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ABSTRACT Electroencephalogram (EEG) is the graphical representation of Brain’s electrical activity.
Mental stress can be detected in many ways and EEG is one of them. Regular mental stress gives rise to
many mental disorders and it may cause various physiological and psychological diseases. As a result, early-
stage detection of stress is very important. In this research, brain activity was recorded through EEG headset
during inducing different levels of stress from audio-visual stimulus. Again, for better interaction between
humans and machines, it is essential to analyze the power spectrum of the brain in response to different
audio and visual stimulus. To better evaluate visual and auditory stress, an automated system is designed
to differentiate among various audio and visual evoked potentials. This may further help for designing
different assistive devices for the people having visual and hearing disability. In this paper, we proposed a
framework to classify different levels of stress in response to audio and visual stimuli and also classified
between these two stimuli by analyzing EEG signals. Raw EEG data was collected in lab environment
and the necessary pre-processing steps were applied for denoising. By extracting robust features from the
denoised audio and visual data, binary and multi-level stress were classified. A binary classification between
audio and visual stimuli was also successfully done in this research. We achieved highest accuracy for binary
stress classification 97.14% from visual stimuli, whereas we achieved 94.51% accuracy for auditory stimuli.
Again, we achieved the accuracy for four level stress classification 89.59% for visual stimuli and 82.63%
for audio stimuli.

INDEX TERMS Brain-Computer Interface (BCI), Electroencephalogram (EEG) , Mental Stress, Audio
stimuli, Visual stimuli, Machine Learning

I. INTRODUCTION

NOWADAYS,mental stress is an inevitable problem that
has an impact on people all over the world. Numerous

elements of everyday life, including job, habit, and restless
times, can cause mental stress. Again, climate change, lack-
ing of security in society, study pressure, different social and
family issues induce stress severely [1]. It has an impact

on both a country’s economy and the efficiency of each
person’s daily tasks [2]. Mental stress has a direct impact
on operators’ emotions, conduct, and performance; it can
even result in operational mishaps [3]. Psychosocial stress
has been linked to poor quality of life by impacting peo-
ple’s emotional behavior, ability to function at work, and
mental and physical health [4]. The sympathetic nervous
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system (SNS) and the hypothalamus-pituitary-adrenocortical
(HPA) axis are both activated during stress [5]. The adrenal
cortex releases glucocorticoids, or cortisol, in response to
stimulation of the HPA axis. Cortisol is a key player in the
control of several physiological processes, including blood
pressure, glucose levels, and carbohydrate metabolism [5].
Many physical, immunological, and psychological health
issues, such as anxiety, sadness, and post-traumatic stress
disorder (PTSD), heart attacks, strokes, and immunological
illnesses, are brought on by chronic SNS dysfunction [5].
Stress also modifies the anatomy and physiology of the brain.

Stress levels may be assessed in a variety of ways. The
most often utilized technique for determining a person’s
degree of mental stress is standard questionnaire-based self-
reporting [1], [2], [5], [6]. Additionally, physical, and physi-
ological measurements have also been used as impartial tech-
niques to evaluate stress. A few physiological characteristics
that are responsive to stress include voice, eye focus, pupil
dilation, blink rate, and facial emotions [6]. Some physio-
logical biomarkers such as electroencephalography (EEG),
electrocardiography (ECG), functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), galvanic
skin response (GSR), positron emission topography (PET),
and cortisol are also can be used for stress level detection
[1], [3]–[5], [7]. Out of all these methods, EEG is chosen
due to its many benefits, including its excellent temporal
precision at millisecond scale, ease of use, inexpensive setup
costs, and non-invasive data gathering [5]. EEG has emerged
as the most extensively utilized neurophysiological signal in
this industry because of all these benefits. Furthermore, EEG
signal alterations are a more accurate, objective indicator of
emotions since they are not subject to conscious manipula-
tion [6].

Different kinds of stimuli were used to evoke stress. Mon-
treal imaging Stress task (MIST) was used by Eduardo et
al. [1] which is one of the most validated stress inducers. A
modified version of the Trier Social Stress Test (TSST) was
used by A. Akella [8] and his fellow researchers to generate a
controlled stress response. A construction workers’ EEG data
was collected while they worked in the real construction sites
and occupational stress was classified by H. Jebilli et al. [9].
A simulated drone piloting training session was used to evoke
stress by Qunli Yao et al. [3]. Some authors performed mental
arithmetic tasks for inducing stress [4], [5]. Different virtual
reality environment based stroop test was also used to induce
mental stress [10]. Instead of using only visual stimuli, some
authors designed auditory stimuli such as music tracks to
evoke stress [7], [11], [12]. Sometimes combination of both
audio and visual stimuli such as movie clips were used to
give rise to mental stress [13].

Most researchers worked on stress classification from vi-
sual stimuli. Out of them, many researchers worked on either
binary stress detection or multi-level stress detection. Some
of them worked on both binary and multi-level stress. G. Jun
[14] and H. Altaf [15] worked on binary stress classification
using visual stimuli and found highest accuracy 96% and

95% respectively. On the other hand, A. Akella [8], Q.
Yao [3] and F. Al-shargie [5] used only visual stimuli and
multi-level stress was classified successfully with the highest
accuracy 91%, 89.88% and 94.79% respectively. E. Perez-
Valero [1] and A. R. Subhani [4] employed visual stimuli
but in their research work, both binary and multi-level stress
was detected with good accuracy. Another important stress
inducer in everyday life is auditory stimulation where people
get emotionally attached listening to various problems. One
research used various music tracks as auditory stimuli for
inducing stress and they worked on both binary and multi-
class stress [7]. However, no researchers used both visual and
auditory stimuli for mental stress classification purpose.

Many researchers worked on classification among differ-
ent types of stimuli. However, these works are not focused
on stress detection. G. S. Mouni et al. [16] classified among
three types of stimuli named- audio, visual and cognitive
stimuli. They found best accuracy for the visual stimuli.
Audio, visual and audio-visual stimuli multi class classifi-
cation was done by Y. Dasdimir et al. [17]. But in this case,
they found the best accuracy for the audio-visual stimuli. J.
Leoni et al. [18] employed several types of stimuli but they
found best accuracy for the picture and non-picture (audio-
video) based stimuli. T. Agarwal et al. [19] employed LSTM
method for classifying audio and visual stimuli. Dr. E. G. M.
Kanaga et al. [20] did multi class classification among for
auditory, somatosensory, and cognitive events and found the
highest accuracy for somatosensory stimuli. These findings
not only help neuroscientists identify ERPs more quickly and
accurately, but they also open the door for BCIs to potentially
offer users more features by utilizing the variety of stimuli
that the system can identify. Since most BCI systems on the
market today rely on visual cues or visual input, they might
not be suitable for severely incapacitated patients who have
lost their capacity to see or regulate their eye movements. D.
Kim et al. [21] developed the first online ASSR-based BCI
system, proving that a completely vision-free BCI system
could be realized.

In this research, we collected EEG data using both audio
and visual stimuli. Mathematical word problems having three
difficulty levels were shown before participants. Advanced
pre-processing pipeline was used for removing noise from
the raw EEG data. Binary and multi-level stress was detected
from both audio and visual stimuli was done in this work.
Moreover, we performed binary classification of EEG data
for audio and visual stimuli having significant improvement
of accuracy. In the next consequent sections, we will discuss
about detailed methodology, results and discussions and fi-
nally conclusion of the proposed work.

II. METHODOLOGY
The framework of the proposed research work is shown
in Fig. 1. EEG data was collected from 30 subjects in
two different session for audio and visual stress inducing
stimulation. An optimal pre-processing pipeline was used
in this work for removing noise from the raw EEG data.
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FIGURE 1. Framework of the proposed research work

After noise removal, we extracted necessary time domain
and frequency domain features from the data. Finally in this
research work, binary and multi-level stress were classified
from both audio and visual data with necessary analysis.
Again, binary classification between audio and visual stimuli
was also done in this research work.

III. DATA COLLECTION
In this section, the whole data collection procedure will be
described in details. This section includes three subsections
having the dataset description, stimuli design and collection
procedure.

A. DATASET DESCRIPTION
We used one dataset in this work. This dataset was made
which includes EEG data collected by the authors at lab
set-up following all the ethical requirements and data col-
lection process was approved by the respective authority
of Chittagong University of Engineering and Technology,
Bangladesh. The whole data collection procedure followed
the Helsinki protocol. To make this dataset, we needed to
follow some steps. First of all, In order to build a proper
comprehension of the EEG signal for stress classification
purpose, we need to design different audio and visual stimuli
by using EMOTIV Builder before starting data collection
process. Participants should fulfill all inclusion requirements,
including not having any physical, mental, or head injuries
and abstaining from drug or prescription use prior to the trial.
The EEG data was recorded by Emotiv EPOC flex headset
which have 32 electrodes having two reference electrodes
located at right and left mastoid. Total 30 subjects’ data was
collected in this dataset. The sampling frequency was 128 Hz
and data were transmitted through Bluetooth communication.
The number of channels were optimized, and we collected
data from 16 channels named: Cz, Fz, Fp1, F7, F3, C3,
P3, O1, Pz, Oz, O2, P4, C4, F4, F8 and Fp2. Because
these channels are found very significant for mental stress
classification in the previous literature [22]–[24].

B. STIMULI DESIGN
Obtaining EEG data while performing routine chores might
provide a noisy signal. Conversely, if we apply multiple
stimuli over an extended period of time, each stimulus may
produce a strong peak, and the noise will be of average
magnitude. The term "event related potential" (ERP) de-
scribes this behavior. For this reason, prior to collect data we
designed visual stimuli where mathematical problems having
three difficulty levels were given to evoke stress to subjects.

Different experimental stages of each stimulus were shown
in Fig. 2. where the stimulus starts with the calibration phase.
In calibration phase five seconds eyes close and five seconds
eyes open data was collected followed by some general
instruction phase. Then in the stimuli stage, audio or visual
stimuli were heard or visualized by the subjects. Data was
collected by using two kinds of stimuli- visual stimuli and
audio stimuli.

Three difficulty levels math problems were shown or heard
separately following a random order after finishing each
difficulty level math. In the visual stimuli, stress free data was
taken where the subjects were remained relaxed with their
eyes closed for five seconds. Then the problem was shown
to the subjects where they were allowed to view the stimuli
image as much time as they need to solve the math problem.
During calculating the math problem, the brain signal was
recorded which was labeled as stressed data. The duration
of the visual stimuli was on average 150 seconds In the
audio stimuli, the five seconds eye closed data was taken by
following the same way as visual stimuli. But in this case,
the mathematical problem was heard by the subjects using
an earphone where the participants heard it only once and
has no opportunity to repeat the audio. The duration of the
audio stimuli was almost 35-45 seconds. During this time the
subjects need to listen the audio carefully and then solve the
mathematical problem mentally without using any pen and
paper. During calculating the math problem, the brain signal
was recorded which was labeled as stressed data. Finally, the
difficulty levels the subjects faced during solving the math
problem was taken as feedback.

FIGURE 2. Experimental stages for single stimulus

C. COLLECTION PROCEDURE
Data has been collected from thirty participants, ages nine-
teen to twenty-five. Before providing any data, all partic-
ipants were required to complete the authorization form.
There was no history of brain disorders or visual issues
among the patients. Alcohol or other narcotic substance
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addiction was absent in all of the individuals. They were all
paid a little fee and gave their voluntary participation. The
institution’s CHSR committee and the Directory of Research
and Extension, DRE, gave their approval to this initiative.
The subjects entered into a noise-free room and all the
subjects were given necessary instruction before collecting
data. The lab set up was arranged for collecting EEG data.
The room was organized with low lighting and electrical
shielding, where participants were seated around 50 cm away
from the computer display. A mouse and keyboard were
provided to the participants so that the studies could continue.
A mouse and keyboard were provided to the participants so
that the studies could continue.

Visual and audio stimuli was used to collect data. There
was almost three weeks gap between audio and visual data
collection. Three kinds of mathematical word problems hav-
ing three difficulty levels- easy, medium and hard were used
to design the stimuli. In both the case of visual and audio
stimuli, we collected two phase data- 5 seconds control data
and stress induced data. After completing the whole exper-
iment, the participants were given their feedback regarding
how much difficulties they felt during solve the problem on
scale 1 to 5 (very easy to very hard). Each subjects need to
solve total six problems (three problems as visual stimuli and
three problems as audio stimuli) and relaxed data was also
separated from the raw data. As a result, we have total 12
files for each participants in our dataset. Finally we have total
360 (30*12) recording files in our dataset. In Fig. 3, real time
EEG acquisition was shown in our lab set-up.

FIGURE 3. Real-time data collection scheme using 32-channel EEG

IV. EEG PRE-PROCESSING
In this paper, we used a new pre-processing pipeline pro-
posed in two of our previous works [25], [26] to ensure the
improvement in data quality without losing any significant
channel information. As automated pre-processing pipeline
loss a significant amount of information although the process
is bit quicker. For this reason, we used our manual method
instead of the automated one. The proposed pre-processing
pipeline is shown in Fig. 4.

FIGURE 4. Proposed pre-processing pipeline

According to our proposed method, notch filtering using
clean line function was used after band pass filtering the raw
data with 0.5 to 45 Hz cut off frequency. The EEG data
may contain some sinusoidal power line interference after
bandpass filtering. We must make sure that the power line
interference is eliminated as band pass filtering is not pre-
cise. Clean line function from EEGLAB 2022 in (MATLAB
2023a) adaptively assesses and removes sinusoidal noise
(e.g., power line interference) from the ICA components
or scalp channels using multi-tapering and a Thompson F-
statistic [27]. Following that, we used a common average
reference to re-reference the data. In addition, we identified
and interpolated any noisy bad channels that were not es-
sential to the application of interest. For EEG-based stress
detection, any noisy poor channel—aside from the frontal
ones—can be interpolated. Then, by examining the data, we
did Artifact Subspace Reconstruction (ASR) rejection and/or
manual rejection. ASR is a component-based method that
requires little computation and may be used automatically
[28]. Using the remaining components, the signal is rebuilt in
this manner, eliminating the components with high variances.
Using a reference data set devoid of artifacts, the ASR
approach establishes criteria for choosing which components
to reject. When the ASR rejection identified a sizable portion
of the data that needed to be removed, we performed manual
rejection by simply removing the considerably noisy compo-
nent of the data. Following that, we eliminated muscular and
ocular artifacts using ICA. Then, we divided our whole data
into 4-second epochs with 10% overlapping. We got total
2180 epochs for visual stimuli and 1985 epochs for auditory
stimuli.

V. FEATURE EXTRACTION
Several important EEG features are identified in previous lit-
eratures. For example, ten characteristics were employed by
D. Shon et al. [27], including frontal alpha asymmetry, mean,
standard deviation, and hjorth parameters for mental stress
detection. 40 characteristics, such as mean, kurtosis, and
hjorth parameters, were employed by M. J. Hasan [29] for
various mental stress state detection. In our research, we took
into account every attribute from each band and retrieved
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11 statistical features [27], [29]–[31] because these features
are very significant for mental stress detection. Again, as
traditional machine learning models were employed here,
we selected easily understandable features by using trial
and error method. Some explanation regarding these features
are given below: Mean: The equation of mean is shown in
equation 1.

µ =
1

N

N∑
i=1

Xi (1)

Standard deviation: The standard deviation measures how
widely distributed the data are in relation to the mean. When
it comes to standard deviation, data with little or low standard
deviations are centered around the mean, whereas high or
great standard deviations are widely distributed. The equation
of standard deviation is shown in equation 2.

σ =

√∑N
i=1 (Xi − µ)2

N
(2)

Variance: It means the statistical measurement of spread-
ing of data with respect to the average value in a specific
dataset. The equation of variance is shown in equation 3.

σ2 (3)

Kurtosis: This statistical feature is used to measure how
tailed a distribution is. The frequency of outliers is known
as tailness. Excess kurtosis is the tailiness of the distribution
relative to a normal distribution. The equation of kurtosis is
shown in equation 4.

1

N

N∑
i=1

(
Xi − µ

σ

)4

(4)

Skewness: The skewness of a distribution indicates how
asymmetrical it is. A distribution is considered asymmetric
when its left and right sides are not mirror reflections. The
equation of skewness is shown in equation 5.

1

N

N∑
i=1

(
Xi − µ

σ

)3

(5)

One method for expressing a signal’s statistical properties
in the time domain is the Hjorth parameter, which contains
three different types of parameters- Activity, Mobility, and
Complexity. They provide details on the signal’s amplitude
variability, temporal dynamics variability, and spectral band-
width variability [32].

Activity: The variance of the time function, or the activity
parameter, may be used to determine the frequency domain
power spectrum surface. In other words, if there are many or
few high frequency components in the signal, the value of
activity yields a big or small number [32]–[34]. The equation
of activity is shown in equation 6.

var(X) (6)

Complexity: The complexity parameter shows how a signal’s
form resembles that of a pure sine wave [32], [33]. As the
signal’s structure becomes closer to that of a pure sine wave,
the complexity value converges to 1. These three factors aid
in time domain signal analysis in addition to providing in-
formation about a signal’s frequency spectrum. Additionally,
by using them, a lower computational complexity can be
attained [32], [34]. The equation of complexity is shown in
equation 7.

Mobility (X ′)

Mobility(X)
(7)

Mobility: The square root of the ratio between the signal’s
first derivative’s variance and its own is the mobility parame-
ter. This parameter has a power spectrum standard deviation
percentage [32], [33]. The equation of mobility is shown in
equation 8. √

var (X ′)

var(X)
(8)

Sample entropy: Sample entropy is the idea that a value
from a series in an ordered system would be a suitable way
to define it. It may be thought of as a measure of degree
of randomness or regularity [35]. If there are more complex
or non-ordered sequences in a series, the entropy will be
higher, and vice versa. It lessened the bias brought on by self-
matching [35]. The equation of sample entropy is shown in
equation9.

SampEn(m, r) = − ln
Bm+1(r)

Bm(r)
(9)

Spectral entropy: The spectrum complexity of a time series
is measured by spectral entropy, which is derived from Shan-
non entropy. based on the inconsistent data buried in the EEG
spectrum in the resting state [31]. The equation of spectral
entropy is shown in equation10.

p̂(f) = P (f)/

45∑
f=0.5

P(f)

SH = −
45∑

f=0.5

p̂(f) log(p̂(f))

(10)

Differential entropy: Differential entropy, which is the
entropy of a continuous random variable, is used to quantify
the complexity of a continuous random variable. Minimum
description length is also connected to differential entropy
[30]. The formula for calculating it is as follows:

hi(X) =
1

2
log

(
2πeσ2

i

)
(11)

To determine each band’s frequency domain component,
a Welch periodogram was used. Three characteristics were
retrieved from the frequency domain: average power, frontal
alpha asymmetry, and valence [36] .

Valence: Asymmetrical frontal hemisphere activity was
linked to mental stress as valence [36]. Positive and negative
valence levels are associated with activation of the left and
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right prefrontal areas, respectively. The idea that frontal EEG
asymmetry might serve as an index of valence is supported by
a substantial body of research [36]. The equation of valence
is shown in equation 12.

β(F3)

α(F3)
− β(F4)

α(F4)
(12)

Frontal alpha asymmetry: The frontal lobes of the right hemi-
sphere in the cerebral hemisphere are asymmetrical in the left
hemisphere as opposed to the right. In EEG electrodes, Fp1
and Fp2 are utilized to detect frontal lobe differences. The
pre-frontal cortex of the brain is referred to as Fp [27], [36].
Each electrode yields the alpha wave band’s power, which is
then taken and subtracted from the absolute value and the
log. The equation of frontal alpha asymmetry is shown in
equation 13.

α(F4)− α(F3)

α(F4) + α(F3)
(13)

Average power: The average band power, which is calculated
as a single value that represents the frequency band’s con-
tribution to the signal’s total power [37]. The equation of
average power is shown in equation 14.

Pf =
1

N

N∑
n=1

|Xn(k)|2 (14)

VI. RESULTS
Insightful findings and all the results are described in this
section. Total five datasets were made by combining all the
features extracted from the data. In first dataset only relaxed
and stressed data features were combined for visual stimuli.
In second dataset, three level stressed data features were
combined for the visual stimuli. In third dataset, eye closed
relaxed data and three level stressed data features were as-
sembled for four class stress classification for visual stimuli.
On the other hand , eye-closed and stressed data features
for auditory stimuli were combined in the fourth dataset and
three level stressed data features for auditory stimuli were
combined in the fifth dataset. Again, eye closed relaxed data
and three level stressed data features were assembled for four
class stress classification for auditory stimuli in sixth dataset.
Last but not the least, the seventh dataset was based on both
the combination of audio and visual stimuli data features. In
each case, 80% data was taken for training and 20% data
was taken for testing purpose. We employed several machine
learning models and four models outperformed out of all the
models. Those four models were- Support Vector Machine
(SVM), k-Nearest Neighbor (kNN), Decision Tree (DT) and
Linear Discriminant. Our dataset was imbalanced initially as
eye closed relaxed data was taken for five seconds whereas
hard math problem solving involved higher time duration.
Again in multi level stress detection dataset, three difficulty
level math need different time time duration for solving.
We did not fix the time limit for math solving because our
target was to classify different levels of stress. If time limit
was set for each level math solving, it will create e mental

pressure for each case. In that scenario, different difficulties
problems may exert same amount of stress. But our target
was to classify multi-level stress. We also need to balance all
the seven datasets before training ML models. SMOTE was
used in this purpose to balance the dataset.

TABLE 1. Summary for binary stress classification from visual stimuli

Model Name Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Decision
Tree

91.43 66 66 66

Linear
Discriminant

93.93 73 83 77

KNN 97.12 94 83 88
SVM 97.14 94 86 90

TABLE 2. Summary for three level stress classification from visual stimuli

Model Name Accuracy
(%)

Macro F1
Score (%)

Weighted
F1 Score
(%)

Decision Tree 74.00 70 74
Linear
Discriminant

73.15 71 74

KNN 84.35 83 85
SVM 89.01 87 89

TABLE 3. Summary for four level stress classification from visual stimuli

Model Name Accuracy
(%)

Macro F1
Score (%)

Weighted
F1 Score
(%)

Decision Tree 74.46 71.11 74.46
Linear
Discriminant

73.48 73.10 73.48

KNN 85.27 85.14 85.27
SVM 89.59 88.52 89.59

TABLE 4. Summary for binary stress classification from auditory stimuli

Model Name Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Decision
Tree

90.11 57 57 57

Linear
Discriminant

80.77 49 52 49

KNN 93.96 73 67 74
SVM 94.51 82 76 79

The accuracy, precision, recall, and F1 scores for each
machine learning model were shown for binary stress classi-
fication in Tables 1. and 4. In Tables 2. Table 3. Table 5. and
Table 6, accuracy, macro F1 scores and weighted F1 scores
for multi-level including both three level and four level stress
classification were shown.

In Table 7, results were shown in a tabular format for
audio and visual EEG data binary classification. The study
found that the best classification accuracy for visual stimuli
was 97.14% for binary stress classification, 89.01% accuracy
for three level stress classification and 89.59% accuracy
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TABLE 5. Summary for three level stress classification from auditory stimuli

Model Name Accuracy
(%)

Macro F1
Score (%)

Weighted
F1 Score
(%)

Decision Tree 68.00 66 68
Linear
Discriminant

73.00 72 73

KNN 86.00 86 86
SVM 88.00 87 88

TABLE 6. Summary for four level stress classification from auditory stimuli

Model Name Accuracy
(%)

Macro F1
Score (%)

Weighted
F1 Score
(%)

Decision Tree 63.68 61.94 63.68
Linear
Discriminant

69.74 64.43 69.74

KNN 79.47 73.90 79.28
SVM 82.63 78.64 82.44

for four level stress classification, while the best accuracy
for auditory stimuli was 94.51% accuracy for binary stress
classification, 87.7% accuracy for three level stress classifica-
tion and 82.63% accuracy for four level stress classification.
This indicates that compared to auditory and visual evoked
potentials, visual evoked potentials were more accurate for
both binary and multi-level stress classification.

By analyzing all the results in tabular format, we came
to know that out of four machine learning models, SVM
performed better in all cases of machine learning classifica-
tion. As our dataset was linear in nature that is why SVM
worked better. In Fig. 5, the best result found for binary
stress classification was shown where the best accuracy was
found 97.14% for SVM. Three level stress classification
result was shown in Fig. 6. where three different level stress
was classified. We found the best accuracy 89.01% for SVM
classifier. Again, for four level stress detection from visual
stimuli, the best accuracy was found for SVM and that was
89.59% which is shown in Fig. 7.

In the second steps of our work, binary and multi-level
stress was classified from auditory stimuli. Here, mathemat-
ical word problem was heard by the participants in stead
of viewing the problem in image format. The audio was
played for only once and then they need to solve those
maths mentally which induces stress. In Fig. 8, the best
result found for binary stress classification was shown where

TABLE 7. Summary for binary classification between visual and auditory
stimuli

Model Name Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Decision
Tree

91.71 92 94 93

Linear
Discriminant

95.07 96 96 96

KNN 97.48 98 98 98
SVM 98.32 99 99 99

FIGURE 5. Confusion matrix for binary stress classification from visual stimuli

FIGURE 6. Confusion matrix for three level stress classification from visual
stimuli

the best accuracy was found 94.51% for SVM. Three level
stress classification result was shown in Fig. 9. where three
different level stress was classified. We found the best accu-
racy 87.70% for SVM classifier. Finally, for four level stress
detection from auditory stimuli, the best accuracy was found
for SVM and that was 82.63% which is shown in Fig. 10.

In Fig. 6,7,9 and 10, there we noticed higher false values
in multi-level stress classification comparing with the binary
stress classification results because in binary classification,
the highest stressed data and relaxed data was classified
where the boundary line was more clear. On the other hand,
in case of multi-level stress classification, three difficulty
level math- easy, medium and hard problems were given
to the participants where in few cases, some participants
found the medium problem as hard and some hard problem
seems medium level difficulty to them. As, difficulty level

FIGURE 7. Confusion matrix for four level stress classification from visual
stimuli

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3471590

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 8. Confusion matrix for binary stress classification from auditory
stimuli

FIGURE 9. Confusion matrix for three level stress classification from auditory
stimuli

varies from participants to participants in very few cases,
that is why we got some false values during multi-level stress
classification.

In the last stage of our research work, binary classification
of EEG data between audio and visual stimuli was done. In
Fig. 11, Confusion matrix for binary classification between
visual and auditory stimuli was shown where best accuracy
was found 98.32% for SVM.

From the comparison Table 8, we came to know about
different types of stimuli used in previous works. Most of
the authors used mental arithmetic task as visual stimuli
but none of them used mental arithmetic task as auditory
stimuli for inducing stress. Besides that, none of the works
classified four level stress and it is still unchecked. In all
of the works, the researchers employed traditional machine

FIGURE 10. Confusion matrix for four level stress classification from auditory
stimuli

FIGURE 11. Confusion matrix for binary classification between visual and
auditory stimuli

learning models and found satisfactory results. For visual
stimuli, the highest accuracy for binary stress detection was
96% whereas in our research work we found 97.14% accu-
racy. Again, for three level stress detection, greatest accuracy
was found 94.79% for visual stimuli whereas we achieved
highest 89.01% accuracy. From audio stimuli, we got 87.7%
highest accuracy for three level stress classification. We also
successfully classified four level stress and found highest
accuracy 89.56% for visual stimuli and 82.63% for auditory
stimuli.

VII. SIGNIFICANCE OF AUDIO VISUAL STIMULI BINARY
CLASSIFICATION AND FUTURE SCOPES
Brain-Computer Interface (BCI) is an augmentative commu-
nication that permits a person to control an electronic device
using brain waves. The results of this research specially the
audio visual stimuli classification are very significant for the
BCI applications. As the whole system performed satisfacto-
rily for the normal hearing and sighted people, this research’s
results can also be used for the blind and deaf people for clas-
sifying audio visual stimuli. Blind people can use this system
for detecting visual stimuli and deaf people can be able to use
this system for detecting audio stimuli. In traditional hearing
and eye sight testing, the test decision is completely relied on
subject’s response and feedback how much they can hear or
see any English alphabet. However, children and aged people
sometimes give wrong feedback and as a result, the test result
may also be wrong consequently. In this scenario, our audio
visual stimuli classification system can be used for testing
hearing and sighting condition for children and aged people
and also the results can be compared with the traditional
hearing and sight testing for better clarification of the test
results.

VIII. CONCLUSIONS
In this research, binary and multi-level (three and four level)
stress classification were done from both visual and audi-
tory stimuli. A dataset was created by collecting real time
EEG data from 30 subjects. We achieved highest accuracy
for binary stress classification 97.14% from visual stimuli,
whereas we found 94.51% accuracy for auditory stimuli.
Again, we achieved highest accuracy for three level stress
classification 89.01% for visual stimuli and 87.7% accuracy
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TABLE 8. Comparison study for two and three level stress classification

Reference Stimuli/Stressor Used No. of
Channels

No. of
Subjects Features No. Classification

type Method Accuracy

Altaf
et al. [15]

Mental arithmetic
exercises 1 30 12 Two-level

stress Naive Bayes 95%

Perez- Valero
et al. [1]

Mental arithmetic
task 8 20 2 Three level

stress
SVM with

smooth filter 94%

Two level
stress

Multi-layer
protection without

filter
81%

Islam
et al. [24]

Mental arithmetic
task 21 11 4 Two-level

stress
Ensemble Subspace

K-NN 77.3%

Akella
et al. [8]

Mental arithmetic
tasks 32 80 3 Three level

stress SVM 91%

Jun
et al. [14]

Mental arithmatic
task 14 10 - Two level

stress SVM 96%

Three level
stress 75%

shargie
et al. [5]

Mental arithmatic
task 7 18 18 Three level

stress
SVM with

ECOC 94.79%

Hafeez
et al. [39] Montreal Imaging Stress

Task-based mental
arithmatic task

8 14 1 Three level
stress LSTM 70.67%

Chowdhury
et al. [40]

Mental
arithmetic task 1 5 1 Two level

stress Random Forest 86.9%

Ahn
et al. [41]

Mental
arithmatic task 2 14 4 Two level

stress SVM 77.9%

Rajendran
et al. [42]

Mental
arithmatic task 8 25 12 Two level

stress SVM 95.83%

Saidatul
et al. [43]

Mental
arithmatic task 19 30 2 Three level

stress kNN 84%

Proposed
work Mathematical Word

Problem as visual stimuli

16 30 14 Two level
stress SVM 97.14%

Three level
stress 89.01%

Four level
stress 89.59%

Mathematical Word
Problem as audio stimuli

Two level
stress 95.51%

Three level
stress 87.17%

Four level
stress 82.63%

for audio stimuli. For four level stress classification, we
achieved highest accuracy 89.59% for visual stimuli and
82.63% accuracy for audio stimuli. A binary classification
between audio and visual stimuli was successfully completed
with highest accuracy 98.32%. These findings will help to
detect mental stress at early stage and also it will further help
the community having eye sight and hearing disability for
classifying audio and visual stimulation.
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