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ABSTRACT In this study, we propose a method called “CLIPFontDraw” which enables a user to generate
font images stylized according to text input without reference style image. By combining a large-scale
multimodal model(CLIP) and a differentiable renderer, our proposed method generates a style matching a
short input text and renders font images of individual characters in that style. Furthermore, our approach
can also render simple logo patterns with the generated styles. The results of an experimental evaluation of
our proposed method show that its output was more readable and expressed the input text more clearly than
existing baselines.

INDEX TERMS font style transfer, font synthesis, CLIP, differentiable renderer

I. INTRODUCTION

ALTHOUGH a broad range of artistic fonts is widely
used in graphic media such as web pages and advertise-

ments, their designs differ considerably and designing fonts
for various character sets, such as those used in Chinese and
Japanese, as well as common alphanumeric characters re-
quires a great deal of effort. On the other hand, new methods
for generating artistically designed characters have been pro-
posed based on emerging image synthesis technologies using
deep learning models. However, existing methods involve
some significant limitations, such as depending on prepared
reference images as sources for style transfer to a glyph
and a corresponding background image. Recently, a method
called CLIPstyler [1] was proposed to stylize general images
using styles generated from short strings of text written in
natural language. Although CLIPstyler can be used to style
individual characters, it was not developed for that purpose,
and its output may not be satisfactory in terms of graphic
design. As shown in Figure 1, given individual characters
as input images, CLIPstyler only changed the color of the
text, primarily the background, and the outline and texture of
the character itself were not significantly stylized according
to the prompt. Additionally, because this method lacks a
mechanism to distinguish between the foreground and back-
ground, when font images are used as input, the style may
unintentionally be applied to backgrounds unrelated to the
font.

In this study, we propose a method to stylize images of

FIGURE 1. Comparison of the proposed method and CLIPstyler [1].

individual characters using only a short text string written in
natural language as input. Our proposed approach optimizes
the parameters of a set of Bezier curves using a differen-
tiable renderer [2], transforming an input image with a style
generated from a prompt written in natural language using
the large-scale multimodal model CLIP [3]. Our method
represents the font characters as a set of Bezier curves, and by
updating only the parameters of the Bezier curves, the style is
transferred without changing the background. Furthermore, it
enables the generation of more artistic fonts than the result of
style transfer with CLIPstyler.

In this paper, we review the methodology of our previous
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work [4] and remove loss functions that do not affect the
generated results. In addition, we have added comprehensive
experiments such as ablation study and user study. Code is
available at https://github.com/Squ602/Font_Style_Transfer.

In summary, the contributions of this paper are as follows:

• We introduce CLIPFontDraw, a font style transfer
method that uses text as input instead of a style image.

• By combining Bézier curve-based representation with
CLIP, our method enables the application of styles spec-
ified by text exclusively to the character regions.

• Experiments demonstrate that the proposed method can
be applied not only to characters but also to logos, and
the degree of character decoration can be adjusted.

II. RELATED WORK
A. FONT STYLE TRANSFER
In contrast to ordinary style transformations, the shapes of
characters must be preserved in any stylized font. Atar-
saikhan et al. [5] introduced a called distance transform loss
function for neural style transfer [6] to transfer styles to
simple graphics or font elements while preserving the shape
of the text characters or logo pattern.

Similarly, a model called Tet-GAN [7] was proposed as a
similar approach designed to transfer decoration styles from
one image of a character to another image using a deep
neural network architecture comprising separate stylization
and destylization models. By using these two networks, Tet-
GAN can transfer decoration styles between arbitrary char-
acters or delete a style from a given character. However, Tet-
GAN is only designed to transfer styles to other characters in
the same font. In addition, it can sometimes unintentionally
transfer stylistic elements onto the background as well as to
individual characters themselves. Therefore, FET-GAN [8]
introduces an end-to-end framework to transfer decorations
between characters in different fonts and to simple graphic
logos.

In addition to font colors and features, graphics with
text may include also decorations around the characters.
To address this situation, Typography with Decor [9] was
proposed as a new deep learning network designed to trans-
fer decorations around characters that would be ignored by
previous text stylization methods. The model network learns
to separate, transfer, and resynthesize decorations, which
enables it to transfer styles that include decorations around
characters.

Conventional font style conversion methods do not allow
adjustment of the degree of decoration of a given text. In con-
trast, the Shape-Matching GAN [10] framework can adjust
the degree of decoration applied to individual characters. The
model controllable in terms of scale and does not a training
dataset require. That is, only an undecorated font image and
a single style image for reference are needed to transfer the
style to the text. In addition, Intelligent Typography [11] was
proposed as a new framework for transferring more complex,
scale-controllable style images to text.

However, all of these font style conversion methods re-
quire a reference image as the source of the style to be
transferred, which may not always be available in practice,
especially for styles that a designer might simply imagine. In
contrast, our proposed method converts the style of characters
or glyphs that could be used in a font or graphic without the
need for reference images of the desired style.

B. TEXT-GUIDED SYNTHESIS
Recently, OpenAI provided a method for manipulating im-
ages with text using CLIP [3]. CLIP encodes images and text,
learning to maximize the cosine similarity of each pair of
embedded representations while minimizing that of incorrect
or inaccurate pairings. The large number of images and texts
used in training enables the model to compute similarity for
a wide variety of images and texts.

Transforming images using CLIP has recently become a
popular topic of active research. StyleCLIP [12] can edit
images based on a text prompt by optimizing latent vari-
ables in a StyleGAN [13] model using CLIP. Furthermore,
StyleGAN-NADA [14] introduced directional CLIP loss as
a loss function using CLIP. This loss is used to modify the
model based on text input to convert images to be converted
to different subject or style domains without additional train-
ing data. Similarly, VQGAN-CLIP [15] can generate images
according to a text prompt by optimizing the latent code of
a VQGAN [16] model with CLIP. In this study, we also use
CLIP for optimization. However, these existing methods rely
heavily on pre-trained models, and the generated images are
limited to the domain of the pre-trained data.

CLIPstyler [1] takes an image and a text string as input
applies a style transfer to match the text without pre-training
or obtaining styles from specific source images. The method
optimizes the parameters of a lightweight convolutional net-
work for each input. In addition to the directional CLIP
loss proposed in StyleGAN-NADA, the authors introduced a
new loss function for texture transfer called PatchCLIP loss,
which computes the directional CLIP loss after a sufficient
number of random slices of the image and applies perspective
augmentation to each slice. These loss functions enable to the
model to transfer styles that reflect the meaning of the input
text down to the finest details of the image.

Therefore, we also adopt the loss function introduced in
CLIPstyler to apply a texture matching a prompt to an input
image of a character without pre-training.

CLIP has also been applied in vector graphics. In vector
graphics formats the position of points, lines connecting
points, colors, transparency, and so forth are recorded as
numerical values. CLIPDraw [17] combines a differentiable
renderer [2] with CLIP to generate a drawing from text
simply by optimizing the parameters of a set of Bezier curves.
In addition, StyleCLIPDraw [18] was proposed to transfer
the style of a given reference image to drawing generated by
CLIPDraw.

In the proposed approach, we combine CLIP with a vector
representation. Specifically, a single character is represented
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FIGURE 2. Overview of the proposed method. Overview of the proposed method: Bézier curves are rendered into raster images using a differentiable renderer.
Two loss functions are then computed based on the rendered raster images: the Distance Transform Loss, which preserves the shape of the characters, and the
PatchCLIPLoss, which measures the semantic similarity to the text. The parameters of the Bézier curves are updated based on these losses. By iteratively
repeating this process, the characters are gradually transformed to match the style specified by the text prompt.

by a set of Bezier curves, the parameters of which are
optimized using CLIP.

CLIPFont [19] has also been proposed as a font genera-
tion method using vector representation and CLIP. Although
CLIPFont is similar to the proposed approach, it differs in
that it takes a raster image as input and produces a large
number of textures and patterns for a single character that
match an input the prompt.

III. METHOD
Our proposed method is designed to apply a style generated
from a text prompt written in natural language instead of
using pre-selected reference images as a source for the style.
Although CLIPstyler [1] uses a lightweight convolutional
network to apply generated styles in raster format, this
method does not generalize well to images of characters
or glyphs that could be used in a font. Therefore, in this
study, we adopt a vector format. In our proposed approach,
characters are represented by a set of Bezier curves, and
their parameters are gradually updated to match the prompts.
The operation of the method is illustrated in Figure 2. The
drawing is represented by a set of Bezier curves with control
point positions, colors, and line thicknesses as parameters,
rather than raster images represented by pixels.

First, the initial positions of the control points are deter-
mined based on the input image, and Bezier curves with
random colors are placed on the canvas. Next, the vector
drawing is converted to a raster image using a differentiable
renderer. Random cropping and random perspective augmen-

tation operations are then performed on the raster image, and
the loss is calculated using the CLIP [3] image encoder and
text encoder. The computed losses are propagated to mini-
mize the total loss function, and the parameters of the Bezier
curves are directly updated the through differential renderer.
The PatchCLIP loss introduced in CLIPstyler [1] is applied
and the distance transform loss proposed by Atarsaikhan et
al. [5]. The role of each loss function is indicated below.

1) PatchCLIP Loss
The PatchCLIP loss function reflects the meaning of the text
in the detailed parts of the font image.

2) Distance Transform Loss
The distance transform loss preserves the shape of the font.

A. DRAWING REPRESENTATION
The drawing is represented by a set of closed cubic Bezier
curves as shown in Figure 3 based on the method provided
by Li et al. [2]. Each curve is represented by the position
of a control point, line thickness, color, and opacity. Closed
Bézier curves are generated with three to five segments per
shape, and their interiors are filled. The number of curves and
control points are fixed during optimization and the position,
color, and opacity of the control points are optimized via
gradient descent. The initial position of the control points is
centered on a point randomly sampled from the coordinates
of the black area in the text image based on the number of
closed Bezier curves to be drawn, as shown in Figure 4(b).
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FIGURE 3. Drawing representation of our method.

(a) (b) (c)

FIGURE 4. (a) Input image (b) The initial positions of Bézier curves. Control
points are distributed near these points. (c) The distance transform map. The
further away from the text area, the larger the value.

This is done if a random position were used as the initial
position, the Bezier curve would also be drawn on the back-
ground.

B. DISTANCE TRANSFORM LOSS
We considered that, the background of the rendered images
should remain white as in, the input font image to maintain
sufficient to read ability. Therefore, we apply the distance
transform loss introduced by Atarsaikhan et al.. To calcu-
late Distance Transform Loss, a distance transform is first
performed on the input image to create a distance transform
image. Figure 4(c) shows an example of a distance transform
image in which the value of each pixel represents the squared
distance to the nearest font pixel. Note that the value of the
pixels over the input fonts is zero.

The distance transform images are then multiplied by the
input and output images, and the mean squared error is
calculated. The distance transform loss can be defined by:

Ldistance =
1

2
(Ic ◦ Id − Idraw ◦ Id)2 , (1)

where Id, Ic, and Idraw denote the distance transformed im-
age, the input image, and the raster image rendered using the
differentiable renderer, respectively. The operator ◦ indicates
taking the element-wise product of two matrices of the same
size.

C. PATCHCLIP LOSS
CLIPstyler [1] introduced a new loss for texture transfer,
PatchCLIP loss, inspired by Gatys et al. [6] and Frans et
al. [17]. This loss function enables generated or transfered
styles to be rendered down to the finest details of the image.

Our method also adopts this loss function. Specifically, a
sufficient number of raster images are cropped from a raster
image that has also been transformed using a differentiable
renderer, and random perspective augmentation is performed
on the cropped patches to calculate the directional CLIP
loss. Directional CLIP loss is a loss function proposed by
StyleGAN-NADA [14] and is calculated as follows: (1)
extract the feature embedding of the input and generated
images, and compute the difference between them. (2) ex-
tract the feature embeddings of the input text and the pre-
determined text embedding, and computer the difference
between them. (3) compute the cosine similarity of both the
differences.

A threshold τ is set to reject gradient optimization for
high-scoring patches. Thus, PatchCLIP loss can be defined
as:

∆T = ET (tsty)− ET (tsrc),

∆I = EI(aug(Î
i
cs))− EI(Ic),

lipatch = 1− ∆I ·∆T

|∆I∥∆T |

Lpatch =
1

N

N∑
i

R(lipatch, τ), (2)

where R(s, τ) =

{
0, if s ≤ τ

s, otherwise

where ET and EI are the text and image encoders of CLIP,
respectively. tsty is the input text, tsrc is a text determined
in advance. Îics is the i-th patch cut from the raster image
rendered using the differentiable renderer and Ic is the input
image. aug denotes a random perspective augmentation.

D. TOTAL LOSS
CLIPFontDraw uses two different losses for optimization.
PatchCLIP loss transfers the style to the character according
to the input text prompt, while distance transform loss pre-
serves the shape of characters. Thus, the loss function during
optimization can be defined as:

Ltotal = λpLpatch + λdistanceLdistance (3)

IV. RESULTS
A. EXPERIMENTAL SETTINGS
In our experimental evaluation, the resolution of the input
image was 512 × 512 pixels. Distance-transformed images
were created using functions in the OpenCV library. The
weightsλp, λdistance were set to 9 × 103, 1.5 × 103 based
on empirical observations. The weights of PatchCLIP loss
was set with reference to CLIPstyler [1]. The weights of
the distance transform loss were set to values that reflected
the style well and resulted in the best recognizabilty of the
characters.

The effect of the loss weights is shown below in section
IV-E. The Adam optimizer was used as the optimization
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FIGURE 5. The result of style transfer of a font image using the proposed method.

FIGURE 6. A simple logo used as an input image.

function, and the learning rate was set to different values of 1
and 1×10−2 for the position and color (including opacity) of

the control points, respectively. The number of iterations was
set to 200. The size of the cropped image was set as 160×160,
which provided the best quality. The number of cropped
images was set to 64. We used a function in the PyTorch
framework to perform a random perspective augmentation,
and the distortion scale was set to 0.5. The threshold τ was
set to 0.7. We also used prompt engineering as proposed
by Radford et al.. Prompt engineering methods were used
to create a sentence from a word using a template such as
“a photo of {text}” as input to CLIP. 512 closed Bézier
curves were used to represent each character. The process of
generating the stylized characters took about 60 to 80 seconds
for each image using an NVIDIA GeForce RTX 2080 Ti.

B. QUALITATIVE EVALUATION

Some examples of the output of our proposed method are
shown in Figure 5. It may be observed that input characters
are rendered in a style that matches the input text prompt. For
example, given the text prompt is “Starry Night by Vincent
van Gogh”, the model stylized the input characters with
artistic representations of the moon, sky, and stars that re-
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FIGURE 7. Further results.

FIGURE 8. Comparison with other methods.

semble the original famous painting. These results also show
that the characters were rendered without a background.
Furthermore, for example, for the input prompt “stone wall”,
the stylized characters are rendered with a pattern resembling
a stone wall with coloring that artistically expresses that
concept. Furthermore, color and shape variations that look
like plants growing between the stones also appeared to a
greater or lesser degree in the output characters.

Figure 6 shows the results when a simple logo was used as
the input image. It may be observed that the generated styles
can be applied not only to the image of text characters but
also to simple silhouettes. Figure 7 shows the results when
“The Scream by Edvard Munch” and “The Beatles” were
entered as input prompts to express a font style. It may be

observed that faces like that appearing in the famous painting
and faces that resemble members of the Beatles respectively
appear in the stylized characters. Moreover, when the prompt
string “sport” was used, the output included shapes resem-
bling pictograms showing people exercising or in action
poses expressing human movement appears. When “Yokai”
(Japanese Ghost) was used, the characters was included
stylized depictions of Japanese ghosts. From these results, it
may be observed that the proposed method produces results
that cannot be generated by conventional techniques that rely
on separate input image as style references.
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C. COMPARISON WITH EXISTING METHODS

We compared the performance of our method to that of
other similar style transfer methods using natural language.
For comparison, we used a VQGAN+CLIP1 [15] model,
which optimizes the latent code of pre-trained VQGAN [16]
using CLIPstyler [1] and CLIP [3]. We also considered style
transfer methods such as Shape-Matching GAN [10] and
the method provided by Atarsaikhan et al. [5]. However,
given that these methods require style images as a reference,
they are not directly comparable to the proposed approach.
Therefore, we generated style images using Stable Diffusion,
which is currently attracting attention as a method for gener-
ating images from natural language, and compared the results
obtained by using these generated images as inputs to the font
style transfer methods. Stable Diffusion is a trained latent
diffusion [20] trained on the large dataset LAION-5B [21].
Reference images for use as style sources were selected from
among the generated images to include as clear background
and foreground areas as possible to enable the style to be
transferred to the font images more easily.

The results of the comparison with other methods are
shown in Figure 8. The two columns at left show the input
text prompt and the image of the character to be rendered.
The five columns at right show the results generated by each
method. VQGAN+CLIP produced text that is difficult to read
because the shapes of the characters are distorted. CLIPstyler
preserved the shapes of the font, but the meaning of the text
was not expressed well in the generated font images. Stable
Diffusion+Shape Matching GAN reflected the meaning of
the text, but did not express the prompt graphically as a tex-
ture applied to the character. Stable Diffusion+Atarsaikhan
et al. did express the meaning of the text in the generated
images, but only to a very limited extent, and the quality of
the images was poor.

In contrast, our method does not apply the style to the
background at all, and the stylized characters expressed the
text prompt more clearly artistically than the other methods.

Effect of adjectives

The results of adding different adjectives to the text for
“stone” are shown in Figure 9. The result with “red stone”
mainly changed the color of the result generated with the
prompt “stone” , as one would expect from the meaning of
the words in natural language. When the adjective “smooth”
was added to the prompt, the stylized stone was rendered
with a perceptibly smoother texture. Furthermore, the prompt
“stone wall” yielded characters with subtle stylized depic-
tions of plants growing on a stone wall, which artistically
expresses the prompt in a way that should be intuitively
clear to the viewer. Thus, these results show that adding
adjectives to the text allowed us to specify more details of
the style based on intuitive expectations from the meaning of
the prompt in natural language.

1https://github.com/nerdyrodent/VQGAN-CLIP

FIGURE 9. Result of using text prompts with different adjectives.

FIGURE 10. Image used for user evaluation.

FIGURE 11. Result of changing the weight of λdistance. (a)
λdistance = 1.5 × 10. (b) λdistance = 1.5 × 102. (c)
λdistance = 1.5 × 103. (d) λdistance = 1.5 × 104.

TABLE 1. The average preference ratio at which this method is chosen over
existing methods.

Ratio

VQGAN+CLIP vs ours. 0.913

CLIPstyler vs ours. 0.797

Stable Diffusion + ShapeMatchingGAN vs ours 0.710

Stable Diffusion + Atarsaikhan et al. vs ours 0.783
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FIGURE 12. Result of changing the weight of λpatch. (a) λpatch = 9.0. (b)
λpatch = 9.0 × 102. (c) λpatch = 9.0 × 103. (d) λpatch = 5.0 × 104.

FIGURE 13. Results when the loss function was removed.

FIGURE 14. Results when the set of Bezier curves was initialized with a
specific color. (a) initialized with a random color, (b) “water” initialized in blue,
“smoke” in gray.

D. USER STUDY
We also performed a user evaluation using our proposed
approach this method and the other methods. Six different
pairs of character images and text prompts were input to each
method and six output images were obtained. 30 images in

total were used for evaluation to obtain results from the four
methods and our method. The subjects were shown an image
from one method and an image from another, the input image,
and the text, as shown in Figure 10, and were asked which
method followed the prompt better, especially considering
how easily one could identify the input prompt text based on
the rendered output. The questions were asked of 23 users.
Note that for the user study, we used the results generated by
our previous method [4]. Although the loss function of our
previous method differs from that of this paper, there is little
difference in the generated results.

The existing methods were compared with our approach,
and the average rate of preference rate of our method is
shown in Table 1. The results show that our method was
preferred in over 70% of the responses provided, which quan-
titatively verifies the superior performance of the proposed
method.

E. ABLATION STUDIES

Weight change of distance transform loss

The results of applying different weights to the distance
transform loss are shown in Figure 11. The larger the weight,
the closer the result matches the contour thickness of the
input text image, while the smaller the weight, the more the
Bezier curve deviates from the text’s contour. Therefore,
it should be possible to adjust the degree of character deco-
ration by adjusting the weights. Of note, small weights may
lead to rendered characters that are difficult to recognize for
complex shapes. For example, in the case of the letter “W”
in Figure 11, when the weights were small, the rendered
character with the generated style is more difficult to read.
When characters with many strokes are used as input images,
increasing the weights may help to preserve the outlines of
the characters and generate more easily readable results.

Weight change of PatchCLIP Loss

The results of changing the weight of PatchCLIP loss are
shown in Figure 12. Reducing the weights as in (a) would
reduce the quality of the texture pattern and make the colors
unnatural. On the other hand, when the weights are increased,
the pattern appearing in the text becomes larger, resulting in
thicker text. Thus, it can be seen that increasing the weight
of PatchCLIP loss has a similar effect as when the weight of
distance transform loss is reduced.

Effect of Loss function

Figure 13 compares the results of the proposed method
with those of the cases without the PatchCLIP and distance
transform loss functions, respectively. Without PatchCLIP
loss, characters are not stylized well. Without the distance
transform loss, the outline of the character became larger,
making the character difficult to recognize.
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FIGURE 15. Animation of the generation process. The leftmost output was the initial output, and the process of optimizing the Bezier curves for the styles
generated from the prompts “Starry Night by Vincent van Gogh” and “Sunflowers by Vincent van Gogh” is shown. By saving all the intermediate outputs as images,
the process can be animated as a continuous transformation.

FIGURE 16. Result of rendering the word “fire” with stylized fonts generated with different distance transform loss weights. The prompt was “red fire”.(a)
λdistance = 1.5 × 105. (b) λdistance = 1.5 × 102.

FIGURE 17. Failure cases when the style is not reflected well.

F. APPLICATIONS

Initial color of Bezier curves

In contrast to a simplistic interpretation of the text prompt,
the generated style is rendered with green as well as for
the prompt “water”, as shown in Figure 5. This may be
attributed to color of the Bezier curves being initialized
randomly. Therefore, we found that by initializing the color
of the Bezier curves with a specific color, it was possible
to prevent undesired colors from appearing in the output.
Figure 14 (a) shows the results when the color of the Bezier
curves was initialized randomly, and Figure 14 (b) shows
the results when the color was initialized according with a
specific value. The results show that initializing the Bezier
curve with a single color eliminate colors such as green that
did not fit the interpretation of the prompt well.

Creating Animations
The output of the generation process can be animated by
connecting all of the results. Furthermore, after optimizing
a given character for a single prompt, we can create an
animation in which the character that changes from one style
to another successively by optimizing another prompt while
preserving the Bezier curve information. Figure 15 shows the
process of changing the style of a character from “Starry
Night by Vincent van Gogh ” to “Sunflowers by Vincent
van Gogh”. The Bezier curve starts with random colors and
is gradually transformed into the “stone” style. Then, the
shape and color of the character change again, as the style
of “Sunflowers by Vincent van Gogh” is applied.

Generating fonts with different impressions
The weight of the distance transform loss can substantially
change the appearance of the generated font. In Figure 16, we
show the results of changing the magnitude of the weights.
As shown in Figure 16 (a), a large weight only changed
the color of the font, while a smaller weight as shown in
Figure 16 (b) is rendered in a more flamboyant style that gives
a strong impression of more active burning. These multiple
characters were generated individually, cropped, and merged.

G. LIMITATIONS
This method is good for reflecting such as objects having no
fixed shapes “water” and “fire” or painter’s style. However,
since the loss is calculated on the clipped image, some
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prompts may not produce the expected results. For example,
as shown in Figure17, for a prompt “snake,” something like
a pattern of snakes was generated, but a single snake did not
appear as the letter S. Also, if an object or animal is specified
as a prompt, it sometimes cannot be reflected as a style well.
These issues could potentially be avoided by using models
specialized for image generation, such as Diffusion Models,
instead of CLIP.

V. CONCLUSIONS
In this study, we have proposed a method for stylizing char-
acters or glyphs that can comprise graphic fonts based on
input text strings written in natural language. The proposed
method, unlike traditional font style transfer methods, allows
for style transfer without the need for a style image by
specifying the style through text. Our experimental results
also confirmed that the method is effective for simple logos.
Furthermore, we have presented the results of an ablation
study showing that our approach can be used to express
various textures depending on the input text prompt and
that it can be used for complex characters by increasing the
weight of the loss function. Reducing the time required for
optimization remains as a topic for future research.
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APPENDIX A ADDITIONAL RESULTS
Examples of further results and adjustments to the results
with adjectives are shown in Figure 18 and Figure 19.
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FIGURE 18. Additional results of our CLIPFontDraw.
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FIGURE 19. Additional results when changing adjectives.
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