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ABSTRACT The growing complexity and volume of modern software have led to an increase in source
code vulnerabilities, posing significant security risks. In response, deep learning-based automated source
code vulnerability detection methods, particularly those utilizing source code similarity analysis, have
recently emerged as promising solutions. However, existing similarity-based source code vulnerability
detection methods frequently fail to fully utilize information from the hierarchical structure of source
code and are often computationally expensive, limiting their practicality in real-world scenarios. In this
paper, we introduce XTransformer, a novel deep learning-based source code vulnerability detector tailored
for comparing target source code against archived vulnerable codes across various levels of the source
code’s hierarchical structure by leveraging extra cross-attention imposed on the transformer architecture.
Additionally, we propose a specialized training strategy based on supervised contrastive learning to improve
XTransformer’s ability to effectively learn and differentiate between vulnerable and non-vulnerable source
codes. Comprehensive experiments demonstrate that XTransformer outperforms current state-of-the-art
methods across different datasets and code lengths while significantly reducing the inference time compared
to other similarity-based methods that utilize hierarchical information from source code.

INDEX TERMS Code similarity, Contrastive learning, Cross-attention, Source code vulnerability detection,
Transformer

I. INTRODUCTION

THE rapid evolution of modern software development has
dramatically increased the complexity and volume of

source code. As the complexity and volume of source code
grow, vulnerabilities, which are flaws or weaknesses in the
underlying code that malicious attackers can exploit [1], [2],
have also become increasingly complex and challenging for
human experts to detect manually. Consequently, the threat
posed by these vulnerabilities has escalated, leading to a
higher risk of severe security breaches.

The 2021 data breach in Microsoft Exchange Servers, one
of the largest breaches in Microsoft’s history, illustrates the
dangers of source code vulnerabilities. This breach, which
affected nearly 400,000 Exchange servers, was the result of
vulnerabilities within the software’s source code [3]. Thus,

the need to develop automated source code vulnerability
detection has become urgent in order to address modern
software’s rising complexity and volume of vulnerabilities.
Recently, with the advancement of deep learning and the

successful introduction of deep learning models in cyberse-
curity, research in automated source code vulnerability detec-
tion has focused on applying and developing deep learning-
based detection models [4]–[14]. Among these methods,
similarity-based approaches [10]–[13], which detect vulner-
able code by comparing it against known vulnerable codes,
have gained attention for their effectiveness in detecting not
only known vulnerabilities that have been previously identi-
fied or listed in the Common Vulnerabilities and Exposures
(CVE) database [15], but also new vulnerabilities, known as
zero-day vulnerabilities, that have not yet been discovered.
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However, despite the effectiveness of similarity-based ap-
proaches, we find that few methods fully utilize the informa-
tion embedded in the hierarchical structure of source code,
even though previous studies have recognized the importance
of using information from different levels of this hierarchical
structure for detecting vulnerabilities—from token-level to
higher levels such as function-level [9], [13]. Additionally,
even when approaches attempt to use hierarchical structure
information, they often require high computational cost to
detect source-code vulnerabilities. For example, very recent
work [13] incorporates hierarchical information to detect vul-
nerable code, but its inference time required for detection is
significantly high, making it unsuitable for real-world sys-
tems that require timely detection.

In this paper, we introduce XTransformer, a novel deep
learning-based source code vulnerability detector based on
source code similarity analysis. Unlike existing approaches
that primarily rely on the Siamese network architecture [16]
to compare the similarity of source code pairs, XTrans-
former utilizes a customized transformer architecture for
vulnerability detection, built upon the original transformer
design [17]. This customized architecture is better suited
for leveraging cross-attention to effectively compare target
source code across various levels of its hierarchical structure
with archived vulnerable codes (known vulnerable codes) in a
more time-efficientmanner. In addition, we propose a special-
ized training strategy for XTransformer based on supervised
contrastive learning [18], which enhances XTransformer’s
detection performance by enabling it to more effectively
distinguish between vulnerable and non-vulnerable source
codes, thereby extracting core features from vulnerable code.

Our contributions can be summarized as follows: (1) We
propose XTransformer, a novel similarity-based source code
vulnerability detector built on a customized transformer ar-
chitecture that is better suited for hierarchical similarity anal-
ysis of source code. XTransformer efficiently utilizes infor-
mation from the hierarchical structure of source code by
leveraging cross-attention to compare source code similarity,
thereby improving detection accuracy. (2) We introduce a
specialized training strategy based on supervised contrastive
learning, tailored to enhance XTransformer’s performance
in the source code vulnerability detection scenario. (3) We
demonstrate through experiments that XTransformer sur-
passes current state-of-the-art methods, delivering superior
performance and timely detection across various datasets.

II. RELATED WORKS
We provide an overview of deep learning-based source code
vulnerability detection and contrastive learning, the two key
related subjects to our work.

A. SOURCE CODE VULNERABILITY DETECTION
The goal of source code vulnerability detection is to identify
potential security weaknesses or flaws in software’s source
codes that attackers could exploit for malicious activities,
such as unauthorized access and data breaches [1], [2].

There are two main ways to analyze vulnerabilities in
source code: dynamic analysis and static analysis. Dynamic
analysis involves analyzing a source code during its execu-
tion, while static analysis examines a source code without ex-
ecuting it. Since static analysis can detect vulnerabilities early
in the development stage, incurs less computational cost, and
is faster than dynamic analysis, it is often preferred [1], [2],
[9], [13]. Our work considers the static analysis scenario.
Traditionally, rule-based methods, which identify vulner-

able source code by matching predefined patterns or rules,
have been used to detect vulnerabilities within the static anal-
ysis scenario. However, rule-based approaches often struggle
to detect vulnerabilities that deviate from predefined patterns
and rely heavily on manually crafted rules by domain experts.
This manual process is costly, and the effectiveness of de-
tection can vary depending on the security expertise of the
individual who defines the rules [5], [19].
Therefore, with the success of deep learning models and

their ability to automatically learn and extract patterns from
data, deep learning-based methods for source code vulnera-
bility detection have been proposed to address the challenges
of rule-based methods [4]–[9], [11]–[13]. For example, Rus-
sell et al. [5] proposed a convolutional neural network (CNN)-
based vulnerability detector, which was the first method to
apply deep learning directly to source code for feature learn-
ing. Their work demonstrated that deep feature representation
learning on source code is a promising approach for auto-
mated vulnerability detection. Gu et al. [9] introduced a hier-
archical model inspired by the structural similarity between
code and documents, where source code tokens form state-
ments and statements form code blocks—similar to how text
tokens form sentences and sentences form documents. They
implemented a hierarchical attention network, consisting of
two levels of bidirectional gated recurrent unit (BiGRU) lay-
ers with attention mechanisms [20], to extract vulnerability
patterns from the source code’s token- and statement-level
attributes, thereby enhancing the accuracy of vulnerability
detection.
Among these deep learning-based approaches, similarity-

based methods [11]–[13], which detect vulnerable code by
comparing it against known vulnerable codes often collected
from historical data, have garnered attention for their effec-
tiveness in identifying both new and previously encountered
vulnerabilities. This approach is particularly effective at de-
tecting vulnerabilities in duplicated code, which is crucial
given that studies [21]–[25] have shown duplicated code can
constitute up to 20% of modern software. This significantly
increases the risk of recurring vulnerabilities if a defect is
found in any part of the duplicated code [13].
Since similarity-based source code vulnerability detection

is analogous to text similarity analysis, which quantifies the
similarity between two pieces of text [26], [27], many vulner-
ability detection methods have adopted text similarity tech-
niques. In particular, as the Siamese neural network [16] has
emerged as a powerful architecture for text similarity tasks
[28]–[33], Siamese architecture-based methods for source
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code vulnerability detection have been proposed [11]–[13].
The Siamese architecture consists of two identical sub-

networks with the same configuration, parameters, and
weights, each independently processing one of the two input
data. The outputs are then compared to calculate a simi-
larity score, indicating how closely related the two inputs
are. Siamese architecture-based approaches for source code
vulnerability detection differ in their choice of sub-networks.

For example, Sun et al. [12] introduced VDSimilar, which
employs bidirectional long short-term memory (BiLSTM)
networks coupled with attention mechanisms [20] as the
sub-network within the Siamese architecture for detecting
vulnerabilities. Their research demonstrated that VDSimi-
lar is highly effective at identifying vulnerable code, even
with a relatively small dataset, and significantly outperforms
non-similarity-based vulnerability detectors. More recently,
Han et al. [28] proposed CODE-SMASH, a state-of-the-art
model based on a Siamese architecture, designed to detect
vulnerabilities by analyzing the similarity of hierarchical in-
formation extracted from two pieces of source code. This
approach, which compares token- to function-level attributes
across different code samples, has demonstrated strong per-
formance in detecting vulnerabilities across a wide range of
code lengths, underscoring the importance of considering in-
formation across various hierarchical levels of source codes.

Despite advancements in deep learning-based similarity
approaches for source code vulnerability detection, these
methods often fail to fully utilize information from the var-
ious levels of the source code’s hierarchical structure. Even
when they do, the computational time required for detecting
vulnerabilities tends to be high.

B. CONTRASTIVE LEARNING
Contrastive learning is a powerful learning framework that
trains models to transform data points into vector represen-
tations such that similar (or positive) pairs sharing semantics
are pulled closer in a representation space while dissimilar (or
negative) pairs are pushed apart. It is foundational in enabling
models to discern and encode the semantic relationships
between data points effectively [34]. Two main approaches
within contrastive learning are distinguished by their use of
label information: self-supervised contrastive and supervised
contrastive learning.

Self-supervised contrastive learning empowers models to
derive semantically meaningful data representations without
relying on explicit label information. Instead of using prede-
termined labels, this approach forms positive pairs from aug-
mented variations of the same data point and negative pairs
from distinct data points [35]–[37]. A notable contribution to
this strategy is SimCLR, introduced in [35], which presents
a simplified self-supervised contrastive learning framework
that eliminates the need for specialized architectures or mem-
ory banks. Their findings emphasize the critical role of multi-
ple data augmentations in deriving effective representations,
with contrastive learning benefiting more from data augmen-
tation techniques than conventional supervised learning does.

Building upon the self-supervised contrastive learning, su-
pervised contrastive learning incorporates label information
to further refine the contrastive learning process, enhancing
the model’s ability to distinguish between different classes
more effectively [18]. It leverages the available labels to form
positive pairs not just between augmented versions of the
same instance but also among different instances of the same
class. It has shown to be particularly beneficial in scenarios
where fine-grained distinctions between classes are crucial.
Contrastive learning has also been studied for natural lan-

guage processing (NLP), as demonstrated in works like [38]–
[43]. Initial efforts in NLP tried to apply contrastive learning
using data augmentation techniques such as word deletion, re-
ordering, and substitution [38], [39]. However, adapting con-
trastive learning to NLP presents unique challenges due to the
complex semantics of the natural language, where even minor
changes like altering a single word can significantly shift
the meaning. A notable advancement is SimCSE [40], which
utilizes the inherent dropout mechanism [44] of transformer-
based models as a form of natural data augmentation, ef-
fectively generating variant sentence embeddings without
altering the original text input. Using dropout [44] as a
data augmentation for contrastive learning, they showed that
SimCSE can significantly enhance state-of-the-art sentence
embeddings on semantic textual similarity tasks.
Inspired by the effectiveness of contrastive learning in NLP

and considering that source code can be treated as a form
of text, we employ supervised contrastive learning to train
our model. This approach enhances the model’s ability to
extract core representations from source codes, even when the
available training data is limited.

III. METHODOLOGY
We introduce XTransformer, a novel deep learning-based
source code vulnerability detector based on similarity analy-
sis. We begin by outlining our problem setup. Following this,
we detail the architecture of our model, which is built upon
the transformer [17], and we describe our training strategy,
which employs supervised contrastive learning [18]. Figure 1
depicts the architecture of ourmodel, and our training strategy
is illustrated in Fig. 2.

A. PROBLEM STATEMENT
We consider a detection scenario involving several archived
vulnerable source codes, which is a collection of previously
identified and analyzed source codes that contain specific
security flaws. For each new source code that needs to be
checked for vulnerabilities, we assess its similarities with the
archived vulnerable source codes. If a new source code is
similar to an archived vulnerable source code, we detect it
as vulnerable code.
Both archived codes and new codes to be evaluated are

treated as sequences of tokens, which are the smallest units
used to represent source code. Since deep learning models
operate on numerical data, each token is transformed into a
vectorized form using a method such as word2vec [45].
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FIGURE 1. The overall architecture of our XTransformer

Formally, we denote an archived known vulnerable code
as x ∈ RL×n and a new source code (target source code)
as x̃ ∈ RL̃×n, where L and L̃ represent the length of each
code’s token sequence, respectively. Here, n is the dimension
of a vectorized token. Our goal is to develop a model capable
of detecting vulnerable codes by computing the similarity
between a new source code x̃ and an archived code x.

B. MODEL ARCHITECTURE
Contrary to previous studies [12], [13] that rely on the
Siamese architecture [16] to evaluate the similarity between
two source codes, we propose a model that utilizes the
transformer architecture’s cross-attention mechanism [17] to
assess the similarity of a target source code by comparing
them with archived vulnerable code across the hierarchical
structure of the target source code. Our model comprises
three main components: teacher encoder, student encoder,
and similarity assessment component. We chose the names of
teacher and student encoders since the former takes archived
vulnerable codes, which are like correct answers provided

by teachers, while the latter takes the codes to be tested for
vulnerability, like answers provided by students.

1) Teacher Encoder
The teacher encoder is engineered to extract the core repre-
sentation of a given archived vulnerable code x, capturing key
attributes essential for analysis. It comprises M stacked sub-
modules, all sharing the same architectural design.
Each sub-module contains two main sub-layers: a multi-

head self-attention layer followed by a feed-forward layer,
both of which are enhanced with layer normalization [46],
dropout [44], and residual connections [47]. Unlike the origi-
nal transformer architecture [17] that adopts layer normaliza-
tion after each sub-layer, our model introduces layer normal-
ization before each sub-layer. Thismodification is designed to
enhance the stability of model training, ultimately leading to
improvements in the model’s performance, as studied in [48].
The multi-head self-attention layer within each sub-

module of the teacher encoder consists of multiple self-
attention heads. Each head computes its output by utilizing
queries, keys, and values derived from the same data as
follows:

A′
m,h := softmax

(
Qm,h(x′m−1)Km,h(x

′
m−1)

T

√
s

)
Vm,h(x′m−1),

where A′
m,h ∈ RL×d represents the output of the h-th head

within the m-th sub-module, d is the dimension of the out-
put for each self-attention head, and s ∈ R is a scaling
factor. x′m−1 ∈ RL×n corresponds to the output from the
(m − 1)-th sub-module for the archived vulnerable code x,
with m ranging from 1 to M . The transformation functions
Qm,h(·),Km,h(·), and Vm,h(·) produce h-th head’s query, key,
and value, respectively, through dot products between x′m−1

and the weight matricesWQ
m,h,W

K
m,h, andW

V
m,h, each in Rn×d .

This structured approach enables the model to dynamically
focus on different features of the previous layer’s output x′m−1.
The output from each attention head, denoted as A′

m,h for h
ranging from 1 toH , is combined through concatenation, and
then x′m−1 is added via a residual connection to form Am =
Concat(A′

m,1,A
′
m,2, . . . ,A

′
m,H ) + x′m−1, where Am ∈ RL×n.

The combined output Am is further processed through the
feed-forward network, which consists of two fully connected
layers with the rectified linear unit (ReLU) activation func-
tion, yielding the final output x′m ∈ RL×n for the m-th sub-
module as follows:

x′m = ReLU(Am ·W o
m + bom) ·W o′

m + bo
′

m + Am,

where ReLU(·) represents the ReLU activation function ap-
plied element-wise. Here, W o

m and W o′
m are the weight matri-

ces of the fully connected layers, and bom and bo
′

m are the bias
terms for adjusting the output. The addition of Am signifies a
residual connection. Note that we have omitted layer normal-
ization and dropout in the above expressions for simplicity.
Through the sequential application of these sub-modules,

the teacher encoder conducts a hierarchical analysis of in-
put token sequences to capture various levels of semantic

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3474857

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



S. Han et al.: XTransformer: Similarity-Based Vulnerability Detection Using Transformer’s Cross-Attention for Hierarchical Analysis

meaning, as studied in [49]–[51]. This approach enables the
teacher encoder to adeptly extract the core representation of a
given archived vulnerable code, capturing both its token-level
details and higher-level deep semantic meanings.

2) Student Encoder
The student encoder is designed to compare a target source
code x̃ with the core representation of a given archived vulner-
able source code x extracted by the teacher encoder. It aims to
facilitate a deep, intrinsic comparison, focusing on identifying
and extracting features in a code x̃ that closely align with
the fundamental characteristics of the archived code. This
approach ensures that the analysis not only recognizes direct
matches but also appreciates nuanced similarities essential for
accurate similarity assessments.

The student encoder’s architecture is similar to that of the
teacher encoder, consisting of stacked sub-modules that con-
tain amulti-head self-attention layer and a feed-forward layer.
A key distinction of the student encoder is the incorporation of
an additional multi-head cross-attention layer within its sub-
modules. Each sub-module in the comparison component is
composed of three main layers: a multi-head self-attention
layer to capture features of semanticmeanings within a source
code internally, a multi-head cross-attention layer to compare
and align a code with the archived vulnerable code’s core rep-
resentation, and a feed-forward layer to refine the processed
information further.

More specifically, consider the output from the multi-head
self-attention layer within the m̃-th sub-module of the student
encoder for a target code x̃ ∈ RL̃×n as x̂m̃ ∈ RL̃×n, where
m̃ spans from 1 to M̃ , and let the output of the teacher
encoder for the archived code x be denoted as x′M ∈ RL×n.
In contrast to the multi-head self-attention that computes
queries, keys, and values from identical data, the multi-head
cross-attention layer utilizes distinct data for these elements.
This layer utilizes multiple cross-attention heads where each
head computes queries from the current state of the code x̂m̃
and keys and values from the core representation x′M of the
archived code x as follows:

Ã′
m̃,h := softmax

(
Qm̃,h(x̂m̃)Km̃,h(x′M )

T

√
s̃

)
Vm̃,h(x′M ),

where Ã′
m̃,h ∈ RL̃×d̃ signifies the output of the h-th head

within the m̃-th sub-module, d̃ represents the dimension of
the output for each cross-attention head, and s̃ ∈ R act-
ing as a scaling factor. Qm̃,h(·), Km̃,h(·), and Vm̃,h(·) are the
transformations for producing the query, key, and value. This
cross-attention layer allows the model to directly compare
and contrast the current processed state x̂m̃ of the code x̃ by
the preceding multi-head self-attention layer with the core
representation x′M of the archived vulnerable code x, adjusting
its analytical focus to align and emphasize aspects of the code
that are most similar to the given archived code.
Outputs from all the cross-attention heads are con-

catenated, and then x̂m̃, which is the output of the pre-
ceding multi-head self-attention layer, is added to the

concatenated output via a residual connection: Ãm̃ =
Concat(Ã′

m̃,1, Ã
′
m̃,2, . . . , Ã

′
m̃,H ) + x̂m̃, resulting in Ãm̃ ∈ RL̃×n.

This composite output is further processed by the feed-
forward layer:

x̃′m̃ = ReLU(Ãm̃ · W̃ o
m̃ + b̃om̃) · W̃ o′

m̃ + b̃o
′

m̃ + Ãm̃,

where x̃′m̃ ∈ RL̃×n represents the output for the m̃-th sub-
module, and m̃ spans from 1 to M̃
By stacking these sub-modules, the student encoder com-

pares various semantic levels of a code x̃ with the core repre-
sentation x′M of a given archived vulnerable code x, focusing
on extracting features from the code that closely align with
the core representation of the archived code. This approach al-
lows the model to compare two source codes from token-level
information to higher-level information, such as function-
level information, providing a hierarchical processing capa-
bility. This makes the model more effective in handling not
only short code sequences but also long code sequences,
making it more suitable for addressing the complexity and
dynamism of modern software vulnerabilities, similar to the
previous study [13].

3) Similarity Assessment
The similarity assessment component calculates the similar-
ity score between a target code x̃ and an archived vulnerable
code x by analyzing the output x̃′

M̃
∈ RL̃×n from the student

encoder, which reflects features of the code x̃ that are closely
aligned with the core representation x′M of the given archived
code x. This process involves averaging the features of the
student encoder’s output x̃′

M̃
to reduce its dimensionality to

RL̃ , resulting in a representation that is more manageable for
assessing similarity. The averaged data is then normalized
and passed through two fully connected layers with ReLU
activation function. Subsequently, the output from these lay-
ers is processed through the sigmoid function to generate
a similarity score within the range of [0, 1], indicating the
degree of similarity.
Finally, with a predefined threshold ρ > 0, we assess the

presence of source code vulnerabilities. If the similarity score
is greater than ρ, the target code x̃ is considered vulnerable
code; otherwise, it is deemed benign.

C. TRAINING STRATEGY
We propose a specialized training strategy designed to en-
hance our model’s ability to identify core features in code,
thereby improving its detection performance, even when
training data is limited. Initially, we focus on training the
teacher encoder exclusively using supervised contrastive
learning [18]. Subsequently, we train the student encoder
along with the similarity assessment component.
To detail our approach, we define each minibatch sam-

pled from a set of various source codes, which will be
compared with archived known vulnerable codes, as D :=
{(x̃(i), ỹ(i))}Ni=1, where x̃

(i) is the i-th source code in the set
D and ỹ(i) is its corresponding label (vulnerable or not). We
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set the label ỹ(i) = 1 for vulnerable code and ỹ(i) = 0 for
non-vulnerable code. Here, N is the total number of source
codes in the set D. Additionally, each minibatch includes a
set of archived vulnerable codes with P samples, defined as
G := {(x(p), y(p))}Pp=1, where x

(p) denotes the p-th archived
known vulnerable code, and y(p) denotes its label. Since the
codes in the set G consist solely of vulnerable codes, we set
y(p) = 1 for all p, where p = 1 . . .P. Here, P represents the
total number of samples in the set G.

1) Training Teacher Encoder

The first step of our training strategy focuses on training the
teacher encoder. This process enables the teacher encoder
to identify and extract distinct representations of archived
known vulnerable source codes, effectively distinguishing
them from non-vulnerable codes. To achieve this, we adopt
a supervised contrastive learning framework [18].

Unlike conventional contrastive learning methods [18],
[35], [36], [40], where anchor points—used as reference
points to compare with other data points for learning dis-
criminative features—can be any data points, our strategy
exclusively utilizes archived vulnerable source codes from the
set G as anchor points. This approach enables our model to
specifically learn discriminative features of vulnerable codes
based on these archived vulnerable source codes. In addition
to setting these archived vulnerable source codes as anchor
points, we designate source codes from each minibatch as
either positive or negative samples relative to these anchor
points: a source code is considered a positive sample if it is
vulnerable, and a negative sample if it is non-vulnerable.

Let us formalize our approach by defining the teacher
encoder as a function fe(·;we) : RL×n → RL×n, which trans-
forms a source code into an encoded representation. Follow-
ing previous contrastive learning approaches [18], [35], [36],
we introduce a linear projection head denoted by fg(·;wg) :
RL×n → RL′

, which positioned atop of a feature extrac-
tor to map the extracted features into an embedding space
conducive for applying contrastive loss, thereby facilitating
a more effective representation learning. By integrating the

linear projection head fg on top of the teacher encoder fe, we
establish a composite representation function fr(·;we,wg) :=
fg ◦ fe(·), where we and wg are the weights of the teacher
encoder and the linear projection head, respectively.
With the representation function fr(·;we,wg) and for every

minibatch set B := D ∪ G including N various source codes
and P archived known vulnerable source codes, we define our
supervised contrastive loss for training the teacher encoder as
follows:

Lcon(we,wg) =

−1

P

P∑
p=1

N+P∑
i=1

ȳ(i)
(
log

exp((z(p))T z̄(i)/τ)∑N+P
j=1 exp((z(p))T z̄(j)/τ)

)
,

where z(p) = fr(x(p)) indicates the output of the function
fr for the p-th archived known vulnerable source code x(p)

(anchor point), where p = 1 . . .P from the set G. Here, z̄(i)

represents the output of the function fr for the i-th source
code from the minibatch set B and ȳ(i) is its corresponding
label: 1 for vulnerable or 0 for non-vulnerable code, where
i = 1 . . .N + P. τ is a temperature hyperparameter.
The expression N + P refers to the total number of source

code samples in each minibatch, combining N samples from
the setD andP vulnerable source code samples from the set of
archived vulnerable codesG. The inclusion of these P vulner-
able source code samples, which are originally sampled to act
as anchor points, serves as a form of data augmentation. This
is achieved by leveraging the dropout mechanism within our
model to introduce slight variations in their representations,
as discussed in [40]. Since these P samples are all known
vulnerable codes, we assign them the label of vulnerable (1)
and consider them as positive samples to the anchor point x(p).

Upon completing this training procedure, we discard the
linear projection head fg(·;wg) and use only the teacher en-
coder fe(·;we).

2) Training Student Encoder with Similarity Assessment
In our second training step, we train the student encoder along
with the similarity assessment component. During this train-
ing procedure, the pre-trained weights of the teacher encoder,
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trained in the first step, are kept fixed to ensure it provides
a stable and consistent representation of archived vulnera-
ble source codes. Additionally, we initialize the weights of
the multi-head self-attention layers and feed-forward layers
within the student encoder with the corresponding pre-trained
weights from the teacher encoder.

To formally describe our method, we define the student
encoder as a function fc(·;wc) : RL̃×n → RL̃×n, which
processes source codes into representations that are aligned
with the output from the teacher encoder. We also define
the similarity assessment component as a function fa(·;wa) :
RL̃×n → R. These functions are combined into a unified func-
tion fu(·;wc,wa) := fa ◦ fc(·), where wc and wa represent the
weights of the student encoder and the similarity assessment
component, respectively.

With the unified function fu(·;wc,wa), our training loss is
defined as follows:

L(wc,wa) =

−1

PN

P∑
p=1

N∑
i=1

ỹ(i)log(ŷ(i),(p)) + (1− ỹ(i))log(1− ŷ(i),(p)),

where ŷ(i),(p) = fu(x̃(i)|(x′M )(p);wc,wa) represents the pre-
dicted similarity between the i-th source code x̃(i) in the set
D and the p-th archived vulnerable code x(p) in the set G.
Here, (x′M )

(p) refers to the output from the teacher encoder for
the p-th archived vulnerable code x(p). This approach enables
precise model training focused on the similarity assessment
between source codes.

IV. EXPERIMENTS
In this section, we demonstrate the effectiveness of our pro-
posed method, which we call XTransformer, by comparing
its performance against various similarity-based source code
vulnerability detection methods.

A. EXPERIMENT SETTINGS
All our experiments were conducted in a computational en-
vironment with PyTorch v.1.9.1, Numpy v.1.17.4, and scikit-
learn v.0.22.2, running on an Ubuntu 18.04.3 (64-bit) system.
The hardware setup included an Intel Xeon Silver 4214 CPU,
32GB RAM, and an NVIDIA GeForce RTX2080Ti GPU,
supported by CUDA v.10.2.

1) Baseline Methods
We compared our XTransformer with four deep learning-
based source code vulnerability detectors that are based on
source code similarity: TokenCNN [5], HAN [9], VDSimi-
lar [12], and CODE-SMASH [13]. Following the approach
of the previous study [13], we adapted TokenCNN [5] and
HAN [9], originally proposed for vulnerability classification,
into a Siamese structure with two fully connected layers to
function as similarity-based detection models.

It is noteworthy that, as studied in [13], TokenCNN and
VDSimilar only consider token-level features of source code,

TABLE 1. Characteristics of the Chromium, Debian, and Sun datasets used
for experiments.

Dataset Chromium Debian Sun
No. of vulnerable functions 701 1, 056 324

No. of non-vulnerable functions 3, 391 15, 785 465
No. of similar pairs 245, 350 557, 040 2, 158

No. of dissimilar pairs 2, 377, 091 16, 668, 960 2, 398

while HAN considers both token and statement-level fea-
tures, and CODE-SMASH considers token, statement, and
function-level features for source code similarity analysis in
detecting vulnerabilities.

2) Dataset
We tested our method on three different datasets: the
Chromium and Debian datasets [52] for large-scale datasets,
and the Sun dataset [12] (the name is after the first author
of the paper which has introduced the dataset) for a small-
scale dataset. Each dataset consists of vulnerable and non-
vulnerable functions, where each function represents a se-
quence of code that performs specific tasks.
Specifically, the Chromium and Debian datasets, sourced

from the Reveal dataset [52] and built upon real-world
projects, consist of functions written in C/C++ language
and annotated as either vulnerable or non-vulnerable. In our
experiments, we focused on functions with fewer than 80
lines of code, categorizing them by line count to evaluate
our method’s effectiveness across different code lengths, as
explored in a previous study [13].
The Sun dataset also consists of vulnerable and non-

vulnerable functions written in C/C++, but it is organized
according to various CVEs (Common Vulnerabilities and
Exposures), unlike the Chromium and Debian datasets. In
our experiments, similar to the approach of the original pa-
per [12], we considered CVEs that appear at least three vul-
nerable and three non-vulnerable functions so that the number
of generated similar and different pairs will be sufficient for
training.
We then created pairs of functions, where each pair con-

sisted of a vulnerable function and either another vulnerable
function or a non-vulnerable function. For the Chromium and
Debian datasets, we built function pair datasets using all the
vulnerable and non-vulnerable functions. In the case of the
Sun dataset, we paired functions according to CVEs, as done
in the original study [12]. We labeled these pairs as similar
(1) if both functions are vulnerable and dissimilar (0) if they
are not. We outline the details in Table 1.
For the Chromium and Debian datasets, we split the func-

tion pair datasets into training, validation, and test sets with
a 6:2:2 ratio, following previous works [9], [13]. For the Sun
dataset, due to the small amount of data, we conducted 10-
fold cross-validation following the original work [12]. Specif-
ically, we randomly divided the dataset into 10 subsets. For
each fold, 9 subsets were used for training (with the training
data further divided in an 8:2 ratio for training and validation)
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and 1 subset for testing. This process was repeated 10 times,
resulting in 10 groups of results. We then reported the average
of these results.

3) Evaluation Metric
We evaluated the performance of similarity models with four
metrics: accuracy, precision, recall, and F1 score, which are
elaborated as follows:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
,

Precision =
TP

TP+ FP
, Recall =

TP
TP+ FN

,

F1 score = 2× Precision× Recall
Precision+ Recall

.

Here, TP (true positive) is the number of similar function pairs
correctly identified as similar by a model, TN (true negative)
is the number of dissimilar function pairs correctly identified
as dissimilar, FP (false positive) refers to the number of
dissimilar function pairs wrongly identified as similar, and
FN (false negative) refers to the number of similar function
pairs wrongly identified as dissimilar.

The higher the values of these metrics, the better the
model’s performance in identifying and differentiating be-
tween similar and dissimilar function pairs. The F1 score, in
particular, is preferable as it provides a balanced measure of
the model’s precision and recall. This is especially valuable
in situations where there is an imbalance between the classes,
such as in our case, where the number of similar pairs and
dissimilar pairs are imbalanced.

4) Implementation Details
We followed the previous study [13] for tokenizing source
codes and employed word2vec [45] for source code vector-
ization with an embedding size of 64. We trained all models
with a batch size of 50 for 120 epochs at a learning rate of
10−3, using the Adam optimizer [53].

For our model, we configured both the teacher encoder and
the student encoder with four sub-modules, applied a dropout
rate of 0.2, and set the number of attention heads to four.
Based on the best results from a previous study [40], we set
the temperature hyperparameter τ to 0.05 in our experiments.
For the baseline models, we adhered to the optimal settings
from their respective studies.

We adjusted each model’s detection threshold ρ, which
converts the model’s output score (similarity score) into bi-
nary decisions to determine whether the source codes are
similar or dissimilar, to the value that yielded the highest F1
score on the validation set.

B. DETECTION PERFORMANCE
In this section, we show the effectiveness of XTransformer
in detecting vulnerable source code by evaluating both its
overall detection performance across all code lengths and its
performance within specific code length categories.

TABLE 2. Detection performance on the Chromium, Debian, and Sun
datasets. The best values are boldfaced and the second-best are
underlined.

Model Accuracy Precision Recall F1

C
hr
om

iu
m TokenCNN 0.9170 0.9140 0.9480 0.9218

VDSimilar 0.9344 0.9229 0.9446 0.9318
HAN 0.9145 0.9160 0.9416 0.9229

CODE-SMASH 0.9233 0.9192 0.9711 0.9355
XTransformer 0.9549 0.9464 0.9691 0.9545

D
eb
ia
n

TokenCNN 0.9576 0.9728 0.9194 0.9452
VDSimilar 0.7860 0.6700 0.9127 0.7726

HAN 0.9575 0.9733 0.9188 0.9450
CODE-SMASH 0.9596 0.9940 0.9043 0.9469
XTransformer 0.9627 0.9864 0.9195 0.9515

Su
n

TokenCNN 0.7385 0.5584 0.6475 0.5698
VDSimilar 0.7062 0.4876 0.5453 0.5083

HAN 0.5827 0.3366 0.5029 0.3529
CODE-SMASH 0.9285 0.8797 0.8633 0.8705
XTransformer 0.9470 0.9098 0.9004 0.9040

1) OVERALL PERFORMANCE
Table 2 showcases the overall detection performance (across
all code lengths) of each competing method measured by the
metrics of accuracy, precision, recall, and F1 score, evaluated
on the Chromium, Debian, and Sun datasets.
For the large-scale datasets, Chromium and Debian,

XTransformer achieves the highest accuracy with 0.9549 and
0.9627, respectively. The second-best accuracy is observed
with VDSimilar at 0.9344 for the Chromium dataset and with
CODE-SMASH at 0.9596 for the Debian dataset. In terms
of F1 score, XTransformer also leads with values of 0.9545
for Chromium and 0.9515 for Debian, followed by CODE-
SMASH with values of 0.9355 and 0.9469, respectively.
While CODE-SMASH has the highest recall at 0.9711 for the
Chromium dataset and the highest precision at 0.9940 for the
Debian dataset, XTransformer closely follows with a recall of
0.9691 and precision of 0.9864.
For the Sun dataset, a small-scale dataset, XTransformer

notably demonstrates the best performance across all met-
rics compared to other models. For instance, XTransformer
achieves the highest accuracy at 0.9470, representing ×1.02
improvement compared to the second-best model. Addition-
ally, XTransformer achieves the highest F1 score at 0.9040,
followed by CODE-SMASH at 0.8705, representing ×1.04
improvement over CODE-SMASH.

Across all the datasets, XTransformer consistently demon-
strates the best performance, particularly in terms of accuracy
and F1 score. This indicates the potential of XTransformer for
detecting vulnerabilities.

2) PERFORMANCE ACROSS DIFFERENT CODE LENGTH
To assess each competing method’s effectiveness across vary-
ing code lengths, we categorized the functions into distinct
length groups: short (fewer than 30 lines), medium (30 to 60
lines), long (60 to 80 lines) and evaluated each method on
these categorized function groups. Figures 3, 4, and 5 dis-
play the results on the Chromium, Debian, and Sun datasets,
respectively. Here, the overall performance for each dataset

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3474857

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



S. Han et al.: XTransformer: Similarity-Based Vulnerability Detection Using Transformer’s Cross-Attention for Hierarchical Analysis

0.8

0.85

0.9

0.95

1

TokenCNN VDSimilar HAN CODE-SMASH XTransformer

F1

0

0.2

0.4

0.6

0.8

TokenCNN VDSimilar HAN CODE-SMASH XTransformer

F1
Overall Short (~30 lines) Medium (30~60 lines) Long (60~80 lines)

FIGURE 3. Performance comparison of various methods based on F1
score across different code lengths for the Chromium dataset.
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FIGURE 4. Performance comparison of various methods based on F1
score across different code lengths for the Debian dataset.

matches the results shown in Table 2.
For the Chromium dataset, XTransformer demonstrates

superior performance across all code lengths. It achieves
the highest F1 scores of 0.9524, 0.9554, and 0.9644 for
short, medium, and long code lengths, respectively. CODE-
SMASH, a method designed for handling different code
lengths, follows closely with F1 scores of 0.9325, 0.9355,
and 0.9344, respectively, showing the second-best perfor-
mance but not surpassing XTransformer. TokenCNN, HAN,
and VDSimilar show reasonable performance for short code
lengths but fall behind as the code length increases.

For the Debian dataset, a similar trend is observed where
XTransformer achieves the highest F1 scores across all
code lengths with 0.9498, 0.9538, and 0.9348 for short,
medium, and long code lengths, respectively. CODE-SMASH
shows the second-best performance with 0.9406, 0.9483, and
0.9268. Notably, compared to VDSimilar, our method shows
performance improvements of ×1.24, ×1.23, and ×1.29 for
short, medium, and long code lengths, respectively.

For the Sun dataset, all competing methods, except for
CODE-SMASH, show significantly lower performance, with
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FIGURE 5. Performance comparison of various methods based on F1
score across different code lengths for the Sun dataset.

TABLE 3. Effectiveness of our training strategy: ‘Not Applied’ refers to
XTransformer without applying our training strategy, while ‘Applied’
denotes the version of XTransformer with our training strategy applied.
The highest values are highlighted in bold.

(A) Chromium

Training Strategy Accuracy Precision Recall F1
Not Applied 0.9323 0.9326 0.9349 0.9337
Applied 0.9549 0.9464 0.9691 0.9545

(B) Debian

Training Strategy Accuracy Precision Recall F1
Not Applied 0.9580 0.9513 0.9433 0.9471
Applied 0.9627 0.9864 0.9195 0.9515

(C) Sun

Training Strategy Accuracy Precision Recall F1
Not Applied 0.9179 0.8311 0.8843 0.8556
Applied 0.9470 0.9098 0.9004 0.9040

F1 scores below 0.6 across all code lengths. In contrast,
our proposal method XTransformer achieves the highest F1
scores of 0.8721, 0.9203, and 0.9579 for short, medium,
and long code lengths, respectively. While CODE-SMASH,
the second-best model, achieves F1 scores above 0.8, our
XTransformer outperforms it, with improvements of ×1.09,
×1.06, and ×1.02 for short, medium, and long sequences,
respectively.
Overall, XTransformer consistently shows the highest F1

scores and accuracies across different code lengths and
datasets, indicating its effectiveness in handling a variety of
code lengths.

C. EFFECTIVENESS OF THE TRAINING STRATEGY
To analyze the effectiveness of our training strategy, we
compared the performance of XTransformer trained with-
out the strategy, using a training approach similar to other
competing methods, to our final version, which applies our
training strategy. Both versions share the same architecture
and configuration, differing only in their training approaches.
Table 3 showcases the accuracy, precision, recall, and F1
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TABLE 4. Comparison of inference times, measured in seconds, for each
competing method. The table displays the average runtime (denoted as
mean) and its standard deviation (denoted as std) based on 2, 000
randomly selected samples from each of the Chromium and Debian
datasets.

Model Mean (std) time
TokenCNN 0.0015 (0.0008)
VDSimilar 0.0544 (0.0046)

HAN 0.0293 (0.0043)
CODE-SMASH 0.0237 (0.0038)
XTransformer 0.0058 (0.0024)

score of XTransformer without our training strategy (denoted
as ‘Not Applied’ in the table) and with our training strat-
egy (denoted as ‘Applied’ in the table), evaluated on the
Chromium (denoted as (A) Chromium), Debian (denoted as
(B) Debian), and Sun (denoted as (C) Sun) datasets.

Notably, even without our training strategy (‘Not Applied’
in Table 3), XTransformer can outperform or deliver com-
petitive performance compared to other competing meth-
ods shown in Table 2. For example, on the Debian dataset,
XTransformer without our training strategy outperforms the
second-best model, CODE-SMASH, in F1 score. On the
Chromium and Sun datasets, it achieves the third-best F1
score. This underscores the effectiveness of ourmodel’s struc-
ture.

The most significant improvement is observed when our
training strategy is applied (denoted as ’Applied’ in Table 3),
showing performance enhancements across all datasets com-
pared to the ’Not Applied’ case. In particular, on the Sun
dataset ((C) in the table), which is a small-scale dataset, the
effectiveness of our training strategy is remarkable, with an
improvement of×1.06 in F1 score compared to the ’Not Ap-
plied’ case. Additionally, unlike the ’Not Applied’ case, when
our training strategy is applied, XTransformer outperforms all
other competing methods shown in Table 2.

D. COMPUTATION TIME
To effectively apply deep learning-based source code vulner-
ability detection models in real-world settings, it is important
to achieve both accurate vulnerability detection and efficient
computation to provide timely results. Table 4 presents the
average inference times required by each competing method
to detect source code vulnerabilities.

The results presented in Table 4 reveal that our XTrans-
former is faster than the VDSimilar, with computation speeds
faster by×9.38. While faster computation times are observed
with TokenCNN, its performance in predicting source code
vulnerability falls short for practical use, as detailed in Table 2
and Figs 3, 4, and 5.

Notably, compared to CODE-SMASH and HAN, which
consider token- to higher-level features of source code for
handling lengthy code sequences, our method is ×4.09 and
×5.05 faster, respectively, while also achieving better de-
tection performance, as discussed in Section IV-B. These
results suggest that XTransformer will be better suited for

TABLE 5. Performance comparison of XTransformer with varying numbers
of sub-modules in the teacher encoder and student encoder. The best
values are boldfaced.

Teacher Student (A) Chromium
Encoder Encoder Accuracy Precision Recall F1

2 2 0.9329 0.9335 0.9863 0.9479
4 4 0.9549 0.9464 0.9691 0.9545
6 6 0.9333 0.9325 0.9847 0.9469

Teacher Student (B) Debian
Encoder Encoder Accuracy Precision Recall F1

2 2 0.9616 0.9906 0.9124 0.9499
4 4 0.9627 0.9864 0.9195 0.9515
6 6 0.9591 0.9732 0.9234 0.9474

deep learning-based source code vulnerability detection in
real-world settings.

E. IMPACT OF THE NUMBER OF SUB-MODULES
Table 5 presents the accuracy, precision, recall, and F1 score
for XTransformer with different numbers of sub-modules in
both the teacher encoder and student encoder.
The results demonstrate that our optimal configuration,

which consists of four sub-modules in both encoders,
achieves the best detection performance in terms of accuracy
and F1 scores across all datasets, indicating themost balanced
overall detection capability. While simpler configurations (2
sub-modules in both encoders) may achieve higher precision
or recall, they fail to provide the same level of balanced
performance. Conversely, more complex configurations (6
sub-modules in both encoders) show performance degrada-
tion in F1 scores, suggesting that increasing the number of
sub-modules can introduce unnecessary model complexity
without yielding significant gains in detection performance.

V. CONCLUSION
In this study, we introduced XTransformer, a novel deep
learning-based source code vulnerability detector based on
source code similarity. Unlike traditional approaches that
rely on the Siamese architecture, we proposed a novel split
structure based on the transformer, consisting of the teacher
encoder, student encoder, and similarity assessment compo-
nent, for processing the similarity between archived vulner-
able source code and new code that needs to be checked for
vulnerabilities. This approach employs a hierarchical cross-
attention mechanism to effectively compare the similarity
between two source codes at different semantic levels, from
token-level to higher-level information, making it suitable for
handling lengthy and complex codes.
Furthermore, we proposed a training strategy specifically

designed to improve our model’s capability to extract core
features from source codes, even under limited training data
conditions, thereby enhancing our model’s robustness in de-
tection performance. Through comprehensive experiments,
we demonstrated that XTransformer outperforms other state-
of-the-art methods across various datasets with different data
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volumes and source code lengths, marking a significant ad-
vancement in applying deep learning to real-world situations.

However, XTransformer has several limitations due to a
potential dependency on the characteristics of specific train-
ing datasets, such as certain platforms and programming lan-
guages. To address these issues, one approach is to enhance
the diversity of training datasets by including a wider variety
of source code from different languages and platforms.

Despite these challenges, given the increasing prevalence
of software-based systems and the growing risk of source
code vulnerabilities, we believe that XTransformer can help
tackle the escalating challenges in software security.

In our future work, we will explore methods to miti-
gate the data dependency issue and improve the effective-
ness of XTransformer. Additionally, we plan to enhance our
method with eXplainable AI (XAI) techniques, such as those
described in [54], [55], to increase the trustworthiness of
XTransformer’s detection results, making it a more reliable
tool for source code vulnerability detection. Furthermore,
we plan to incorporate defense mechanisms against model
stealing attacks, such as those proposed in [56], to protect our
model and enhance its robustness, particularly in real-world
deployment scenarios where it may be vulnerable to attacks
like [57].
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