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ABSTRACT If an aerial defense missile with a limited strapdown field-of-view (FOV) is launched with a 
restricted launch angle against an incoming target at high altitude, there are significant difficulties in 
establishing an appropriate collision course for head-on engagement. Owing to the time-varying 
characteristics of the initial phase with several linear and nonlinear constraints, the analytical approach is 
unsuitable for obtaining the optimal solution. In this paper, a mid-course trajectory for short-range head-on 
engagement was generated using a convex programming approach. The time-varying characteristics of mass 
and velocity were considered based on the thrust profile, and the maximum flight path angle was limited as 
an additional constraint to prevent excessive trajectory shaping. The original nonlinear optimization problem 
was converted into a convex optimization problem with state augmentation, linearization, and lossless 
convexification. For lossless convexification, a modified optimization problem with a regularization term is 
suggested, and it is proved based on the maximum principal of optimal control theory. The numerical results 
of the modified optimization problem show that the proposed approach is effective for head-on engagement, 
ensuring lossless convexification. Finally, the results of the convex programming approach were compared 
with those of state-of-the-art nonlinear programming for verification. 

INDEX TERMS Head-on Trajectory, Ground-to-Air Missiles, Lossless Convexification, Sequential 
Convex Programming, Short-Range Engagement 

I. Introduction 
In recent years, various cheap and high-performance drones 

have been released and used in various fields, including 
military applications. Accordingly, drone attacks on critical 
infrastructure are emerging as a major issue in countries in 
conflict, but there is no effective missile defense system[1]. 
In the case of a missile defense system for intercepting an 
incoming target, several studies have proposed three types of 
engagement scenarios: tail chase, head pursuit, and head-
on[2-5]. First, tail-chase interception is possible only when 
the guided missile maintains a higher velocity than that of 
the target. However, it takes a longer time to generate a tail-
chase trajectory and is unsuitable for an incoming target at 
high altitude because of safety issues in the case of failure. 
Second, in the head pursuit scenario, the guided missile 
predicts the target trajectory, flies in advance to the target, 

and then neutralizes the target in the same direction as the 
target. Although it is possible to cope with high-speed 
incoming targets when a missile is relatively slow compared 
to a target, the disadvantage is that accurate target 
information should be continuously provided by the target 
tracking system, such as radar or seeker, to detect and track 
targets coming from behind. Finally, head-on engagement is 
the most common scenario against aerial targets, in which 
the engagement time is shorter than that of tail-chase and 
head pursuit scenarios, and an economically effective missile 
with limited strapdown FOV can cope with cheap aerial 
targets considering the collision triangle geometry of the 
terminal homing phase. However, it has shortcomings in that 
a fast autopilot response with sufficient maneuverability is 
required because of the high relative velocity, and an 
appropriate collision course should be feasible for each 
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scenario. In this study, a guided missile with a strapdown 
seeker is considered an effective aerial defense system 
against various targets, owing to its economic advantage. For 
a missile equipped with a limited FOV of the strapdown 
seeker, the manner in which the head-on geometry is 
generated has a significant influence on the engagement 
result. In particular, short-range head-on engagement will be 
addressed to maximize the engagement area. However, it is 
not trivial to generate the head-on engagement area within a 
short range owing to the time-varying characteristics and 
several constraints of the initial phase. It is necessary to 
consider analytical or numerical approaches to control the 
terminal impact angle for head-on engagement. 

Impact angle control algorithms have been proposed based 
on optimal control theory, proportional navigation guidance. 
Ryoo et al. proposed the energy minimization optimal 
guidance law to cope with the impact angle constraint as well 
as zero miss distance[6,7]. For the additional constraint of 
seeker field-of-view, Park et al. used the optimal control 
theory with a state variable inequality constraint consisting 
of three optimal phases[8]. Modification of proportional 
navigation guidance law is presented for impact angle 
control based on pure proportional navigation guidance[9], 
biased proportional navigation guidance[10], and switched-
gain guidance[11]. Because general analytic approaches 
assume that the missile is a time-invariant system with 
specific constraints, it is difficult to expect an optimal result 
in a time-varying system with several constraints. On the 
other hand, various numerical methods might be proposed to 
generate the optimal trajectory in order to consider the 
practical constraints in a more realistic environment[12-15]. 
For the past decades, the nonlinear programming approach 
has been widely used owing to its convenience and coverage; 
however, it has the disadvantages of initial condition 
sensitivity, long computation time, and convergence issues. 
Recently, a variety of learning-based trajectory generation 
approaches have been proposed, but there are limitations in 
considering various constraints or engagement scenario in a 
realistic environment ensuring computational stability and 
performance[16-18]. As an alternative, convex programming 
approaches have been recently studied in various fields, 
including the aerospace field, to compensate for the 
disadvantages of nonlinear programming. Lu et al. proposed 
the conic programming approach to rendezvous and 
proximity operation by a lossless relaxation technique[19], 
and Liu et al. suggested a methodology to use second-order 
cone programming for nonconvex optimal control problems 
with concave inequality constraints and nonlinear terminal 
equality constraint by successive linearization[20], and it 
was applied to entry trajectory optimization problem[21]. 
Szmuk et al. also used the successive convexification to free-
final-time 6-DOF power descent landing guidance[22]. 

Various theoretical and experimental achievements over the 
past 10 years have been presented in several papers[23-25]. 

If the original problem can be defined or transformed in a 
convex form, the problem can be solved effectively with 
polynomial time, ensuring convergence. However, because 
general engineering problems, including the problem 
considered in this study, are described as nonlinear systems, 
additional procedures are required to convert general 
nonlinear optimal control problems into convex problems. 
The following three problems are the main considerations of 
the convex programming approach. At first, the differential 
or integration equations are transformed into algebraic 
equations using an appropriate method, such as the 
trapezoidal or Euler rule. Second, several nonlinear 
constraints should be convexified using linearization or 
relaxation. The linearization approach is straightforward and 
simple to implement, but the optimality of the original 
problem is not guaranteed when the problem is highly 
nonlinear. On the other hand, the relaxation approach is a 
way to avoid the nonconvex problem, but the relaxed 
problem might be quite different from the original one. If we 
can prove that the relaxation does not affect the solution of 
the original problem, the nonconvex constraints can be 
relaxed while generating the same results as the original 
problem. This is known as lossless convexification[26-34]. 
Finally, an independent variable with a monotone property 
should be defined for specific initial and final values. For 
free final time problems, flight time should be sequentially 
predicted or other states such as downrange or altitude 
should be set as independent variables[31-34]. 

In this paper, the mid-course trajectory for short-range 
head-on engagement was generated using a convex 
programming approach. Assuming that a missile is launched 
at a specific launch angle against an incoming target at a 
short range and high altitude, we attempt to determine the 
minimum final flight path angle for head-on engagement. 
The maximum flight path angle limit was additionally set to 
prevent excessive trajectory shaping with increased flight 
time. The mass and velocity of the guided missile change 
with flight time according to the thrust profile, and the 
missile acceleration is limited in conjunction with the missile 
velocity and maximum angle of attack. In summary, the 
original problem considered in this paper is a nonlinear 
optimal control problem with nonlinear dynamics, flight path 
angle, angle-of-attack constraint, and free final time. It is 
converted to a convex optimization problem using the 
linearization of the dynamic equation and nonlinear 
constraint, lossless convexification, and state augmentation 
of the flight time with proper discretization. In particular, for 
lossless convexification, the original problem is modified 
using the regularization term of the final velocity, and the 
lossless convexification of the modified problem is proved 
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based on the maximum principle of optimal control theory. 
The main contributions of this paper are as follows. The 
problem is defined as a mid-course trajectory optimization 
problem to maximize the engagement area. First, the 
problem to maximize the engagement area for aerial defense 
system is defined as a mid-course trajectory optimization 
problem based on head-on scenario. Second, lossless 
convexification for convergence is proven based on the 
regularization term additionally applied to the originally 
defined problem. Lastly, the numerical results of the 
proposed modified problem are compared to the analytical 
results of impact angle control and numerical results of 
nonlinear programming to show the superior results and 
effectiveness of the proposed approach. 

This paper is organized as follows. Section 2 provides a 
summary of the midcourse trajectory optimization problem 
formulation with state augmentation. In Section 3, direct 
transcription, including linearization and discretization, is 
described in detail. In Section 4, a modified problem is 
proposed, and lossless convexification is proved using 
optimal control theory. In Section 5, the numerical results of 
sequential convex programming are presented and compared 
to the results of the analytical and nonlinear programming 
approaches. Finally, the conclusions are presented in Section 
6. 

 

FIGURE 1. Mid-course Trajectory Geometry. 

 
II. Problem Description 
In this section, the mid-course trajectory optimization 

problem for short-range head-on engagement is defined. 
Figure 1 shows the trajectory from the launch point to the 
target detection point with the flight path angle and terminal 
range constraints. The flight path angle constraint is set to 
prevent excessive trajectory shaping and to engage faster in a 
safe area, and the terminal range constraint is set for the 
transition to the terminal phase at the distance of the target 
detection range of the seeker. The flight phase of a missile 
equipped with a solid propulsion system consists of a boost 
phase and glide phase based on the burning time, and the flight 

trajectory should consider both phases. The subscripts 0, 𝑓, 
and T indicate the initial, final, and target states, respectively, 
in Figure 1. Consider the nonlinear equations of motion in the 
two-dimensional longitudinal plane in Eq. (1) ~ Eq. (4) 
 

�̇� = 𝑉𝑐𝑜𝑠𝛾     (1) 

�̇� = 𝑉𝑠𝑖𝑛𝛾     (2) 

�̇� =
ଵ


(𝑇𝑐𝑜𝑠𝛼 − 𝐷) − 𝑔𝑠𝑖𝑛𝛾   (3) 

�̇� =
ଵ


(𝑇𝑠𝑖𝑛𝛼 + 𝐿) −

ଵ


𝑔𝑐𝑜𝑠𝛾   (4) 

where 

   𝑇 = ൜
𝑇 𝑡 ≤ 𝑡௧

0 𝑡 > 𝑡௧
    (5) 

   𝑚 = ቊ
𝑚 −

ೝ

௧ೝ
𝑡 𝑡 ≤ 𝑡௧

𝑚 − 𝑚௧ 𝑡 > 𝑡௧

   (6) 

   𝐿 = ቀ
ଵ

ଶ
𝜌𝑉ଶ𝑆ቁ ∙ ൫𝐶ഀ

𝛼൯   (7) 

   𝐷 = ቀ
ଵ

ଶ
𝜌𝑉ଶ𝑆ቁ ∙ ൫𝐶బ

+ 𝐶ഀ
𝛼ଶ൯  (8) 

 

where 𝑥, 𝑦, 𝑉, 𝛾  represent the downrange, altitude, velocity, 
and flight-path angle of the missile, respectively. And 𝑚 is the 
missile mass, 𝑔  is the gravitational constant, and 𝑇  is the 
thrust magnitude with thrust mass 𝑚௧ and burning time 𝑡௧. 
𝐿  and 𝐷  indicate the aerodynamic lift and drag forces, 
respectively, and are described in Eq. (7) and Eq. (8) in a 
simple form: 𝜌, 𝑆  represent the air density and reference 
area, respectively, and 𝐶ഀ

, 𝐶బ
, 𝐶ഀ

 are the aerodynamic 
coefficients of lift and drag, respectively. 

 

A. Optimization Problem 
For head-on engagement, the flight path angle during the 

transition from the mid-course phase to the terminal phase 
should be as small as possible against a level-flying target. 
This assumption holds true because typical long-range drones 
glide steadily for a high lift-to-drag ratio without maneuvering. 
Thus, the main objective of our system is to make the flight-
path angle at transition as close to 0deg as possible. In addition, 
during the entire flight regime, the angle of attack for short-
range tactical missiles was assumed to be small to ensure 
stability of the time-varying system. Therefore, the sinusoidal 
functions can be simplified as shown in Eq. (9) through the 
small-angle approximation: 
 
𝑐𝑜𝑠𝛼 ≈ 1, 𝑠𝑖𝑛𝛼 ≈ 𝛼    (9) 

 

 If the downrange, altitude, velocity, and flight path angle are 
selected as the state variables of the missile and the angle of 
attack and its square are selected as the control variables, the 
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nonlinear dynamic equations of the missile are described as 
follows: 

 

�̇� = 𝑓(𝑝) + 𝐵(𝑝)𝑢  

    =

⎣
⎢
⎢
⎢
⎡

𝑉𝑐𝑜𝑠𝛾
𝑉𝑠𝑖𝑛𝛾

்


− 𝑔𝑠𝑖𝑛 −

ఘమௌೝ

ଶ
𝐶బ

−
ଵ


𝑔𝑐𝑜𝑠𝛾 ⎦

⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡

0 0
0 0

0 −
ఘమௌೝ

ଶ
𝐶ഀ

ଵ


൬𝑇 +

ఘమௌೝ

ଶ
𝐶ഀ

൰ 0 ⎦
⎥
⎥
⎥
⎥
⎤

𝑢  (10) 

where Eq. (5), Eq. (6), and 

   𝑝 = [𝑥 𝑦 𝑉 𝛾]்    (11) 

𝑢 = [𝛼 𝛼ଶ]்     (12) 

 

where ṗ represents the derivatives of the state variable p with 
respect to time 𝑡. Within the limited engagement geometry, an 
excessively curved trajectory may be generated even behind 
the launch point. The constraint on the flight-path angle in Eq. 
(13) is set for a safe and fast engagement. 

 

𝛾 ≤ 𝛾௫     (13) 

 

 Because the square of the angle of attack is selected as the 
second input variable in Eq. (10) for the control-affine system, 
the first and second input variables have a direct relationship. 
In addition, because the acceleration limit of a guided missile 
is directly related to the angle of attack, the angle of attack 
limit is set to 𝛼௫ as follows: 

 

𝑢ଵ
ଶ = 𝑢ଶ      (14) 

0 ≤ 𝑢ଶ ≤ 𝑢௫(= 𝛼௫
ଶ )    (15) 

 

The mid-course phase of the guided missiles is converted to 
the terminal phase after a seeker detects and tracks a target. 
Although the seeker’s detection range generally varies 
depending on the environmental conditions, target size and 
shape, and detection algorithm, it is assumed to be constant for 
the design of the guidance algorithm. Therefore, the final 
condition of the mid-course phase is expressed by Eq. (16) and 
(17), respectively. 

 

𝑥൫𝑡൯ = 𝑥் − 𝑟ௗ cosγ൫𝑡൯    (16) 

𝑦൫𝑡൯ = 𝑦் − 𝑟ௗ sinγ൫𝑡൯    (17) 

 

Combining the dynamic equation and constraints described 
above, the original optimal control problem P0 can be defined 
as follows: 

 

• P0 : min 𝐽 = 𝛾൫𝑡൯ 

∙ dynamics : �̇� = 𝑓(𝑝) + 𝐵(𝑝)𝑢 

∙ state constraint: 𝛾(𝑡) ≤ 𝛾௫  

∙ control constraint : 𝑢ଵ
ଶ = 𝑢ଶ, 0 ≤ 𝑢ଶ ≤ 𝑢௫  

∙ initial condition: 𝑝(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝑉(𝑡), 𝛾(𝑡)]் 

∙ final condition : 𝑥൫𝑡൯ = 𝑥் − 𝑟ௗ cosγ൫𝑡൯ 

   𝑦൫𝑡൯ = 𝑦் − 𝑟ௗ sinγ൫𝑡൯ 

 

B. State Augmentation 
 To solve the optimization problem numerically, an 
independent variable with monotonic property and specific 
boundary values is required. In the P0 optimization problem, 
it is difficult to set an independent variable such as downrange 
or altitude, because the final boundary values are not 
determined owing to the terminal constraint. Therefore, in this 
paper, the normalized flight time from launch to the end of the 
mid-course phase was set to an additional state as follows: 
 
𝜏 = (𝑡 − 𝑡)/𝛽     (18) 

𝑑𝜏 = 𝑑𝑡/𝛽     (19) 

 
where 𝛽 is defined as the flight time from launch(𝑡) to the 

end of the mid-course phase(𝑡). If 𝛽 is added to a new state 
variable and is also used as an independent variable, the 
nonlinear dynamic equation of the missile is transformed as 
follows: 
 

𝑞′ =
ௗ

ௗఛ
= 𝑓(𝑞) + 𝐵(𝑞)𝑢  

    = 𝛽

⎣
⎢
⎢
⎢
⎢
⎡

𝑉𝑐𝑜𝑠𝛾
𝑉𝑠𝑖𝑛𝛾

்


− 𝑔𝑠𝑖𝑛 −

ఘమௌೝ

ଶ
𝐶బ

−
ଵ


𝑔𝑐𝑜𝑠𝛾

0 ⎦
⎥
⎥
⎥
⎥
⎤

+ 
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𝛽

⎣
⎢
⎢
⎢
⎢
⎡

0 0
0 0
0

ଵ


൬𝑇 +

ఘమௌೝ

ଶ
𝐶ഀ

൰

0

−
ఘమௌೝ

ଶ
𝐶ഀ

0
0 ⎦

⎥
⎥
⎥
⎥
⎤

𝑢  (20) 

where Eq. (5), Eq. (6), Eq. (12), and 

   𝑞 = [𝑥 𝑦 𝑉 𝛾 𝛽]்   (21) 

 
where q′  represents the derivatives of the state variable q 

with respect to dimensionless time 𝜏 . Based on the newly 
defined state and independent variables, the original problem 
P0 can be described as problem P1. 
 

• P1 : min 𝐽 = 𝛾൫𝜏൯ 

∙ dynamics : 𝑞′ = 𝑓(𝑞) + 𝐵(𝑞)𝑢 

∙ state constraint : 𝛾(𝜏) ≤ 𝛾௫  

∙ control constraint : 𝑢ଵ
ଶ = 𝑢ଶ, 0 ≤ 𝑢ଶ ≤ 𝑢௫  

∙ initial condition : 

           𝑞(𝜏) = [𝑥(𝜏), 𝑦(𝜏), 𝑉(𝜏), 𝛾(𝜏), 𝛽(𝜏)]் 

∙ final condition: 𝑥൫𝜏൯ = 𝑥் − 𝑟ௗ cosγ൫𝜏൯ 

   𝑦൫𝜏൯ = 𝑦் − 𝑟ௗ sinγ൫𝜏൯ 

 

III. Direct Transcription of Optimization Problem 
For the numerical approach to the P1 optimization problem, 

the remedies for the nonlinear dynamic equation and terminal 
constraints should be presented. First, the nonlinear equation 
and terminal constraints were convexified through 
linearization with the trust region. Second, continuous-time 
dynamic equations are converted into a discrete equivalent 
based on a trapezoidal rule with equal intervals. The phase 
transition from boost to glide will be carefully considered in 
the interval where the burning of solid propulsion ends. 
 
A. Linearization of Dynamics Equation 
The nonlinear dynamic equations in Eq. (20) are linearized 

based on the partial linearization method, which is different 
from the conventional linearization method in that it only 
linearizes the state part 𝑓(𝑞), not the control part 𝐵(𝑞). This 
has the advantage of reducing undesirable oscillations in the 
control profiles during the optimization process[21]. 
Assuming that the optimal solution in 𝑘-th iteration is 𝑞, the 
partial-linearized system of Eq. (20) is obtained asfollows: 
 

𝑞ᇱ = 𝐴(𝑞)𝑞 + 𝐵(𝑞)𝑢 + 𝑐(𝑞)   (22) 

 where 

   𝐴(𝑞) =
డ൫ೖ൯

డ
=

⎣
⎢
⎢
⎢
⎡
0 0
0 0
0 0

𝑎ଵଷ 𝑎ଵସ

𝑎ଶଷ 𝑎ଶସ

𝑎ଷଷ 𝑎ଷସ

𝑎ଵହ

𝑎ଶହ

𝑎ଷହ

0 0 𝑎ସଷ 𝑎ସସ 𝑎ସହ

0 0 0 0 0 ⎦
⎥
⎥
⎥
⎤

 (23) 

       𝑎ଵଷ = 𝛽𝑐𝑜𝑠𝛾 

     𝑎ଵସ = −𝛽𝑉𝑠𝑖𝑛𝛾 

       𝑎ଵହ = 𝑉𝑐𝑜𝑠𝛾 

       𝑎ଶଷ = 𝛽𝑠𝑖𝑛𝛾 

       𝑎ଶସ = 𝛽𝑉𝑐𝑜𝑠𝛾 

       𝑎ଶହ = 𝑉𝑠𝑖𝑛𝛾 

       𝑎ଷଷ = −𝛽𝜌𝑉𝑆𝐶బ
/(2𝑚) 

       𝑎ଷସ = −𝛽𝑔𝑐𝑜𝑠𝛾 

       𝑎ଷହ = 𝑇/𝑚 − 𝑔𝑠𝑖𝑛𝛾 −  𝜌(𝑉)ଶ𝑆𝐶బ
/(2𝑚) 

       𝑎ସଷ = 𝛽𝑔𝑐𝑜𝑠𝛾/(𝑉)ଶ 

       𝑎ସସ = 𝛽𝑔𝑠𝑖𝑛𝛾/𝑉 

       𝑎ସହ = −𝑔𝑐𝑜𝑠𝛾/𝑉 

   𝑐(𝑞) = 𝑓(𝑞) − 𝐴(𝑞)𝑞   (24) 

 
 Because linearization cannot preserve the actual nonlinear 
characteristics as they deviate from the reference point, the 
following trust region is required for the validity of 
linearization. 
 

|𝑞 − 𝑞| ≤ 𝑟       (25) 

 
where 𝑟  is a constant and the inequality corresponds to each 

element of the states individually. 
 
B. Linearization of Terminal Constraint  
 Because the terminal constraints in Eq. (16) and Eq. (17) are 
nonlinear equality equations, we must linearize them to 
formulate a convex problem. In this paper, we proceeded with 
two stages of linearization to obtain more accurate results, as 
proposed in Ref. [20]. First, we define the nonlinear terminal 
constraint as: 
 

ℎ(𝑞) = 
𝑥൫𝜏൯ − ቀ𝑥் − 𝑟ௗ𝑐𝑜𝑠𝛾൫𝜏൯ቁ

𝑦൫𝜏൯ − ቀ𝑦் − 𝑟ௗ𝑠𝑖𝑛𝛾൫𝜏൯ቁ
 = 0 (26) 

 
 In the first-stage linearization process, the second- or higher-
order terms are ignored, and the first-order linearization results 
are only used for optimization, as shown in Eq. (27). 
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ℎ(𝑞) + 𝐷(𝑞)(𝑞 − 𝑞) = 0   (27) 

 where 

   𝐷(𝑞) = ቈ
1 0 0 −𝑟ௗ𝑠𝑖𝑛𝛾൫𝜏൯ 0

0 1 0 𝑟ௗ𝑐𝑜𝑠𝛾൫𝜏൯ 0
 = 0 (28) 

 
Let us define 𝑞ଵ as the optimization result using first-stage 

linearization. In the second-stage linearization, the second-
order term of the terminal constraint is estimated, and the 
optimization process is repeated based on the results of the 
first-stage result. 
 

ℎ(𝑞) + 𝐷(𝑞)(𝑞 − 𝑞) + ℎ(𝑞ଵ) = 0  (29) 

where ℎ(𝑞ଵ) = ℎ(𝑞ଵ) − ℎ(𝑞) −  𝐷(𝑞)(𝑞ଵ − 𝑞) 

 
The final result obtained by the two stages of linearization is 

updated to 𝑞ାଵ. This approach can consider the second-order 
term of the Taylor series even without calculating the Hessian 
matrix. 
 
C. Discretization of Dynamic Equation 
Because the dynamic equation is described as a continuous 

differential equation, it should be converted into an algebraic 
form using an appropriate integration technique. In this paper, 
the trapezoidal technique, which is widely used in 
optimization, was applied for discretization[31,32]. 
 

𝑞
 = 𝑞ିଵ

 + (∆𝜏/2)ൣ𝑓൫𝑞ିଵ
 ൯ + 𝐵൫𝑞ିଵ

 ൯𝑢ିଵ
 ൧ 

     +(∆𝜏/2)ൣ𝑓൫𝑞ିଵ
 ൯ + 𝐵൫𝑞ିଵ

 ൯𝑢ିଵ
 ൧,   𝑖 = 1, … , 𝑁 (30) 

 
 where ∆𝜏(= 1/𝑁)  means the interval obtained from 
equivalent 𝑁 sections. In addition, because the missile has a 
specific burning time, 𝑡௧ in Eq. (5), it is necessary to identify 
the interval that includes the burning time and appropriately 
reflect this in the equation. The 𝑖்-th interval, which includes 
the burning time 𝑡௧  can be determined based on the 
estimated total flight time 𝛽 as in Eq. (31). Accordingly, the 
appropriate equation at interval was calculated using Eq. (32). 
 

(𝑖் − 1)/𝑁 ≤ (𝑡௧/𝛽)  ≤ (𝑖்/𝑁)   (31) 

𝑞

 = 𝑞ିଵ
 + 𝛿ଵ∆𝜏ൣ𝑓൫𝑞ିଵ

 ൯ + 𝐵൫𝑞ିଵ
 ൯𝑢ିଵ

 ൧ 

      +𝛿ଶ∆𝜏ൣ𝑓൫𝑞ିଵ
 ൯ + 𝐵൫𝑞ିଵ

 ൯𝑢ିଵ
 ൧,   𝑖 = 1, … , 𝑁 (32) 

 where 𝛿ଵ = 𝑖் − 𝑁(𝑡௧/𝛽), 𝛿ଶ = 1 − 𝛿ଵ 

 
Assuming that the mass of the missile decreases uniformly 

with time during the boost phase, the mass profile can be 
described using Eq. (31). 
 

𝑚
 = ൝

𝑚 − 𝑚௧ ቀ𝑖 ×
ఉ

ே∙௧ೝ
ቁ 𝑖 ≤ 𝑖௧

𝑚 − 𝑚௧ 𝑖 > 𝑖௧

  (33) 

 
Reflecting on the linearization and discretization results of 

the dynamic equation and the constraints mentioned above, the 
following optimization problem P2 can be defined: 
 

• P2 : min 𝐽 = 𝛾(𝜏ே) 

∙ dynamics : 𝑀𝑞ത = 𝐹 

∙ state constraint: 𝛾(𝜏) ≤ 𝛾௫ ,     𝑖 = 0: 𝑁 

                              |𝑞 − 𝑞| ≤ 𝜀 

∙ control constraint : 𝑢ଵ
ଶ(𝜏) = 𝑢ଶ(𝜏), 0 ≤ 𝑢ଶ(𝜏) ≤ 𝑢௫ 

∙ initial condition : 

           𝑞(𝜏) = [𝑥(𝜏), 𝑦(𝜏), 𝑉(𝜏), 𝛾(𝜏), 𝛽(𝜏)]் 

∙ final condition: ℎ(𝑞) + 𝐷(𝑞)(𝑞 − 𝑞) + ℎ(𝑞ଵ) = 0 

 

IV. Lossless Convexification 
In the case of the P2 optimization problem, the relationship 

between the two input variables is described in the control 
constraints, which is a non-convex constraint. If an equal sign 
is replaced with an inequality sign, the problem can be 
converted into a convex form and the optimization results can 
be easily solved. If the result of the relaxed optimization 
problem using the inequality sign is the same as that of the 
original optimization problem, it is called lossless 
convexification or exact convex relaxation. To date, lossless 
convexification has been demonstrated and used in various 
types of problems based on proof using the maximum 
principle of optimal control theory. In this section, we suggest 
lossless convexification related to the control constraint in the 
P2 optimization problem. 
 
A. Application to Optimal Control Theory 
Optimal control problems with state constraints have been 

proven using the maximum principle[29-33]. First, the trust 
region owing to linearization should be sufficiently large so 
that it does not apply as an additional barrier for the proof. This 
is reasonable in problems where nonlinearity is not significant 
and will be checked through simulation results in Section V. 
Accordingly, the Hamiltonian, Lagrangian, and endpoint 
functions of the P2 optimization problem are defined as 
follows: 
 

𝐻(𝜏) = 𝑝௫(𝑎ଵଷ𝑉 + 𝑎ଵସ𝛾 + 𝑎ଵହ𝛽 + 𝑐ଵ) 

              +𝑝௬(𝑎ଶଷ𝑉 + 𝑎ଶସ𝛾 + 𝑎ଶହ𝛽 + 𝑐ଶ) 
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              +𝑝(𝑎ଷଷ𝑉 + 𝑎ଷସ𝛾 + 𝑎ଷହ𝛽 + 𝑐ଷ + 𝑏ଷଶ𝑢ଶ) 

              +𝑝ఊ(𝑎ସଷ𝑉 + 𝑎ସସ𝛾 + 𝑎ସହ𝛽 + 𝑐ସ + 𝑏ସଵ𝑢ଵ)  (34) 

𝐿(𝜏) = 𝐻 + 𝜆(𝑢ଵ
ଶ − 𝑢ଶ) + 𝜆ଵ(−𝑢ଶ) + 𝜆ଶ(𝑢ଶ − 𝑢௫) 

              +𝜈ఊ(𝛾 − 𝛾௫  )     (35) 

𝐺൫𝜏൯ = 𝑝 ቀ𝛾൫𝜏൯ቁ + 𝜉௫൫𝑥൫𝜏൯ + 𝑑ଵସ𝛾൫𝜏൯ + ℎ௫൯ 

              +𝜉௬൫𝑥൫𝜏൯ + 𝑑ଶସ𝛾൫𝜏൯ + ℎ௬൯ 

              +𝜉ఊ൫𝛾൫𝜏൯ − 𝛾௫൯    (36) 

 

where 𝑝௫ , 𝑝௬ , 𝑝 , 𝑝ఊ  are the costate variables for each state, 
and 𝜆, 𝜆ଵ, 𝜆ଶ, 𝜈ఊ , 𝜉௫ , 𝜉௬ , 𝜉ఊ are Lagrangian multipliers for the 
control constraints, state constraint, and final conditions, 
respectively. And 𝑎  and 𝑏  are the elements of the i-th row 
and j-th column in 𝐴 and 𝐵  matrices, respectively, and 𝑐 are 
the elements of the i-th row in 𝑐 vector in Eq. (22). In addition, 
𝑑  is the element of the i-th row and j-th column in 𝐷 matrix 
in Eq. (28), and ℎ௫ , ℎ௬  are residual terms of 𝑥  and y 
constraints due to linearization of the final condition, as in Eq. 
(29). Based on the maximum principle in the Appendix, the 
differential equations for the costate variable are represented 
as follows: 
 

�̇�௫ = −𝜕௫𝐿(𝜏) = 0    (37) 

�̇�௬ = −𝜕௬𝐿(𝜏) = 0    (38) 

�̇� = −𝜕𝐿(𝜏) 

     = −൫𝑝௫𝑎ଵଷ + 𝑝௬𝑎ଶଷ + 𝑝𝑎ଷଷ + 𝑝ఊ𝑎ସଷ൯   (39) 

�̇�ఊ = −𝜕ఊ𝐿(𝜏) 

     = −൫𝑝௫𝑎ଵସ + 𝑝௬𝑎ଶସ + 𝑝𝑎ଷସ + 𝑝ఊ𝑎ସସ൯   (40) 

�̇�ఉ = −𝜕ఉ𝐿(𝜏) 

     = −൫𝑝௫𝑎ଵହ + 𝑝௬𝑎ଶହ + 𝑝𝑎ଷହ + 𝑝ఊ𝑎ସହ൯   (41) 

 
The stationary equations are described as follows. 

 

𝜕௨భ
𝐿(𝜏) = 𝑝ఊ𝑏ସଵ + 2𝜆𝑢ଵ = 0   (42) 

𝜕௨మ
𝐿(𝜏) = 𝑝𝑏ଷଶ − 𝜆 − 𝜆ଵ + 𝜆ଶ = 0  (43) 

 
The complementary slackness conditions for the state and 

control variables are shown as follows. 
 

𝜆 ≤ 0,   𝜆(𝑢ଵ
ଶ − 𝑢ଶ) = 0    (44) 

𝜆ଵ ≤ 0,   𝜆ଵ(−𝑢ଶ) = 0    (45) 

𝜆ଶ ≤ 0,   𝜆ଶ(𝑢ଶ − 𝑢௫) = 0   (46) 

𝜈ఊ ≤ 0,   𝜈ఊ(𝛾 − 𝛾௫) = 0   (47) 

𝜉ఊ ≤ 0,   𝜉ఊ൫𝛾൫𝜏൯ − 𝛾௫൯ = 0   (48) 

 

The transversality conditions appears as follows 
 

𝑝௫൫𝜏൯ = 𝜕௫𝐺൫𝜏൯ = 𝜉௫    (49) 

𝑝௬൫𝜏൯ = 𝜕௬𝐺൫𝜏൯ = 𝜉௬    (50) 

𝑝൫𝜏൯ = 𝜕𝐺൫𝜏൯ = 0    (51) 

𝑝ఊ൫𝜏൯ = 𝜕ఊ𝐺൫𝜏൯ = 𝑝 + 𝜉௫𝑑ଵସ + 𝜉௬𝑑ଶସ + 𝜉ఊ (52) 

𝑝ఉ൫𝜏൯ = 𝜕ఉ𝐺൫𝜏൯ = 0    (53) 

 
B. Approach to Lossless Convexfication 
Proof by contradiction is used to approach lossless 

convexification. Let us assume that there exists a certain 
interval [𝜏ଵ, 𝜏ଶ] ⊂ ൣ𝜏, 𝜏൧  that satisfies 𝑢ଵ

ଶ < 𝑢ଶ . There 
should exist a constant 𝑝 ≤ 0 for an optimal solution (𝑞∗, 𝑢∗) 
that satisfies the conditions of the maximum principle. 
 
(i) Based on this assumption, the following conditions are 
satisfied in the intervals [𝜏ଵ, 𝜏ଶ]. 
 

𝑢ଵ
ଶ < 𝑢ଶ,   𝑢ଶ > 0     (54) 

 

The Lagrange multipliers λ and λଵ can be determined from 
the complementary slackness conditions in Eq. (44) and Eq. 
(45). 
 

𝜆 = 𝜆ଵ = 0      (55) 

 
(ii) From the stationary condition of 𝑢ଵ,. 
 

𝜕௨భ
𝐿(𝜏) = 𝑝ఊ𝑏ସଵ + 2𝜆𝑢ଵ = 𝑝ఊ𝑏ସଵ 

     = 𝑝ఊ ቆ
ఉ


൬𝑇 +

ఘమௌೝ

ଶ
𝐶ഀ

൰ቇ = 0   (56) 

 
Because T is greater than or equal to 0 and  𝜌, 𝑆 , 𝑚, 𝐶ഀ

, 𝛽 
are generally positive,  
 

𝑝ఊ = 0      (57) 

 
(iii) From the stationary condition of 𝑢ଶ,. 
 

𝜕௨మ
𝐿(𝜏) = 𝑝𝑏ଷଶ − 𝜆 − 𝜆ଵ + 𝜆ଶ 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3491992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 7 

              = 𝑝𝑏ଷଶ + 𝜆ଶ = 0    (58) 

 

As λଶ is less than or equal to 0, pbଷଶ should be greater than 
or equal to zero. The control variable parts in the Hamiltonian 
of Eq. (34) is derived as follows: 
 

𝐻௨(𝜏) = 𝑝ఊ𝑏ସଵ𝑢ଵ + 𝑝𝑏ଷଶ𝑢ଶ   (59) 

 
Based on the pointwise maximum condition, 𝑢ଶ in Eq. (59) 

was determined according to the switching function pbଷଶ. 
 

𝑢ଶ ∈ [0, 𝑢௫]   𝑖𝑓   𝑝𝑏ଷଶ = 0   (60) 

𝑢ଶ = 0                 𝑖𝑓   𝑝𝑏ଷଶ > 0   (61) 

 
From Eq. (54), 𝑢ଶ  should be positive, and p  can be 

calculated as follows under the condition of 𝑏ଷଶ < 0. 
 

𝑝 = 0      (62) 

 
(iv) Using 𝑝 = 𝑝ఊ = 0  in Eq. (57) and Eq. (62), the 
differential equations in Eq. (37) to Eq. (40) can be expressed 
as follows: 
 

𝑝௫ = 𝑙௫      (63) 

𝑝௬ = 𝑙௬      (64) 

𝑝௫𝑎ଵଷ + 𝑝௬𝑎ଶଷ = 𝑙௫𝛽𝑐𝑜𝑠𝛾 + 𝑙௬𝛽𝑠𝑖𝑛𝛾 = 0  (65) 

𝑝௫𝑎ଵସ + 𝑝௬𝑎ଶସ = −𝑙௫𝛽𝑉𝑠𝑖𝑛𝛾 + 𝑙௬𝛽𝑉𝑐𝑜𝑠𝛾 = 0 (66) 

 

where 𝑙௫ and 𝑙௬ indicate constant values. By manipulation of 
Eq. (65) and Eq. (66),  

 

൫𝑙௫𝛽𝑐𝑜𝑠𝛾 + 𝑙௬𝛽𝑠𝑖𝑛𝛾൯𝑉𝑠𝑖𝑛𝛾 + 

     ൫−𝑙௫𝛽𝑉𝑠𝑖𝑛𝛾 + 𝑙௬𝛽𝑉𝑐𝑜𝑠𝛾൯𝑐𝑜𝑠𝛾 = 𝑙௬𝛽𝑉 = 0 (67) 

൫𝑙௫𝛽𝑐𝑜𝑠𝛾 + 𝑙௬𝛽𝑠𝑖𝑛𝛾൯𝑉𝑐𝑜𝑠𝛾 − 

     ൫−𝑙௫𝛽𝑉𝑠𝑖𝑛𝛾 + 𝑙௬𝛽𝑉𝑐𝑜𝑠𝛾൯𝑠𝑖𝑛𝛾 = 𝑙௫𝛽𝑉 = 0 (68) 

 
Because 𝛽 and 𝑉 are positive under normal circumstance, 𝑙୶ 

and 𝑙୷ should be zero. Therefore, 𝑝௫ and 𝑝௬ were zero in Eq. 
(63) and Eq. (64). 
 

𝑝௫ = 𝑝௬ = 0      (69) 

 

According to Eq. (41) with Eq. (53), Eq. (57), Eq. (62), and 
Eq. (69), 𝑝ఉ  is a constant, and its final value must be zero; 
therefore, it should be zero, as follows: 
 

𝑝ఉ = 0      (70) 

 
(v) Combining Eq. (57) and Eq. (69) with Eq. (49), Eq. (50) 
and Eq. (52), 
 

𝜉௫ = 𝜉௬ = 0      (71) 

𝑝 + 𝜉௫𝑑ଵସ + 𝜉௬𝑑ଶସ + 𝜉ఊ = 𝑝 + 𝜉ఊ = 0  (72) 

 
(vi) The flight-path angle constraint is described as follows: 
 

𝑆(𝑞) = 𝛾 − 𝛾௫ ≤ 0    (73) 

 
The constraint 𝑆(𝑞) is a first-order constraint with respect to 

the control, and then the derivatives of the constraint are 
calculated. 
 

ௗௌ()

ௗ
= [0 0 0 1 0]்   (74) 

𝑆(𝑞)ᇱ =  𝛾ᇱ =  −
ఉ


𝑔𝑐𝑜𝑠𝛾 +

ఉ


൬𝑇 +

ఘమௌೝ

ଶ
𝐶ഀ

൰ 𝑢ଵ  (75) 

 
 Then, 

⎣
⎢
⎢
⎢
⎢
⎡
𝑝௫(𝜏ଵ

ି)

𝑝௬(𝜏ଵ
ି)

𝑝(𝜏ଵ
ି)

𝑝ఊ(𝜏ଵ
ି)

𝑝ఉ(𝜏ଵ
ି)⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑝௫(𝜏ଵ

ା)

𝑝௬(𝜏ଵ
ା)

𝑝(𝜏ଵ
ା)

𝑝ఊ(𝜏ଵ
ା)

𝑝ఉ(𝜏ଵ
ା)⎦

⎥
⎥
⎥
⎥
⎤

+ 𝜂(𝜏ଵ)

⎣
⎢
⎢
⎢
⎡
0
0
0
1
0⎦

⎥
⎥
⎥
⎤

   (76) 

 
 Because 𝑝ఊ is zero at all intervals in Eq. (57), 𝜂(𝜏ଵ) should be 
zero. 
 

𝜂(𝜏ଵ) = 0      (77) 

 

(vii) Because the Hamiltonian, endpoint, and state constraint 
functions are autonomous,  

 

𝐻(𝑡) = 0          ∀𝑡     (78) 

 

 Summarizing the above results in this section, except for 𝑝 
and 𝜉ఊ, all other values of the costate, Lagrangian multiplier, 
and junction point vector are zero. In the next section, we 
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propose a modified problem to overcome the last hurdle for 
lossless convexification. 

 

C. Modified Problem Proposal 
For lossless convexfication, the regularization term 

−𝑐𝑉(τே), which is relatively small compared to the value of 
𝛾(𝜏ே), is added to the objective function as in optimization 
problem P3. This maximizes the terminal velocity, which can 
be adjusted according to the value of 𝑐 . 
 

• P3 : min 𝐽 = 𝛾(𝜏ே) − 𝑐𝑉(τே) 

∙ dynamics : 𝑀𝑞ത = 𝐹 

∙ state constraint: 𝛾(𝜏) ≤ 𝛾௫ ,     𝑖 = 0: 𝑁 

∙ control constraint : 𝑢ଵ
ଶ(𝜏) = 𝑢ଶ(𝜏), 0 ≤ 𝑢ଶ(𝜏) ≤ 𝑢௫ 

∙ initial condition : 

           𝑞(𝜏) = [𝑥(𝜏), 𝑦(𝜏), 𝑉(𝜏), 𝛾(𝜏), 𝛽(𝜏)]் 

∙ final condition: ℎ(𝑞) + 𝐷(𝑞)(𝑞 − 𝑞) + ℎ(𝑞ଵ) = 0 

 
 When the objective function is adjusted, the endpoint function 
in Eq. (36) is converted as follows, whereas the Hamiltonian 
of Eq. (34), and the Lagrangian of Eq. (35) remains the same.  
 

𝐺൫𝜏൯ = 𝑝 ቀ𝛾൫𝜏൯ − 𝑐𝑉(𝜏ே)ቁ 

              +𝜉௫൫𝑥൫𝜏൯ + 𝑑ଵସ𝛾൫𝜏൯ + ℎ௫൯ 

              +𝜉௬൫𝑥൫𝜏൯ + 𝑑ଶସ𝛾൫𝜏൯ + ℎ௬൯ 

              +𝜉ఊ൫𝛾൫𝜏൯ − 𝛾௫൯    (79) 

 
 Based on Eq. (71) and Eq. (79), the transversality conditions 
in Eq. (51) and Eq. (52) are converted as follows:  
 

𝑝൫𝜏൯ = 𝜕𝐺൫𝜏൯ = −𝑐𝑝   (80) 

𝑝ఊ൫𝜏൯ = 𝜕ఊ𝐺൫𝜏൯ = 𝑝 + 𝜉ఊ   (81) 

 
 From the Eq. (57), Eq. (62), and Eq. (78), 𝑝 and 𝜉ఊ should 
be zero, which is not determined in the original problem. 
Summarizing the above results, the following conclusions can 
be drawn.  
 

(𝑝, 𝑝(𝜏), 𝜆(𝜏), 𝜈(𝜏), 𝜉, 𝜂(𝜏ଵ), … ) = 0,          ∀𝜏 (82) 

 

 This contradicts the non-triviality condition (A.4) in the 
maximum principle of the Appendix. Therefore, the following 
equation holds: 
 

𝑢ଵ
ଶ(𝜏) = 𝑢ଶ(𝜏),       𝑎. 𝑒.   𝜏 ∈ ൣ𝜏, 𝜏൧  (83) 

 
 Following the proof of lossless convexification, the 
optimization problem P3 is relaxed exactly as the following 
optimization problem P4. 
 

• P4 : min 𝐽 = 𝛾(𝜏ே) − 𝑐𝑉(τே) 

∙ dynamics : 𝑀𝑞ത = 𝐹 

∙ state constraint: 𝛾(𝜏) ≤ 𝛾௫ ,     𝑖 = 0: 𝑁 

∙ control constraint : 𝑢ଵ
ଶ(𝜏) ≤ 𝑢ଶ(𝜏), 0 ≤ 𝑢ଶ(𝜏) ≤ 𝑢௫  

∙ initial condition : 

           𝑞(𝜏) = [𝑥(𝜏), 𝑦(𝜏), 𝑉(𝜏), 𝛾(𝜏), 𝛽(𝜏)]் 

∙ final condition: ℎ(𝑞) + 𝐷(𝑞)(𝑞 − 𝑞) + ℎ(𝑞ଵ) = 0 

 

V. Simulation Results 
In this section, a mid-course trajectory optimization for 

ground-to-air missiles satisfying the flight-path angle 
constraint was generated using sequential convex 
programming. The following table lists the specifications of 
the missile used in the numerical simulation. 
 

TABLE I 
SPECIFICATION OF GROUND-TO-AIR MISSILE 

Parameter Specification 

Missile Weight 30 kg 

Propellant Weight 8kg 

Thrust 6000 N 

Burning Time 3.0 sec 

Seeker Detection Range 1.0 km 

Max. Flight Path Angle 80 deg 

Max. Angle-of-Attack 10 deg 

 
The initial condition of missile is set to be as follows : 
 

𝑞(𝜏) = [0𝑚, 0𝑚, 20𝑚/𝑠, 50𝑑𝑒𝑔, 20𝑠𝑒𝑐]்  (84) 

 
 The distance and altitude of the target were 2km and 4 km, 
respectively. Therefore, the gravitational acceleration is 
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considered as a constant since the variation of gravitational 
acceleration with respect to altitude is trivial. The discrete 
section was set to 400, which means that the corresponding 
discrete points were 401, including the initial point. The trust 
region and convergence condition were set as follows: 
 

𝑟 = [5𝑘𝑚, 5𝑘𝑚, 1𝑘𝑚/𝑠, 50𝑑𝑒𝑔, 30𝑠𝑒𝑐]்   (85) 

𝜀 = [1𝑚, 1𝑚, 0.5𝑚/𝑠, 0.1𝑑𝑒𝑔, 0.1𝑠𝑒𝑐]்  (86) 

 
The trust region is sufficiently large considering the feasible 

range of each variable and the assumption of lossless 
convexification. The convergence condition was set to be 
small, based on the computation time and convergence 
stability within 20 iterations. The initial profile of each state 
and the control were set as lines connecting the initial and final 
conditions. All the simulations were run using MOSEK, which 
is state-of-the-art interior point methods, on a desktop with an 
Intel i5-6400 CPU with a clock-frequency of 2.7GHz and 
16GB RAM. 
 

FIGURE 2. Sequential Convergence of Flight Trajectory on P4 problem 
with 𝒄𝑽 = 𝟎. 𝟎𝟎𝟏𝟓 

 
A. Verification of Lossless Convexification 
In this section, the convergence results of sequential convex 

programming and validity of the modified problem proposal 
are presented. 
 
a) Sequential convex programming results with 𝑐 = 0.0015 
 From Figure 2, it can be observed that the converged 
trajectory is obtained after 7 iterations, even though the initial 
trajectory and the trajectory after the first iteration are 
significantly different from the final trajectory. This indicates 
that the converged result can be quickly obtained even if the 
initial guess is significantly different from the final value, 
which is one of the main advantages of convex programming. 
Figure 3 and 4 represent the convergence of the velocity, flight 
path angle, respectively. Similar to the flight trajectory, even 
if the initial value is very inaccurate, it can be seen that 
converged results are quickly obtained. In the case of velocity, 

an appropriate profile is obtained by reflecting the thrust 
profile. The constraint of the flight path angle is satisfied in all 
iterations, and the final value of the flight path angle is 
calculated to be approximately 32°. 
 

FIGURE 3. Sequential Convergence of Velocity on P4 problem with 𝒄𝑽 =
𝟎. 𝟎𝟎𝟏𝟓 

 

FIGURE 4. Sequential Convergence of Flight Path Angle on P4 problem 
with 𝒄𝑽 = 𝟎. 𝟎𝟎𝟏𝟓 

 

 

FIGURE 5. Sequential Convergence of Flight Time on P4 problem with 
𝒄𝑽 = 𝟎. 𝟎𝟎𝟏𝟓 
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Figure 5 shows the sequential convergence of flight time. For 
flight time, the initial guess was set to be 20sec. However, it 
can be seen that as the iteration progresses, it converges to a 
certain value. The residual function 𝐸 is defined as in Eq. (87) 
to check the quantitative convergence of the proposed 
sequential algorithm. It represents errors of trapezoidal 
approximation of original nonlinear dynamics in each 
iteration[33].  
 

𝐸(𝑞, 𝑢) = ∑ ቛ𝑞ିଵ
 − 𝑞

 +
∆ఛ

ଶ
ൣ𝑓൫𝑞ିଵ

 ൯ +ே
ୀଵ

                          𝐵൫𝑞ିଵ
 ൯𝑢ିଵ

 + 𝑓൫𝑞
൯ + 𝐵(𝑞

)𝑢
൧ቛ

ଵ
    (87) 

 

FIGURE 6. Sequential Values of Residual Function 

 
Figure 6 shows the natural logarithm of residual function and 

it can be seen that residual values continuously decreasing 
with iteration. The following figure shows the comparison 
results of two control variables, 𝑢ଵ

ଶ and 𝑢ଶ, and shows that two 
values are calculated to be the same, and then lossless 
convexification was successfully performed as proved in 
Section IV. 
 

FIGURE 7. Comparison Result of Control Variable on P4 problem with 
𝒄𝑽 = 𝟎. 𝟎𝟎𝟏𝟓 

 
b) Sequential convex programming results with 𝑐 = 0 

 If there is no regularization term, as in the original problem, 
lossless convexification is not guaranteed, as explained in 
Section IV. In Figure 8, the results of the two control variables 
are not the same in some intervals in the case of the no 
regularization term. In this case, it is difficult to determine 
whether the optimization results are trustworthy. 
 

FIGURE 8. Comparison Result of Control Variable on P4 problem without 
regularization term (𝒄𝑽 = 𝟎) 

 
 For practical application, the sensitivity of initial conditions 
or parameter settings is a very important factor. Therefore, the 
comparative simulation results with different initial conditions 
and various number of discrete sections are shown in the 
following. At first, the initial flight path angle in Eq. (84) is 
changed from 30° to 60° in 10° intervals for the sensitivity of 
initial condition. Figure 9 shows the converged trajectory from 
different initial flight path angle and it can be seen that they 
have quite similar profile of control variable with different 
transition time in Figure 10. For convergence check, 
sequential values of the residual function in Eq. (87) are 
generated in Figure 11. The number of iteration may differ 
depending on the initial conditions, but it can be confirmed 
that it shows convergent characteristics in all cases. 
 

FIGURE 9. Comparison Result of Trajectory from Different Initial Flight 
Path Angle 
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FIGURE 10. Comparison Result of Control Variable from 
Different Initial Flight Path Angle 

 

FIGURE 11. Comparison Result of Sequential Values of 
Residual Function from Different Initial Flight Path Angle 

 
 The sensitivity with respect to discrete sections is checked in 
Figure 12. The discrete sections are set to be from 200 to 500 
in 100 intervals. Independet of the number of discrete sections, 
it can be  seen that the convergent results are generated. 
 

FIGURE 12. Comparison Result of Sequential Values of 
Residual Function from Different Initial Flight Path Angle 

 

B. Comparison with Optimal Guidance Laws 
 In this section, the convex programming results for surface-
to-air engagements are compared with the results of the widely 
used impact-angle-constrained optimal guidance law. In 
general, the optimal guidance law is designed without 
considering the velocity variation, corresponding acceleration 
limit, and flight path angle constraint. Therefore, it is difficult 
to generate optimal results in a realistic environment even 
though it provides an applicable simple analytical solution.  

 

FIGURE 13. Comparison Result of Flight Trajectory to OGL with 
the same Impact Angle 

 

FIGURE 14. Comparison Result of Flight Path Angle to OGL 
with the same Impact Angle 

 
 The convex programming results were compared to the 
results of the optimal guidance law with the same impact angle 
constraint of 32° in Figure 13 and 14. It can be seen that the 
optimal guidance law yields a more curved trajectory than the 
convex programming trajectory, which indicates that a larger 
maximum flight path angle is obtained using the optimal 
guidance law. The maximum flight path angle of the optimal 
guidance law was approximately 86°, which exceeded the 
flight path angle constraint of 80°. Figure 15 shows the 
comparison results for the control variable. It shows that the 
convex programming generates bang-off-bang type command, 
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while the optimal guidance law produces a continuous control 
command within the control limit. 
   

FIGURE 15. Comparison Result of Control Variable to OGL with 
the same Impact Angle 

 
It can be observed that the period in which the control 

command is calculated as 0 is the same as the period in which 
the flight path angle is limited. For practical applications, the 
dynamics of the autopilot and predictable errors should be 
additionally considered in the optimization problem. 
Therefore, the related effect should be considered in the 
optimization procedure. 
 

FIGURE 16. Comparison Result of Flight Trajectory to OGL with 
the same FPA Constraint 

 
If the maximum flight path angle constraint of the sequential 

convex programming is adjusted to 86°, which is the 
maximum flight path angle by the optimal guidance law, the 
final flight path angle of the sequential convex programming 
is estimated to be approximately 20°. Figure 16 and 17 show 
flight trajectory and flight path angle with same flight path 
angle constraint for OGL and convex approach. This 
demonstrates the potential of sequential convex programming 
to be superior to simple analytic guidance laws in time-varying 
systems with constraints. 
 

FIGURE 17. Comparison Result of Flight Path Angle to OGL 
with the same FPA Constraint 

 
C. Comparison with Nonlinear Programming Results 
In this section, we compare the results of sequential convex 

programming and those of GPOPS-II, which is a widely used 
nonlinear programming method for optimization.  

 

FIGURE 18. Comparison Result of Flight Trajectory to GPOPS-
II 

 

FIGURE 19. Comparison Result of Missile Velocity to GPOPS-II 

 
 The solver and tolerance of the GPOPS-II were set to IPOPT 
or SNOPT and 10ିଷ  or 10ିସ , respectively. The objective 
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function is set to be the same as that of the convex problem, 
including the regularization term −𝑐𝑉(𝜏ே) . If the 
regularization term is not included in the objective function, 
the simulation results of GPOPS-II do not converge or highly 
oscillate, unlike convex programming, which shows 
convergence results that do not satisfy the control constraint. 
Figure 18, 19, and 20 show the comparison results for the 
flight trajectory, velocity, and flight path angle under the 
setting of INOPT and 10ିଷ, respectively. It indicates that the 
overall results are very similar to those of convex approach. 
 

FIGURE 20. Comparison Result of Flight Path Angle to GPOPS-
II 

 
 Figure 21 shows the final profile of the angle-of-attack 
command generated within the control limit. Although the 
overall result is very similar, it can be seen that slightly 
different results have been generated at times of abrupt 
command change. While convex programming produces a 
smoother angle-of-attack command, GPOPS-II occasionally 
provides a sharp result for tolerance of 1e-3. 
 

FIGURE 21. Comparison Result of Control Variable to GPOPS-
II 

 
Since this can be influenced by the tolerance and solver of 

GPOPS-II, the results of control variable according to the 
tolerance and solver in Figure 22 and Figure 23. It can be seen 

that as the tolerance decreases to 1e-4, smoother result is 
obtained, but, reducing the tolerance means that it takes more 
calculation time as described in Table 2. And there is also a 
slight, though not significant, difference depending on solvers 
such as IPOPT and SNOPT in this problem. 
 

FIGURE 22. Influence of Solver with 1e-4 Tolerance of GPOPS-
II 

 

FIGURE 23. Influence of Tolerance for IPOPT solver of GPOPS-
II 

 
From the perspective of computational efficiency and 

applicability to real-time environment, convergence time is 
very crucial factor. Therefore, convergence times of convex 
approach and GPOPS-II are summarized in Table 2. 
 

TABLE II 
CONVERGENCE TIME OF CONVEX AND GPOPS-II APPROACH 

Method Convergence Time 

Convex Approach 0.9901 sec 

IPOPT with 1e-3 (GPOPS-II) 1.4086 sec 

IPOPT with 1e-4 (GPOPS-II) 39.4363 sec 

SNOPT with 1e-3 (GPOPS-II) 0.8540 sec 

SNOPT with 1e-4 (GPOPS-II) 28.2632 sec 
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The results represent the average of 10 simulations, which 
are stably converged with small deviation in all cases. In case 
of convex approach, it takes less than 1 sec, whereas for 
GPOPS-II, there is a significant difference in computation 
time depending on the tolerance and solver settings. In order 
to achieve smooth result of control variable, a tolerance 
smaller than 1e-3 is required, which indicates that it takes 
more computation time than convex approach from Table 2. 
In general, nonlinear programming methods are more 
sensitive to initial conditions or detailed settings than convex 
programming for various applications. On the other hand, 
although the result of proposed convex approach shows more 
efficient than those of nonlinear programming, it seems to be 
rather long for real-time applications. However, it can be used 
effectively even if the guidance command in the mid-course 
guidance phase updates the optimal trajectory within tens or 
hundreds of milliseconds. In particular, the computation time 
of convex programming can be further reduced by adjusting 
the convergence condition, the number of discrete section, or 
applying customized algorithm to the individual problem. 
Therefore, the related research needs to be carried out to 
increase the possibility of practical applications. 
 

VI. CONCLUSION 
This paper provides a mid-course trajectory optimization of 

ground-to-air missiles for aerial defense systems based on 
sequential convex programming. To consider the time-
varying characteristics of a solid propulsion system with 
state and control constraints, a convex programming 
approach is applied to generate the trajectory. The original 
nonlinear optimization problem was converted into a convex 
optimization problem using state augmentation, linearization 
of dynamics and constraints, and lossless convexification. To 
cope with the free final problem, the flight time was 
augmented to the original problem as an additional state. The 
nonlinear terms of the nonlinear equation and terminal 
constraint are linearized in convex form. For lossless 
convexification of the nonlinear control constraint, a 
modified problem is suggested using the regularization term 
of the final velocity and is proved based on the maximum 
principle. The results of the sequential convex programming 
show that the control constraint in the modified problem is 
exactly relaxed, whereas this is not the case for the original 
problem. It was also shown that the convex approach is more 
stable and robust to the initial conditions and state and 
control constraints with computational efficiency. Finally, 
the results of the analytic impact angle guidance law and 
nonlinear programming approaches were considered for 
comparison with the proposed approach. In conclusion, the 
proposed convex approach presents a method for stable and 
robust optimization to maximize the engagement area in a 
time-varying system with various constraints. 
 

APPENDIX 
 From the optimal control theory, the Hamiltonian, the 
Lagrangian, and the endpoint function are defined as follows 
[30,35] : 
 

𝐻(𝑡) = 𝑝𝑙(𝑡) + 𝑝்(𝑡)𝑓(𝑡)   (A.1) 

𝐿(𝑡) = 𝐻(𝑡) + 𝜆்(𝑡)𝑔(𝑡) + 𝜈(𝑡)ℎ(𝑡)  (A.2) 

𝐺൫𝑡൯ = 𝑝𝜑൫𝑡൯ + 𝜉்(𝑡)𝑏൫𝑡൯ + 𝜁்(𝑡)ℎ൫𝑡൯ (A.3) 

 
where l(t)  and φ(t)  represent the Lagrangian term for 
running cost and Mayer term for terminal cost, respectively. 
And 𝑝(t) is the costate variable, and 𝜆, 𝜈, 𝜉, 𝜁 are multipliers. 
The following theorem represents the maximum principle 
with state constraints[30,35]. 
 
Theorem. Let {𝑥(∙), 𝑢(∙)} be an optimal pair on the interval 
ൣ𝑡, 𝑡൧ such that 𝑥(∙) has a finite number of junction times. 

Then there exist a constant 𝑝 ≤ 0,, a piecewise absolutely 
continuous 𝑝(∙) , piecewise continuous 𝜆(∙)  and 𝜈(∙) , a 
vector 𝜂(𝑖)  for each point of discontinuity 𝑖  in 𝑝(∙) , and 
costate 𝜉  and 𝜁  such that the following conditions are 
satisfied. 
 
(i) the non-triviality condition 

(𝑝, 𝑝(𝑡), 𝜆(𝑡), 𝜈(𝑡), 𝜉, 𝜁, 𝜂(𝜏ଵ), … ) ≠ 0  (A.4) 

 
(ii) the pointwise maximum condition 

𝑢(𝑡) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝐻(𝑡, 𝑥(𝑡), 𝜔, 𝑝(𝑡), 𝑝)  𝑎. 𝑒. 𝑡   𝜔 ∈ 𝛺(𝑡)
      (A.5) 

 
(iii) the differential equation 

�̇�(𝑡) = 𝜕𝐿(𝑡)      (A.6) 

−�̇�(𝑡) = 𝜕௫𝐿(𝑡)   𝑎. 𝑒. 𝑡    (A.7) 

�̇�(𝑡) = 𝜕௧𝐿(𝑡)      (A.8) 

 
(iv) the stationary condition 

𝜕௨𝐿(𝑡) = 0   𝑎. 𝑒. 𝑡    (A.9) 

 
(v) the complementary slackness condition 

𝑔(𝑡) ≤ 0, 𝜆(𝑡) ≤ 0, 𝜆்(𝑡)𝑔(𝑡) = 0   𝑎. 𝑒.  𝑡  (A.10) 

ℎ(𝑡) ≤ 0, 𝜈(𝑡) ≤ 0, 𝜈்(𝑡)ℎ(𝑡) = 0   𝑎. 𝑒.  𝑡  (A.11) 

ℎ(𝜏) ≤ 0, 𝜂(𝜏) ≤ 0, 𝜂்(𝜏)ℎ(𝜏) = 0   ∀𝜏  (A.12) 

ℎ൫𝑡൯ ≤ 0, 𝜁 ≤ 0, 𝜁்ℎ൫𝑡൯ = 0   (A.13) 
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(vi) the jump condition 

𝑝்(𝜏
ି) = 𝑝்(𝜏

ା) + 𝜂்(𝜏)𝜕௫ℎ(𝜏)   ∀𝜏  (A.14) 

𝐻்(𝜏
ି) = 𝐻்(𝜏

ା) − 𝜂்(𝜏)𝜕௧ℎ(𝜏)   ∀𝜏  (A.15) 

 
(vii) the prescribed boundary condition 

𝑥(𝑡) = 𝑥, 𝑏൫𝑡൯ = 0    (A.16) 

 
(viii) the transversality condition 

𝑝்൫𝑡൯ = 𝜕௫𝐺൫𝑡൯    (A.17) 

−𝐻்൫𝑡൯ = 𝜕௧𝐺൫𝑡൯    (A.18) 
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