.89 97.20 97.60 71.40 56.93 88.43 96.23 73.53 94.18 96.89 96.45 97.23 97.67

Recall (%) 93.35 96.89 96.89 97.20 97.60 71.40 57.47 88.43 96.23 73.53 93.78 96.86 96.78 97.23 97.67

AUC(%) 93.88 96.47 96.47 96.90 97.50 92.40 75.86 96.50 96.11 77.55 93.07 96.47 96.47 96.91 97.12

Accuracy (%) 93.79 96.89 96.86 97.20 97.60 75.40 58.86 88.15 96.23 73.53 93.45 96.89 96.89 97.23 97.67

TABLE 2. Our result compare to Taheri et al. [30] work

Normal classification Classification with CW attack Taheri et al.[30] Result with our method

Taheri et al.[30] NN Taheri et al.[30] NN NN

F1-score (%) 97.45 97.60 72.85 73.53 72.85 97.67

Recall (%) 97.45 97.60 72.85 73.53 72.85 97.67

AUC(%) 97.15 97.50 66.61 77.53 66.61 97.12

Accuracy (%) 97.45 97.60 72.85 73.53 73.53 97.67

FIGURE 5. ROC curve classification without C&W attack.

FIGURE 6. Accuracy of classification.

VII. CONCLUSION
In this paper, we presented a method to detect white-box ad-
versarial attacks. We principally focus on the Calini-Wagner
attack. Our proposed model leveraged the logic of Wasser-

FIGURE 7. ROC curve with with our model.

FIGURE 8. Accuracy of classification.

stein GAN to build a robust model against this attack. We
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FIGURE 9. Recall of classification.

FIGURE 10. Confusion matrix NN normal classification.

FIGURE 11. Confusion matrix NN under adversarial samples.

generated adversarial by using CW attacks, and we then
used them to train our model. The experience is done by
extracting features from malware and benign apps from the
Drebin dataset. The results showed that our model can detect
this adversarial attack with good performance. In future work
we are planning to look into another scenario of adversarial
attacks: first, The adversarial attack can be crafted on the
attacker model with partial knowledge of the target model and
transferred to the defender model. Second, an attack can also
be built in a black box scenario where an attacker does not
have knowledge about the target model.

FIGURE 12. Confusion matrix NN with adversarial detection model.
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