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ABSTRACT Honeybees play a vital role in preservation of an healthy environment. Bees not only provide
pollination services but also produce honey, beeswax, and royal jelly. Beekeeping has a rich history and
substantial economic potential worldwide, but swarming remains a crucial challenge for maintaining prof-
itability. Swarming, a typical colony reproductive process in honeybees, significantly impacts beekeepers
profitability by lowering the number of bees in hives and thus effecting honey production. Monitoring of
these beehives is therefore of paramount importance to keep an eye on their irregular behavior. Swarm
prediction can be done by visually inspecting hives, monitoring temperature, or analyzing acoustic features
with machine learning. Acoustic monitoring is instrumental in detecting changes in colony behavior since
it overcomes the constraints of visual inspections and is not affected by external factors like temperature.
In this paper, we aim to evaluate various state-of-the-art machine learning and deep learning models for
swarm prediction by studying wave plot features, Mel Spectrogram, and Melfrequency Cepstral coefficients
(MFCC). We use Naive Bayes, K-nearest Neighbors (KNN), and Support Vector Machines (SVM) as
machine learning models and Convolution Neural Networks (CNN), Long Short Term Memory (LSTM),
and Transformers as deep learning models for comparison purposes. We apply these models on a well-
known honey bees audio dataset provided by the NU-hive project and consider classification metrics such
as accuracy, precision, recall, and F1 score for the comparative evaluation of our models. Our evaluation
demonstrates SVM as the best-performing machine learning algorithm. In particular, SVM with Mel
Spectrogram as input data, achieved an accuracy of around 97%. On the other hand, CNN outperformed
all the models and achieved an accuracy of 99%, using MFCC features as input data. As a result of these
encouraging outcomes, we understand that our results can help the researchers to choose which AI model
is more suitable for them to design beehive monitoring systems for accurate identification of abnormal
situations in beehives.

INDEX TERMS Acoustics, Audio signals, Audio classification, Bee Swarming, Honey bee, Mel Spectro-
gram, MFCC.
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I. INTRODUCTION
Honeybees play a vital part in the preservation of life and
the health of the environment. They are not just a source of
royal jelly, beeswax, and honey, but they are also essential
pollinators for flowers, fruits, and vegetables. They facilitate
plants in the production of seeds and fruits by transferring
pollen. Considering how important honey bees are to our
ecosystem and the preservation of life, their safety and health
are critical. In this regard, the researchers have conceptualized
bees as valuable biosensors and designed remote monitoring
systems for their improved safety and health [4]. One of the
key motivations in designing such a system is the success and
advancements made by numerous researchers in the devel-
opment of wearable and remote technologies for improve-
ment in healthcare, [51] as seen in recent advancements in
self-powered moisture detection and wearable biomonitoring
systems [9]. It has been observed that a significant portion
of the dead and dying colonies have several distinguishing
traits, including fast worker bee loss, a notable presence of
dead worker bees, and a delayed intrusion of beehive para-
sites. This syndrome effects the honey bee colonies, known
as Colony Collapse Disorder (CCD) [48]. Colony collapse
disorder includes bees leaving the colony and failing to return.
Although no single cause of CCD has been found, multiple
factors have been associated with it, including malnutrition,
pesticide usage, viruses, mites, electromagnetic radiation, and
genetically modified crops [49]. Usage of various insecticides
like neonicotinoids significantly affects the living being of
bees too [56]. On a similar note, CCD is related to honey bee
swarming as well.

Swarming is a natural colony reproduction process in hon-
eybees. Swarming is among themost sensitive phenomena for
beekeepers, and it must be observed and detected quickly. In
the past, beekeepers manually managed their hives to detect
changes in honey bee behavior. Visual inspection is time-
consuming and requires beekeeping skills as well. Secondly,
beehives are located far away from the beekeepers, so they
are unable to identify the changes that happen in the hives fre-
quently. Many researchers have contributed to the reduction
of honey bee colonies in recent years [24], emphasizing the
importance of continuous and intensive monitoring to explore
factors that may negatively influence the life cycle of honey-
bees. In this context, the integration of novel materials, such
as hierarchical piezoelectric composite films, Maxwell dis-
placement current-induced sensors, and ternary-ordered as-
sembled piezoelectric composites, has been shown to enhance
the detection capabilities of wearable and remote monitoring
systems [10], [29], [44] and similarly the contribution of [7],
[60] is also very important in the domain. Various research
studies have been presented over the years which rely on
the monitoring of the bee hive’s attributes including sound,
humidity, temperature, weight, and carbon dioxide [3], [14],
[52]. Despite the fact that numerous monitoring systems for
beehives have been proposed that rely on various sensors and
measured amounts, themost effective techniques are based on
sound analysis [38], [45] because the usage of various sensing

devices have played a very positive and encouraging role
for detecting and processing of audio signals in healthcare
[32]. Some researchers have also utilized acoustics data for
recognizing human activities, further emphasizing the crucial
role of such data [37].
Honeybees employ vibration and sound cues to communi-

cate inside the hive [15], [33]. Natural bodymovements, wing
movements, high-frequency muscular contractions without
wing movements, and pushing the thorax onto substrates or
another bee are all used by honey bees to generate the sound
[19], [20], [23]. When anomalous states like swarming or
CCD occur, these behaviors change, resulting in obvious vari-
ations in acoustic features including frequency and amplitude.
These differences are vital for identifying and understanding
the underlying problems that impact the hive,making acoustic
monitoring an important tool in beehive health management.
Considering the sounds and acoustics data of the honey bees,
several research studies have highlighted that honey bee be-
haviours are closely associated with changes in generated
sound [6], [20], [35], [36]. These studies have shown that
there is a strong relation between both the amplitudes and
frequency of bee hive noises and events such as swarming
[14], [64], [65] and the presence of queen bee [35], [36],
[40]. Figure 1 illustrates the waveplots of acoustic data cap-
tured from a hive with the queen bee present and absent,
respectively. The difference in amplitude and frequency over
time demonstrates how the presence of the queen bee influ-
ences the acoustic signature of the hive. These observations
further underscore the importance of acoustic monitoring in
beekeeping, particularly in identifying critical events such as
swarming or queen bee absence.
Given its large economic contributions, particularly in rural

regions, beekeeping has enormous worldwide potential. For
example, in Pakistan, beekeeping has a rich history and is
recognized as a significant contributor to rural economies,
presenting prospects for sustainable development through
honey production and associated products [21]. However,
the challenge of swarming and its associated challenges to
profitability highlight the need for novel monitoring methods.
We aim to address this issue by utilizing advances in machine
learning and deep learning, as well as contribute to the ongo-
ing development of automated beehive monitoring systems
that can boost production and maintain honeybee colonies.
We observe that only a few researchers employ artificial in-

telligence models for beehive sound classification [36]. Con-
sidering the usefulness and effectiveness of artificial intelli-
gence models in various real-world phenomena in this world,
the objective of our research is to compare the performance
of machine learning and deep learning models for swarm
prediction by using audio data features like Wave plots, Mel
Spectrogram, and MFCC. We use the Naive Bayes, KNN,
and SVM as machine learning models and CNN, LSTM,
and Transformer as deep learning models to determine the
performance of audio spectrogram for the swarm prediction.
In this way, our goal is to analyze and evaluate whichmachine
learning and deep learning models are more suitable for this
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(a) Waveplot of Hive Sounds in Presence of the Queen Bee (b) Waveplot of Hive Sounds in Absence of the Queen Bee

FIGURE 1: Waveplots of Hive Sounds with and without Queen Bee

task, and more suitable to design audio-based automated
beehive monitoring systems. We have performed extensive
experiments using dataset fromNU-hive project which is 47.7
GB in size. We understand that the development of automated
beehive monitoring systems can change the beekeeping in-
dustry, with benefits including reduced manual inspections,
remote monitoring of bee hives, and the ability to quickly
detect the events connected to the beehive’s natural cycle.

The rest of the paper is organized in the following manner.
Section 2 presents the literature review of the domain. In
section 3, we discuss the methods used to analyze bee sound
classification. Section 4 describes the comparison results of
used algorithms, whereas, conclusion is presented in section
5.

II. LITERATURE REVIEW
In this section, we explore the existing work in relevance
to our study. The acoustics of honeybees have always been
the topic of interest among different scientists. Below, we
explore various existing approaches for the monitoring and
particularly the prediction of honey bee swarming in the bee-
hive using audio data. On the other hand, the use of machine
learning, deep learning, and other contemporary approaches
in various domains are also of great usefulness like mining
sensory dataset [54] [62] [46] [30] [43], signal analysis [63],
image processing [8] [55] [61], cloud computing [57] [31],
and others [13] [18].

A. REVIEW OF TRADITIONAL ML ALGORITHMS
The use of machine learning algorithms for solving various
research problems, have been shown promising results till
date [53] [26] [58]. For honeybee science, Kulyukin et al.
[27] used machine learning to assess the sound of the bee
hives. Particularly, the classification of the honey bee sound
from background sounds and cricket chirping was the main
goal. Six Langstroth bee hives had four microphones installed
outside their entrances. From May through July, a sound
frame of 30 seconds was captured every hour. Bee hives were
put in various places with a variety of background noises.
The data was manually classified into three classes, honey
bee sound, cricket sound, and background noise. Multiple
approaches for the classification of data were tested using the
collected dataset. Specifically, various traditional classifiers
have been compared with CNN. These traditional classifiers
include k-NN (k-Nearest Neighbors), Logistic Regression,

linear kernel SVM, Random Forests, and One vs. rest classifi-
cation. The results suggest that thesemethods are quite useful,
provided some pre-processing is employed to eliminate noisy
data. In the same year, Nolasco et al. [35] employed Mel
Spectrograms and MFCC, derived from beehive noises using
the SVM and CNN models to assess whether the beehive had
a queen bee or not. The raw bee audio signals obtained from
a beehive are a combination of noises provided by each bee
in the colony. These signals are made up of low-frequency
audio signals that are dense and continuous. In addition, in the
natural beekeeping environment, they can include additional
noises known as non-bee sounds, such as human talk, the
sound of rain, the automobile engine roaring, and the sounds
of wind. The researchers were required to label the original
signals based on characteristics taken from pure bee sounds
and external noise samples. The labeled acoustic signals were
analyzed and subsequently categorized using ML algorithms.
In this scenario, SVM surpassed CNN. SVM achieved an
AUROC score of 90.1 % using a large receptive field of 30
seconds.

Similarly, [36] used machine learning for the autonomous
detection and identification of the presence of a queen bee
in a hive using audio data as input. This method used two
approaches for the detection of queen bee presence, i.e.
SVM and CNN. The importance of feature extraction before
classification was demonstrated in this study. The Nu-Hive
project data [5] was utilized to analyze sound from two
separate colonies under normal and orphaned settings. The
Hilbert–Huang Transform and Mel Frequency Cepstral Co-
efficients were utilized to extract features. They obtained an
AUC of roughly 80%. This research, however, did not investi-
gate various methods of feature extraction, ideal parameters,
or CNN models with deep layers. The authors reported that
the SVM technique outperformed CNN in terms of gener-
alization. On a similar note, the research in [22] developed
an audio data pre-processing methodology and classification
model specifically for the classification of beehive noises.
The main goal of this research was to test the efficacy of
a classification model for beehive audio using a variety of
machine learning approaches, including MFCCs, mel spec-
trograms, and CQT. They used five models namely random
forest, SVM, shallow CNN, XGBoost, and VGG-13. The
extracted features were used as input to these algorithms, and
the MFCCs based models outperformed XGBoost, random
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forest, and SVM. XGBoost performed best with an accuracy
of 87.36 percent. Secondly, when the VGG-13 and shallow
CNN models were applied with image features as input data,
the models based on the MFCCs pre-processing approach
performed the best. It was eventually determined that the
models based on CNN were more effective in identifying bee
sounds after a brief pre-processing procedure.

In [65], the authors analyzed the sound produced by honey
bees, using the power spectral density. The goal of the analy-
sis of power spectral is to break down the signal into a series
of weighted sinusoids. Frequency content can be determined
using this decomposition. The Welch technique was used to
determine power spectral density. This approach, also known
as a periodogram, separates the signal into many frames
and calculates the periodogram for each. The variation in
power measurements is then minimized by averaging the
periodograms. The goal of this research was to observe how
an audio signal’s frequency content varies with frequency
in the time domain. Another study [40] contributed to the
problem of identification of the presence of a queen bee in
the hive. They explored Long Short Term Memory (LSTM),
Logistic Regression, and MultiLayer Perceptron (MLP) for
the detection of hives in the presence and absence of queen
bee. They used MFCC as a feature extraction technique and
used it as an input to the LSTM model. LSTM achieved an
accuracy of 92 % and outperformed MLP and logistic regres-
sion. It’s worth mentioning that using all 14 features yielded
the best accuracy, whereas using only 12 features yielded the
worst accuracy. The authors in [59] studied the problem of
sound-based swarm detection. MFCCs and LPC were used as
features in the data. The open source bee hive project (OSBH)
[2] data was used. Two alternative classifier techniques were
utilized, one is Gaussian mixture model (GMM) and the other
one is theHiddenMarkovModel (HMM). They used different
classifiers and features, demonstrating that the combination
of the MFCC feature extractor and HMM classifier gives the
best results.

B. STUDYING DEEP LEARNING-BASED APPROACHES
Deep learning-based techniques have demonstrated decent
performance in a variety of domains including speech recog-
nition, and image and video classification. Since the emer-
gence of deep neural networks, audio classification research
has progressed from models based on hand-crafted features
[41] to end-to-end models that directly translate audio spec-
trograms to labels [12], [47]. CNNs [28] in particular have
been frequently utilized to train representations from raw
spectrograms for end-to-end modeling because inductive bi-
ases like spatial localization and translation equivariance are
seen to be beneficial. Despite this, for many audio processing
tasks, CNN’s are considered to be effective. However, the
downside is that CNN can not capture the long-term context
or dependency in audio data. For example, CNN’s receptive
field can be confined to a short window with a fixed length,
hence, in this case, maintenance of long history information is
not possible. Recently, the attention-based transformer model

has gained extensive success for modeling sequences because
of its ability to capture long-range context and have very high
training efficiency.
Vaswani et al. [50] presented the Transformer model based

approachwhich eliminates the need for recurrence and convo-
lutions in the encoding stage altogether and rely solely on at-
tention processes to capture the global relationships between
input and output variables. As a result, the total architecture
becomes more parallelized, and training time is reduced, with
favorable outcomes on tasks based on almost every field
of artificial intelligence. Although both convolution-based
models and attention-based models have their advantages and
limitations. As, transformers are good at capturing long-range
context, whereas, CNNs capture local context gradually using
a local receptive field layer by layer. So, a recent trend is
to combine convolution-based models with attention-based
models. Typically transformers are used in conjunction with
CNN. In [34], the authors used a transformer on the top
of CNN for the task of sound event detection to efficiently
capture local and global context. Whereas, the authors of
[25] used a transformer in combination with CNN for sound
events detection task but for weekly labeled data. Moreover,
another study [17] combines the transformer with CNN by
infusing transformer in each model block of CNN. However,
it is uncertain if the use of a CNN is required because neural
networks based pure attentionmodels are adequate to get high
performance in audio classification tasks [16].
Conclusively, we find several research studies focusing on

the acoustics data of honeybees for a wide range of afore-
mentioned purposes. However, a detailed study investigating
various machine learning and deep learning models required
to evaluate the effectiveness of their application for swarm
prediction is required.

III. FEATURE EXTRACTION AND DETAILS OF
ALGORITHMS USED FOR SWARM PREDICTION
In this section, we discuss the materials and methods for the
classification of bee swarm activity using audio data from
the hive. This work is divided into audio pre-processing and
audio classification. The audio pre-processing step includes
the feature extraction techniques, whereas the audio classifi-
cation step is further divided into machine learning and deep
learning techniques. The machine learning algorithms used
in this work are Naive Bayes, K-nearest neighbors (KNN),
and Support vector machine (SVM). For deep learning al-
gorithms, Convolution Neural Network (CNN), Long Short
Term Memory (LSTM and Transformer Network are used.
Figure 2 shows the workflow that breaks down the whole
research process into various steps. The first step includes the
feature extraction from the audio data using feature extraction
techniques. These features are directly given as input to the
model for training, evaluation, and prediction on test data for
machine learning models, whereas the deep learning models
themselves perform feature extraction.
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FIGURE 2: Illustration of workflow to perform classification of honeybees acoustics for swarm prediction

A. DATASET USED

In this study, we use an audio dataset collected from the NU-
hive project [5]. The main purpose of the NU-hive project is
to study the behavior of honeybees with the help of bee mon-
itoring systems. The dataset contains the audio recordings of
the sound of bees collected from different beehives. These
beehives are located in Europe, North America, andAustralia.
The dataset contains two classes, one represents the normal
activity and the other represents the swarm condition. There
are about 576 recordings in the dataset, the duration of each
recording is about 10 minutes. Almost half recordings are of
the normal activity of honeybees and the rest belong to the
sound of honeybees during the swarming. We split the 10-
minute recordings into smaller 1-minute chunks to enhance
the dataset and improve the model’s learning, resulting in an
increased number of training samples. Therefore, we were
able to better capture the patterns of honeybee activity by
obtaining a larger, more granular dataset. The total audio data
that we have used has a size of 47.7 GBs.

B. DATA PRE-PROCESSING AND FEATURE EXTRACTION

A significant part of this research is sound analysis which in-
cludes audio processing. Audio data cannot be directly given

as input to the model because they are not understood by the
machine learning models. As a result, it is essential to extract
features from audio data. It is critical to pre-process sound
data before using it with different machine learning and deep
learning algorithms. Since, audio data is multidimensional,
with multiple frequencies that change with time, therefore,
it is advisable to apply some pre-processing techniques for
feature extraction. These feature values represents the signal
properties. An audio signal is pre-processed into spectral
features, that can be used to represent the variation in energy
over frequency and time as an image. These features can
easily be applied to image-based deep learning algorithms,
energy modulation patterns are learned effectively and dif-
ferent sounds can be identified. In this study, we identify
following audio features for our problem.

1) Waveplot

Waveplot shows the loudness of audio at a given time. It
is used to plot the waveform of the audio signal, where
the x-axis represents the time and the y-axis represents the
amplitude.
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FIGURE 3: Steps to transform raw audio to Mel Spectrogram

2) Mel Spectrogram

The feature value of a Mel spectrogram is based on images
that describe sound. It is mostly employed in the field of
acoustic analysis [42]. Firstly, the audio stream is separated
into frame-by-frame pieces, with the spectrum for each com-
ponent calculated separately. The time-domain audio signal
is then re-represented in the domain of frequency. The Mel
scale spectrum refers to the spectrum to which the Mel scale
has been applied. Figure 3 shows the steps to transform raw
audio into a Mel spectrogram.

It is a combination of a waveform that visually depicts
the change in the amplitude over time with a spectrum that
depicts the same change in the amplitude over the frequency.
Furthermore, it also indicates the color amplitude difference.

3) Mel Frequency Cepstral Coefficients (MFCC)

MFCCs are the most commonly used technique for sound
processing [11]. The cepstral analysis is used to extract them
from the Mel scale spectrum. The cepstral analysis takes the
spectrum and extracts unique sound values. It employs the
inverse of fast Fourier transform and logarithmic transforma-
tion to derive the coefficients after binding the spectrum into
a constant frequency range. The correlation induced by the
filter banks overlapping is separated using this method, which
results in a diagonal covariance matrix. The coefficients con-
taining a considerable data are left at the end. This ensures that
the final MFCCs are robust against fast signal shifts. Figure
4 shows the steps to transform raw audio to MFCC.

C. DETAILS OF MACHINE LEARNING ALGORITHMS USED
We use Naive Bayes, KNN, and SVM as machine learning
models to determine the performance of audio spectrogram
for the prediction of bee hive states like swarming. In this
section, we now present brief details of these models.

1) Naive Bayes

Naive Bayes is a simple conditional probability-based ma-
chine learning model which is used for the classification task.
This classification algorithm is based on the Bayes rule. The

probability model of the Naive Bayes classifier is shown in
equation 1

P(y|X) = P(X |y)P(y)
P(X)

(1)

Naive Bayes can characterize the likelihood of an event
depending on previous knowledge of the circumstances of the
event.Naive Bayes was selected as a baseline model because
of its simplicity and computational performance in classifica-
tion tasks, making it ideal for quick prototyping in the early
stages of the research. Moreover, its probabilistic approach
improves interpret-ability by helping in the identification of
key audio features of swarm activity and providing a helpful
comparison to more complex models.

2) K-Nearest Neighbors
K -nearest neighbor (KNN) is a supervised learning model
that uses proximity to generate classifications about the
grouping of certain data points. k in the KNN algorithm
represents the number of nearest neighbors selected to cast
a ’vote’. Various values for k can produce different classifica-
tion results for the same example item.
It may be used for both classification and regression tasks,

although, it is most usually used as a classification technique,
with the assumption that similar points may be found close
together. For the prediction of a correct class of the testing
data, KNN calculates the distance of testing data from all the
training points. k points closest to the testing data are selected
then. It evaluates if the testing data belongs to one of the class
of k training data and selects the highest probability class
and is a simplified form of a Naive Bayes classifier. KNN
algorithm, unlike the Naive Bayes classifier, does not need
the use of probabilities.
KNN was chosen because of its instance-based learning tech-
nique, which is effective for detecting local patterns in audio
data. It also offers a non-parametric approach to analyze the
relationship between acoustic features and swarm behavior.
Its instance-based learning approach allows it to explore com-
plex decision boundaries in swarm prediction while taking
advantage of the high dimensionality of the dataset.
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FIGURE 4: Steps to transform raw audio to MFCC

3) Support Vector Machine
SVM is a supervised machine learning algorithm that can
handle both classification and regression issues, whereas it
is primarily used for classification tasks. Each data item is
shown as a point on n-dimensional space whereas, the number
of features is depicted as n here. Each feature value is repre-
sented as a coordinate value in the space. Classification is then
performed by identifying the best hyperplane that differenti-
ates between the class labels. As many hyper-planes can help
distinguish the class labels. The objective is to the find the best
possible hyperplane that has the greatest distance between the
points plotted in the space for each class and has the greatest
margin between them. Hyperplane with maximum margin
helps to classify the data points with more accuracy. The
hyper-planes are the markers or decision boundaries which
classify the data points. The size of the hyperplane is depen-
dent on the number of features, n. Hyperplane must be a line
when the number of features is n = 2. When n increases, the
number of dimensions also increases, for instance, if n = 3,
the hyperplane becomes 2 dimensional, and so on.

SVM can classify both types of data (linear and nonlinear).
It can easily classify linear data by creating a linear hyper-
plane. To classify nonlinear data, SVM kernel trick is the
solution, i.e. it changes the input space from low dimension
to high dimensional data. For this purpose, it transforms
the linearly nonseparable problem into a separable problem.
Before deciding how to partition the data based on the labels
specified, it performs several complex data transformations.
It is well-known for its ability to handle high-dimensional
spaces and is most effective when classes are separated. It
works well with audio data because distinct patterns in the
sound spectrum can be identified for swarm prediction.

D. DETAILS OF DEEP LEARNING ALGORITHMS USED
We use CNN, LSTM, and the Transformer Network as repre-
sentative deep learning models for swarm prediction.

1) Convolution Neural Network
Convolution Neural Network (CNN) is a Deep Learning al-
gorithm that accepts an image as an input, assigns a value

to different objects of the image, and distinguishes between
them. The values assigned are biases and learnable weights.
CNNs work by convolving input with learnable kernels. A
1-dimensional temporal or a 2-dimensional time frequency
convolution is widely used for spectral input features, how-
ever, for raw waveform inputs, a time-domain 1-dimensional
convolution is commonly utilized. Multiple feature maps
(channels) are commonly computed using a convolutional
layer, each from its kernel. The learned feature maps can
be down-sampled by adding pooling layers on top of the
convolution layers. A CNN typically consists of a sequence
of convolution layers separated by pooling layers, topped
with one or more dense layers. To get a fully-convolution
network (FCN) for sequence tagging, the dense layers might
be deleted. The architecture of a CNNdetermines its receptive
field (the number of samples or spectra used to compute a
prediction). It can be raised by stacking additional layers or
utilizing larger kernels. Reaching an appropriate receptive
field size, especially for raw waveform inputs with a high
sample rate, may result in a large number of CNN parameters
and considerable computing complexity. Figure 5 shows the
architecture of CNN with multiple hidden layers.
CNN was chosen because of its powerful ability to extract

spatial hierarchies of characteristics from audio data when
converted to formats like Mel spectrograms and MFCC. The
success of CNNs in image recognition tasks can be applied
to audio data, where the visual representation of acoustic
features enables effective pattern detection.

2) Long Short Term Memory
Long Short Term Memory (LSTM) network is a kind of
recurrent neural network (RNN) that can learn order depen-
dencies in sequential prediction tasks. LSTMs are complex
deep learning models and are more complex than sequential
RNNs that allow for the storage of information. It is capable
of dealing with RNN’s vanishing gradient problem. Consider
an example if we are viewing a video and recalling the pre-
vious scene, or we are reading a book and remembering the
events that occurred in the previous chapter. Similarly, RNNs
recall earlier knowledge and utilize it to process the present

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3471895

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



FIGURE 5: A simplified illustration of CNN architecture for classification task

input. The vanishing gradient problem prevents RNNs from
remembering long-term sequences. Long term dependence
concerns are expressly avoided in designing LSTM. At a high
level, LSTM works similarly to RNN. The LSTM architec-
ture is divided into three sections, each with its function.
The first component determines whether the content from
the previous timestamp should be remembered or deleted.
The second component of LSTM learns the new information
from input data. Lastly, the third component provides updated
information to the subsequent time stamp from the previous
time stamp. These three components of LSTM are referred as
gates. The Forget gate is the initial component, followed by
the Input gate, and finally by the Output gate.

LSTM is more like simple RNN except for the long term
dependency. It contains hidden state from the previous time
stamp and the current time stamp as well. As shown in Figure
6, H(t-1) represents the previous time stamp whereas, H(t)
represents the current time stamp. Cell state is also part of the
LSTM, which is represented by the C(t-1) previous and C(t)
current time stamp. The hidden state in the LSTM is termed
as short-term memory, whereas long-term memory is the cell
state.

Long-range dependencies can be captured by LSTMs,
which makes them very useful for time-series data. Bee
sounds have temporal dynamics that can be used to anticipate
swarms, and since audio data is sequential, LSTMs are a good
fit for modeling these dynamics.

3) Transformer Network
A transformer is a deep learning algorithm that employs the
self-attention process to assign distinct weights to each data
input fragment. Transformers, like RNNs, are meant to ana-
lyze data, such as natural language, with applications in text
summarization and text translation. Unlike RNNs, however,
transformers process the full input at once. Any place in the
input sequence is given context by the attention mechanism.
If the incoming data is a natural language phrase, for example,
the transformer does not need to parse each word individually.

This allows for greater parallelization than RNNs, resulting in
faster training.
The Transformer design is based on an encoder-decoder

structure; however, it generates an output without using re-
currence or convolutions. In a nutshell, the encoder’s function
is to encode an input sequence into a series of continuous
representations that are then fed into the decoder on the Trans-
former’s left half. The encoder output is combined with the
decoder output from the previous time step by the decoder on
the right half of the architecture to form an output sequence.
Figure 7 shows the architecture of the Transformer model.
The attention mechanism in a transformer is a critical

element of it. The value of other tokens in an input for the
encoding of a specific token is represented by the attention
mechanism. In a machine translation model, for example, the
attention mechanism allows the transformer to convert terms
like ”it” into a gender-appropriate French or Spanish word
by paying attention to all relevant words in the original text.
Importantly, the transformer’s attention mechanism allows
it to focus on specific words to the left and right of the
current word to determine how to translate it. The launch of
the transformer-based model has almost replaced the usage
of RNN and LSTM neural networks because of their lower
accuracy.
The Transformer model, well-known for its attention

mechanism, provides a more sophisticated technique to cap-
ture long-range dependencies in sequential data without re-
lying on recurrence. This model was chosen to investigate
its utility in audio classification tasks, particularly in dealing
with the complicated temporal correlations in bee sounds.

IV. EXPERIMENTAL EVALUATION
In this section, we present the empirical analysis of our
research. We performed on the experiments on Google Co-
lab. Below, we present detailed experimental evaluation for
the three machine learning algorithms i.e. Naive Bayes, K-
Nearest Neighbors, Support Vector Machines and three deep
learning algorithmsConvolutionNeural Network, Long Short
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FIGURE 6: A simple illustration of LSTM architecture

FIGURE 7: A simple illustration of Transformer architecture

Term Memory and Transformer Network.

A. EXPERIMENTAL SETUP
In this study, we performed many experiments using the
features extracted from the audio data of honey bees. We
focus on three important acoustics features of Waveplots,
Mel Spectrogram, and MFCC which are not considered in
existing studies for bee swarm prediction. In addition to this,
we also compute sum of the amplitude of the waveplot as
our fourth feature. We have used a Python package, known
as librosa, for sound analysis and feature extraction. Librosa
implements a wide variety of audio features and hence serves
as a foundation for the development of audio classification
tasks [1].

We developed all the machine learning and deep learn-

ing models using a variety of parameters. To generalize di-
verse patterns of the data or to have improved prediction,
the machine learning algorithm uses different parameters for
learning rate and requires problem-specific tuning of weights.
These parameters are known as hyper-parameters and they
must be tuned to obtain better result out of the model. We
used Scikit-learn library in Python [39] for machine learning
algorithms. It provides a package for the hyper-parameter
tuning of the models known as Grid search, which takes a
sample of parameters performs the exhaustive search on all
the combinations of parameters, and returns those parameters
which produce the best results. Finally, for the evaluation of
models, we used two evaluation techniques i.e. train/test split
and k-fold cross validation.
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FIGURE 8: Performance Comparison of Accuracy, Precision, Recall and F1 Score for KNN

B. EXPERIMENTAL EVALUATION USING MACHINE
LEARNING ALGORITHMS
In this section, we present our evaluation using the three
machine learning algorithms used i.e. kNN, Naive Bayes, and
SVM. As stated above, we trained the models using scikit-
learn package. Scikit-learn is a machine learning Python li-
brary that supports a variety of machine learning (supervised
and unsupervised) algorithms.

1) Results and Discussion for Swarm Prediction using
K-Nearest Neighbors, kNN
In the empirical evaluation of kNN, the value of k for each
experiment is in the range of 1 to 26. For each value of k, audio
data is provided as input to the model in the form of waveplot
features, sum of amplitude features, mel spectrogram, and
mfcc. For the train/test split technique, each experiment runs
5 times, and classification accuracy is averaged to get the final
accuracy. Figure 8 shows the performance comparison of Ac-
curacy, Precision, Recall, and F1 score for each experiment.
It has been observed that kNN provides higher accuracy with
Mel spectrogram and MFCC features as input, compared to
Waveplots and Sum of amplitude of waveplot features. The
Mel spectrogram and MFCC features achieve almost 90%
accuracy in both train/test split and k-fold cross-validation
approaches, outperforming waveplot features, which have a
score of roughly 40%. Similarly, the Precision, Recall, and
F1 scores continually indicate higher scores for the Mel spec-
trogram andMFCC, demonstrating their efficiency.Waveplot
and Sum of Amplitude features, on the other hand, perform
significantly low, with waveplot features scoring less than
50% across all metrics, implying that they are less effective at
capturing the key characteristics of bee sound data than Mel
spectrogram and MFCC. The reason is that the former pair of
features capture more relevant information in the acoustics
compared to the latter ones. In the beehives, the acoustics
of all the bees are compared to the bees signaling that they
swarm or not swarm.Moreover, there is also an external noise

i.e. wind, atmosphere, etc which also needs to be taken care
of. In this regard, both the features are capable of making
use of the right kind of information. In addition to that, Mel
spectrogram provides a frequency representation of the signal
over time whereas MFCC tells the spectral features, hence
they help the model to better distinguish between classes to
predict. Moreover, both are more robust to noise and varia-
tions in the acoustics, hence clearly segregating between the
noise of the bees from the outside noise of the hives.

In Figure 9, we show detailed results for the testing accu-
racy using train/test split and k fold cross validation with the
different values of k for kNN, where we side-by-side demon-
strate the results for the two types of approaches. We observe
an interesting set of results i.e. the accuracy using Sum of
amplitude of Waveplot and MFCC increases for both types of
evaluations, with an increase in value of k for kNNhowever, it
goes the other way around forWaveplot andMel spectrogram
features. Generally, the train/test approach is simpler and
is computed efficiently. However, k-fold cross validation is
often preferred because it uses multiple train/test splits and
then averages the results, hence providing better accuracy.
On comparing the accuracy drop in the Mel spectrogram but
the increase in MFCC, we notice that MFCC features are
low dimensional compared to the Mel spectrogram. Hence,
when an increase in the value of k in kNN happens, kNN
finds it hard to manage high dimensional features of the Mel
spectrogram, thus providing lesser accuracy, becauseKNN in
essence is prone to the curse of dimensionality problem. On a
similar note, sum of amplitude features is lower-dimensional
compared to Waveplot features, hence, we find an increase in
accuracy in Figure 9 (a) and (b) for sum of amplitude whereas
drop in (c) and (d) for Waveplot. However, Waveplot is more
sensitive to noise compared to the sum of amplitude, making
KNN yield lesser accuracy.
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(a) Sum of amplitude using train/test. (b) Sum of amplitude using cross validation.

(c) Waveplot using train/test. (d) Waveplot using cross validation.

(e) Mel spectrogram using train/test. (f) Mel spectrogram using cross validation.

(g) MFCC using train/test. (h) MFCC using cross validation.

FIGURE 9: Comparison of testing accuracy with different values of k in KNN utilizing train/test and k fold cross validation
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(a) Train/test split with 5 runs. (b) K-fold cross validation, having k = 10.

FIGURE 10: Performance Comparison of Accuracy, Precision, Recall and F1 Score for Naive Bayes

2) Results and Discussion for Swarm Prediction using Naive
Bayes
We have implemented Naive Bayes for all the aforemen-
tioned extracted features. We run each experiment 5 times
for train/test split and average the accuracy at the end. We
implemented two types of Naive Bayes i.e. Gaussian Naive
Bayes (GNB) and Bernoulli Naive Bayes (BNB) with all
the feature extraction techniques and evaluation techniques
as well. Figure 10 shows the performance comparison of
Accuracy, Precision, Recall, and F1 Score for each type. It
has been observed that the model does not perform well using
waveplot features and the sum of amplitude technique, as all
the performance metrics are staying below 60% for GNB and
BNB. Whereas, the accuracy with precision, recall, and F1
score improves in the case of Mel Spectrogram and MFCC.
In particularMFCC feature is serving to provide higher scores
for all performance metrics surpassing 80% than rest of
the features, for both types of model evaluation techniques.
This pattern remains consistent for both evaluation meth-
ods: train/test split (Figure 10(a)) and k-fold cross-validation
(Figure 10(b)). Mel Spectrogram and MFCC features better
capture the relevant information from the acoustics of the
bees, hence, providing higher accuracy.

It is observed that GNB outperforms BNB due to the
presence of continuous features, which align better with the
former algorithm. The situation with MFCC is interesting
as BNB shows comparable accuracy in 10(a) and slightly
superior performance in 10(b). It is interesting to observe that
BNB is competing well and offering a level of accuracy that is
not significantly different. One of the reasons is that although
the values of all the features are continuous in nature, being
an ideal fit for GNB, their exact distribution might not be
Gaussian in nature. In addition to that, the features indepen-
dence aspect of Naive Bayes has a major impact during the
calculations.When the features are independent of each other,
then BNB provides comparable accuracy to GNB.

3) Results and Discussion for Swarm Prediction using
Support Vector Machines
For the experiments using SVM, the model requires some hy-
perparameters which needs to be tuned. As explained above,
we used Grid search techniques to achieve optimal parame-
ters. We find C = 0.1, kernel = ’poly’, degree = 1, and gamma

= 1, as the best hyperparameters using Grid search, from the
following range of parameters:
C = [0.1,1,100,1000]
kernel = [’rbf’, ’poly’, ’sigmoid’, ’linear’]
degree = [1,2,3,4,5,6]
gamma = [1, 0.1, 0.01, 0.001, 0.0001]
Figure 11 shows the performance comparison of Accuracy,

Precision, Recall, and F1 Score for each experiment using
various acoustics features. We observe that SVM gives the
best classification accuracy with the mel spectrogram feature.
Furthermore, SVM obtains good Precision and Recall with
the Mel spectrogram, resulting in an overall strong F1 Score,
demonstrating its efficacy in managing both false positives
and false negatives in classification. Mel spectrograms pos-
sess higher dimensionality than MFCC, and SVM performs
well with high-dimensional data. Mel spectrograms show
the frequency spectrum throughout the duration. They retain
more information about the frequency content of the signal
across time. Hence signals contain more information, making
SVM do better classification. On a similar note, the variation
in the acoustics of the bees is for swarm and non-swarm,
is sometimes quite complex, primarily because of various
factors like changes in environment due to hives being parks
in different locations after a certain time among others. So
hence, there is a variation in the sounds inside and outside
the hives as well. So for such complex tasks, Mel spec-
trograms incorporate more relevant features as compared to
MFCCs. The performance of SVMs gets better when it comes
across non-trivial decision boundaries in high-dimensional
data. In this regard, richer information is provided by the Mel
spectrogram as compared to MFCC, hence, we get superior
performance using them. Moreover, Mel spectrograms are
more sensitive to noise, clearly differentiating between the
acoustics of the bees and the noise outside the beehives.

C. EXPERIMENTAL EVALUATION USING DEEP LEARNING
ALGORITHMS
In this section, we present our experimental evaluation using
CNN, LSTM, and the Transformer models. We have im-
plemented these algorithms using Keras TensorFlow library
in Python, in multiple convolution layers. For the hyperpa-
rameter tuning of the model, learning rate of 0.0001 and
0.00001 is used and the ’adam’ function as an optimizer.
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FIGURE 11: Performance Comparison of Accuracy, Precision, Recall and F1 Score for SVM

Each experiment is tested using the two values of epochs,
i.e. 20 and 50. For the experiments using the Transformer
model, we executed the algorithm for 100 epochs. We used
only Mel Spectrogram and MFCC as features of bees acous-
tics, because of the reason that both the other features (sum
of amplitude and waveplot) does not contain much useful
contents to serve as a motivating factor for highly accurate
classification, as witnessed when they are used in machine
learning algorithms above.

1) Results and Discussion for Swarm Prediction using
Convolution Neural Network

Figure 12 shows the performance comparison of Accuracy,
Precision, Recall, and F1 Score for the CNN model with
different learning rates and number of epochs. Overall, we
find that the CNN provides higher accuracy for classification,
for both of the features i.e. Mel Spectrogram and MFCC.
Specifically, it has been observed that the Mel Spectrogram
yields higher accuracy in the results. Utilizing Mel Spectro-
grams is preferable as they provide more details of the audio
data in order to capture the entire frequency spectrum. Mel
Spectrogram features are more consistent and provide higher
performance metrics than MFCC, reaching almost 100% ac-
curacy in most cases. Particularly, with the Mel Spectrogram,
we achieve high precision, recall, and F1 score, showing
that the model excels at classifying between different classes
while maintaining a balance between precision and recall.
As discussed above, Mel Spectrogram incorporates temporal
instincts of the acoustics, making it more useful. MFCC
requires a pre-processing step and they transform the higher
dimensional frequency information into lower dimensional
feature space, hence, some information is lost. Therefore,
we find slightly lesser prediction accuracy from the MFCC
feature.

2) Results and Discussion for Swarm Prediction using LSTM
Figure 13 shows the performance comparison of Accuracy,
Precision, Recall, and F1 Score for LSTM with different
number of layers, learning rate and number of epochs. It is
evident that LSTM performs reasonably well but does not
achieve the same high levels of accuracy as the CNN model.
More precisely, in Figure 13(a), the LSTM faces challenges in
maintaining high scores across all the metrics, with Precision
and Recall showing significant variability. Likewise, figure
13(b) indicates that LSTM shows lower Precision, Recall,
and F1 scores when utilizing MFCC features, especially with
increased learning rates and reduced epochs, in contrast to
Mel Spectrogram features. Additionally, the results of K-fold
cross-validation, as displayed in Figures 13(c) and 13(d), also
suggest that the performance of the LSTMmodel varies more
noticeably when compared to the CNN model, especially
when there are changes in learning rates and the number
of epochs. Therefore, it has been observed that CNN per-
forms better than LSTM with all the configurations. LSTM
directly extracts features from the raw input dataset, leading
to higher accuracy for both features. Using MFCC results in
slightly lower accuracy due to the need for pre-processing,
leading to potential loss of information. On a similar note,
we observe that for most of the evaluation with different
hyperparameters, we find the accuracy of LSTM with Mel
spectrograms is better. This is because Mel spectrograms
illustrate frequency changes over time, making them well-
suited for LSTM, which is a useful model for sequence
modeling and classifying datasets with temporal features. So
using Mel spectrograms, LSTM is good at understanding the
relationships among the frequency patterns.

3) Results and Discussion for Swarm Prediction using
Transformer
We present the performance comparison of Accuracy, Preci-
sion, Recall, and F1 Score for the Transformer model with
different learning rates in Figure 14. Figure 14(a) shows
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(a) Train/test split with 5 runs for Mel Spectrogram. (b) K-fold cross validation, having k = 10 for Mel Spectrogram.

(c) Train/test split with 5 runs for MFCC. (d) K-fold cross validation, having k = 10 for MFCC.

FIGURE 12: Performance Comparison of Accuracy, Precision, Recall and F1 Score for CNN

(a) Train/test split with 5 runs for Mel Spectrogram. (b) K-fold cross validation, having k = 10 for Mel Spectrogram.

(c) Train/test split with 5 runs for MFCC. (d) K-fold cross validation, having k = 10 for MFCC.

FIGURE 13: Performance Comparison of Accuracy, Precision, Recall and F1 Score for LSTM

the results of experiments utilizing the Mel Spectrogram,
it is clear that the Transformer model consistently achieves
high accuracy with different learning rates, showing mini-
mal changes in Precision and Recall. Yet, the Transformer
model provides higher accuracy overall when using MFCC
features as input and a learning rate of 0.0001, as indicated in
14(b). This configuration also ensures that precision, recall,
and F1 score remain high, especially during k-fold cross-
validation for k=10. The results show that although both Mel
Spectrogram andMFCC are effective, the Transformer model

performs particularly well with MFCC features at a learning
rate of 0.0001.

Transformer models excel in leveraging the contextual in-
formation present in temporal data such as Mel spectrograms.
This allows them to obtain valuable data from the audio
signals. For some of the experiments, we observe that the
results of using MFCC are better. One of the reasons is
that MFCCs are carefully generated pre-processed signals,
so sometimes, they hold more useful information than Mel
spectrograms. Secondly, transformer models struggle due to
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higher dimensionality. MFCC have low dimensional features,
hence, serving as a better case for the transformers.

V. CONCLUSION
In this research, we have focused on an important phe-
nomenon in honeybee farming, called bee swarming. Bee
swarming is critical to honey production and hence requires
special attention. Using bee acoustics for swarm prediction is
an area of research that has never gotten much focus in the
past. Considering this research gap, we have demonstrated
the efficacy of different machine learning and deep learning
models to identify beehive states using audio data recorded
inside beehives. This study takes advantage of bee buzzing
signals in the form of audio data, which is a useful tool for
estimating the status of a bee colony. We have provided a sys-
tematic data science approach, beginning with data gathering
and feature extraction, followed by swarm prediction by using
the spectral properties of the bee acoustics to serve as input to
themodels.We used four different audio features, named Sum
of amplitude of wave plot, waveplot, Mel Spectrogram, and
MFCC, along with various hyperparameters for the models.
Extensive experiments using machine learning (kNN, Naive
Bayes, and SVM) and deep learning models (CNN, LSTM,
and Transformer) are conducted to evaluate and identify the
optimal models. The results demonstrate that by utilizing
these models and a suitable pre-processing strategy, acoustics
analysis of beehives may effectively identify between differ-
ent states of the hives, and anomalies in the state of beehives
might be detected early. We understand that the application
and usefulness of our research are quite high, as our findings
can aid in the development of automated beehive monitoring
systems.
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