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ABSTRACT At present, the protection of birds, especially endangered birds, faces major challenges. In
the process of protection, birds are often mixed with various drones, and it is difficult to accurately count
the number of endangered birds, which brings great difficulties to bird protection work. So tracking and
identifying birds and drones is crucial. To solve these problems, this paper proposes a new multi-target
tracking (MOT) model based on the combination of YOLOv9 detection algorithm and DeepSORT tracking
algorithm. Firstly, the original RepNSCPELAN4 module is replaced by CAM context feature enhancement
module in Backbone to improve the model’s ability to extract small target features. Following this, the
AFF channel attention mechanism has been integrated with RepNSCPELAN4 in the Head section to create
the Repnscpelan4-AFF module, which aims to better address semantic and scale inconsistencies. Finally,
a new RepNSCPELAN4-Akconv module has been developed using the AKConv dynamic Convolution
module to replace the RepNSCPELAN4 module in the original Head section, enabling the model to more
effectively capture detailed and contextual information. On the Bird-Drone visible light comprehensive
data set proposed in this study, the improved YOLOv9-DeepSORT model has a mAP0.50 of 81.3% for all
categories and 89.1% for individual birds. Compared to the baseline YOLOv9 original model, improvements
of 7.9% and 23.9% respectively. On infrared datasets, compared to the original model, the mAP0.50 of the
improved model is improved by 3.2% in all categories. The accuracy of identifying individual birds and
similarly shaped fixed-wing drones also improved by 2.2% and 7.5% respectively. Moreover, on the mixed
visible light and infrared data sets, the model get mAP0.50 of 81.8% higher 0.9% than that of the YOLOv9.
These experiments demonstrate the improved YOLOv9-DeepSORT method can expand the multiscene
application range of bird recognition and tracking models, effectively promoting the extraction of video
frame features in multi-target tracking.

INDEX TERMS Bird protection, AKConv Dynamic convolution, AFF channel attention, CAM feature
enhancement, YOLOv9 and DeepSORT.

I. INTRODUCTION

W ILD birds are very important for maintaining the
ecological balance. In recent years, more and more

attention has been paid to the research on bird protection, for
example [1], [2], [3], [4]. It faces many challenges, including
habitat destruction, climate change, illegal fishing and trade,
pollution, invasive species and human activities.

Combinedwith recent studies, it is clear that themonitoring
[5], [9] and population statistics [6], [7]of wild birds are
important research direction of bird protection. This is closely
linked to technology, particularly the integration of ecological
studies with computer vision techniques. Monitoring birds
can provide insights into their behavioral patterns [8], repro-

ductive tendencies, and dietary preferences, which are crucial
for studying the ecological characteristics of bird populations.
Additionally, bird monitoring helps identify rare or endan-
gered species and provides scientific basis for formulating
effective conservation strategies [11].
In order to assist in the more rapid and accurate monitoring

and counting of wild birds by organizations and institutions,
especially in distinguishing drones mixed within bird flocks
at long distances, image recognition and tracking technology
[17] is particularly important.
At present, detectionV - track model [18] is the most effec-

tive monitoring mode, this is largely thanks to the continuous
development of target detection algorithms such as YOLO.
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FIGURE 1. The general detection and tracking framework is similar to the
combination of the YOLOv9 detection algorithm and the SORT tracking
algorithm as illustrated in the figure.

The general pattern of this model is similar to YOLOv9-
DeepSORT, and the model described in Figure 1 is a rep-
resentative example. Generally speaking, the detection and
tracking mode consists of two successive stages: the first
stage is the target identification and detection stage, and
the second stage is the real-time target tracking stage. The
first stage usually uses detection methods such as YOLO,
ResNet [22], [23] to identify the category of the target and
provide specific location information for subsequent stages.
In the second stage, after identifying the target position in
the previous frame and the next frame of video, the motion
trajectory is generated by the correlation algorithm.

However, real-time detection and tracking of airborne birds
and drone targets is a major challenge, both now and in the
future. There are two significant limitations. First, previous
YOLO methods have primarily focused on the detection of a
sole bird target, and the data sets mainly includedmedium and
large targets. As an illustrative examples [19]–[21], although
the recognition classification accuracy rate can reach more
than 90%, but the dataset has only large bird targets and
does not take into account interference factors such as drones.
Therefore, recognition algorithms based on the YOLO series
have not beenwidely utilized for distinguishing between birds
and drone targets in academic research. Secondly, the existing
birds and UAVs comprehensive data sets lack remote small
target data and multi-attitude data. For example, birds and
drones exhibit two different postures [24], [25]: stationary
and flying. In particular, the attitude of small fixed-wing
drones and birds when flying over considerable distances
is strikingly similar, and current methods are not effective
enough to clearly distinguish between the two. These factors
have a significant impact on the ability to distinguish between
birds and drone targets, potentially leading to sub-optimal
recognition results.

A review of existing research indicates that there have
been few studies that integrate object detection and tracking
into a unified model for the identification and tracking of
birds and UAVs. Moreover, these studies are conducted in-
dependently, without a comprehensive integration of the two
methodologies. For instance, Chen et al [26] used YOLOv7
in combination with DeepSORT, adding three GAMmodules
and Alpha-IoU loss function to achieve better accuracy and
bird tracking, with an accuracy of more than 90% on a sole
class datasets. Sun et al [27]addressed the issue of inconspic-
uous sole-frame targets and small target sizes in surveillance
videos, proposing a motion information-based algorithm for
the detection and localization of birds (FBOD-BMI). Xing
et al [28] integrated an efficient target tracker based on the
detection module of YOLOv5 to update the target state. They
then applied a UAVs classification model to the output of
the detection and tracking mechanism, with the objective of
further distinguishing UAVs from other background distrac-
tions (birds, balloons). Samadzadegan et al [29] employed a
deep learning model based on YOLOv4 for recognition and
achieved an accuracy of 83% in a dataset comprising three
categories: multi-rotor UAVs, helicopters, and birds. Dolph,
Chester V, and colleagues [30] also developed an image
processing-based aerial object detection and tracking system
that combined convolutional neural networks (CNNs) with
general aviation aircraft, multi-rotor small unmanned aircraft
systems (SUAS), fixed-wing SUAS, and bird classification.
This approach led to the creation of improved vision-based
perception algorithms, with a cross-validated classification
accuracy of 74.4% for both aircraft and birds. Although all
of the aforementioned studies employed deep learning algo-
rithms in the field of bird detection, it is important to note that
there are certain limitations and shortcomings associated with
these methods. For instance, studies related to this topic [26],
[29]–[31] have achieved notable recognition results. How-
ever, the dataset is limited in terms of the number of categories
of birds and drones, the inclusion of interference factors, and
the number of categories. And [26] has only a sole category,
the models have clear limitations in terms of generalization
and portability;Subsequent research has sought to enhance
the capabilities of YOLO and other algorithms like [27],
[28], [32], with the integration of recognition and tracking
algorithms representing a significant advance. Despite these
enhancements, these model’s performance in terms of recog-
nition accuracy and multi-category tracking still falls short of
the current requirements; Recently, studies like [33]–[36]have
been conducted on birds in datasets More classification, and
the recognition accuracy of more than 70%. It is a pity that the
identification process is not integrated with track and trace
algorithms, which prevents simultaneous identification and
monitoring. In light of the limitations identified in previous
studies, this study expanded the data in both visible light
and infrared scenarios, collecting four types of dimensional
data, including birds and drones. The seamless combination
of YOLOv9 and DeepSORT enables the system to achieve
real-time detection and trackingwith impressive accuracy and
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minimal latency. This integration effectively meets the need
to identify and track bird targets in different scenarios.

To further address the aforementioned issues, this research
propose the utilization of the most recent iteration of the
YOLOv9 [37] architecture, in conjunction with the Deep-
SORT [38] trace model for bird target recognition and track-
ing. The current iteration of YOLOv9 has undergone signif-
icant enhancements to its model framework, resulting in a
markedly improved recognition efficacy. From the perspec-
tive of time and space, the fact that both birds and drones have
a similar flying attitude allows for the addition of DeepSORT
tracking models, which can be used to track targets in real
time for further monitoring. In order to further extract the
texture features of long-distance birds and drones, we extend
the AKConv variable kernel convolutional network [39]. The
experimental results demonstrate that AKConv nucleation
convolution is capable of identifying birds with greater clar-
ity, offering significant advantages. Secondly, we extend the
CAM context feature enhancement module [40] to enhance
the location of important feature information. By further
locating important feature information, we can obtain better
attitude features, thus improving the recognition accuracy.
Finally, we introduce AFF channel attention mechanism [41]
to address semantic inconsistencies, scale inconsistencies,
and the lack of identifiable features for small targets. The
primary contributions of this study are as follows:

(1)A bird recognition and tracking model was constructed
based on the proposed backbone network, combined with
YOLOv9 and DeepSORT. The model is capable of identify-
ing, locating, and tracking targets such as birds and drones
through direct input of video and extraction of video frames,
without the necessity of pre-detection or subsequent data
association.

(2)The research integrates the newAKConv variable kernel
convolution kernel, CAM context feature enhancement mod-
ule, and AFF channel attention mechanism to maximize the
influence of dynamic convolution and attention mechanism
on feature extraction. At the same time, the feature enhance-
ment module is used to improve the recognition accuracy
of the model, especially when detecting small targets at a
long distance. Moreover, a substantial number of compara-
tive ablation experiments have been conducted on methods
such as convolution modules and attention mechanisms, with
the objective of providing a reference point for subsequent
researchers.

(3)Based on the diverse poses and angles of birds and
drones, a novel visible light dataset was constructed. The
dataset encompasses images of numerous stationary andmov-
ing birds, fixed- and rotor-wing drones, small target birds, and
long-range drones. Simultaneously, to address the deficiency
of infrared datasets, this study compiled an infrared dataset of
10, 614 images comprising birds, rotorcraft, helicopters, and
fixed-wing aircraft, covering a variety of small targets.

(4)The study integrated infrared and visible light data into a
complete dataset and performed training and validation. Thus,
the model does not need to distinguish whether the input data

is infrared or visible light and can conduct real-time inference
and recognition. This further solves the problem of limited
identification of model application scenarios and enhances
the generalization ability of the model.

II. MATERIALS AND METHODS
A. DATA SET
Two datasets were used in this study: a homemade visible
light dataset and an infrared dataset described as follows:
(1)The homemade visible light dataset comprised four cat-

egories: static birds (bird), flying birds (flybird), rotorcraft
UAVs, and fixed-wing drones. The dataset comprised a to-
tal of 8, 978 images of varying dimensions, accompanied
by 8, 978 bounding boxes and labelled files. As illustrated
in Figure 2, the distribution of the number of images in
our dataset acrossed the four categories—fixed-wing UAVs,
rotorcraft UAVs, bird, and Fiybird—is as follows: 41.6%,
20.8%, 12.8%, and 24.8% , respectively. Additionally, there
were approximately 1800 small target images, and the sum
of all bird images was close to 5000. The entire dataset was
divided into three subsets: a training set comprising 8, 414
images, a validation set comprising 413 images, and a test set
comprising 151 images. In comparison to the training set, the
test set contained a higher percentage of multi-target images
and was more realistic. Our homemade dataset as a whole
was capable of meeting the demand for bird recognition under
different conditions, such as small targets, long distances,
multiple categories, and multiple scenarios. Its utility was
superior to that of the general sole-bird dataset and large-
target dataset.

FIGURE 2. The data distribution for homemade visible light dataset is
presented above. It includes a total of 8, 978 images of various sizes,
approximately 5, 000 images of all birds, and approximately 1, 800
images of small targets.

(2)The infrared dataset produced in this study contains 10,
614 images of different sizes and angles, grouped into four
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categories: birds, fixed-wing drones, rotorcraft drones, and
helicopters. As shown in Figure 3, the subjects of the dataset
were birds and common rotorcraft drones. There were 3, 411
images of birds, 4, 466 images of rotorcraft, 1, 655 images of
helicopters and 1, 082 images of fixed-wing aircraft. The four
categories accounted for 42.1%, 32.1%, 15.6% and 10.2%
respectively. Nearly 5500 small target images of birds and
various types of aircraft over long distances were collected
in the data set, which fully met the demand for small target
detection in night scenes, and further verified the improved
model’s ability to detect and track birds in infrared scenes is
further validated.

FIGURE 3. The data distribution of the infrared dataset is shown above. In
total, it includes 10, 614 images of different sizes, and nearly 5, 500 small
target images of distant birds and various types of aircraft. The number of
images of birds, rotorcraft, helicopters and fixed-wing aircraft was 3,411,
4,466, 1,655 and 1,082 respectively.

B. IMPROVED YOLOV9 TARGET DETECTION NETWORK
1) The Dialogram of YOLOV9-CAM-AFF-AKConv
YOLOv9 is a new type of high-precision identificationmodel.
Its innovative design on the overall architecture makes it
perform well in high-precision identification tasks. The main
components of the original model include a Backbone Net-
work (RepNSCPELAN4 [42]) and a decoupled Head Struc-
tured. Based on this architecture, the complete model of our
improved YOLOv9 is shown in Figure 4. The figure demon-
strates three significant improvements, including incorporat-
ing a CAM context enhancement module in the backbone net-
work, a RepNCSPELAN4-AFF module that fuses AFF atten-
tion in the middle layer of the head, and a RepNCSPELAN4-
AKConv module that fuses AKConv variable kernel con-
volution in the last layer of the head. The enhancement of
the three modules markedly enhances the model’s capacity

for generalization, particularly with regard to the extraction
of features from small bird targets. This is beneficial for
the detection of multiple birds in flight. Furthermore, the
improved model demonstrates a notable improvement in ac-
curacy without a commensurate reduction in inference speed,
thereby conferring an unparalleled efficiency advantage for
real-time object tracking.
(1)The design of its main RepNSCPELAN4 module com-

bines elements of YOLOv5’s CSPNet Block [43], YOLOv6’s
Rep module, and YOLOv7’s ELAN module [44]. As shown
in Figure 5, It has multiple instances of RepNCSP and Conv
module. ReoNCSP refers to the C3 and C2f modules, and in-
tegrates the Conv and RepNBottleneck modules. The RepN-
Bottleneck module [45] is a linear combination of RepConvN
and Conv module. RepConvN combines two parallel CB and
one BN modules to produce the final output via the SILU
activation function [46].
(2)Then, the main part of the YOLOv9 head, shown in

Figure 6, consists of Conv layers, RepNSCPELAN4modules,
and CB Fuse modules arranged sequentially. This structure
enhances feature extraction and representation, which can
provide more accurate target detection, bounding box de-
lineation, and classification. The Head-Detect structure re-
mains similar to YOLOv8 [47], with two parallel branches
for bounding box error (Reg) and categorization error (Cls).
Each branch includes two CBLmodules and a Conv layer. As
illustrated in Figure 7, for each anchor box, Reg determines
the dimensions h and w based on the coordinates (dx, dy, dw,
dh). Cls is also calculated based on h and w, this in turn leads
to a classification loss. By constantly adjusting the values of
width and height (dw, dh), you can more accurately fit the
shape of the target object.

2) AKConv dynamic convolutional network
Convolutional networks can be categorized as static or dy-
namic. Static convolutional neural networks maintain a con-
sistent structure and parameters throughout both the training
and inference processes, while dynamic convolutional neural
networks allow for the adjustment of the network’s structure
and parameters based on the characteristics of input data
during training and inference. Currently, research on dynamic
convolutional networks has made significant progress. In
2019, Liao et al. proposed a variable kernel convolutional
network called DKCNN [48], which enables adaptive ad-
justments to the size and shape of the convolutional ker-
nel to accommodate features of different scales and shapes,
overcoming limitations associated with fixed convolutional
kernels in traditional CNNs. Subsequently, in 2023, Zhang
et al. introduced an innovative variable convolution approach
known as AKConv [39], which addresses inherent limitations
associated with traditional fixed sample shapes in convolution
operations by allowing feature extraction using any number
of parameters(e.g., 1, 2, 3, 4, 5, 6, 7, etc. ). This advance-
ment has elevated recognition effectiveness to new heights.
Additionally, lightweight convolution such as GSConv [49],
VoVGSCSP [50] also strikes a good balance between speed
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FIGURE 4. The diagram illustrates the integration of the CAM context enhancement module into the final layer of the backbone network, the
incorporation of the AFF attention mechanism into the middle layer of the head, and the application of a fusion method with the AKConv variable kernel
volume in the final layer of the head.

FIGURE 5. Positioned from left to right, RepNSCPELAN4 includes Conv and RepNCSP. The RepNCSP module comprises the Conv and RepNBottleneck
modules. The RepNBottleneck module is a direct linear mixture of RepConvN and Conv module. Its submodule, RepConvN, integrates CB and BN modules
and provides output via SILU activation functions.

and accuracy. The above methods are improved on the basis
of the basic convolutional architecture, and their effectiveness
has been continuously verified, providing valuable insights
for this study. Considering the specific characteristics of
dataset, integrating dynamic variable kernel convolution, es-
pecially AKConv convolution network, into detection frame-
work is a very practical approach.

The general form of the dynamic Convolution Integral can

be expressed as follows:

(K ∗ f )(x) =
∫ ∞

∞
K (x, t)f (t)dt (1)

where K(x, t) is a kernel function that depends on x and t, and
f(t) is the signal or function to be processed.
As shown in Figure 8, AKConv consists of four main

stages: initialization of the sample shape, Conv2d convolution
operations, migration, and resampling. The key to AKConv
is to adjust the initial sample shape by learning the offset.
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FIGURE 6. The main structure of the Head consists of the connection of
multiple Conv convolution layers, the RepNSCPELAN4 module and the CB
Fuse module. These modules are used to generate higher-level feature
representations, perform cross-stage efficient layer aggregation, and fuse
feature maps at different scales.

FIGURE 7. YOLOv9 uses two parallel branches on the Head-detect
detection structure, one for computing bounding box errors (Reg) and the
other for computing classification errors (Cls). Each branch consists of
two CBL modules and a convolutional layer.

This allows the convolution kernel to be dynamically adjusted
based on the local characteristics of the current input data.
Finally, in the training process, the weights and parameters of
the AKConv layer are updated through optimization methods
such as backpropagation algorithm and gradient descent, so
as to minimize the prediction error. According to continuous
experiments, we find that replacing the original Conv module
with the AKConv module in the last layer of the Head section
worked best. Compared with the original RepNCSPELAN4
module, the replaced RepNCSPELAN4-AKConvmodule has
better adaptability to various time series modes and stronger
robustness in the presence of noise.

3) CAM feature enhancement module
Feature enhancement modules play a crucial role in deep
learning models. Their main function is to refine and en-
hance features extracted from the backbone. By integrating
features of different levels, introducing attention mechanism,
and enhancing semantics, the classification and localization
capabilities of the model are improved. At present, the main-
stream feature enhancement modules include RR Selvaraju

FIGURE 8. AKConv goes through four key steps: initializing the sample
shape, Conv2d convolution operation, offsetting, and resampling. Among
them, adjusting the initial sample shape by learning the obtained offset is
the key of AKConv.

CAM context enhancement module based on CNN network.
The module uses convolution at different rates to capture
context information from different receiving domains, while
enhancing the representation of small targets in combination
with the copy-reduce-paste data enhancement technique [51].
The collected data is then integrated from top to bottom into
the Feature Pyramid Network (FPN) [52]. This combination
of additional contextual information enhances the model’s
ability to accurately detect and identify targets, especially
when dealing with small targets or complex backgrounds.
Later, the emergence of feature refinement networks (FR-
Nets) [53] has addressed the limitations of traditional refine-
ment models by providing a fixed representation of features
regardless of context. Similarly, Li et al. proposed a novel
feature-improved context-aware network (FECANet) [54],
which integrates a feature enhancement module and a related
recombination module. This method solves the problem of
noise and contextual semantic information loss in feature
extraction effectively. The results show that different types
of functional enhancement modules have different design
emphases. Because the focus of this study is to improve the
efficiency of small target recognition. Therefore, consider
integrating the CAM context enhancement module into the
detection framework, which is expected to improve the recog-
nition performance of remote birds.
The framework of CAM modules consists of two main

parts: a context-aware module for enhancing CAM and a
feature refinement network. As shown in Figure 9, CAM ap-
plies convolution to the C5 module at different rates, enabling
the capture of context information from different acceptance
domains. This method helps to identify key feature areas
in the image. The convolution kernel size is 3×3, and the
convolution rates are 1, 3, and 5. CAM uses three feature
fusion methods :Weight, Adaptive and Concat. Among them,
the accuracy of adaptive fusion method is improved the most.
According to a large number of experiments, we found that
integrating the CAM-based adaptive fusion method into the
last layer of the YOLOv9 network backbone can effectively
enhance the feature extraction capability of the model, espe-
cially for the detection of small targets.

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3475629

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 9. The structure:features of the CAM are processed for null convolution at rates of 1, 3, and 5, respectively. Weighted fusion and splicing
operations are employed for methods (a) and (c), adding feature mappings directly to the spatial and channel dimensions. Method (b) utilizes an adaptive
fusion approach.

4) AFF attention mechanism
The attention mechanism can simulate the workings of the
human visual system, allowing the model to prioritize more
important and relevant key information when processing in-
put data. At present, most models adopt channel attention
mechanism and spatial attention mechanism. In comparison
to the spatial attention mechanism, the channel attention
mechanism is capable of autonomously discerning the sig-
nificance of each channel and adjusting the weighting of the
feature map, thereby enabling the model to more effectively
extract and utilise the feature information. The mainstream
channel attention mechanisms include CBAM [55], SE [56],
SKNet [57], AFF [41] and so on. The CBAM attention mech-
anism, proposed by Sanghyun Woo, addresses the limitations
of traditional convolutional neural networks in processing
information of varying scales, shapes, and orientations by
integrating both channel attention mechanism and spatial
attention mechanism. On the contrary, Zhou et al. ’s pro-
posed implementation of AFF is relatively straightforward
and intuitive. It does not necessitate complex calculations or
parameter adjustments and can be effectively applied to intri-
cate multi-classification tasks. This makes it particularly ac-
cessible to researchers with limited computational resources.
Therefore, according to the computational power and data
characteristics of this experiment, we propose to integrate the
category information capability of AFF attention mechanism
in this experiment to filter the respective feature mappings.

As illustrated in Figure 10, the AFF Attention Mechanism
presents a fundamental framework for integrating diverse fea-
tures through the Multiscale Channel Attention Module (MS-
CAM). Lower-order feature graph X and higher-order seman-
tic feature graph Y in the higher-order feature pyramid are
fused by MS-CAM and other operations to produce output Z.
MS-CAM [41]continues SENet’s idea of combining local and
global features on convolutional neural networks (CNNS).
The output of the fused features is denoted by C×H×W, and
the symbol "+" represents feature integration. This structure
allows the network to perform different selection or weighted
averaging between X and Y, effectively addressing semantic

and scale inconsistencies. In real-world detection, the fusion
of AFF with convolutional modules can better adapt to vari-
ous input data and task requirements, thereby enhancing their
generalization capabilities. Therefore, integrating the AFF at-
tentionmechanismwith RepNCSPELAN4, a key convolution
module in YOLOv9, is considered a key advance. The ex-
perimental results show that adding RepNCSPELAN4-AFF
module in the middle layer of the head can enhance the
detection ability of small target objects.

FIGURE 10. The AFF attention mechanism is structured to produce an
output Z by fusing the low-feature map X and the higher-order semantic
feature map Y in the high-level feature pyramid through MS-CAM and
other operations.

C. MULTIPLE TARGET TRACKING BASED ON DEEPSORT
Multi-object tracking (MOT) [58] is an important topic in the
field of artificial visual intelligence. As part of this process,
the tracking algorithm uses a Kalman filter in each frame
of the image to predict the position and speed of the target
object. It then matches the target with the observation through
the Hungarian algorithm. This iterative process updates the
location and speed information of the target, enabling real-
time tracking of multiple targets. With continuous advance-
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ments in research across various fields, tracking algorithms
have made significant breakthroughs in processing complex
scenes and high-speed motion. In recent years, researchers
have introduced a series of classic end-to-end target tracking
algorithms such as Siamese network [59] and Bot-SORT
network [60] to achieve end-to-end training and reasoning
from raw video data to target tracking results;And the dy-
namic model of the target trajectory built by Anton Milan
and his colleagues using trajectorymodeling and probabilistic
reasoning. In their study, the researchers employed various
techniques, including Kalman filter [61] and particle filter
[62], as well as other techniques to enhance target tracking.
After the aforementioned major technological advancements,
two new and effective tracking algorithms have recently been
proposed. YOLO-SORT [38] proposed by Joseph Redmon et
al and MotionTrack [63] proposed by Zhengdeng et al are
new and effective tracking algorithms. They have carried out
new innovations on the previous models and algorithms to
achieve a balance between efficiency and accuracy, and have
shown great advantages in the application of multiple scenar-
ios. In view of the singularity of current target recognition
models in the field of bird detection and the rapid iteration
of YOLO series, this study considers combining YOLO and
SORT algorithms to better adapt to future complex scenes and
accuracy requirements.

The overall working process of the DeepSORT algorithm
is shown in Figure 11. Once YOLOv9 has identified the
original video frames, located each target, and generated the
bounding box, it initiates the tracking process based on the as-
sociation prediction. For each detected target, the DeepSORT
algorithm employs a Kalman filter for association prediction,
thereby obtaining the corresponding detection frame. After
Kalman filtering, Mahalanobis distance [64], depth represen-
tation features, and other correlation indicators are employed
to calculate the degree of similarity between the detected
target in the video frame and the Kalman filtering predicted
track. This is achieved through cascade matching and IOU
matching. The results of the above steps are then used as input
to the Hungarian algorithm. At the same time, the detection
point corresponding to the matching trajectory is updated by
Kalman filter, and the corresponding trajectory is obtained.
Finally, the process is repeated until the confirmation track or
video frame is complete. Among them, the core calculation
formula of the Kalman filter [61] is divided into two distinct
formulas: the prediction formula and the update formula. The
Kalman gain, represented by Gk, is a crucial component of
the Kalman filter. When Gk is zero, the gain is also zero.
This means that the value of this loop is the same as the
value of the last loop. In this case, the trust values currently
measured are not reliable. When Gk = 1, the gain is 1. This
means that the estimates for this period are the same as the
measurements, and that the estimates for the previous period
cannot be trusted. In practice, Gk is usually between 0 and 1,
indicating the degree of trust in the measured value. A is the
constant, H is the scale factor, and Q is the covariance. The
specific formula is as follows:

Prediction formula :

Xk = AXk−1 + Buk (2)

Pk = APk−1AT + Q (3)

Updated formula:

Gk = PkHT (HPkHT + R)−1 (4)

Xk = Xk + Gk(Zk − HXk) (5)

Pk = (1− GkH)Pk (6)

D. EXPERIMENT DESIGN AND DETAILS
In order to assess the effectiveness of the improved method
in various complex scenarios, particularly its suitability for
detecting small birds, this study conducted experiments on
multiple datasets. Various data enhancement techniques, in-
cluding HSV saturation [65], value enhancement, translation
enhancement, scale enhancement, and Mosaic enhancement,
have been adopted.
SGD optimizer [66]was adopted in the training process

for random gradient descent. The models run on PyTorch
[67]. We trained on NVIDIA’s GeForce RTX 3090 graphics
card (GPU) with 24G of RAM. The loss function selected
in this study includes classification loss and regression loss.
Classification Loss was BCE Loss and regression Loss was
DFL Loss. The specific loss function formula is as follows: y
is the true label (0 or 1) and p is the predicted probability of
the output.

Classification loss function formula:

BCE loss = −y ∗ log(p)− (1− y) ∗ log(1− p) (7)

Regression loss function formula:

Si =
yi − y

yi + 1− yi
(8)

Si+1 =
y− yi

yi+1 − yi
(9)

DFL(Si, Si+1) = −((yi+1)log(Si) + (y− yi)log(Si+1))
(10)

The bachsize is set as 16, the epochs of training are 400, and
the YOLOv9-C weights are used as the initialization weights.
The size of the input video frames or images are resized to a
uniform size of 640×640, and the learning rate (lr) is 0.01.

III. RESULTS
In order to evaluate the effectiveness of the improved method
in various complex scenes, different experiments were per-
formed on visible light data, infrared data, mixed data,
and video captured in real scenes. All the experiments had
achieved good results.
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FIGURE 11. The DeepSORT algorithm initially identifies the targets within the video frames through the use of a target detector. Subsequently, the Kalman
filter is applied to predict the target location. Finally, the Hungarian algorithm and cascade matching strategy are employed to facilitate the matching and
trajectory association between the targets in the front and back frames.

A. RELEVANT REFERENCE INDEX
The performance of the model is evaluated using standard
metrics, including three key metrics: recall, mAP0.5, and
MAP0.5:0.95. These metrics are employed to assess the
model’s performance across various dimensions. Recall, also
known as the check-all rate, is the proportion of instances
correctly identified by the model as a positive class (the
true class) out of all instances of the positive class. This is
expressed in the mathematical formula as:

Recall =
TP

TP+ FN
(11)

Where, TP represents the number of samples whose real class
is positive and the final predicted result is also positive, FN
represents the number of samples whose real class is positive
and the final predicted result is negative. In target detection,
a higher recall indicates a more comprehensive detection of
the target object by the model, with fewer instances of missed
cases.

The mAP is employed to evaluate the performance of the
model across all categories. First, the Precision is calculated
for each category. The formula for Precision is as follows:

Precision =
TP

TP+ FP
(12)

FP represents the number of samples whose real class is
negative and the final predicted result is positive. Then, the
average Precision and Recall for each class should be cal-
culated. Finally, the area under the Precision-Recall curve is
denoted as AP. The mAP Indicates the average AP values. AP
and mAP is calculated as follows: r stands for Recall.

AP =

∫ 1

0

P(r)dr (13)

mAP =

∑k
i=1 APi
k

(14)

The mAP0.5 denotes the average precision when the IOU
threshold is 0.5, while mAP0.5:0.95 denotes the average
precision when the IOU threshold is 0.5 to 0.95. The aver-
age value of IOU is a measure used to measure the overlap

between the predicted frame and the real frame in target
detection, and its value ranges from 0 to 1. In general, mAP0.5
considers only the case of high overlap between the detection
wild and the real labeling. In contrast, mAP0.5:0.95 con-
siders the case of different overlap degrees. Consequently,
mAP0.5:0.95 can be adapted to different scenarios and needs,
offering a more comprehensive and accurate assessment
while also being less accurate. There is a contradiction be-
tween Recall and mAP. In general, mAP decreases when
Recall is high, and Recall decreases dramatically when mAP
is very high. Consequently, it is necessary to balance the
evaluation of model performance by considering both Recall
and mAP. In practical target detection scenarios, mAP0.5 is
often a more significant metric to prioritize.

B. EXPERIMENTAL RESULTS
(1)On home-made visible light data set

TABLE 1. The effectiveness of each method on all categories was
compared on a home-made visible light data set.

Model Recall mAP(0.50) mAP(0.50:0.95)

YOLOv9 0.835 0.734 0.538

YOLOv9+CBAM 0.842 0.774 0.583

YOLOv9+AKConv+CAM 0.77 0.822 0.612

YOLOv9+AKConv+CAM+GAM 0.849 0.772 0.592

YOLOv9+AKConv+CAM+VoVGSCSP 0.75 0.795 0.621

YOLOv9+AKConv+CAM+CBAM 0.795 0.767 0.597

YOLOv9+AKConv+CAM+AFF
(Head with two AFF in the middle) 0.88 0.765 0.582

YOLOv9+AKConv+CAM+AFF
(one AFF in Head and one AFF Backbone) 0.838 0.761 0.580

YOLOv9+AKConv+CAM+GAM+AFF
(Head with a AFF in the middle) 0.759 0.758 0.576

YOLOv9+AKConv+CAM+AFF
(Head with a AFF in the middle) 0.828 0.813 0.621

As shown in Table 1, the proposed methods achieve
better performance than the original model in terms of
overall accuracy (mAP0.5, mAP0.5:0.95). With the same
dataset and number of training rounds, it can be found that
YOLOv9+AKConv+CAM+AFF (where AFF has its only
added layer in Head) achieves the best overall results on the
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full category, with a precision of 81.3% and a recall of 82.8%
with the minimum loss of Recall, which is 7.9% better than
the original YOLOv9 model. These results show that our
YOLOv9+AKConv+CAM+AFF model is effective in aerial
bird and UAVs, especially small target detection. Secondly,
we also observe that YOLOv9+AKConv+CAM is higher
in precision, reaching 82.2%, but the recall is significantly
lower. The main reason is that compared with the addition of
AFF attention, CAM is structurally designed to focusmore on
the recognition of small targets, but it is not able to completely
notice all the targets with large scales, so there is a decrease
in the recall rate.

When the Global Attention Mechanism (GAM) is incorpo-
rated into the model, it is observed that the convergence speed
is significantly accelerated. Moreover, the model’s accuracy
does not meet the desired requirements. This is attributed to
the integration of the global attentionmechanism, which leads
to a dispersion of focus on smaller targets and consequently
reduces the accuracy of these smaller targets.

TABLE 2. The effectiveness of each method on individual flybird was
compared on a home-made visible light data set.

Model Recall mAP(0.50) mAP(0.50:0.95)

YOLOv9 0.98 0.652 0.57

YOLOv9+CBAM 1. 0 0.889 0.831

YOLOv9+AKConv+CAM 0.98 0.890 0.83

YOLOv9+AKConv+CAM+GAM 1. 0 0.85 0.782

YOLOv9+AKConv+CAM+VoVGSCSP 0.961 0.883 0.819

YOLOv9+AKConv+CAM+CBAM 1. 0 0.895 0.836

YOLOv9+AKConv+CAM+AFF
(Head with two layer in the middle) 1. 0 0.891 0.828

YOLOv9+AKConv+CAM+AFF
(one layer each in Head and Backbone) 0.98 0.82 0.748

YOLOv9+AKConv+CAM+GAM+AFF
(Head with a layer in the middle) 0.941 0.793 0.73

YOLOv9+AKConv+CAM+AFF
(Head with a layer in the middle) 1. 0 0.891 0.832

Table 2 and Table 3 show the recognition effects of in-
dividual birds and individual drones respectively. It can be
found that the YOLOv9+AKConv +CAM+AFF model has a
particularly obvious improvement in the recognition of indi-
vidual birds, among which mAP0.5 and mAP0.50:0.95 have
an increase of 23.9% and 26.2%, respectively. The recogni-
tion of fixed-wing UAVs similar to birds also improved, with
mAP0.5 and mAP0.50:0.95 improved by 9.4% and 11.1%re-
spectively.

Furthermore, in order to visualize the effect of our im-
proved model, we compare it with the YOLOv9 prototype
in the All categories, Flybird, and Fixed-wing UAVs, re-
spectively. Figure 12 clearly demonstrates that the improved
model outperforms the original model in all three categories,
with particularly notable improvements in the Fiybird cate-
gory.

(2)On home-made infrared data set
From Table 4, the YOLOv9+AKConv +CAM+AFF im-

proved model demonstrates the most significant improve-

TABLE 3. The effectiveness of each method on individual Fixed-wing
UAVs was compared on a home-made visible light data set.

Model Recall mAP(0.50) mAP(0.50:0.95)

YOLOv9 1. 0 0.812 0.617

YOLOv9+CBAM 0.996 0.786 0.603

YOLOv9+AKConv+CAM 0.913 0.90 0.716

YOLOv9+AKConv+CAM+GAM 0.967 0.92 0.756

YOLOv9+AKConv+CAM+VoVGSCSP 0.80 0.906 0.709

YOLOv9+AKConv+CAM+CBAM 0.996 0.831 0.706

YOLOv9+AKConv+CAM+AFF
(Head with two layer in the middle) 1. 0 0.839 0.664

YOLOv9+AKConv+CAM+AFF
(one layer each in Head and Backbone) 1. 0 0.853 0.704

YOLOv9+AKConv+CAM+GAM+AFF
(Head with a layer in the middle) 0.80 0.80 0.642

YOLOv9+AKConv+CAM+AFF
(Head with a layer in the middle) 0.98 0.906 0.722

ment. The recall rate only experiences a marginal decrease,
with mAP0.50 reaching 83.3% and MAP0.50:0.95 achieving
46.3%. These figures are respectively 3.2% and 2.1% higher
than the original YOLOv9 model.

TABLE 4. The recognition effect of each method on the all category was
compared on the infrared data set.

Model Recall mAP(0.50) mAP(0.50:0.95)

YOLOv9 0.785 0.801 0.442

YOLOv9+AFF 0.755 0.804 0.444

YOLOv9+CAM 0.808 0.827 0.439

YOLOv9+AKConv 0.739 0.830 0.451

YOLOv9+AKConv+CAM 0.729 0.816 0.453

YOLOv9+AKConv+AFF 0.777 0.818 0.419

YOLOv9+AKConv+CAM+AFF
(Head with a layer in the middle) 0.777 0.833 0.463

The study also compared the recognition effects of individ-
ual birds and individual fixed-wing UAVs, as shown in Table
5 and Table 6 respectively. The data show that the improved
model is still superior to the original model in identifying
individual birds, with 2.2% higher mAP0.50 and 1.3% higher
mAP0.50:0.95. The identification accuracy and recall rate
of fixed-wing aircraft similar to birds have also improved
compared to the original aircraft. Among them, mAP0.50
increased by 7.5%, mAP0.50:0.95 increased by 3.2%, and the
recall rate increased by 1.1%. The experimental results show
that the improved method is very effective for the infrared
image recognition of birds and fixed-wing UAVs, especially
for the detection of small targets.
(3)On the infrared and visible light mixed data set
From figure 13, the experimental results indicate that the

improved model has a 2.6% higher recall rate compared
to the original model across all categories. Additionally,
it shows a 0.9% and 1.0% improvement on mAP0.50 and
MAP0.50:0.95, respectively. These data demonstrate that the
improved model not only exhibits strong applicability across

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3475629

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12. Detailed comparison of our improved model with the original YOLOv9 model in terms of All categories, Flybird, and Fixed-wing UAVs.

TABLE 5. The effectiveness of each method on individual bird
identification was compared on infrared data set.

Model Recall mAP(H0.50) mAP(0.50:0.95)

YOLOv9 0.814 0.937 0.478

YOLOv9+AFF 0.761 0.940 0.480

YOLOv9+CAM 0.814 0.957 0.473

YOLOv9+AKConv 0.639 0.898 0.406

YOLOv9+AKConv+CAM 0.648 0.911 0.433

YOLOv9+AKConv+AFF 0.887 0.945 0.486

YOLOv9+AKConv+CAM+AFF
(Head with a layer in the middle) 0.766 0.959 0.491

TABLE 6. The effectiveness of each method for individual fixed-wing
UAVs identification was compared on infrared data set.

Model Recall mAP(0.50) mAP(0.50:0.95)

YOLOv9 0.841 0.639 0.369

YOLOv9+AFF 0.778 0.579 0.340

YOLOv9+CAM 0.778 0.607 0.291

YOLOv9+AKConv 0.852 0.703 0.391

YOLOv9+AKConv+CAM 0.815 0.639 0.378

YOLOv9+AKConv+AFF 0.852 0.659 0.409

YOLOv9+AKConv+CAM+AFF
(Head with a layer in the middle) 0.852 0.714 0.401

different scenarios, but also possesses a high degree of gen-
eralization capability.

(4)Effectiveness of our improved YOLOv9-DeepSORT in
real-world

To verify the effectiveness of the improved model in real-
world scenarios, wemade video recordings of birds and fixed-
wing drones flying in natural environments. Subsequently,
the original YOLOv9-DeepSORT model and the improved
YOLOv9-DeepSORT model were used to identify and moni-
tor birds and fixed-wing aircraft respectively on the recorded
video clips. Comparative analysis of the effectiveness of the

FIGURE 13. On the mixed data set, the original model and the improved
model’s validity are compared across all categories.

two models in terms of recognition tracking is presented in
Figures 14 below. The size of the image is 1280×720, and
the size of the bird and aircraft targets is between 40 × 40
and 80 × 80, which appear as small targets at a distance in
the original video. It can be observed from the figures that
the improvedmodel generally outperforms the original model
in real-time recognition and tracking, with an average im-
provement of 3% across all frames. Therefore, the improved
modelmeets the demands for real-timemonitoring during live
operations, thus affirming its capability to effectively track
and identify aerial bird targets.

IV. DISCUSSION
This paper proposes an efficient automatic identification and
tracking framework for birds and UAVs. By introducing
a deeper convolutional network structure and an efficient
feature extraction mechanism, high-precision bird detection
under complex background and multiple environments is
realized. The system utilizes the DeepSORT algorithm to
continuously track birds in video streams, effectively solving
challenges such as small targets and fast movements, thereby
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FIGURE 14. The validity of the original YOLOv9-DeepSORT model and the improved YOLOv9-DeepSORT model in real-world.

maintaining high tracking accuracy and stability.

Firstly, a context attention module is introduced to en-
hance the ability of the model to extract small target features
and improve the detection performance significantly. Sec-
ondly, combining the attentional feature fusion (AFF) channel
attention mechanism, the inconsistencies in semantics and
scale are solved, and the robustness of feature extraction is
improved. Finally, AKConv dynamic convolution module is
used to dynamically adjust the convolution kernel, which
further improves the ability of the model to capture details
and context information. These improvements have enabled
the YOLOv9-DeepSORT model to make significant progress
in identifying and tracking birds and other aerial targets. The
improvements we proposed effectively solve the challenges
brought by the complex environment and improve the overall
robustness and accuracy of the tracking system. However,
with the iteration of more advanced technologies in the future,
we will continue to improve and integrate relevant modules
and technologies to further enhance the overall performance
of the model.

Meanwhile, from the results of ablation experiments, we
can also find some places worth digging and exploring. For

example, the study discovered that the integration of AKConv
and AFF into different positions of YOLOv9 had varying ef-
fects, sometimes even negative. Numerous experiments have
indicated that placing AKConv at the end of the Head yielded
optimal results, while integrating AFF into the middle of
the head is more effective than integrating it into the front
and tail of the head. Based on the characteristics of the
dataset, it is possible that AKConv’s poorer performance in
the head may be due to its premature dynamic intervention
in features with large differences, which affects the overall
sensitive parameters and ultimately leads to undesirable final
feature parameters. In contrast, dynamic intervention in the
tail reduces the fluctuation of sensitive parameters to some
extent, thereby achieving good results. The suboptimal effect
of incorporating AFF attention mechanisms at both ends
(head and tail) can be attributed to several factors: including
the sensitivity of high-resolution detail information in the
head feature map to noise interference, and insufficient detail
support due to information abstraction in the tail feature map.
These combined factors together limit the effectiveness of
administering AFF at both ends (head and tail).

Moreover, the combination of infrared and visible light

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3475629

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

data enhances detection robustness under a variety of envi-
ronmental conditions. This integration is especially beneficial
when the bird is partially obscured by leaves or other obstruc-
tions, as the thermal signature can help detect where visual
cues are lacking. Systems that utilize both infrared and visible
light data have higher accuracy and robustness than systems
that rely on a sole mode. This combined approach is excellent
at detecting birds in low light conditions, distinguishing birds
from other hot objects, and maintaining monitoring capabil-
ities in severe weather conditions. The remarkable thing is
that effective data fusion techniques, such as feature level and
decision level fusion, are critical to integrating these patterns.
Future research will focus on improving data fusion tech-
niques beyond simple data fusion, and developing specialized
deep learning models to take full advantage of combining
infrared and visible light data.

In summary, the differences in the performance of different
methods in different environments highlight the need for
further exploration and optimization. Future research will
further explore and advance advanced technologies such as
AKConv, AFF, CAM, CBAM, etc., to find a more compre-
hensive and generalized combination. Each of these methods
has advantages in feature extraction, attention mechanisms,
and dynamic convolution, and is critical to improving bird
recognition and tracking systems. In the future, it will provide
strong support for ecological research and wildlife protection,
and promote the realization of ecological sustainability.

V. CONCLUSION
In order to strengthen the identification and tracking of wild
birds and support the conservation work of relevant conserva-
tion units, this paper proposes a real-time target detection and
tracking model based on YOLOv9-DeepSORT. The model
combines AKConv, CAM and AFF to enhance the model’s
ability to pay attention to target features, especially the char-
acteristics of small target birds. This method enhances the
accuracy and generalization of the model, making it suitable
for effective monitoring through the parallel integration of
YOLOv9 identification network andDeepSORT tracking net-
work. At the same time, this study has generated a compre-
hensive dataset for bird drones and an infrared dataset. The
comprehensive bird drone dataset includes a large number
of small targets categorized into 4 categories, comprising
8,978 images of various sizes. The infrared dataset consists
of 10,614 images capturing birds and aircraft from different
perspectives and sizes, as well as nearly 5,500 images of
small targets. On the self-made comprehensive data set, the
improved YOLOV9-Deepsort model has a recognition accu-
racy of 81.3% for all categories, which is 7.9% higher than
the original YOLOv9 model. The identification accuracy of
bird species and fixed-wing drones with similar appearances
reached 89.1% and 90.6% respectively, showing an improve-
ment of 23.9% and 9.4% compared to the original model,
demonstrating the effectiveness of the enhanced model in
optical recognition. In the infrared data set, the recognition
accuracy of the enhanced model for all categories, birds and

fixed-wing UAVs reached 83.3%, 95.9% and 71.4%, respec-
tively, which increased by 3.2%, 2.2% and 7.5% compared
with the original model under infrared conditions, which
confirmed that the enhanced model still has a good recog-
nition performance in the infrared environment. Finally, by
integrating infrared and optical data and analyzing bird flight
videos under natural conditions, this study has confirmed
that the recognition performance of the enhanced model in
multiple scenes is still significantly better than that of the
original model.
The enhanced YOLOv9-DeepSORT method expands the

multi-scene application range of bird recognition and tracking
models, effectively promoting the extraction of video frame
features in multi-target tracking. It is hoped that this work will
serve as an inspiration for future researchers interested in the
conservation of wild birds.
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